code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Optional[int] = logging.getLogger() _snake_case : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( __a ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : Optional[Any] ) -> Dict: os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase__ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase__ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] = "pytorch" ) -> int: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase__ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase__ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase__ ) __lowerCAmelCase = f"""\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase__ , 'metrics.json' ) with open(lowerCAmelCase__ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase__ ) return result @require_torch_gpu def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
284
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __SCREAMING_SNAKE_CASE = False if num < 0: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = -num __SCREAMING_SNAKE_CASE = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(UpperCamelCase_ ) for e in binary ) return "0b" + "".join(str(UpperCamelCase_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
100
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
152
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCAmelCase ( A__: List[Any] , A__: Tuple ): '''simple docstring''' UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' UpperCAmelCase = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('''RGB''' ) UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) UpperCAmelCase = transform(A__ ).unsqueeze(0 ).to(A__ ) return image def _lowerCAmelCase ( A__: Optional[int] ): '''simple docstring''' if "visual_encoder" in key: UpperCAmelCase = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , A__ ) if "blocks" in key: UpperCAmelCase = re.sub(r'''blocks''' , '''layers''' , A__ ) if "attn" in key: UpperCAmelCase = re.sub(r'''attn''' , '''self_attn''' , A__ ) if "norm1" in key: UpperCAmelCase = re.sub(r'''norm1''' , '''layer_norm1''' , A__ ) if "norm2" in key: UpperCAmelCase = re.sub(r'''norm2''' , '''layer_norm2''' , A__ ) if "encoder.norm" in key: UpperCAmelCase = re.sub(r'''encoder.norm''' , '''post_layernorm''' , A__ ) if "encoder.patch_embed.proj" in key: UpperCAmelCase = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , A__ ) if "encoder.pos_embed" in key: UpperCAmelCase = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , A__ ) if "encoder.cls_token" in key: UpperCAmelCase = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , A__ ) if "self_attn" in key: UpperCAmelCase = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , A__ ) return key @torch.no_grad() def _lowerCAmelCase ( A__: List[Any] , A__: Any=None ): '''simple docstring''' if config_path is not None: UpperCAmelCase = BlipConfig.from_pretrained(A__ ) else: UpperCAmelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) UpperCAmelCase = BlipForConditionalGeneration(A__ ).eval() UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' UpperCAmelCase = blip_decoder(pretrained=A__ , image_size=384 , vit='''base''' ) UpperCAmelCase = pt_model.eval() UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(A__ ) UpperCAmelCase = rename_key(A__ ) UpperCAmelCase = value hf_model.load_state_dict(A__ ) UpperCAmelCase = 384 UpperCAmelCase = load_demo_image(image_size=A__ , device='''cpu''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase = tokenizer(['''a picture of'''] ).input_ids UpperCAmelCase = hf_model.generate(A__ , A__ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] UpperCAmelCase = hf_model.generate(A__ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(A__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) UpperCAmelCase = blip_vqa(pretrained=A__ , image_size=A__ , vit='''base''' ) vqa_model.eval() UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(A__ ) UpperCAmelCase = rename_key(A__ ) UpperCAmelCase = value UpperCAmelCase = BlipForQuestionAnswering(A__ ) hf_vqa_model.load_state_dict(A__ ) UpperCAmelCase = ['''How many dogs are in this image?'''] UpperCAmelCase = tokenizer(A__ , return_tensors='''pt''' ).input_ids UpperCAmelCase = hf_vqa_model.generate(A__ , A__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' UpperCAmelCase = blip_itm(pretrained=A__ , image_size=A__ , vit='''base''' ) itm_model.eval() UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(A__ ) UpperCAmelCase = rename_key(A__ ) UpperCAmelCase = value UpperCAmelCase = BlipForImageTextRetrieval(A__ ) UpperCAmelCase = ['''A picture of a woman with a dog sitting in a beach'''] UpperCAmelCase = tokenizer( A__ , return_tensors='''pt''' , padding='''max_length''' , truncation=A__ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(A__ ) hf_itm_model.eval() UpperCAmelCase = hf_itm_model(A__ , A__ , use_itm_head=A__ ) UpperCAmelCase = hf_itm_model(A__ , A__ , use_itm_head=A__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __magic_name__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
152
1
'''simple docstring''' # using dfs for finding eulerian path traversal def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None )-> List[str]: '''simple docstring''' _UpperCAmelCase : Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _UpperCAmelCase ,_UpperCAmelCase : Tuple = True, True _UpperCAmelCase : List[Any] = dfs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return path def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Optional[int] = -1 for i in range(lowerCAmelCase_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _UpperCAmelCase : Optional[int] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : str = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _UpperCAmelCase ,_UpperCAmelCase : int = check_circuit_or_path(lowerCAmelCase_ , lowerCAmelCase_ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return _UpperCAmelCase : Dict = 1 if check == 2: _UpperCAmelCase : Dict = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) _UpperCAmelCase : Dict = dfs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) print(lowerCAmelCase_ ) def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _UpperCAmelCase : int = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _UpperCAmelCase : Tuple = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _UpperCAmelCase : List[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _UpperCAmelCase : List[str] = { 1: [], 2: [] # all degree is zero } _UpperCAmelCase : Union[str, Any] = 10 check_euler(lowerCAmelCase_ , lowerCAmelCase_ ) check_euler(lowerCAmelCase_ , lowerCAmelCase_ ) check_euler(lowerCAmelCase_ , lowerCAmelCase_ ) check_euler(lowerCAmelCase_ , lowerCAmelCase_ ) check_euler(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
215
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self ) -> List[str]: _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[int] = {} def _snake_case ( self ,a_ ) -> Optional[Any]: if vertex not in self.adjacency: _UpperCAmelCase : int = {} self.num_vertices += 1 def _snake_case ( self ,a_ ,a_ ,a_ ) -> int: self.add_vertex(a_ ) self.add_vertex(a_ ) if head == tail: return _UpperCAmelCase : List[Any] = weight _UpperCAmelCase : Dict = weight def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = self.get_edges() for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = edge edges.remove((tail, head, weight) ) for i in range(len(a_ ) ): _UpperCAmelCase : str = list(edges[i] ) edges.sort(key=lambda a_ : e[2] ) for i in range(len(a_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _UpperCAmelCase : Optional[Any] = edges[i][2] + 1 for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = edge _UpperCAmelCase : str = weight _UpperCAmelCase : List[str] = weight def __str__( self ) -> Any: _UpperCAmelCase : List[Any] = """""" for tail in self.adjacency: for head in self.adjacency[tail]: _UpperCAmelCase : List[str] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _snake_case ( self ) -> Optional[int]: return self.adjacency.keys() @staticmethod def _snake_case ( a_=None ,a_=None ) -> Tuple: _UpperCAmelCase : List[Any] = Graph() if vertices is None: _UpperCAmelCase : List[str] = [] if edges is None: _UpperCAmelCase : Optional[Any] = [] for vertex in vertices: g.add_vertex(a_ ) for edge in edges: g.add_edge(*a_ ) return g class lowercase : """simple docstring""" def __init__( self ) -> int: _UpperCAmelCase : List[str] = {} _UpperCAmelCase : int = {} def __len__( self ) -> Tuple: return len(self.parent ) def _snake_case ( self ,a_ ) -> str: if item in self.parent: return self.find(a_ ) _UpperCAmelCase : Optional[Any] = item _UpperCAmelCase : List[Any] = 0 return item def _snake_case ( self ,a_ ) -> List[str]: if item not in self.parent: return self.make_set(a_ ) if item != self.parent[item]: _UpperCAmelCase : List[Any] = self.find(self.parent[item] ) return self.parent[item] def _snake_case ( self ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Any = self.find(a_ ) _UpperCAmelCase : List[str] = self.find(a_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _UpperCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _UpperCAmelCase : Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _UpperCAmelCase : List[str] = roota return roota return None @staticmethod def _snake_case ( a_ ) -> List[Any]: _UpperCAmelCase : int = graph.num_vertices _UpperCAmelCase : int = Graph.UnionFind() _UpperCAmelCase : Optional[int] = [] while num_components > 1: _UpperCAmelCase : int = {} for vertex in graph.get_vertices(): _UpperCAmelCase : Union[str, Any] = -1 _UpperCAmelCase : Tuple = graph.get_edges() for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = edge edges.remove((tail, head, weight) ) for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = edge _UpperCAmelCase : Any = union_find.find(a_ ) _UpperCAmelCase : Any = union_find.find(a_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : Tuple = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = cheap_edge[vertex] if union_find.find(a_ ) != union_find.find(a_ ): union_find.union(a_ ,a_ ) mst_edges.append(cheap_edge[vertex] ) _UpperCAmelCase : Tuple = num_components - 1 _UpperCAmelCase : Optional[int] = Graph.build(edges=a_ ) return mst
215
1
import datasets lowerCamelCase : Dict = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" lowerCamelCase : Union[str, Any] = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" lowerCamelCase : str = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def a__ ( self : Optional[Any] , A_ : Union[str, Any] , A_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return {"accuracy": simple_accuracy(A_ , A_ )}
208
import math def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float ): '''simple docstring''' return math.pow(lowercase , 2 ) - a def _SCREAMING_SNAKE_CASE ( lowercase : float ): '''simple docstring''' return 2 * x def _SCREAMING_SNAKE_CASE ( lowercase : float ): '''simple docstring''' lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(lowercase , 2 ) return start def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : int = 99_99 , lowercase : float = 0.00_0000_0000_0001 ): '''simple docstring''' if a < 0: raise ValueError('math domain error' ) lowerCamelCase_ = get_initial_point(lowercase ) for _ in range(lowercase ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(lowercase , lowercase ) / fx_derivative(lowercase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
208
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : @staticmethod def __UpperCAmelCase ( *__magic_name__ , **__magic_name__ ) -> Tuple: pass @is_pipeline_test @require_vision @require_torch class a ( unittest.TestCase ): _lowerCAmelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: _a = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) _a = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Any: _a = object_detector(examples[0] , threshold=0.0 ) _a = len(__magic_name__ ) self.assertGreater(__magic_name__ , 0 ) self.assertEqual( __magic_name__ , [ { 'score': ANY(__magic_name__ ), 'label': ANY(__magic_name__ ), 'box': {'xmin': ANY(__magic_name__ ), 'ymin': ANY(__magic_name__ ), 'xmax': ANY(__magic_name__ ), 'ymax': ANY(__magic_name__ )}, } for i in range(__magic_name__ ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def __UpperCAmelCase ( self ) -> Optional[int]: pass @require_torch def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) _a = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) _a = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def __UpperCAmelCase ( self ) -> Optional[int]: _a = pipeline('zero-shot-object-detection' ) _a = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) _a = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def __UpperCAmelCase ( self ) -> Tuple: pass @require_torch @slow def __UpperCAmelCase ( self ) -> Dict: _a = 0.2 _a = pipeline('zero-shot-object-detection' ) _a = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=__magic_name__ , ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = 2 _a = pipeline('zero-shot-object-detection' ) _a = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=__magic_name__ , ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
168
'''simple docstring''' import numpy as np class a : def __init__( self ) -> List[str]: _a = (0, 0) _a = None _a = 0 _a = 0 _a = 0 def __eq__( self , __magic_name__ ) -> Optional[int]: return self.position == cell.position def __UpperCAmelCase ( self ) -> Any: print(self.position ) class a : def __init__( self , __magic_name__=(5, 5) ) -> Optional[int]: _a = np.zeros(__magic_name__ ) _a = world_size[0] _a = world_size[1] def __UpperCAmelCase ( self ) -> List[Any]: print(self.w ) def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: _a = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _a = cell.position[0] _a = cell.position[1] _a = [] for n in neughbour_cord: _a = current_x + n[0] _a = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _a = Cell() _a = (x, y) _a = cell neighbours.append(__magic_name__ ) return neighbours def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ) -> List[str]: '''simple docstring''' _a = [] _a = [] _open.append(lowerCAmelCase__ ) while _open: _a = np.argmin([n.f for n in _open] ) _a = _open[min_f] _closed.append(_open.pop(lowerCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(lowerCAmelCase__ ): for c in _closed: if c == n: continue _a = current.g + 1 _a , _a = n.position _a , _a = goal.position _a = (ya - ya) ** 2 + (xa - xa) ** 2 _a = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowerCAmelCase__ ) _a = [] while current.parent is not None: path.append(current.position ) _a = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a_ : str = Gridworld() # Start position and goal a_ : str = Cell() a_ : Dict = (0, 0) a_ : Dict = Cell() a_ : Optional[Any] = (4, 4) print(f'''path from {start.position} to {goal.position}''') a_ : Tuple = astar(world, start, goal) # Just for visual reasons. for i in s: a_ : Any = 1 print(world.w)
168
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE : Tuple = ['input_features'] def __init__( self , _UpperCamelCase=80 , _UpperCamelCase=16000 , _UpperCamelCase=160 , _UpperCamelCase=30 , _UpperCamelCase=400 , _UpperCamelCase=0.0 , _UpperCamelCase=False , **_UpperCamelCase , ): """simple docstring""" super().__init__( feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = n_fft _lowercase : str = hop_length _lowercase : List[Any] = chunk_length _lowercase : List[Any] = chunk_length * sampling_rate _lowercase : List[Any] = self.n_samples // hop_length _lowercase : List[Any] = sampling_rate _lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_0_0_0.0 , sampling_rate=_SCREAMING_SNAKE_CASE , norm="slaney" , mel_scale="slaney" , ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[Any] = spectrogram( _SCREAMING_SNAKE_CASE , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) _lowercase : Tuple = log_spec[:, :-1] _lowercase : Tuple = np.maximum(_SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) _lowercase : Union[str, Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.0 ): """simple docstring""" if attention_mask is not None: _lowercase : List[str] = np.array(_SCREAMING_SNAKE_CASE , np.intaa ) _lowercase : int = [] for vector, length in zip(_SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): _lowercase : int = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _lowercase : Dict = padding_value normed_input_values.append(_SCREAMING_SNAKE_CASE ) else: _lowercase : List[str] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = "max_length" , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowercase : int = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : int = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): _lowercase : str = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : Optional[int] = [np.asarray([raw_speech] ).T] _lowercase : Optional[int] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding _lowercase : int = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _lowercase : List[str] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) _lowercase : List[str] = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format _lowercase : Optional[int] = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) _lowercase : Optional[Any] = [self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): _lowercase : Tuple = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: _lowercase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _lowercase : str = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: _lowercase : Any = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = copy.deepcopy(self.__dict__ ) _lowercase : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
360
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = '▁' _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _snake_case = { 'google/pegasus-xsum': 512, } _snake_case = logging.get_logger(__name__) class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , _UpperCamelCase , _UpperCamelCase="<pad>" , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<mask_2>" , _UpperCamelCase="<mask_1>" , _UpperCamelCase=None , _UpperCamelCase=103 , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : Tuple = offset if additional_special_tokens is not None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCamelCase )}, but is''' f''' {type(_UpperCamelCase )}''' ) _lowercase : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCamelCase ) , self.offset - 1 ) ] if len(set(_UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _lowercase : List[str] = additional_special_tokens_extended else: _lowercase : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] _lowercase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , mask_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token_sent=_UpperCamelCase , offset=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) _lowercase : Union[str, Any] = mask_token_sent _lowercase : str = vocab_file _lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) # add special tokens to encoder dict _lowercase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _lowercase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _lowerCamelCase ( self ): """simple docstring""" return len(self.sp_model ) + self.offset def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _lowercase : Optional[Any] = self.__dict__.copy() _lowercase : Union[str, Any] = None return state def __setstate__( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowercase : List[Any] = {} _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _lowercase : int = self.sp_model.piece_to_id(_UpperCamelCase ) return sp_id + self.offset def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _lowercase : Any = self.sp_model.IdToPiece(index - self.offset ) return token def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[int] = [] _lowercase : Optional[Any] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCamelCase ) + token _lowercase : Tuple = [] else: current_sub_tokens.append(_UpperCamelCase ) out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def _lowerCamelCase ( self , _UpperCamelCase=False ): """simple docstring""" return 1 def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCamelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: _lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
199
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = IFInpaintingSuperResolutionPipeline _SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} _SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) _SCREAMING_SNAKE_CASE : int = PipelineTesterMixin.required_optional_params - {"latents"} def __A ( self ) -> List[Any]: '''simple docstring''' return self._get_superresolution_dummy_components() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> str: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : List[Any] = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Tuple = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCAmelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCAmelCase : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __A ( self ) -> str: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __A ( self ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __A ( self ) -> Dict: '''simple docstring''' self._test_save_load_local() def __A ( self ) -> int: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
254
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
254
1
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
38
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase = '''true''' def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=82 , SCREAMING_SNAKE_CASE_ : List[Any]=16 ) -> Union[str, Any]: set_seed(42 ) SCREAMING_SNAKE_CASE = RegressionModel() SCREAMING_SNAKE_CASE = deepcopy(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model, ddp_model, dataloader def lowercase (SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) SCREAMING_SNAKE_CASE = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(SCREAMING_SNAKE_CASE_ : List[str] ): SCREAMING_SNAKE_CASE = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE_ : Optional[int] ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=16 ) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Dict: SCREAMING_SNAKE_CASE = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = get_dataloader(SCREAMING_SNAKE_CASE_ , not dispatch_batches ) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowercase (SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: SCREAMING_SNAKE_CASE = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE_ ) targs.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.cat(SCREAMING_SNAKE_CASE_ ), torch.cat(SCREAMING_SNAKE_CASE_ ) return logits, targs def lowercase (SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : Optional[Any]=82 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=16 ) -> List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_basic_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_predictions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert ( len(SCREAMING_SNAKE_CASE_ ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE_ )}' def lowercase (SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False ) -> Optional[int]: SCREAMING_SNAKE_CASE = evaluate.load('glue' , 'mrpc' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_mrpc_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['no'] model.to(SCREAMING_SNAKE_CASE_ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE_ ) with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=batch['labels'] ) SCREAMING_SNAKE_CASE = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE = batch['labels'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def lowercase () -> Dict: SCREAMING_SNAKE_CASE = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(SCREAMING_SNAKE_CASE_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) SCREAMING_SNAKE_CASE = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE_ , 5_12 ) accelerator.state._reset_state() def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
38
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A__ = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = ['''pixel_values'''] def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BILINEAR , _snake_case = True , _snake_case = None , _snake_case = True , _snake_case = 1 / 255 , _snake_case = True , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 256} _lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase = get_size_dict(_snake_case , param_name="""crop_size""" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ): """simple docstring""" _lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _lowerCAmelCase = get_resize_output_image_size(_snake_case , size=size["""shortest_edge"""] , default_to_square=_snake_case ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" _lowerCAmelCase = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_snake_case , size=(size["""height"""], size["""width"""]) , data_format=_snake_case , **_snake_case ) def snake_case ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case ): """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): """simple docstring""" _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_snake_case , param_name="""crop_size""" ) _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] _lowerCAmelCase = {"""pixel_values""": images} return BatchFeature(data=_snake_case , tensor_type=_snake_case ) def snake_case ( self , _snake_case , _snake_case = None ): """simple docstring""" _lowerCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_snake_case ) != len(_snake_case ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_snake_case ): _lowerCAmelCase = target_sizes.numpy() _lowerCAmelCase = [] for idx in range(len(_snake_case ) ): _lowerCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_snake_case ) _lowerCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_snake_case ) else: _lowerCAmelCase = logits.argmax(dim=1 ) _lowerCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
82
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A__ = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCamelCase__ ): def __init__( self , **_snake_case ): """simple docstring""" requires_backends(self , ["""bs4"""] ) super().__init__(**_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _lowerCAmelCase = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) _lowerCAmelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = BeautifulSoup(_snake_case , """html.parser""" ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _lowerCAmelCase = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(_snake_case ) != len(_snake_case ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = """""" for tagname, subs in zip(_snake_case , _snake_case ): xpath += F'/{tagname}' if subs != 0: xpath += F'[{subs}]' return xpath def __call__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): _lowerCAmelCase = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): _lowerCAmelCase = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F'but is of type {type(_snake_case )}.' ) _lowerCAmelCase = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: _lowerCAmelCase = [html_strings] # Get nodes + xpaths _lowerCAmelCase = [] _lowerCAmelCase = [] for html_string in html_strings: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) _lowerCAmelCase = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): _lowerCAmelCase = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict _lowerCAmelCase = {"""nodes""": nodes, """xpaths""": xpaths} _lowerCAmelCase = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
82
1
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class a_ ( _lowerCAmelCase ): def __init__( self : str , **lowercase : str ): """simple docstring""" super().__init__(**lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self : Any , lowercase : Union[np.ndarray, bytes, str] , **lowercase : Dict ): """simple docstring""" return super().__call__(lowercase , **lowercase ) def lowercase__ ( self : Dict , **lowercase : int ): """simple docstring""" lowercase_ :str = {} if "candidate_labels" in kwargs: lowercase_ :Tuple = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowercase_ :Optional[Any] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def lowercase__ ( self : Dict , lowercase : Any , lowercase : Dict=None , lowercase : Optional[Any]="This is a sound of {}." ): """simple docstring""" if isinstance(lowercase , lowercase ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase_ :Union[str, Any] = requests.get(lowercase ).content else: with open(lowercase , "rb" ) as f: lowercase_ :Dict = f.read() if isinstance(lowercase , lowercase ): lowercase_ :str = ffmpeg_read(lowercase , self.feature_extractor.sampling_rate ) if not isinstance(lowercase , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) lowercase_ :Dict = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) lowercase_ :Optional[Any] = candidate_labels lowercase_ :Optional[int] = [hypothesis_template.format(lowercase ) for x in candidate_labels] lowercase_ :List[str] = self.tokenizer(lowercase , return_tensors=self.framework , padding=lowercase ) lowercase_ :Any = [text_inputs] return inputs def lowercase__ ( self : Any , lowercase : str ): """simple docstring""" lowercase_ :int = model_inputs.pop("candidate_labels" ) lowercase_ :Optional[int] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , lowercase ): lowercase_ :int = text_inputs[0] else: # Batching case. lowercase_ :int = text_inputs[0][0] lowercase_ :List[Any] = self.model(**lowercase , **lowercase ) lowercase_ :Optional[Any] = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def lowercase__ ( self : Any , lowercase : List[str] ): """simple docstring""" lowercase_ :List[Any] = model_outputs.pop("candidate_labels" ) lowercase_ :List[str] = model_outputs["logits"][0] if self.framework == "pt": lowercase_ :Dict = logits.softmax(dim=0 ) lowercase_ :Dict = probs.tolist() else: raise ValueError("`tf` framework not supported." ) lowercase_ :str = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(lowercase , lowercase ) , key=lambda lowercase : -x[0] ) ] return result
147
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): __A = ["input_features"] def __init__( self : Any , lowercase : Tuple=80 , lowercase : Optional[int]=16_000 , lowercase : Optional[Any]=160 , lowercase : Optional[int]=30 , lowercase : List[Any]=400 , lowercase : Dict=0.0 , lowercase : Tuple=False , **lowercase : Optional[int] , ): """simple docstring""" super().__init__( feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , ) lowercase_ :Optional[int] = n_fft lowercase_ :List[Any] = hop_length lowercase_ :Tuple = chunk_length lowercase_ :List[str] = chunk_length * sampling_rate lowercase_ :Optional[Any] = self.n_samples // hop_length lowercase_ :Any = sampling_rate lowercase_ :List[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowercase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=lowercase , norm="slaney" , mel_scale="slaney" , ) def lowercase__ ( self : str , lowercase : np.array ): """simple docstring""" lowercase_ :Any = spectrogram( lowercase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowercase_ :Any = log_spec[:, :-1] lowercase_ :List[Any] = np.maximum(lowercase , log_spec.max() - 8.0 ) lowercase_ :Dict = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowercase__ ( lowercase : List[np.ndarray] , lowercase : List[np.ndarray] , lowercase : float = 0.0 ): """simple docstring""" if attention_mask is not None: lowercase_ :Optional[int] = np.array(lowercase , np.intaa ) lowercase_ :Any = [] for vector, length in zip(lowercase , attention_mask.sum(-1 ) ): lowercase_ :Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowercase_ :List[Any] = padding_value normed_input_values.append(lowercase ) else: lowercase_ :List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Tuple , lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase : bool = True , lowercase : Optional[int] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Optional[bool] = None , lowercase : Optional[str] = "max_length" , lowercase : Optional[int] = None , lowercase : Optional[int] = None , lowercase : Optional[bool] = None , **lowercase : Union[str, Any] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase_ :List[str] = isinstance(lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowercase_ :Optional[Any] = is_batched_numpy or ( isinstance(lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase_ :Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowercase , np.ndarray ): lowercase_ :List[Any] = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase_ :Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase_ :Optional[int] = [np.asarray([raw_speech] ).T] lowercase_ :int = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowercase_ :Tuple = self.pad( lowercase , padding=lowercase , max_length=max_length if max_length else self.n_samples , truncation=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase_ :Union[str, Any] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowercase_ :List[Any] = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowercase_ :Union[str, Any] = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowercase_ :List[str] = [self._np_extract_fbank_features(lowercase ) for waveform in input_features[0]] if isinstance(input_features[0] , lowercase ): lowercase_ :Tuple = [np.asarray(lowercase , dtype=np.floataa ) for feature in input_features] else: lowercase_ :Union[str, Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase_ :Dict = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowercase_ :Tuple = padded_inputs.convert_to_tensors(lowercase ) return padded_inputs def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase_ :List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
147
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase_ ( lowerCamelCase__ ): return (data["data"], data["target"]) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = XGBClassifier() classifier.fit(lowerCamelCase__ , lowerCamelCase__ ) return classifier def lowerCamelCase_ ( ): lowerCamelCase_ = load_iris() lowerCamelCase_ , lowerCamelCase_ = data_handling(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = train_test_split( lowerCamelCase__ , lowerCamelCase__ , test_size=0.25 ) lowerCamelCase_ = iris["target_names"] # Create an XGBoost Classifier from the training data lowerCamelCase_ = xgboost(lowerCamelCase__ , lowerCamelCase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , display_labels=lowerCamelCase__ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
19
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCAmelCase =["gpt2"] __UpperCAmelCase ="gpt2" if is_tf_available(): class a__ ( tf.Module ): def __init__( self : str , a : Union[str, Any] ): """simple docstring""" super().__init__() __lowerCamelCase = tokenizer __lowerCamelCase = AutoConfig.from_pretrained(a ) __lowerCamelCase = TFGPTaLMHeadModel.from_config(a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Tuple ): """simple docstring""" __lowerCamelCase = self.tokenizer(a ) __lowerCamelCase = tokenized['''input_ids'''].to_tensor() __lowerCamelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCamelCase = self.model(input_ids=a , attention_mask=a )['''logits'''] return outputs @require_tf @require_keras_nlp class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" super().setUp() __lowerCamelCase = [GPTaTokenizer.from_pretrained(a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCamelCase = [TFGPTaTokenizer.from_pretrained(a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCamelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __lowerCamelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCamelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __lowerCamelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCamelCase = python_outputs[key].numpy() __lowerCamelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(a , tf.intaa ) == tf_outputs_values ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.function(a ) for test_inputs in self.test_sentences: __lowerCamelCase = tf.constant(a ) __lowerCamelCase = compiled_tokenizer(a ) __lowerCamelCase = tf_tokenizer(a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = ModelToSave(tokenizer=a ) __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = model.serving(a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase = Path(a ) / '''saved.model''' tf.saved_model.save(a , a , signatures={'''serving_default''': model.serving} ) __lowerCamelCase = tf.saved_model.load(a ) __lowerCamelCase = loaded_model.signatures['''serving_default'''](a )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = tf_tokenizer(a ) # Build model with some sample inputs __lowerCamelCase = tf_tokenizer.get_config() __lowerCamelCase = TFGPTaTokenizer.from_config(a ) __lowerCamelCase = model_from_config(a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCamelCase = 12_31_23 for max_length in [3, 5, 10_24]: __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = tf_tokenizer(a , max_length=a ) __lowerCamelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
67
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase_ ={ '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ =['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ =[ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase_ =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
"""simple docstring""" def a_ ( _lowercase = 100 ): _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
128
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a :str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} a :Dict = parent a :int = batch_size a :List[Any] = num_channels a :List[str] = min_resolution a :str = max_resolution a :Optional[Any] = do_resize a :Optional[int] = size a :str = do_rescale a :Any = rescale_factor a :int = do_normalize a :Optional[Any] = image_mean a :Tuple = image_std a :List[Any] = do_pad def SCREAMING_SNAKE_CASE__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=False ): if not batched: a :Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): a , a :Optional[Any] = image.size else: a , a :Tuple = image.shape[1], image.shape[2] if w < h: a :Tuple = int(self.size['''shortest_edge'''] * h / w ) a :Any = self.size['''shortest_edge'''] elif w > h: a :Union[str, Any] = self.size['''shortest_edge'''] a :List[Any] = int(self.size['''shortest_edge'''] * w / h ) else: a :Any = self.size['''shortest_edge'''] a :Dict = self.size['''shortest_edge'''] else: a :Optional[int] = [] for image in image_inputs: a , a :List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a :Optional[int] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] a :int = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = DetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''rescale_factor''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_pad''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) a :Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing a :str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input a :Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a , a :Any = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a , a :str = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) a :Any = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing a :Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a :int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input a :Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a , a :List[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a :Dict = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values a , a :Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing a :int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input a :Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a , a :Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a :List[Any] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values a , a :Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # prepare image and target a :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: a :int = json.loads(f.read() ) a :str = {'''image_id''': 3_9769, '''annotations''': target} # encode them a :Union[str, Any] = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) a :int = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors='''pt''' ) # verify pixel values a :Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase ) a :Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify area a :str = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) ) # verify boxes a :Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase ) a :Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1e-3 ) ) # verify image_id a :Optional[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) ) # verify is_crowd a :int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) ) # verify class_labels a :Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) ) # verify orig_size a :str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) ) # verify size a :List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # prepare image, target and masks_path a :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: a :Tuple = json.loads(f.read() ) a :Union[str, Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} a :List[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them a :List[str] = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) a :Any = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors='''pt''' ) # verify pixel values a :List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase ) a :List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify area a :Dict = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) ) # verify boxes a :Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase ) a :Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1e-3 ) ) # verify image_id a :int = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) ) # verify is_crowd a :Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) ) # verify class_labels a :str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) ) # verify masks a :Tuple = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _lowerCamelCase ) # verify orig_size a :Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) ) # verify size a :Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) )
94
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , _lowerCamelCase=1000 , ): a :str = parent a :str = batch_size a :List[Any] = seq_length a :Union[str, Any] = is_training a :str = use_input_mask a :Tuple = use_token_type_ids a :Optional[int] = use_labels a :Union[str, Any] = vocab_size a :Optional[Any] = hidden_size a :Any = num_hidden_layers a :Optional[int] = num_attention_heads a :Tuple = intermediate_size a :Dict = hidden_act a :str = hidden_dropout_prob a :List[Any] = attention_probs_dropout_prob a :List[Any] = max_position_embeddings a :List[str] = type_vocab_size a :List[Any] = type_sequence_label_size a :Union[str, Any] = initializer_range a :Optional[Any] = num_labels a :Optional[int] = num_choices a :Union[str, Any] = scope a :List[str] = range_bbox def SCREAMING_SNAKE_CASE__ ( self ): a :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment a :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a :List[Any] = bbox[i, j, 3] a :List[str] = bbox[i, j, 1] a :List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: a :Dict = bbox[i, j, 2] a :Dict = bbox[i, j, 0] a :Any = t a :Optional[Any] = tf.convert_to_tensor(_lowerCamelCase ) a :int = None if self.use_input_mask: a :List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a :Optional[int] = None if self.use_token_type_ids: a :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a :List[Any] = None a :List[Any] = None a :List[Any] = None if self.use_labels: a :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a :Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a :List[str] = ids_tensor([self.batch_size] , self.num_choices ) a :List[Any] = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = TFLayoutLMModel(config=_lowerCamelCase ) a :Dict = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) a :Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase , token_type_ids=_lowerCamelCase ) a :Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :List[str] = TFLayoutLMForMaskedLM(config=_lowerCamelCase ) a :int = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = self.num_labels a :List[Any] = TFLayoutLMForSequenceClassification(config=_lowerCamelCase ) a :int = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :int = self.num_labels a :Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCamelCase ) a :int = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[Any] = TFLayoutLMForQuestionAnswering(config=_lowerCamelCase ) a :Optional[int] = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) :List[Any] = config_and_inputs a :Union[str, Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 10 def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = TFLayoutLMModelTester(self ) a :Dict = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a :str = TFLayoutLMModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip('''Onnx compliancy broke with TF 2.10''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def __lowerCamelCase ( ): """simple docstring""" a :Tuple = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 a :Any = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 a :List[str] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 a :List[str] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) a :Any = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' ) a , a , a , a , a :Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass a :Tuple = model(input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) # test the sequence output on [0, :3, :3] a :List[str] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-3 ) ) # test the pooled output on [1, :3] a :List[str] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCamelCase , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # initialize model with randomly initialized sequence classification head a :str = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 ) a , a , a , a , a :List[str] = prepare_layoutlm_batch_inputs() # forward pass a :List[Any] = model( input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar a :Union[str, Any] = outputs.loss a :Optional[Any] = (2,) self.assertEqual(loss.shape , _lowerCamelCase ) # test the shape of the logits a :Any = outputs.logits a :Tuple = (2, 2) self.assertEqual(logits.shape , _lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # initialize model with randomly initialized token classification head a :Dict = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=13 ) a , a , a , a , a :Dict = prepare_layoutlm_batch_inputs() # forward pass a :List[Any] = model( input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) # test the shape of the logits a :Optional[Any] = outputs.logits a :List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # initialize model with randomly initialized token classification head a :List[Any] = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' ) a , a , a , a , a :Any = prepare_layoutlm_batch_inputs() # forward pass a :str = model(input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) # test the shape of the logits a :Optional[int] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _lowerCamelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCamelCase )
94
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "data2vec-vision" def __init__( self : str , _lowerCAmelCase : Optional[Any]=768 , _lowerCAmelCase : Optional[int]=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : str=3_072 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : Optional[int]=1E-12 , _lowerCAmelCase : Tuple=224 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : str=3 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Dict=[3, 5, 7, 11] , _lowerCAmelCase : List[str]=[1, 2, 3, 6] , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[int]=0.4 , _lowerCAmelCase : Dict=256 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Union[str, Any]=255 , **_lowerCAmelCase : int , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = use_mask_token SCREAMING_SNAKE_CASE_ = use_absolute_position_embeddings SCREAMING_SNAKE_CASE_ = use_relative_position_bias SCREAMING_SNAKE_CASE_ = use_shared_relative_position_bias SCREAMING_SNAKE_CASE_ = layer_scale_init_value SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE_ = out_indices SCREAMING_SNAKE_CASE_ = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE_ = use_auxiliary_head SCREAMING_SNAKE_CASE_ = auxiliary_loss_weight SCREAMING_SNAKE_CASE_ = auxiliary_channels SCREAMING_SNAKE_CASE_ = auxiliary_num_convs SCREAMING_SNAKE_CASE_ = auxiliary_concat_input SCREAMING_SNAKE_CASE_ = semantic_loss_ignore_index class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = version.parse("1.11" ) @property def lowerCAmelCase_ ( self : Optional[int] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1E-4
210
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> int: if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE_ = version.parse(accelerate.__version__ ).base_version if version.parse(__UpperCAmelCase ) < version.parse('0.17.0' ): return method def wrapper(self : Optional[int] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Optional[Any] ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__UpperCAmelCase , **__UpperCAmelCase ) return wrapper
210
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _snake_case = parse(importlib.metadata.version('torch')) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) _a : List[Any] = STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase_ , lowercase_ ): _a : str = parse(importlib.metadata.version(lowercase_ ) ) return operation(lowercase_ , parse(lowercase_ ) ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return compare_versions(lowercase_ , lowercase_ , lowercase_ )
294
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort snake_case_ = """1""" snake_case_ = """0""" snake_case_ = """1""" snake_case_ = ort.SessionOptions() snake_case_ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") snake_case_ = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] snake_case_ = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) snake_case_ = ort.RunOptions() snake_case_ = 128 snake_case_ = 1 snake_case_ = np.ones((batch, sequence), dtype=np.intaa) snake_case_ = np.ones((batch, sequence), dtype=np.intaa) snake_case_ = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") snake_case_ = time.time() snake_case_ = 2000 snake_case_ = {} for iter in range(max_iters): snake_case_ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1000 / max_iters))
78
0
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping lowerCamelCase_ = tuple[int, int] class UpperCamelCase_ : def __init__( self : List[Any] , lowerCAmelCase_ : set[int] , lowerCAmelCase_ : Mapping[EdgeT, int] ) -> None: UpperCAmelCase_ : set[int] = vertices UpperCAmelCase_ : dict[EdgeT, int] = { (min(lowerCAmelCase_ ), max(lowerCAmelCase_ )): weight for edge, weight in edges.items() } def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : EdgeT , lowerCAmelCase_ : int ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCAmelCase_ : Tuple = weight def _SCREAMING_SNAKE_CASE ( self : str ) -> Graph: UpperCAmelCase_ : Graph = Graph({min(self.vertices )} , {} ) UpperCAmelCase_ : EdgeT UpperCAmelCase_ : int UpperCAmelCase_ : EdgeT UpperCAmelCase_ : int while len(subgraph.vertices ) < len(self.vertices ): UpperCAmelCase_ : int = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCAmelCase_ : Tuple = edge UpperCAmelCase_ : Dict = weight subgraph.add_edge(lowerCAmelCase_ , lowerCAmelCase_ ) return subgraph def snake_case ( A__ = "p107_network.txt" ): UpperCAmelCase_ : str = os.path.abspath(os.path.dirname(A__ ) ) UpperCAmelCase_ : str = os.path.join(A__ ,A__ ) UpperCAmelCase_ : dict[EdgeT, int] = {} UpperCAmelCase_ : list[str] UpperCAmelCase_ : int UpperCAmelCase_ : int with open(A__ ) as f: UpperCAmelCase_ : Dict = f.read().strip().split("\n" ) UpperCAmelCase_ : str = [line.split("," ) for line in data] for edgea in range(1 ,len(A__ ) ): for edgea in range(A__ ): if adjaceny_matrix[edgea][edgea] != "-": UpperCAmelCase_ : Union[str, Any] = int(adjaceny_matrix[edgea][edgea] ) UpperCAmelCase_ : Graph = Graph(set(range(len(A__ ) ) ) ,A__ ) UpperCAmelCase_ : Graph = graph.prims_algorithm() UpperCAmelCase_ : int = sum(graph.edges.values() ) UpperCAmelCase_ : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'{solution() = }')
253
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCamelCase_ = '''hf-internal-testing/tiny-random-bert''' lowerCamelCase_ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowerCamelCase_ = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = cached_file(lowerCAmelCase_ , lowerCAmelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCAmelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) with open(os.path.join(lowerCAmelCase_ , "refs" , "main" ) ) as f: UpperCAmelCase_ : Optional[int] = f.read() self.assertEqual(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , "snapshots" , lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(os.path.isfile(lowerCAmelCase_ ) ) # File is cached at the same place the second time. UpperCAmelCase_ : List[str] = cached_file(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Using a specific revision to test the full commit hash. UpperCAmelCase_ : int = cached_file(lowerCAmelCase_ , lowerCAmelCase_ , revision="9b8c223" ) self.assertEqual(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , "snapshots" , lowerCAmelCase_ , lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid model identifier" ): UpperCAmelCase_ : List[Any] = cached_file("tiny-random-bert" , lowerCAmelCase_ ) with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid git identifier" ): UpperCAmelCase_ : Optional[Any] = cached_file(lowerCAmelCase_ , lowerCAmelCase_ , revision="aaaa" ) with self.assertRaisesRegex(lowerCAmelCase_ , "does not appear to have a file named" ): UpperCAmelCase_ : Union[str, Any] = cached_file(lowerCAmelCase_ , "conf" ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: with self.assertRaisesRegex(lowerCAmelCase_ , "does not appear to have a file named" ): UpperCAmelCase_ : Any = cached_file(lowerCAmelCase_ , "conf" ) with open(os.path.join(lowerCAmelCase_ , "refs" , "main" ) ) as f: UpperCAmelCase_ : List[str] = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , ".no_exist" , lowerCAmelCase_ , "conf" ) ) ) UpperCAmelCase_ : str = cached_file(lowerCAmelCase_ , "conf" , _raise_exceptions_for_missing_entries=lowerCAmelCase_ ) self.assertIsNone(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = cached_file(lowerCAmelCase_ , "conf" , local_files_only=lowerCAmelCase_ , _raise_exceptions_for_missing_entries=lowerCAmelCase_ ) self.assertIsNone(lowerCAmelCase_ ) UpperCAmelCase_ : Any = mock.Mock() UpperCAmelCase_ : List[str] = 500 UpperCAmelCase_ : Optional[Any] = {} UpperCAmelCase_ : List[Any] = HTTPError UpperCAmelCase_ : List[str] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase_ ) as mock_head: UpperCAmelCase_ : List[Any] = cached_file(lowerCAmelCase_ , "conf" , _raise_exceptions_for_connection_errors=lowerCAmelCase_ ) self.assertIsNone(lowerCAmelCase_ ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , lowerCAmelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , lowerCAmelCase_ , revision="ahaha" ) UpperCAmelCase_ : int = get_file_from_repo("bert-base-cased" , lowerCAmelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. UpperCAmelCase_ : Optional[int] = json.loads(open(lowerCAmelCase_ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Union[str, Any] = Path(lowerCAmelCase_ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(lowerCAmelCase_ , "a.txt" ) , str(lowerCAmelCase_ ) ) self.assertIsNone(get_file_from_repo(lowerCAmelCase_ , "b.txt" ) )
253
1
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[int] = int(__lowerCamelCase ) # Initialize Result __snake_case : str = [] # Traverse through all denomination for denomination in reversed(__lowerCamelCase ): # Find denominations while int(__lowerCamelCase ) >= int(__lowerCamelCase ): total_value -= int(__lowerCamelCase ) answer.append(__lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _snake_case : Optional[Any] = [] _snake_case : Dict = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): _snake_case : List[Any] = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) _snake_case : Union[str, Any] = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter _snake_case : Optional[Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] _snake_case : int = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(f'''Following is minimal change for {value}: ''') _snake_case : Optional[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
123
from __future__ import annotations _snake_case : Any = "Muhammad Umer Farooq" _snake_case : Optional[int] = "MIT" _snake_case : Union[str, Any] = "1.0.0" _snake_case : Optional[Any] = "Muhammad Umer Farooq" _snake_case : List[Any] = "contact@muhammadumerfarooq.me" _snake_case : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : str ) -> None: super().__init__() __snake_case : list[str] = [] __snake_case : Any = domain def __snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : list[tuple[str, str | None]] ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case : Any = parse.urljoin(self.domain , lowerCamelCase ) self.urls.append(lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): return ".".join(get_sub_domain_name(__lowerCamelCase ).split("." )[-2:] ) def lowerCAmelCase_ ( __lowerCamelCase ): return parse.urlparse(__lowerCamelCase ).netloc def lowerCAmelCase_ ( __lowerCamelCase = "https://github.com" ): __snake_case : Tuple = get_domain_name(__lowerCamelCase ) # Initialize the parser __snake_case : Dict = Parser(__lowerCamelCase ) try: # Open URL __snake_case : Any = requests.get(__lowerCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case : List[str] = requests.get(__lowerCamelCase ) # Get the valid email. __snake_case : Any = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowerCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowerCamelCase ) if __name__ == "__main__": _snake_case : Union[str, Any] = emails_from_url("https://github.com") print(f'''{len(emails)} emails found:''') print("\n".join(sorted(emails)))
123
1
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowerCamelCase__ = 0 lowerCamelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowerCamelCase__ = tuple[int, int] class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : str = pos_x __lowerCAmelCase : List[str] = pos_y __lowerCAmelCase : Optional[int] = (pos_y, pos_x) __lowerCAmelCase : List[Any] = goal_x __lowerCAmelCase : Optional[Any] = goal_y __lowerCAmelCase : Optional[int] = g_cost __lowerCAmelCase : List[str] = parent __lowerCAmelCase : Optional[Any] = self.calculate_heuristic() __lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.pos_x - self.goal_x __lowerCAmelCase : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , _SCREAMING_SNAKE_CASE ): return self.f_cost < other.f_cost class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = [self.start] __lowerCAmelCase : list[Node] = [] __lowerCAmelCase : int = False def __lowerCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowerCAmelCase : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_SCREAMING_SNAKE_CASE ) self.closed_nodes.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = self.get_successors(_SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: # retrieve the best current path __lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(_SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) return [self.start.pos] def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = [] for action in delta: __lowerCAmelCase : int = parent.pos_x + action[1] __lowerCAmelCase : Any = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _SCREAMING_SNAKE_CASE , ) ) return successors def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = node __lowerCAmelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCAmelCase : Dict = current_node.parent path.reverse() return path class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = AStar(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = AStar(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = False def __lowerCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowerCAmelCase : Dict = self.fwd_astar.open_nodes.pop(0 ) __lowerCAmelCase : Dict = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.fwd_astar.closed_nodes.append(_SCREAMING_SNAKE_CASE ) self.bwd_astar.closed_nodes.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = current_bwd_node __lowerCAmelCase : Dict = current_fwd_node __lowerCAmelCase : List[str] = { self.fwd_astar: self.fwd_astar.get_successors(_SCREAMING_SNAKE_CASE ), self.bwd_astar: self.bwd_astar.get_successors(_SCREAMING_SNAKE_CASE ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: # retrieve the best current path __lowerCAmelCase : Optional[int] = astar.open_nodes.pop( astar.open_nodes.index(_SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: astar.open_nodes.append(_SCREAMING_SNAKE_CASE ) return [self.fwd_astar.start.pos] def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = self.fwd_astar.retrace_path(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.bwd_astar.retrace_path(_SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() __lowerCAmelCase : int = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowerCamelCase__ = (0, 0) lowerCamelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase__ = time.time() lowerCamelCase__ = AStar(init, goal) lowerCamelCase__ = a_star.search() lowerCamelCase__ = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') lowerCamelCase__ = time.time() lowerCamelCase__ = BidirectionalAStar(init, goal) lowerCamelCase__ = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
182
"""simple docstring""" import qiskit def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCAmelCase : str = qiskit.QuantumCircuit(_UpperCamelCase , _UpperCamelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowerCAmelCase : Optional[int] = qiskit.execute(_UpperCamelCase , _UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": print(f'Total count for various states are: {single_qubit_measure(1, 1)}')
182
1
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def a_ ( _lowerCAmelCase ) -> int: __lowerCamelCase : List[str] = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' ,_lowerCAmelCase ) return [m.group(0 ) for m in matches] def a_ ( ) -> Any: __lowerCamelCase : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __lowerCamelCase : List[str] = { config.replace('Config' ,'' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __lowerCamelCase : int = collections.defaultdict(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = collections.defaultdict(_lowerCAmelCase ) __lowerCamelCase : Any = collections.defaultdict(_lowerCAmelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_lowerCAmelCase ): __lowerCamelCase : List[Any] = None if _re_tf_models.match(_lowerCAmelCase ) is not None: __lowerCamelCase : Tuple = tf_models __lowerCamelCase : List[str] = _re_tf_models.match(_lowerCAmelCase ).groups()[0] elif _re_flax_models.match(_lowerCAmelCase ) is not None: __lowerCamelCase : Union[str, Any] = flax_models __lowerCamelCase : Tuple = _re_flax_models.match(_lowerCAmelCase ).groups()[0] elif _re_pt_models.match(_lowerCAmelCase ) is not None: __lowerCamelCase : Union[str, Any] = pt_models __lowerCamelCase : Dict = _re_pt_models.match(_lowerCAmelCase ).groups()[0] if lookup_dict is not None: while len(_lowerCAmelCase ) > 0: if attr_name in model_prefix_to_model_type: __lowerCamelCase : Optional[Any] = True break # Try again after removing the last word in the name __lowerCamelCase : Tuple = ''.join(camel_case_split(_lowerCAmelCase )[:-1] ) __lowerCamelCase : Union[str, Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __lowerCamelCase : List[Any] = list(_lowerCAmelCase ) all_models.sort() __lowerCamelCase : Any = {'model_type': all_models} __lowerCamelCase : str = [pt_models[t] for t in all_models] __lowerCamelCase : Optional[Any] = [tf_models[t] for t in all_models] __lowerCamelCase : Tuple = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __lowerCamelCase : Dict = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __lowerCamelCase : Optional[Any] = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __lowerCamelCase : int = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __lowerCamelCase : str = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __lowerCamelCase : int = 'AutoTokenizer' __lowerCamelCase : Optional[Any] = [processors[t] for t in all_models] return pd.DataFrame(_lowerCAmelCase ) def a_ ( _lowerCAmelCase ) -> Tuple: __lowerCamelCase : List[str] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __lowerCamelCase : Any = [model_mapping, F'TF_{model_mapping}', F'FLAX_{model_mapping}'] __lowerCamelCase : Optional[int] = [auto_class, F'TF_{auto_class}', F'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # The type of pipeline may not exist in this framework if not hasattr(_lowerCAmelCase ,_lowerCAmelCase ): continue # First extract all model_names __lowerCamelCase : Any = [] for name in getattr(_lowerCAmelCase ,_lowerCAmelCase ).values(): if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): model_names.append(_lowerCAmelCase ) else: model_names.extend(list(_lowerCAmelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> List[Any]: __lowerCamelCase : Any = get_frameworks_table() __lowerCamelCase : Any = Dataset.from_pandas(_lowerCAmelCase ) __lowerCamelCase : List[Any] = hf_hub_download( 'huggingface/transformers-metadata' ,'pipeline_tags.json' ,repo_type='dataset' ,token=_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = Dataset.from_json(_lowerCAmelCase ) __lowerCamelCase : Tuple = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(_lowerCAmelCase ) ) } __lowerCamelCase : Any = update_pipeline_and_auto_class_table(_lowerCAmelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __lowerCamelCase : Optional[Any] = sorted(table.keys() ) __lowerCamelCase : Tuple = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) __lowerCamelCase : Any = Dataset.from_pandas(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_lowerCAmelCase ,'frameworks.json' ) ) tags_dataset.to_json(os.path.join(_lowerCAmelCase ,'pipeline_tags.json' ) ) if commit_sha is not None: __lowerCamelCase : Dict = ( F'Update with commit {commit_sha}\n\nSee: ' F'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: __lowerCamelCase : Optional[Any] = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' ,folder_path=_lowerCAmelCase ,repo_type='dataset' ,token=_lowerCAmelCase ,commit_message=_lowerCAmelCase ,) def a_ ( ) -> int: __lowerCamelCase : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __lowerCamelCase : str = transformers_module.pipelines.SUPPORTED_TASKS __lowerCamelCase : Union[str, Any] = [] for key in pipeline_tasks: if key not in in_table: __lowerCamelCase : str = pipeline_tasks[key]['pt'] if isinstance(_lowerCAmelCase ,(list, tuple) ): __lowerCamelCase : Optional[int] = model[0] __lowerCamelCase : str = model.__name__ if model not in in_table.values(): missing.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCamelCase : Tuple = ', '.join(_lowerCAmelCase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' F'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
208
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase_ : """simple docstring""" def __init__( self : Tuple , _a : List[Any] , _a : Dict=2 , _a : Dict=32 , _a : int=16 , _a : str=3 , _a : Optional[int]=True , _a : List[Any]=True , _a : int=32 , _a : int=4 , _a : Optional[Any]=[0, 1, 2, 3] , _a : int=4 , _a : Union[str, Any]=37 , _a : List[str]="gelu" , _a : List[str]=0.1 , _a : List[str]=0.1 , _a : Union[str, Any]=0.02 , _a : str=3 , _a : int=[1, 384, 24, 24] , _a : Optional[Any]=True , _a : Tuple=None , ) -> Tuple: __lowerCamelCase : Dict = parent __lowerCamelCase : List[Any] = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : Any = patch_size __lowerCamelCase : Tuple = num_channels __lowerCamelCase : Dict = is_training __lowerCamelCase : List[str] = use_labels __lowerCamelCase : Union[str, Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = backbone_out_indices __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : Optional[Any] = intermediate_size __lowerCamelCase : Any = hidden_act __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Dict = num_labels __lowerCamelCase : List[Any] = backbone_featmap_shape __lowerCamelCase : Optional[int] = scope __lowerCamelCase : str = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : Union[str, Any] = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[Any] = num_patches + 1 def _lowercase ( self : Dict ) -> Any: __lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[Any] ) -> List[str]: __lowerCamelCase : Optional[Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_a , backbone_featmap_shape=self.backbone_featmap_shape , ) def _lowercase ( self : Optional[int] , _a : int , _a : str , _a : Optional[int] ) -> Optional[int]: __lowerCamelCase : Any = DPTModel(config=_a ) model.to(_a ) model.eval() __lowerCamelCase : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , _a : Union[str, Any] , _a : Optional[Any] , _a : List[Any] ) -> List[Any]: __lowerCamelCase : Dict = self.num_labels __lowerCamelCase : List[Any] = DPTForDepthEstimation(_a ) model.to(_a ) model.eval() __lowerCamelCase : List[str] = model(_a ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _lowercase ( self : List[str] , _a : Optional[Any] , _a : Tuple , _a : Tuple ) -> List[Any]: __lowerCamelCase : Union[str, Any] = self.num_labels __lowerCamelCase : Optional[Any] = DPTForSemanticSegmentation(_a ) model.to(_a ) model.eval() __lowerCamelCase : int = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase : Tuple = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase : str = config_and_inputs __lowerCamelCase : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =(DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a_ =( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a_ =False a_ =False a_ =False def _lowercase ( self : Dict ) -> Any: __lowerCamelCase : Optional[Any] = DPTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _lowercase ( self : Tuple ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def _lowercase ( self : Dict ) -> Union[str, Any]: pass def _lowercase ( self : Dict ) -> str: __lowerCamelCase ,__lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _lowercase ( self : List[str] ) -> Any: __lowerCamelCase ,__lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(_a ) __lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _a ) def _lowercase ( self : Dict ) -> Any: __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowercase ( self : Union[str, Any] ) -> int: __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_a ) def _lowercase ( self : List[Any] ) -> Any: __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) def _lowercase ( self : Optional[int] ) -> Dict: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __lowerCamelCase ,__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[int] = True if model_class in get_values(_a ): continue __lowerCamelCase : Tuple = model_class(_a ) model.to(_a ) model.train() __lowerCamelCase : str = self._prepare_for_class(_a , _a , return_labels=_a ) __lowerCamelCase : Dict = model(**_a ).loss loss.backward() def _lowercase ( self : Union[str, Any] ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __lowerCamelCase ,__lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple = False __lowerCamelCase : List[str] = True if model_class in get_values(_a ) or not model_class.supports_gradient_checkpointing: continue __lowerCamelCase : Optional[int] = model_class(_a ) model.to(_a ) model.gradient_checkpointing_enable() model.train() __lowerCamelCase : List[Any] = self._prepare_for_class(_a , _a , return_labels=_a ) __lowerCamelCase : str = model(**_a ).loss loss.backward() def _lowercase ( self : Dict ) -> Optional[Any]: __lowerCamelCase ,__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = _config_zero_init(_a ) for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = model_class(config=_a ) # Skip the check for the backbone __lowerCamelCase : Any = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __lowerCamelCase : Dict = [f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowercase ( self : Dict ) -> Optional[int]: pass @slow def _lowercase ( self : Any ) -> int: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __lowerCamelCase : Union[str, Any] = DPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowercase ( self : List[Any] ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type __lowerCamelCase ,__lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = 'add' with self.assertRaises(_a ): __lowerCamelCase : int = DPTForDepthEstimation(_a ) def a_ ( ) -> str: __lowerCamelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict ) -> Tuple: __lowerCamelCase : Any = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) __lowerCamelCase : Any = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(_a ) __lowerCamelCase : Any = prepare_img() __lowerCamelCase : Dict = image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): __lowerCamelCase : Any = model(**_a ) __lowerCamelCase : Any = outputs.predicted_depth # verify the predicted depth __lowerCamelCase : int = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _a ) __lowerCamelCase : Tuple = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_a ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _a , atol=1e-4 ) )
208
1
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowercase__ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase__ : Any , **UpperCamelCase__ : str ) -> Optional[int]: """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) self.check_model_type(UpperCamelCase__ ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : int ) -> Dict: """simple docstring""" snake_case ,snake_case : Any = {}, {} if padding is not None: snake_case : str = padding if truncation is not None: snake_case : Optional[int] = truncation if top_k is not None: snake_case : Any = top_k return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any] , UpperCamelCase__ : Union["Image.Image", str] , UpperCamelCase__ : str = None , **UpperCamelCase__ : Dict ) -> Tuple: """simple docstring""" if isinstance(UpperCamelCase__ , (Image.Image, str) ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Any = {'''image''': image, '''question''': question} else: snake_case : Tuple = image snake_case : Union[str, Any] = super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) return results def lowerCAmelCase ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[Any]=False ) -> List[str]: """simple docstring""" snake_case : Optional[int] = load_image(inputs['''image'''] ) snake_case : Tuple = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=UpperCamelCase__ , truncation=UpperCamelCase__ ) snake_case : Tuple = self.image_processor(images=UpperCamelCase__ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase__ ) return model_inputs def lowerCAmelCase ( self : List[Any] , UpperCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" snake_case : Any = self.model(**UpperCamelCase__ ) return model_outputs def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int]=5 ) -> Any: """simple docstring""" if top_k > self.model.config.num_labels: snake_case : List[str] = self.model.config.num_labels if self.framework == "pt": snake_case : Optional[Any] = model_outputs.logits.sigmoid()[0] snake_case ,snake_case : Union[str, Any] = probs.topk(UpperCamelCase__ ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) snake_case : List[Any] = scores.tolist() snake_case : Optional[int] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase__ , UpperCamelCase__ )]
83
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=13 , UpperCamelCase__ : Tuple=10 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : str=5 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Optional[Any]=10 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : str=0.9 , UpperCamelCase__ : Any=None , ) -> Tuple: """simple docstring""" snake_case : List[Any] = parent snake_case : Tuple = batch_size snake_case : str = image_size snake_case : Tuple = num_channels snake_case : List[Any] = patch_size snake_case : Optional[Any] = tubelet_size snake_case : Tuple = num_frames snake_case : Optional[Any] = is_training snake_case : Tuple = use_labels snake_case : List[str] = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : List[Any] = intermediate_size snake_case : Tuple = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : Optional[Any] = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : Any = mask_ratio snake_case : Optional[int] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame snake_case : Dict = (image_size // patch_size) ** 2 snake_case : Optional[int] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos snake_case : Optional[int] = int(mask_ratio * self.seq_length ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" snake_case : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case : Tuple = None if self.use_labels: snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Dict = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" snake_case : Any = VideoMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> str: """simple docstring""" snake_case : Any = VideoMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : int = torch.ones((self.num_masks,) ) snake_case : List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) snake_case : Tuple = mask.expand(self.batch_size , -1 ).bool() snake_case : str = model(UpperCamelCase__ , UpperCamelCase__ ) # model only returns predictions for masked patches snake_case : Tuple = mask.sum().item() snake_case : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case : Tuple = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case : Optional[int] = config_and_inputs snake_case : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" snake_case : List[Any] = VideoMAEModelTester(self ) snake_case : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=False ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : Optional[int] = torch.ones((self.model_tester.num_masks,) ) snake_case : int = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) snake_case : Dict = mask.expand(self.model_tester.batch_size , -1 ).bool() snake_case : Optional[int] = bool_masked_pos.to(UpperCamelCase__ ) if return_labels: if model_class in [ *get_values(UpperCamelCase__ ), ]: snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : str ) -> str: """simple docstring""" snake_case ,snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(UpperCamelCase__ ) snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : str = [*signature.parameters.keys()] snake_case : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : int = VideoMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" if not self.has_attentions: pass else: snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Optional[int] = True for model_class in self.all_model_classes: snake_case : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case : List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) snake_case : Dict = True snake_case : List[str] = False snake_case : Tuple = True snake_case : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : List[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : List[Any] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Any = True snake_case : Any = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Dict = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : int = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case : Any = len(UpperCamelCase__ ) # Check attention is always last and order is fine snake_case : Union[str, Any] = True snake_case : Union[str, Any] = True snake_case : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) snake_case : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ): snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : Union[str, Any] = outputs.hidden_states snake_case : Optional[int] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) snake_case : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case : int = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case ,snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : List[str] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def _UpperCamelCase ( ) -> str: '''simple docstring''' snake_case : int = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) snake_case : str = np.load(SCREAMING_SNAKE_CASE__ ) return list(SCREAMING_SNAKE_CASE__ ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" snake_case : Tuple = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( UpperCamelCase__ ) snake_case : str = self.default_image_processor snake_case : Dict = prepare_video() snake_case : int = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : int = model(**UpperCamelCase__ ) # verify the logits snake_case : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case : Optional[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" snake_case : List[str] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(UpperCamelCase__ ) snake_case : str = self.default_image_processor snake_case : Tuple = prepare_video() snake_case : List[Any] = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # add boolean mask, indicating which patches to mask snake_case : str = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) snake_case : Dict = torch.load(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : Tuple = model(**UpperCamelCase__ ) # verify the logits snake_case : str = torch.Size([1, 1408, 1536] ) snake_case : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=UpperCamelCase__ ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) snake_case : Any = torch.tensor([0.5_142] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) snake_case : str = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=UpperCamelCase__ ).to( UpperCamelCase__ ) with torch.no_grad(): snake_case : Optional[int] = model(**UpperCamelCase__ ) snake_case : str = torch.tensor(torch.tensor([0.6_469] ) , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) )
83
1
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Union[str, Any] = BarthezTokenizer A_ : Tuple = BarthezTokenizerFast A_ : Dict = True A_ : List[str] = True def __lowerCamelCase ( self ): super().setUp() __lowerCAmelCase : str = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = tokenizer def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = '<pad>' __lowerCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 10_11_22 ) def __lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 ) @require_torch def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCAmelCase : Optional[Any] = [0, 57, 30_18, 7_03_07, 91, 2] __lowerCAmelCase : Optional[int] = self.tokenizer( _SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __lowerCAmelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __lowerCAmelCase : Tuple = self.get_tokenizer() __lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() __lowerCAmelCase : List[str] = 'I was born in 92000, and this is falsé.' __lowerCAmelCase : Optional[int] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() __lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # fmt: off __lowerCAmelCase : str = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __lowerCAmelCase : Union[str, Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_SCREAMING_SNAKE_CASE , )
86
import os import pytest from attr import dataclass lowerCamelCase = 'us-east-1' # defaults region @dataclass class A : UpperCamelCase__ : str UpperCamelCase__ : Dict ='arn:aws:iam::558105141721:role/sagemaker_execution_role' UpperCamelCase__ : int ={ 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } UpperCamelCase__ : Optional[Any] ={**hyperparameters, 'max_steps': 1000} @property def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" return F'''{self.framework}-transfromers-test''' @property def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return F'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def a_ ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] =SageMakerTestEnvironment(framework=request.cls.framework )
199
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Tuple = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> bool: """simple docstring""" UpperCamelCase :int = int(number**0.5 ) return number == sq * sq def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> tuple[int, int]: """simple docstring""" UpperCamelCase :int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCamelCase :int = x_den * y_den * z_den UpperCamelCase :int = gcd(__magic_name__ , __magic_name__ ) top //= hcf bottom //= hcf return top, bottom def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 35 ) -> int: """simple docstring""" UpperCamelCase :set = set() UpperCamelCase :int UpperCamelCase :Fraction = Fraction(0 ) UpperCamelCase :tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCamelCase :List[str] = x_num * y_den + x_den * y_num UpperCamelCase :Dict = x_den * y_den UpperCamelCase :str = gcd(__magic_name__ , __magic_name__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase :Tuple = add_three( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) unique_s.add(__magic_name__ ) # n=2 UpperCamelCase :Optional[Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCamelCase :str = x_den * x_den * y_den * y_den if is_sq(__magic_name__ ) and is_sq(__magic_name__ ): UpperCamelCase :Optional[Any] = int(sqrt(__magic_name__ ) ) UpperCamelCase :Optional[int] = int(sqrt(__magic_name__ ) ) UpperCamelCase :int = gcd(__magic_name__ , __magic_name__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase :Union[str, Any] = add_three( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) unique_s.add(__magic_name__ ) # n=-1 UpperCamelCase :Tuple = x_num * y_num UpperCamelCase :List[Any] = x_den * y_num + x_num * y_den UpperCamelCase :List[str] = gcd(__magic_name__ , __magic_name__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase :List[Any] = add_three( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) unique_s.add(__magic_name__ ) # n=2 UpperCamelCase :Tuple = x_num * x_num * y_num * y_num UpperCamelCase :str = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__magic_name__ ) and is_sq(__magic_name__ ): UpperCamelCase :List[Any] = int(sqrt(__magic_name__ ) ) UpperCamelCase :str = int(sqrt(__magic_name__ ) ) UpperCamelCase :Any = gcd(__magic_name__ , __magic_name__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase :int = add_three( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) unique_s.add(__magic_name__ ) for num, den in unique_s: total += Fraction(__magic_name__ , __magic_name__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
38
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ : Union[str, Any] = 16 UpperCAmelCase_ : int = 32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Accelerator , __magic_name__ : int = 16 , __magic_name__ : str = "bert-base-cased" ) -> Dict: """simple docstring""" UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(__magic_name__ ) UpperCamelCase :Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : Tuple ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase :List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase :List[Any] = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__magic_name__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase :Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__magic_name__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__magic_name__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCamelCase :List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) UpperCamelCase :List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase :Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase :Union[str, Any] = config["""lr"""] UpperCamelCase :List[str] = int(config["""num_epochs"""] ) UpperCamelCase :str = int(config["""seed"""] ) UpperCamelCase :Dict = int(config["""batch_size"""] ) UpperCamelCase :Union[str, Any] = args.model_name_or_path set_seed(__magic_name__ ) UpperCamelCase , UpperCamelCase :Dict = get_dataloaders(__magic_name__ , __magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase :List[str] = AutoModelForSequenceClassification.from_pretrained(__magic_name__ , return_dict=__magic_name__ ) # Instantiate optimizer UpperCamelCase :Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__magic_name__ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase :Any = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCamelCase :Any = 1 UpperCamelCase :Dict = (len(__magic_name__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase :List[Any] = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=0 , num_training_steps=__magic_name__ , ) else: UpperCamelCase :Any = DummyScheduler(__magic_name__ , total_num_steps=__magic_name__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :str = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase :int = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase :Tuple = 0 # Now we train the model UpperCamelCase :Any = evaluate.load("""glue""" , """mrpc""" ) UpperCamelCase :Tuple = 0 UpperCamelCase :List[Any] = {} for epoch in range(__magic_name__ , __magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): UpperCamelCase :List[str] = model(**__magic_name__ ) UpperCamelCase :Dict = outputs.loss UpperCamelCase :Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__magic_name__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCamelCase :str = 0 for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase :Optional[int] = model(**__magic_name__ ) UpperCamelCase :List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase , UpperCamelCase :Optional[int] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__magic_name__ ) - 1: UpperCamelCase :Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) UpperCamelCase :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __magic_name__ ) UpperCamelCase :Dict = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCamelCase :str = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(__magic_name__ , __magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" UpperCamelCase :List[str] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__magic_name__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__magic_name__ , ) parser.add_argument( """--output_dir""" , type=__magic_name__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=__magic_name__ , default=__magic_name__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=__magic_name__ , default=3 , help="""Number of train epochs.""" , ) UpperCamelCase :str = parser.parse_args() UpperCamelCase :Any = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
38
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __snake_case = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : int = """albert""" def __init__( self , snake_case__=3_0000 , snake_case__=128 , snake_case__=4096 , snake_case__=12 , snake_case__=1 , snake_case__=64 , snake_case__=1_6384 , snake_case__=1 , snake_case__="gelu_new" , snake_case__=0 , snake_case__=0 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0.1 , snake_case__="absolute" , snake_case__=0 , snake_case__=2 , snake_case__=3 , **snake_case__ , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : Any =vocab_size UpperCAmelCase : int =embedding_size UpperCAmelCase : Tuple =hidden_size UpperCAmelCase : Optional[Any] =num_hidden_layers UpperCAmelCase : Optional[int] =num_hidden_groups UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Any =inner_group_num UpperCAmelCase : int =hidden_act UpperCAmelCase : Optional[Any] =intermediate_size UpperCAmelCase : Optional[int] =hidden_dropout_prob UpperCAmelCase : int =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : Union[str, Any] =type_vocab_size UpperCAmelCase : Optional[int] =initializer_range UpperCAmelCase : Union[str, Any] =layer_norm_eps UpperCAmelCase : List[str] =classifier_dropout_prob UpperCAmelCase : str =position_embedding_type class __snake_case ( lowerCamelCase__ ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase : Dict ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase : Optional[int] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
78
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
78
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCamelCase__ ( _a , _a , _a=[]): SCREAMING_SNAKE_CASE : List[str] = size[0] - overlap_pixels * 2 SCREAMING_SNAKE_CASE : int = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels SCREAMING_SNAKE_CASE : str = np.ones((size_y, size_x) , dtype=np.uinta) * 255 SCREAMING_SNAKE_CASE : Dict = np.pad(_a , mode="linear_ramp" , pad_width=_a , end_values=0) if "l" in remove_borders: SCREAMING_SNAKE_CASE : Tuple = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: SCREAMING_SNAKE_CASE : Any = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: SCREAMING_SNAKE_CASE : Optional[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: SCREAMING_SNAKE_CASE : Any = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCamelCase__ ( _a , _a , _a): return max(_a , min(_a , _a)) def lowerCamelCase__ ( _a , _a , _a): return ( clamp(rect[0] , min[0] , max[0]), clamp(rect[1] , min[1] , max[1]), clamp(rect[2] , min[0] , max[0]), clamp(rect[3] , min[1] , max[1]), ) def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Union[str, Any] = list(_a) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap SCREAMING_SNAKE_CASE : Any = clamp_rect(_a , [0, 0] , [image_size[0], image_size[1]]) return rect def lowerCamelCase__ ( _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Union[str, Any] = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1])) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC).crop( (slice_x, 0, slice_x + original_slice, tile.size[1])) , (0, 0) , ) result.paste(_a , (original_slice, 0)) return result def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) SCREAMING_SNAKE_CASE : Tuple = tile.crop(_a) return tile def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Union[str, Any] = n % d return n - divisor class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Optional[int] , a : AutoencoderKL , a : CLIPTextModel , a : CLIPTokenizer , a : UNetaDConditionModel , a : DDPMScheduler , a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , a : int = 350 , ) -> str: """simple docstring""" super().__init__( vae=a , text_encoder=a , tokenizer=a , unet=a , low_res_scheduler=a , scheduler=a , max_noise_level=a , ) def __UpperCamelCase ( self : Optional[int] , a : Tuple , a : Optional[int] , a : Optional[int] , a : List[str] , a : List[Any] , a : int , a : int , **a : str ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) SCREAMING_SNAKE_CASE : int = add_overlap_rect(a , a , image.size ) SCREAMING_SNAKE_CASE : Dict = image.crop(a ) SCREAMING_SNAKE_CASE : Tuple = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] SCREAMING_SNAKE_CASE : Union[str, Any] = translated_slice_x - (original_image_slice / 2) SCREAMING_SNAKE_CASE : Dict = max(0 , a ) SCREAMING_SNAKE_CASE : Tuple = squeeze_tile(a , a , a , a ) SCREAMING_SNAKE_CASE : Any = to_input.size SCREAMING_SNAKE_CASE : List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) SCREAMING_SNAKE_CASE : List[str] = super(a , self ).__call__(image=a , **a ).images[0] SCREAMING_SNAKE_CASE : List[Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) SCREAMING_SNAKE_CASE : int = unsqueeze_tile(a , a ) SCREAMING_SNAKE_CASE : Any = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) SCREAMING_SNAKE_CASE : Any = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) SCREAMING_SNAKE_CASE : List[str] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=a ) , mode="L" , ) final_image.paste( a , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , a ) @torch.no_grad() def __call__( self : Union[str, Any] , a : Union[str, List[str]] , a : Union[PIL.Image.Image, List[PIL.Image.Image]] , a : int = 75 , a : float = 9.0 , a : int = 50 , a : Optional[Union[str, List[str]]] = None , a : Optional[int] = 1 , a : float = 0.0 , a : Optional[torch.Generator] = None , a : Optional[torch.FloatTensor] = None , a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a : int = 1 , a : int = 128 , a : int = 32 , a : int = 32 , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) SCREAMING_SNAKE_CASE : Tuple = math.ceil(image.size[0] / tile_size ) SCREAMING_SNAKE_CASE : Tuple = math.ceil(image.size[1] / tile_size ) SCREAMING_SNAKE_CASE : Optional[int] = tcx * tcy SCREAMING_SNAKE_CASE : int = 0 for y in range(a ): for x in range(a ): self._process_tile( a , a , a , a , a , a , a , prompt=a , num_inference_steps=a , guidance_scale=a , noise_level=a , negative_prompt=a , num_images_per_prompt=a , eta=a , generator=a , latents=a , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def lowerCamelCase__ ( ): # Run a demo SCREAMING_SNAKE_CASE : int = "stabilityai/stable-diffusion-x4-upscaler" SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionTiledUpscalePipeline.from_pretrained(_a , revision="fp16" , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to("cuda") SCREAMING_SNAKE_CASE : Dict = Image.open("../../docs/source/imgs/diffusers_library.jpg") def callback(_a): print(f"progress: {obj['progress']:.4f}") obj["image"].save("diffusers_library_progress.jpg") SCREAMING_SNAKE_CASE : Tuple = pipe(image=_a , prompt="Black font, white background, vector" , noise_level=40 , callback=_a) final_image.save("diffusers_library.jpg") if __name__ == "__main__": main()
76
from datetime import datetime as dt import os from github import Github a_ = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : int = Github(os.environ["GITHUB_TOKEN"]) SCREAMING_SNAKE_CASE : List[str] = g.get_repo("huggingface/transformers") SCREAMING_SNAKE_CASE : Optional[int] = repo.get_issues(state="open") for issue in open_issues: SCREAMING_SNAKE_CASE : List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _a: i.created_at , reverse=_a) SCREAMING_SNAKE_CASE : str = comments[0] if len(_a) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") if __name__ == "__main__": main()
76
1
"""simple docstring""" from math import ceil, sqrt def lowercase (SCREAMING_SNAKE_CASE_ : int = 1_00_00_00 ) -> Tuple: SCREAMING_SNAKE_CASE = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: SCREAMING_SNAKE_CASE = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: SCREAMING_SNAKE_CASE = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
356
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = XGLMConfig SCREAMING_SNAKE_CASE_ : List[str] = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=14 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=0.02 , ) -> str: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = ffn_dim SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 1 def __A ( self ) -> Optional[int]: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = self.get_config() SCREAMING_SNAKE_CASE = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __A ( self ) -> int: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : int = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = TFXGLMModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @slow def __A ( self ) -> Tuple: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __A ( self ) -> Tuple: super().test_resize_token_embeddings() @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self , lowerCAmelCase__=True ) -> Optional[Any]: SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off SCREAMING_SNAKE_CASE = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE = tokenizer('Today is a nice day and' , return_tensors='tf' ) SCREAMING_SNAKE_CASE = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = 'left' # use different length sentences to test batching SCREAMING_SNAKE_CASE = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors='tf' , padding=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inputs['input_ids'] SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
38
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( A_ ,A_ ,A_ ): @register_to_config def __init__(self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : str = False , ) -> Any: '''simple docstring''' super().__init__() snake_case : List[Any] = nn.Embedding(snake_case__ , snake_case__ ) snake_case : List[Any] = nn.Embedding(snake_case__ , snake_case__ ) snake_case : str = False snake_case : Any = nn.Dropout(p=snake_case__ ) snake_case : List[Any] = TaConfig( vocab_size=snake_case__ , d_model=snake_case__ , num_heads=snake_case__ , d_kv=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ , feed_forward_proj=snake_case__ , is_decoder=snake_case__ , is_encoder_decoder=snake_case__ , ) snake_case : Optional[int] = nn.ModuleList() for lyr_num in range(snake_case__ ): snake_case : Any = TaBlock(snake_case__ ) self.encoders.append(snake_case__ ) snake_case : str = TaLayerNorm(snake_case__ ) snake_case : Dict = nn.Dropout(p=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : str ) -> Any: '''simple docstring''' snake_case : Dict = self.token_embedder(snake_case__ ) snake_case : str = encoder_input_tokens.shape[1] snake_case : Any = torch.arange(snake_case__ , device=encoder_input_tokens.device ) x += self.position_encoding(snake_case__ ) snake_case : Union[str, Any] = self.dropout_pre(snake_case__ ) # inverted the attention mask snake_case : Optional[int] = encoder_input_tokens.size() snake_case : str = self.get_extended_attention_mask(snake_case__ , snake_case__ ) for lyr in self.encoders: snake_case : Any = lyr(snake_case__ , snake_case__ )[0] snake_case : List[Any] = self.layer_norm(snake_case__ ) return self.dropout_post(snake_case__ ), encoder_inputs_mask
59
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
81
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def snake_case ( snake_case__ :str = "dhaka" , snake_case__ :int = 5) -> int: _A = min(snake_case__ , 50) # Prevent abuse! _A = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _A = requests.get("""https://www.google.com/search""" , params=snake_case__ , headers=snake_case__) _A = BeautifulSoup(html.text , """html.parser""") _A = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""")))) _A = json.dumps(snake_case__) _A = json.loads(snake_case__) _A = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , snake_case__ , ) if not matched_google_image_data: return 0 _A = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(snake_case__) , ) _A = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , snake_case__ , ) for index, fixed_full_res_image in enumerate(snake_case__): if index >= max_images: return index _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = urllib.request.build_opener() _A = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(snake_case__) _A = F'''query_{query.replace(' ' , '_')}''' if not os.path.exists(snake_case__): os.makedirs(snake_case__) urllib.request.urlretrieve( # noqa: S310 snake_case__ , F'''{path_name}/original_size_img_{index}.jpg''') return index if __name__ == "__main__": try: _SCREAMING_SNAKE_CASE = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
81
1
"""simple docstring""" from typing import List import numpy as np def lowercase ( a__ : dict ) -> int: _UpperCamelCase = {key: len(a__ ) for key, value in gen_kwargs.items() if isinstance(a__ , a__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _UpperCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , a__ ) def lowercase ( a__ : int , a__ : int ) -> List[range]: _UpperCamelCase = [] for group_idx in range(a__ ): _UpperCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _UpperCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _UpperCamelCase = range(a__ , start + num_shards_to_add ) shards_indices_per_group.append(a__ ) return shards_indices_per_group def lowercase ( a__ : dict , a__ : int ) -> List[dict]: _UpperCamelCase = _number_of_shards_in_gen_kwargs(a__ ) if num_shards == 1: return [dict(a__ )] else: _UpperCamelCase = _distribute_shards(num_shards=a__ , max_num_jobs=a__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(a__ , a__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(a__ ) ) ] def lowercase ( a__ : List[dict] ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , a__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowercase ( a__ : np.random.Generator , a__ : dict ) -> dict: _UpperCamelCase = {len(a__ ) for value in gen_kwargs.values() if isinstance(a__ , a__ )} _UpperCamelCase = {} for size in list_sizes: _UpperCamelCase = list(range(a__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _UpperCamelCase = dict(a__ ) for key, value in shuffled_kwargs.items(): if isinstance(a__ , a__ ): _UpperCamelCase = [value[i] for i in indices_per_size[len(a__ )]] return shuffled_kwargs
256
"""simple docstring""" def lowercase ( a__ : int , a__ : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def lowercase ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
256
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __UpperCamelCase : List[str] = datasets.load_iris() __UpperCamelCase : Optional[Any] = np.array(data["data"]) __UpperCamelCase : str = np.array(data["target"]) __UpperCamelCase : List[Any] = data["target_names"] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = train_test_split(X, y) def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" return np.linalg.norm(np.array(SCREAMING_SNAKE_CASE ) - np.array(SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str=5 ): """simple docstring""" UpperCamelCase__ : int = zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified UpperCamelCase__ : Optional[Any] = [] for data_point in data: UpperCamelCase__ : Dict = euclidean_distance(data_point[0] , SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCamelCase__ : List[Any] = [i[1] for i in sorted(SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCamelCase__ : Dict = Counter(SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
51
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple="attention" ): """simple docstring""" UpperCamelCase__ : List[Any] = params[F"{prefix}/layers_{i}/{layer_name}/key/kernel"] UpperCamelCase__ : Optional[Any] = params[F"{prefix}/layers_{i}/{layer_name}/out/kernel"] UpperCamelCase__ : Union[str, Any] = params[F"{prefix}/layers_{i}/{layer_name}/query/kernel"] UpperCamelCase__ : int = params[F"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any=False ): """simple docstring""" if split_mlp_wi: UpperCamelCase__ : Optional[int] = params[F"{prefix}/layers_{i}/mlp/wi_0/kernel"] UpperCamelCase__ : int = params[F"{prefix}/layers_{i}/mlp/wi_1/kernel"] UpperCamelCase__ : Any = (wi_a, wi_a) else: UpperCamelCase__ : Union[str, Any] = params[F"{prefix}/layers_{i}/mlp/wi/kernel"] UpperCamelCase__ : Any = params[F"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return params[F"{prefix}/layers_{i}/{layer_name}/scale"] def _a ( SCREAMING_SNAKE_CASE : dict , *, SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool ): """simple docstring""" UpperCamelCase__ : List[Any] = traverse_util.flatten_dict(variables['''target'''] ) UpperCamelCase__ : List[str] = {'''/'''.join(SCREAMING_SNAKE_CASE ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase__ : List[Any] = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = collections.OrderedDict() # Shared embeddings. UpperCamelCase__ : List[Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). UpperCamelCase__ : int = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_attention_layer_norm''' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''attention''' ) UpperCamelCase__ : Tuple = layer_norm UpperCamelCase__ : Optional[int] = k.T UpperCamelCase__ : Any = o.T UpperCamelCase__ : Dict = q.T UpperCamelCase__ : List[str] = v.T # Block i, layer 1 (MLP). UpperCamelCase__ : Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_mlp_layer_norm''' ) UpperCamelCase__ , UpperCamelCase__ : Dict = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = layer_norm if split_mlp_wi: UpperCamelCase__ : Optional[int] = wi[0].T UpperCamelCase__ : Tuple = wi[1].T else: UpperCamelCase__ : List[Any] = wi.T UpperCamelCase__ : Optional[int] = wo.T UpperCamelCase__ : List[str] = old[ '''encoder/relpos_bias/rel_embedding''' ].T UpperCamelCase__ : str = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). UpperCamelCase__ : List[Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_self_attention_layer_norm''' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''self_attention''' ) UpperCamelCase__ : Dict = layer_norm UpperCamelCase__ : Optional[Any] = k.T UpperCamelCase__ : Tuple = o.T UpperCamelCase__ : Any = q.T UpperCamelCase__ : Optional[Any] = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase__ : Optional[Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_cross_attention_layer_norm''' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Any = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''encoder_decoder_attention''' ) UpperCamelCase__ : Optional[int] = layer_norm UpperCamelCase__ : List[Any] = k.T UpperCamelCase__ : Optional[Any] = o.T UpperCamelCase__ : Dict = q.T UpperCamelCase__ : Any = v.T # Block i, layer 2 (MLP). UpperCamelCase__ : Union[str, Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_mlp_layer_norm''' ) UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = layer_norm if split_mlp_wi: UpperCamelCase__ : str = wi[0].T UpperCamelCase__ : Any = wi[1].T else: UpperCamelCase__ : Tuple = wi.T UpperCamelCase__ : Tuple = wo.T UpperCamelCase__ : Optional[int] = old['''decoder/decoder_norm/scale'''] UpperCamelCase__ : Any = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase__ : Dict = old['''decoder/logits_dense/kernel'''].T return new def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : bool ): """simple docstring""" UpperCamelCase__ : Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase__ : Optional[Any] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase__ : List[Any] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) UpperCamelCase__ : List[str] = state_dict['''shared.weight'''] return state_dict def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" UpperCamelCase__ : Tuple = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = make_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : bool = False ): """simple docstring""" UpperCamelCase__ : Tuple = TaConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase__ : Any = TaEncoderModel(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Union[str, Any] = TaForConditionalGeneration(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE ) print('''Done''' ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) __UpperCamelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
51
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = (DDIMParallelScheduler,) UpperCAmelCase__ : Optional[Any] = (("eta", 0.0), ("num_inference_steps", 50)) def __lowercase ( self , **_a ) -> Dict: _a : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**_a ) return config def __lowercase ( self , **_a ) -> Tuple: _a : List[Any] = self.scheduler_classes[0] _a : Dict = self.get_scheduler_config(**_a ) _a : Dict = scheduler_class(**_a ) _a , _a : Any = 1_0, 0.0 _a : Dict = self.dummy_model() _a : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(_a ) for t in scheduler.timesteps: _a : Tuple = model(_a , _a ) _a : Union[str, Any] = scheduler.step(_a , _a , _a , _a ).prev_sample return sample def __lowercase ( self ) -> Union[str, Any]: for timesteps in [1_0_0, 5_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a ) def __lowercase ( self ) -> Dict: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_a ) _a : Tuple = self.scheduler_classes[0] _a : Optional[int] = self.get_scheduler_config(steps_offset=1 ) _a : int = scheduler_class(**_a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) ) def __lowercase ( self ) -> Tuple: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __lowercase ( self ) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def __lowercase ( self ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __lowercase ( self ) -> List[str]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __lowercase ( self ) -> Dict: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_a ) def __lowercase ( self ) -> Union[str, Any]: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_a ) def __lowercase ( self ) -> Union[str, Any]: self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def __lowercase ( self ) -> int: for t in [1, 1_0, 4_9]: self.check_over_forward(time_step=_a ) def __lowercase ( self ) -> Dict: for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ): self.check_over_forward(time_step=_a , num_inference_steps=_a ) def __lowercase ( self ) -> Optional[Any]: for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_a , eta=_a ) def __lowercase ( self ) -> Optional[int]: _a : List[Any] = self.scheduler_classes[0] _a : Optional[Any] = self.get_scheduler_config() _a : Optional[int] = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5 def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = self.scheduler_classes[0] _a : int = self.get_scheduler_config() _a : List[Any] = scheduler_class(**_a ) _a , _a : Optional[Any] = 1_0, 0.0 scheduler.set_timesteps(_a ) _a : Union[str, Any] = self.dummy_model() _a : int = self.dummy_sample_deter _a : List[Any] = self.dummy_sample_deter + 0.1 _a : List[str] = self.dummy_sample_deter - 0.1 _a : Dict = samplea.shape[0] _a : str = torch.stack([samplea, samplea, samplea] , dim=0 ) _a : List[str] = torch.arange(_a )[0:3, None].repeat(1 , _a ) _a : Dict = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a : Optional[int] = scheduler.batch_step_no_noise(_a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _a ) _a : Union[str, Any] = torch.sum(torch.abs(_a ) ) _a : List[str] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def __lowercase ( self ) -> str: _a : str = self.full_loop() _a : str = torch.sum(torch.abs(_a ) ) _a : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def __lowercase ( self ) -> Dict: _a : Tuple = self.full_loop(prediction_type='''v_prediction''' ) _a : Tuple = torch.sum(torch.abs(_a ) ) _a : Union[str, Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def __lowercase ( self ) -> int: # We specify different beta, so that the first alpha is 0.99 _a : Optional[Any] = self.full_loop(set_alpha_to_one=_a , beta_start=0.01 ) _a : int = torch.sum(torch.abs(_a ) ) _a : List[str] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def __lowercase ( self ) -> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 _a : Optional[Any] = self.full_loop(set_alpha_to_one=_a , beta_start=0.01 ) _a : List[Any] = torch.sum(torch.abs(_a ) ) _a : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
235
from collections.abc import Callable class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a = None ) -> None: # Stores actual heap items. _a : list = [] # Stores indexes of each item for supporting updates and deletion. _a : dict = {} # Stores current size of heap. _a : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _a : Dict = key or (lambda _a : x) def __lowercase ( self , _a ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __lowercase ( self , _a ) -> int | None: _a : Optional[int] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowercase ( self , _a ) -> int | None: _a : int = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowercase ( self , _a , _a ) -> None: _a , _a : Union[str, Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _a , _a : List[Any] = self.arr[j], self.arr[i] def __lowercase ( self , _a , _a ) -> bool: return self.arr[i][1] < self.arr[j][1] def __lowercase ( self , _a ) -> int: _a : Dict = self._left(_a ) _a : str = self._right(_a ) _a : str = i if left is not None and not self._cmp(_a , _a ): _a : Optional[Any] = left if right is not None and not self._cmp(_a , _a ): _a : Any = right return valid_parent def __lowercase ( self , _a ) -> None: _a : List[str] = self._parent(_a ) while parent is not None and not self._cmp(_a , _a ): self._swap(_a , _a ) _a , _a : Any = parent, self._parent(_a ) def __lowercase ( self , _a ) -> None: _a : List[Any] = self._get_valid_parent(_a ) while valid_parent != index: self._swap(_a , _a ) _a , _a : int = valid_parent, self._get_valid_parent(_a ) def __lowercase ( self , _a , _a ) -> None: if item not in self.pos_map: return _a : str = self.pos_map[item] _a : List[Any] = [item, self.key(_a )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_a ) self._heapify_down(_a ) def __lowercase ( self , _a ) -> None: if item not in self.pos_map: return _a : Tuple = self.pos_map[item] del self.pos_map[item] _a : Tuple = self.arr[self.size - 1] _a : str = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_a ) self._heapify_down(_a ) def __lowercase ( self , _a , _a ) -> None: _a : Union[str, Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_a )] ) else: _a : Optional[int] = [item, self.key(_a )] _a : Tuple = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowercase ( self ) -> tuple | None: return self.arr[0] if self.size else None def __lowercase ( self ) -> tuple | None: _a : Tuple = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __UpperCAmelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
235
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = ReformerTokenizer lowerCAmelCase : Dict = ReformerTokenizerFast lowerCAmelCase : Tuple = True lowerCAmelCase : Tuple = False lowerCAmelCase : Dict = True def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" super().setUp() lowercase__ : List[Any] = ReformerTokenizer(_snake_case ,keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = '''<s>''' lowercase__ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) ,_snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<unk>''' ) self.assertEqual(vocab_keys[1] ,'''<s>''' ) self.assertEqual(vocab_keys[-1] ,'''j''' ) self.assertEqual(len(_snake_case ) ,1_000 ) def UpperCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,1_000 ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ : List[str] = self.get_tokenizer() lowercase__ : Union[str, Any] = self.get_rust_tokenizer() lowercase__ : List[Any] = '''I was born in 92000, and this is falsé.''' lowercase__ : int = tokenizer.tokenize(_snake_case ) lowercase__ : List[str] = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) lowercase__ : Tuple = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) lowercase__ : List[Any] = rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) lowercase__ : Tuple = self.get_rust_tokenizer() lowercase__ : Optional[Any] = tokenizer.encode(_snake_case ) lowercase__ : int = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any]=15 ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Any = self.rust_tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) # Simple input lowercase__ : List[Any] = '''This is a simple input''' lowercase__ : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase__ : Any = ('''This is a simple input''', '''This is a pair''') lowercase__ : Tuple = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_snake_case ,tokenizer_r.encode ,_snake_case ,max_length=_snake_case ,padding='''max_length''' ) # Simple input self.assertRaises(_snake_case ,tokenizer_r.encode_plus ,_snake_case ,max_length=_snake_case ,padding='''max_length''' ) # Simple input self.assertRaises( _snake_case ,tokenizer_r.batch_encode_plus ,_snake_case ,max_length=_snake_case ,padding='''max_length''' ,) # Pair input self.assertRaises(_snake_case ,tokenizer_r.encode ,_snake_case ,max_length=_snake_case ,padding='''max_length''' ) # Pair input self.assertRaises(_snake_case ,tokenizer_r.encode_plus ,_snake_case ,max_length=_snake_case ,padding='''max_length''' ) # Pair input self.assertRaises( _snake_case ,tokenizer_r.batch_encode_plus ,_snake_case ,max_length=_snake_case ,padding='''max_length''' ,) def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = ReformerTokenizer(_snake_case ,keep_accents=_snake_case ) lowercase__ : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_snake_case ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) ,[285, 46, 10, 170, 382] ,) lowercase__ : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _snake_case ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) lowercase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ,) lowercase__ : str = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) @cached_property def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = '''Hello World!''' lowercase__ : Optional[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_snake_case ,self.big_tokenizer.encode(_snake_case ) ) @slow def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowercase__ : str = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_snake_case ,self.big_tokenizer.encode(_snake_case ) ) @require_torch @slow def UpperCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowercase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase__ : Tuple = ''' '''.join(_snake_case ) lowercase__ : str = self.big_tokenizer.encode_plus(_snake_case ,return_tensors='''pt''' ) lowercase__ : Tuple = self.big_tokenizer.batch_encode_plus([sequence, sequence] ,return_tensors='''pt''' ) lowercase__ : Dict = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowercase__ : int = encoded_sequence['''input_ids'''].shape lowercase__ : Union[str, Any] = ReformerModel(_snake_case ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_snake_case ) model(**_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : Any = {'''input_ids''': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowercase__ : Any = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_snake_case ,model_name='''google/reformer-crime-and-punishment''' ,revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' ,padding=_snake_case ,sequences=_snake_case ,)
302
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
1
"""simple docstring""" def lowercase ( _snake_case : str , _snake_case : str ) ->int: """simple docstring""" if len(_snake_case ) != len(_snake_case ): raise ValueError('''String lengths must match!''' ) __snake_case : List[Any] = 0 for chara, chara in zip(_snake_case , _snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
102
'''simple docstring''' from scipy.stats import pearsonr import datasets __snake_case = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __snake_case = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __snake_case = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' if return_pvalue: UpperCamelCase__ :Any = pearsonr(UpperCamelCase_ , UpperCamelCase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCamelCase_ , UpperCamelCase_ )[0] )}
97
0
def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ): """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ): """simple docstring""" a :str = [[float('''inf''' ) for _ in range(UpperCAmelCase_ )] for _ in range(UpperCAmelCase_ )] for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): a :Dict = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(UpperCAmelCase_ ): # looping through rows of graph array for i in range(UpperCAmelCase_ ): # looping through columns of graph array for j in range(UpperCAmelCase_ ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): a :int = dist[i][k] + dist[k][j] _print_dist(UpperCAmelCase_ , UpperCAmelCase_ ) return dist, v if __name__ == "__main__": snake_case : int = int(input('''Enter number of vertices: ''')) snake_case : str = int(input('''Enter number of edges: ''')) snake_case : Tuple = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): snake_case : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) snake_case : Optional[int] = int(input('''Enter source:''')) snake_case : Any = int(input('''Enter destination:''')) snake_case : List[Any] = float(input('''Enter weight:''')) snake_case : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
281
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __lowerCamelCase ( UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Any=100 , UpperCAmelCase_ : List[str]=1026 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str="data/tokenized_stories_train_wikitext103.jbl" , UpperCAmelCase_ : List[Any]="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set a , a :Optional[int] = generate_datasets( UpperCAmelCase_ , UpperCAmelCase_ , number=UpperCAmelCase_ , min_len=1026 , trim=UpperCAmelCase_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? a :str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model a :str = load_gpta('''gpt2''' ).to(UpperCAmelCase_ ) print('''computing perplexity on objective set''' ) a :Dict = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).item() print('''perplexity on objective set:''' , UpperCAmelCase_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=15 , UpperCAmelCase_ : Optional[Any]=128 , UpperCAmelCase_ : List[Any]=100 , UpperCAmelCase_ : List[str]="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model a :Tuple = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model a :List[str] = SecondaryLearner(UpperCAmelCase_ ) # Train secondary learner a :List[str] = train_secondary_learner( UpperCAmelCase_ , UpperCAmelCase_ , max_epochs=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , eval_freq=100 , igf_model_path=UpperCAmelCase_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : List[str]=1000 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Any=1.0 , UpperCAmelCase_ : Optional[int]=recopy_gpta , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=10 , UpperCAmelCase_ : Any="gpt2_finetuned.pt" , ): """simple docstring""" a :Optional[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) a :Optional[Any] = RandomSampler(UpperCAmelCase_ ) a :Union[str, Any] = DataLoader(UpperCAmelCase_ , sampler=UpperCAmelCase_ ) a :List[str] = max_steps // (len(UpperCAmelCase_ )) + 1 a :Tuple = 0 a :int = torch.zeros((1, context_len) , dtype=torch.long , device=UpperCAmelCase_ ) a , a , a :str = recopy_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCAmelCase_ ) secondary_learner.eval() a :Optional[Any] = [] a :Union[str, Any] = 0 a :Optional[Any] = [] a :Tuple = [] # Compute the performance of the transformer model at the beginning a :Any = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print('''Test perplexity, step''' , UpperCAmelCase_ , ''':''' , UpperCAmelCase_ ) for epoch in range(int(UpperCAmelCase_ ) ): for step, example in enumerate(UpperCAmelCase_ ): torch.cuda.empty_cache() a :Tuple = random.randint(0 , example.size(2 ) - context_len - 1 ) a :Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() a :Optional[int] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) a :int = True if secondary_learner is not None: a :Tuple = secondary_learner.forward( torch.tensor(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCAmelCase_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: a :List[str] = -1 if predicted_q < threshold: a :Tuple = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) a :Any = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() a :Tuple = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: a :Dict = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print('''Test perplexity, step''' , UpperCAmelCase_ , ''':''' , UpperCAmelCase_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , UpperCAmelCase_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __lowerCamelCase ( ): """simple docstring""" a :Union[str, Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=UpperCAmelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=UpperCAmelCase_ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=UpperCAmelCase_ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1000 , type=UpperCAmelCase_ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=UpperCAmelCase_ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=UpperCAmelCase_ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=UpperCAmelCase_ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=UpperCAmelCase_ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1026 , type=UpperCAmelCase_ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=UpperCAmelCase_ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=UpperCAmelCase_ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=UpperCAmelCase_ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=UpperCAmelCase_ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner a :Union[str, Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner a :Any = training_secondary_learner( UpperCAmelCase_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model a :Any = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model a , a :Union[str, Any] = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1026 , trim=UpperCAmelCase_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=UpperCAmelCase_ , secondary_learner=UpperCAmelCase_ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
281
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: int ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): lowerCamelCase__ : int = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Optional[Any] = """sshleifer/tiny-gpt2""" lowerCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowerCamelCase__ : Dict = TensorFlowBenchmark(UpperCamelCase__ ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Tuple = """sgugger/tiny-distilbert-classification""" lowerCamelCase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , only_pretrain_model=UpperCamelCase__ , ) lowerCamelCase__ : int = TensorFlowBenchmark(UpperCamelCase__ ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Optional[int] = """sshleifer/tiny-gpt2""" lowerCamelCase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase__ : Any = TensorFlowBenchmark(UpperCamelCase__ ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : int = """sshleifer/tiny-gpt2""" lowerCamelCase__ : int = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowerCamelCase__ : List[Any] = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowerCamelCase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Tuple = """sshleifer/tiny-gpt2""" lowerCamelCase__ : Optional[Any] = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase__ : List[str] = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : List[Any] = """sshleifer/tiny-gpt2""" lowerCamelCase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase__ : Optional[Any] = TensorFlowBenchmark(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2""" lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase__ : List[Any] = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowerCamelCase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Dict = """patrickvonplaten/t5-tiny-random""" lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase__ : List[str] = TensorFlowBenchmark(UpperCamelCase__ , configs=[config] ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = """sshleifer/tiny-gpt2""" lowerCamelCase__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowerCamelCase__ : List[str] = TensorFlowBenchmark(UpperCamelCase__ ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Any = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , save_to_csv=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCamelCase__ , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(UpperCamelCase__ , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(UpperCamelCase__ , """env.csv""" ) , multi_process=UpperCamelCase__ , ) lowerCamelCase__ : List[str] = TensorFlowBenchmark(UpperCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCamelCase__ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """env.csv""" ) ).exists() ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Optional[int] = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(UpperCamelCase__: Dict ): self.assertTrue(hasattr(UpperCamelCase__ , """sequential""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """cumulative""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """current""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCamelCase__ , """log.txt""" ) , log_print=UpperCamelCase__ , trace_memory_line_by_line=UpperCamelCase__ , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowerCamelCase__ : int = TensorFlowBenchmark(UpperCamelCase__ ) lowerCamelCase__ : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """log.txt""" ) ).exists() )
41
from __future__ import annotations from collections.abc import Iterator class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : int ) -> None: """simple docstring""" __magic_name__ = value __magic_name__ = None __magic_name__ = None class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : Node ) -> None: """simple docstring""" __magic_name__ = tree def _lowercase ( self : Optional[Any] , UpperCamelCase__ : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
88
0
from __future__ import annotations from collections.abc import MutableSequence class __lowerCamelCase : def __init__( self , lowerCamelCase , lowerCamelCase ) -> None: if len(lowerCamelCase ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) snake_case_ = list(lowerCamelCase ) snake_case_ = degree def __add__( self , lowerCamelCase ) -> Polynomial: if self.degree > polynomial_a.degree: snake_case_ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCamelCase ) else: snake_case_ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCamelCase ) def __sub__( self , lowerCamelCase ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowerCamelCase ) -> Polynomial: snake_case_ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> int | float: snake_case_ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: snake_case_ = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCamelCase ) return polynomial def __repr__( self ) -> str: return self.__str__() def lowerCAmelCase_ ( self ) -> Polynomial: snake_case_ = [0] * self.degree for i in range(self.degree ): snake_case_ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase = 0 ) -> Polynomial: snake_case_ = [0] * (self.degree + 2) snake_case_ = constant for i in range(self.degree + 1 ): snake_case_ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCamelCase ) def __eq__( self , lowerCamelCase ) -> bool: if not isinstance(lowerCamelCase , lowerCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowerCamelCase ) -> bool: return not self.__eq__(lowerCamelCase )
361
import numpy as np def UpperCamelCase( lowercase_ ) -> np.array: '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
34
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ : Tuple = KandinskyVaaControlnetPipeline snake_case__ : Dict = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] snake_case__ : str = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] snake_case__ : Dict = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] snake_case__ : str = False @property def _A ( self : Optional[int] ): return 32 @property def _A ( self : Dict ): return 32 @property def _A ( self : int ): return self.time_input_dim @property def _A ( self : int ): return self.time_input_dim * 4 @property def _A ( self : Tuple ): return 100 @property def _A ( self : Any ): torch.manual_seed(0 ) UpperCamelCase :int = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCamelCase :Optional[Any] = UNetaDConditionModel(**A__ ) return model @property def _A ( self : Optional[Any] ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _A ( self : Optional[Any] ): torch.manual_seed(0 ) UpperCamelCase :Tuple = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self : Any ): UpperCamelCase :Optional[Any] = self.dummy_unet UpperCamelCase :Optional[int] = self.dummy_movq UpperCamelCase :List[Any] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=A__ , set_alpha_to_one=A__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=A__ , ) UpperCamelCase :Dict = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _A ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=0 ): UpperCamelCase :List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A__ ) ).to(A__ ) UpperCamelCase :Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A__ ) # create hint UpperCamelCase :Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(A__ ) ).to(A__ ) if str(A__ ).startswith("""mps""" ): UpperCamelCase :str = torch.manual_seed(A__ ) else: UpperCamelCase :Optional[Any] = torch.Generator(device=A__ ).manual_seed(A__ ) UpperCamelCase :Optional[int] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _A ( self : Union[str, Any] ): UpperCamelCase :Optional[int] = """cpu""" UpperCamelCase :int = self.get_dummy_components() UpperCamelCase :Any = self.pipeline_class(**A__ ) UpperCamelCase :Tuple = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) UpperCamelCase :Tuple = pipe(**self.get_dummy_inputs(A__ ) ) UpperCamelCase :Any = output.images UpperCamelCase :Optional[int] = pipe( **self.get_dummy_inputs(A__ ) , return_dict=A__ , )[0] UpperCamelCase :Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase :List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Dict ): UpperCamelCase :str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) UpperCamelCase :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) UpperCamelCase :Dict = torch.from_numpy(np.array(A__ ) ).float() / 255.0 UpperCamelCase :Any = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase :Tuple = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A__ ) UpperCamelCase :int = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) UpperCamelCase :Any = pipeline.to(A__ ) pipeline.set_progress_bar_config(disable=A__ ) UpperCamelCase :Tuple = """A robot, 4k photo""" UpperCamelCase :Dict = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase :Dict = pipe_prior( A__ , generator=A__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCamelCase :List[str] = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCamelCase :str = pipeline( image_embeds=A__ , negative_image_embeds=A__ , hint=A__ , generator=A__ , num_inference_steps=100 , output_type="""np""" , ) UpperCamelCase :Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(A__ , A__ )
38
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
101
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowerCamelCase : str = 8 def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Dict=BITS ): '''simple docstring''' lowerCamelCase_ = x.device lowerCamelCase_ = (x * 2_55).int().clamp(0 , 2_55 ) lowerCamelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase ) lowerCamelCase_ = rearrange(lowercase , 'd -> d 1 1' ) lowerCamelCase_ = rearrange(lowercase , 'b c h w -> b c 1 h w' ) lowerCamelCase_ = ((x & mask) != 0).float() lowerCamelCase_ = rearrange(lowercase , 'b c d h w -> b (c d) h w' ) lowerCamelCase_ = bits * 2 - 1 return bits def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple=BITS ): '''simple docstring''' lowerCamelCase_ = x.device lowerCamelCase_ = (x > 0).int() lowerCamelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase , dtype=torch.intaa ) lowerCamelCase_ = rearrange(lowercase , 'd -> d 1 1' ) lowerCamelCase_ = rearrange(lowercase , 'b (c d) h w -> b c d h w' , d=8 ) lowerCamelCase_ = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 2_55).clamp(0.0 , 1.0 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : float = 0.0 , lowercase : bool = True , lowercase : int=None , lowercase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCamelCase_ = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCamelCase_ = self.alphas_cumprod[timestep] lowerCamelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCamelCase_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCamelCase_ = self.bit_scale if self.config.clip_sample: lowerCamelCase_ = torch.clamp(lowercase , -scale , lowercase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCamelCase_ = self._get_variance(lowercase , lowercase ) lowerCamelCase_ = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCamelCase_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCamelCase_ = model_output.device if torch.is_tensor(lowercase ) else 'cpu' lowerCamelCase_ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowercase ).to(lowercase ) lowerCamelCase_ = self._get_variance(lowercase , lowercase ) ** 0.5 * eta * noise lowerCamelCase_ = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : Dict="epsilon" , lowercase : Tuple=None , lowercase : bool = True , ): '''simple docstring''' lowerCamelCase_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCamelCase_ , lowerCamelCase_ = torch.split(lowercase , sample.shape[1] , dim=1 ) else: lowerCamelCase_ = None # 1. compute alphas, betas lowerCamelCase_ = self.alphas_cumprod[t] lowerCamelCase_ = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCamelCase_ = 1 - alpha_prod_t lowerCamelCase_ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCamelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCamelCase_ = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" lowerCamelCase_ = self.bit_scale if self.config.clip_sample: lowerCamelCase_ = torch.clamp(lowercase , -scale , lowercase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCamelCase_ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase_ = 0 if t > 0: lowerCamelCase_ = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowercase ).to(model_output.device ) lowerCamelCase_ = (self._get_variance(lowercase , predicted_variance=lowercase ) ** 0.5) * noise lowerCamelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Any , A_ : UNetaDConditionModel , A_ : Union[DDIMScheduler, DDPMScheduler] , A_ : Optional[float] = 1.0 , ) -> Union[str, Any]: """simple docstring""" super().__init__() lowerCamelCase_ = bit_scale lowerCamelCase_ = ( ddim_bit_scheduler_step if isinstance(A_ , A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self : Optional[int] , A_ : Optional[int] = 256 , A_ : Optional[int] = 256 , A_ : Optional[int] = 50 , A_ : Optional[torch.Generator] = None , A_ : Optional[int] = 1 , A_ : Optional[str] = "pil" , A_ : bool = True , **A_ : Tuple , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" lowerCamelCase_ = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=A_ , ) lowerCamelCase_ = decimal_to_bits(A_ ) * self.bit_scale lowerCamelCase_ = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCamelCase_ = self.unet(A_ , A_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample lowerCamelCase_ = bits_to_decimal(A_ ) if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
353
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase : Any = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''rag''' UpperCamelCase = True def __init__( self : Optional[Any] , A_ : Optional[Any]=None , A_ : Any=True , A_ : Dict=None , A_ : Optional[int]=None , A_ : str=None , A_ : int=None , A_ : List[Any]=None , A_ : List[str]=" / " , A_ : Tuple=" // " , A_ : Union[str, Any]=5 , A_ : Optional[Any]=300 , A_ : int=768 , A_ : Dict=8 , A_ : int="wiki_dpr" , A_ : int="train" , A_ : List[str]="compressed" , A_ : Tuple=None , A_ : Optional[Any]=None , A_ : Optional[int]=False , A_ : str=False , A_ : Optional[Any]=0.0 , A_ : Union[str, Any]=True , A_ : List[Any]=False , A_ : Union[str, Any]=False , A_ : Dict=False , A_ : str=True , A_ : List[str]=None , **A_ : Optional[Any] , ) -> str: """simple docstring""" super().__init__( bos_token_id=A_ , pad_token_id=A_ , eos_token_id=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , is_encoder_decoder=A_ , prefix=A_ , vocab_size=A_ , **A_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCamelCase_ = kwargs.pop('question_encoder' ) lowerCamelCase_ = question_encoder_config.pop('model_type' ) lowerCamelCase_ = kwargs.pop('generator' ) lowerCamelCase_ = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase_ = AutoConfig.for_model(A_ , **A_ ) lowerCamelCase_ = AutoConfig.for_model(A_ , **A_ ) lowerCamelCase_ = reduce_loss lowerCamelCase_ = label_smoothing lowerCamelCase_ = exclude_bos_score lowerCamelCase_ = do_marginalize lowerCamelCase_ = title_sep lowerCamelCase_ = doc_sep lowerCamelCase_ = n_docs lowerCamelCase_ = max_combined_length lowerCamelCase_ = dataset lowerCamelCase_ = dataset_split lowerCamelCase_ = index_name lowerCamelCase_ = retrieval_vector_size lowerCamelCase_ = retrieval_batch_size lowerCamelCase_ = passages_path lowerCamelCase_ = index_path lowerCamelCase_ = use_dummy_dataset lowerCamelCase_ = output_retrieved lowerCamelCase_ = do_deduplication lowerCamelCase_ = use_cache if self.forced_eos_token_id is None: lowerCamelCase_ = getattr(self.generator , 'forced_eos_token_id' , A_ ) @classmethod def a__ ( cls : str , A_ : PretrainedConfig , A_ : PretrainedConfig , **A_ : List[str] ) -> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **A_ ) def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.question_encoder.to_dict() lowerCamelCase_ = self.generator.to_dict() lowerCamelCase_ = self.__class__.model_type return output
208
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Dict = logging.get_logger(__name__) _lowercase : Union[str, Any] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[Any] = "xmod" def __init__( self : Tuple , _lowercase : Optional[Any]=3_05_22 , _lowercase : Optional[Any]=7_68 , _lowercase : List[str]=12 , _lowercase : List[Any]=12 , _lowercase : int=30_72 , _lowercase : Optional[Any]="gelu" , _lowercase : int=0.1 , _lowercase : List[str]=0.1 , _lowercase : List[str]=5_12 , _lowercase : int=2 , _lowercase : List[Any]=0.02 , _lowercase : int=1E-12 , _lowercase : int=1 , _lowercase : Any=0 , _lowercase : Any=2 , _lowercase : Optional[Any]="absolute" , _lowercase : List[str]=True , _lowercase : Optional[int]=None , _lowercase : int=False , _lowercase : str=2 , _lowercase : List[Any]=False , _lowercase : Tuple=True , _lowercase : Tuple=True , _lowercase : Optional[int]=("en_XX",) , _lowercase : List[str]=None , **_lowercase : str , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout __UpperCAmelCase = pre_norm __UpperCAmelCase = adapter_reduction_factor __UpperCAmelCase = adapter_layer_norm __UpperCAmelCase = adapter_reuse_layer_norm __UpperCAmelCase = ln_before_adapter __UpperCAmelCase = list(_lowercase ) __UpperCAmelCase = default_language class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : List[str] ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
332
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 16 UpperCAmelCase__ = 32 def _UpperCAmelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : int = 16 ) -> Tuple: _snake_case = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _snake_case = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) _snake_case = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case = 16 elif accelerator.mixed_precision != "no": _snake_case = 8 else: _snake_case = None return tokenizer.pad( UpperCamelCase__ , padding='''longest''' , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. _snake_case = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _snake_case = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ = mocked_dataloaders # noqa: F811 def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : List[str] ) -> Optional[Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , UpperCamelCase__ ) == "1": _snake_case = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: _snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case = config['''lr'''] _snake_case = int(config['''num_epochs'''] ) _snake_case = int(config['''seed'''] ) _snake_case = int(config['''batch_size'''] ) set_seed(UpperCamelCase__ ) _snake_case = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _snake_case = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _snake_case = batch_size // MAX_GPU_BATCH_SIZE _snake_case = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case = model.to(accelerator.device ) # Instantiate optimizer _snake_case = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _snake_case = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _snake_case = os.path.split(UpperCamelCase__ )[-1].split('''.''' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _snake_case = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _snake_case = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits.argmax(dim=-1 ) _snake_case = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , UpperCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(UpperCamelCase__ ), '''epoch''': epoch, } , step=UpperCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _UpperCAmelCase ( ) -> str: _snake_case = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=UpperCamelCase__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _snake_case = parser.parse_args() _snake_case = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
351
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class lowerCAmelCase__ ( A_ ): __a = """roberta""" def __init__( self : str , _lowerCamelCase : Dict=50265 , _lowerCamelCase : Tuple=768 , _lowerCamelCase : List[Any]=12 , _lowerCamelCase : Any=12 , _lowerCamelCase : Optional[int]=3072 , _lowerCamelCase : Union[str, Any]="gelu" , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Dict=512 , _lowerCamelCase : int=2 , _lowerCamelCase : str=0.0_2 , _lowerCamelCase : List[Any]=1e-12 , _lowerCamelCase : int=1 , _lowerCamelCase : int=0 , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : List[Any]="absolute" , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : str=None , **_lowerCamelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache _snake_case = classifier_dropout class lowerCAmelCase__ ( A_ ): @property def lowercase ( self : Dict ): if self.task == "multiple-choice": _snake_case = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _snake_case = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
40
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 def __init__( self : Any , UpperCAmelCase : UNetaDModel , UpperCAmelCase : KarrasVeScheduler ) -> List[str]: super().__init__() self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self : List[Any] , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 50 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , **UpperCAmelCase : Tuple , ) -> Union[Tuple, ImagePipelineOutput]: lowerCamelCase__ : Any = self.unet.config.sample_size lowerCamelCase__ : Any = (batch_size, 3, img_size, img_size) lowerCamelCase__ : Dict = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowerCamelCase__ : Dict = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowerCamelCase__ : List[Any] = self.scheduler.schedule[t] lowerCamelCase__ : Any = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowerCamelCase__ , lowerCamelCase__ : Any = self.scheduler.add_noise_to_input(UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCamelCase__ : Optional[Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowerCamelCase__ : Dict = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCamelCase__ : Optional[Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample lowerCamelCase__ : Optional[int] = self.scheduler.step_correct( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , ) lowerCamelCase__ : Union[str, Any] = step_output.prev_sample lowerCamelCase__ : Optional[int] = (sample / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase__ : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase__ : List[Any] = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
50
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Any = """openai/whisper-base""" snake_case__ : Optional[int] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) snake_case__ : Any = """transcriber""" snake_case__ : Optional[int] = WhisperProcessor snake_case__ : str = WhisperForConditionalGeneration snake_case__ : Optional[Any] = ["""audio"""] snake_case__ : Any = ["""text"""] def _A ( self : str , __lowerCamelCase : Dict ): return self.pre_processor(__lowerCamelCase , return_tensors="""pt""" ).input_features def _A ( self : Dict , __lowerCamelCase : List[Any] ): return self.model.generate(inputs=__lowerCamelCase ) def _A ( self : Any , __lowerCamelCase : Optional[Any] ): return self.pre_processor.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )[0]
38
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) def _snake_case( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: A__ = ( 'Wrong input data\'s dimensions... ' f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) try: if dataset.shape[1] != value_array.shape[1]: A__ = ( 'Wrong input data\'s shape... ' f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: A__ = ( 'Input data have different datatype... ' f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) A__ = [] for value in value_array: A__ = euclidean(SCREAMING_SNAKE_CASE__ , dataset[0] ) A__ = dataset[0].tolist() for dataset_value in dataset[1:]: A__ = euclidean(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if dist > temp_dist: A__ = temp_dist A__ = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ) -> float: '''simple docstring''' return np.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / (norm(SCREAMING_SNAKE_CASE__ ) * norm(SCREAMING_SNAKE_CASE__ )) if __name__ == "__main__": import doctest doctest.testmod()
351
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = VideoToVideoSDPipeline lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} lowerCamelCase = PipelineTesterMixin.required_optional_params - {'latents'} lowerCamelCase = False # No `output_type`. lowerCamelCase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4),layers_per_block=2,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=3_2,attention_head_dim=4,) A__ = DDIMScheduler( beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,) A__ = CLIPTextModel(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int],lowercase_ : List[Any]=0 )-> Any: '''simple docstring''' A__ = floats_tensor((1, 3, 3, 3_2, 3_2),rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case__ ( self : List[Any] )-> List[Any]: '''simple docstring''' A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = VideoToVideoSDPipeline(**lowercase_ ) A__ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_dummy_inputs(lowercase_ ) A__ = 'np' A__ = sd_pipe(**lowercase_ ).frames A__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) A__ = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase_,expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case__ ( self : Any )-> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case__ ( self : int )-> int: '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case__ ( self : List[Any] )-> List[str]: '''simple docstring''' pass def snake_case__ ( self : Optional[int] )-> Optional[Any]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> Dict: '''simple docstring''' A__ = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6),generator=lowercase_ ) A__ = video.to('cuda' ) A__ = 'Spiderman is surfing' A__ = pipe(lowercase_,video=lowercase_,generator=lowercase_,num_inference_steps=3,output_type='pt' ).frames A__ = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
282
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int, _snake_case : Optional[int], _snake_case : Union[str, Any]=7, _snake_case : int=3, _snake_case : Any=1_8, _snake_case : int=3_0, _snake_case : Any=4_0_0, _snake_case : Optional[Any]=True, _snake_case : Any=None, _snake_case : Optional[Any]=True, _snake_case : List[str]=None, _snake_case : int=True, _snake_case : List[str]=[0.5, 0.5, 0.5], _snake_case : Optional[Any]=[0.5, 0.5, 0.5], ) ->str: snake_case__ : Union[str, Any] = size if size is not None else {'shortest_edge': 1_8} snake_case__ : Optional[Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} snake_case__ : List[Any] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Any = image_size snake_case__ : Optional[Any] = min_resolution snake_case__ : Union[str, Any] = max_resolution snake_case__ : List[str] = do_resize snake_case__ : List[Any] = size snake_case__ : Any = do_center_crop snake_case__ : Dict = crop_size snake_case__ : Optional[Any] = do_normalize snake_case__ : List[str] = image_mean snake_case__ : Optional[Any] = image_std def lowercase_ ( self : Any ) ->List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = LevitImageProcessor if is_vision_available() else None def lowercase_ ( self : str ) ->Any: snake_case__ : List[str] = LevitImageProcessingTester(self ) @property def lowercase_ ( self : Any ) ->Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ) ->List[str]: snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case, 'image_mean' ) ) self.assertTrue(hasattr(_snake_case, 'image_std' ) ) self.assertTrue(hasattr(_snake_case, 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case, 'do_resize' ) ) self.assertTrue(hasattr(_snake_case, 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case, 'size' ) ) def lowercase_ ( self : Optional[Any] ) ->str: snake_case__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 1_8} ) self.assertEqual(image_processor.crop_size, {'height': 1_8, 'width': 1_8} ) snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=4_2, crop_size=8_4 ) self.assertEqual(image_processor.size, {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size, {'height': 8_4, 'width': 8_4} ) def lowercase_ ( self : Dict ) ->Optional[int]: pass def lowercase_ ( self : Any ) ->Optional[Any]: # Initialize image_processing snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case__ : Union[str, Any] = image_processing(_snake_case, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def lowercase_ ( self : Any ) ->Tuple: # Initialize image_processing snake_case__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, np.ndarray ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case__ : Union[str, Any] = image_processing(_snake_case, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def lowercase_ ( self : List[Any] ) ->List[Any]: # Initialize image_processing snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, torch.Tensor ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case__ : List[Any] = image_processing(_snake_case, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), )
277
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a_ :List[Any] = logging.get_logger(__name__) a_ :List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } a_ :List[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowercase_ (A : Dict ): snake_case__ : Optional[Any] = {} with open(A , 'r' ) as file: for line_number, line in enumerate(A ): snake_case__ : Dict = line.strip() if line: snake_case__ : int = line.split() snake_case__ : List[str] = line_number snake_case__ : Dict = words[0] snake_case__ : Optional[Any] = value return result def lowercase_ (A : int , A : int , A : Optional[int] , A : Optional[Any] , A : Tuple ): for attribute in key.split('.' ): snake_case__ : Optional[int] = getattr(A , A ) snake_case__ : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): snake_case__ : List[str] = PARAM_MAPPING[full_name.split('.' )[-1]] snake_case__ : Dict = 'param' if weight_type is not None and weight_type != "param": snake_case__ : Union[str, Any] = getattr(A , A ).shape elif weight_type is not None and weight_type == "param": snake_case__ : Optional[int] = hf_pointer for attribute in hf_param_name.split('.' ): snake_case__ : Optional[Any] = getattr(A , A ) snake_case__ : Dict = shape_pointer.shape # let's reduce dimension snake_case__ : List[Any] = value[0] else: snake_case__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : Any = value elif weight_type == "weight_g": snake_case__ : List[Any] = value elif weight_type == "weight_v": snake_case__ : Any = value elif weight_type == "bias": snake_case__ : List[Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): snake_case__ : int = getattr(A , A ) snake_case__ : Optional[int] = value else: snake_case__ : Optional[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase_ (A : Tuple , A : List[Any] , A : int , A : str , A : Tuple ): snake_case__ : Optional[int] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): snake_case__ : List[str] = PARAM_MAPPING[full_name.split('.' )[-1]] snake_case__ : str = 'param' if weight_type is not None and weight_type != "param": snake_case__ : int = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case__ : Any = '.'.join([key, hf_param_name] ) else: snake_case__ : Dict = key snake_case__ : List[str] = value if 'lm_head' in full_key else value[0] a_ :List[str] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowercase_ (A : str , A : Optional[Any] , A : Optional[Any]=None , A : List[str]=None ): snake_case__ : Optional[int] = False for key, mapped_key in MAPPING.items(): snake_case__ : Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case__ : Optional[int] = True if "*" in mapped_key: snake_case__ : List[Any] = name.split(A )[0].split('.' )[-2] snake_case__ : Union[str, Any] = mapped_key.replace('*' , A ) if "weight_g" in name: snake_case__ : Tuple = 'weight_g' elif "weight_v" in name: snake_case__ : List[str] = 'weight_v' elif "bias" in name: snake_case__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[int] = 'weight' else: snake_case__ : str = None if hf_dict is not None: rename_dict(A , A , A , A , A ) else: set_recursively(A , A , A , A , A ) return is_used return is_used def lowercase_ (A : Optional[Any] , A : Dict , A : Optional[int] ): snake_case__ : Dict = [] snake_case__ : Tuple = fairseq_model.state_dict() snake_case__ : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : str = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == 'group' , ) snake_case__ : Any = True else: snake_case__ : Dict = load_wavaveca_layer(A , A , A ) if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase_ (A : Dict , A : Optional[Any] , A : Tuple , A : str , A : List[str] ): snake_case__ : List[Any] = full_name.split('conv_layers.' )[-1] snake_case__ : List[str] = name.split('.' ) snake_case__ : List[Any] = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def lowercase_ (A : Union[str, Any] , A : str , A : Tuple=None , A : List[str]=None , A : Any=True , A : Optional[int]=False ): if config_path is not None: snake_case__ : List[Any] = WavaVecaConfig.from_pretrained(A ) else: snake_case__ : List[Any] = WavaVecaConfig() if is_seq_class: snake_case__ : Dict = read_txt_into_dict(A ) snake_case__ : Any = idalabel snake_case__ : Union[str, Any] = WavaVecaForSequenceClassification(A ) snake_case__ : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) feature_extractor.save_pretrained(A ) elif is_finetuned: if dict_path: snake_case__ : str = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case__ : List[str] = target_dict.pad_index snake_case__ : Optional[int] = target_dict.bos_index snake_case__ : Optional[int] = target_dict.eos_index snake_case__ : List[Any] = len(target_dict.symbols ) snake_case__ : str = os.path.join(A , 'vocab.json' ) if not os.path.isdir(A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(A ) ) return os.makedirs(A , exist_ok=A ) snake_case__ : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched snake_case__ : Optional[Any] = 0 snake_case__ : Union[str, Any] = 1 with open(A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(A , A ) snake_case__ : List[Any] = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=A , ) snake_case__ : str = True if config.feat_extract_norm == 'layer' else False snake_case__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) snake_case__ : Union[str, Any] = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) snake_case__ : str = WavaVecaForCTC(A ) else: snake_case__ : int = WavaVecaForPreTraining(A ) if is_finetuned or is_seq_class: snake_case__ , snake_case__ , snake_case__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: snake_case__ : Tuple = argparse.Namespace(task='audio_pretraining' ) snake_case__ : str = fairseq.tasks.setup_task(A ) snake_case__ , snake_case__ , snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A ) snake_case__ : List[Any] = model[0].eval() recursively_load_weights(A , A , not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": a_ :List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) a_ :str = parser.parse_args() a_ :Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
277
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : def __init__( self :List[Any] ,__snake_case :Optional[Any] ,__snake_case :List[str]=13 ,__snake_case :Union[str, Any]=3 ,__snake_case :Any=True ,__snake_case :List[Any]=True ,__snake_case :Union[str, Any]=0.1 ,__snake_case :List[str]=0.1 ,__snake_case :List[Any]=2_24 ,__snake_case :int=10_00 ,__snake_case :Any=[3, 3, 6, 4] ,__snake_case :Any=[48, 56, 1_12, 2_20] ,) -> Dict: a__ = parent a__ = batch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = num_labels a__ = image_size a__ = layer_depths a__ = embed_dims def lowerCamelCase__( self :Dict ) -> Union[str, Any]: a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.num_labels ) a__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__( self :List[Any] ) -> List[Any]: return SwiftFormerConfig( depths=self.layer_depths ,embed_dims=self.embed_dims ,mlp_ratio=4 ,downsamples=[True, True, True, True] ,hidden_act='gelu' ,num_labels=self.num_labels ,down_patch_size=3 ,down_stride=2 ,down_pad=1 ,drop_rate=0.0 ,drop_path_rate=0.0 ,use_layer_scale=__snake_case ,layer_scale_init_value=1E-5 ,) def lowerCamelCase__( self :str ,__snake_case :Dict ,__snake_case :List[Any] ,__snake_case :Union[str, Any] ) -> Tuple: a__ = SwiftFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__( self :List[str] ,__snake_case :Union[str, Any] ,__snake_case :List[Any] ,__snake_case :Tuple ) -> Any: a__ = self.num_labels a__ = SwiftFormerForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) a__ = SwiftFormerForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = model(__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :str ) -> str: ((a__) , (a__) , (a__)) = self.prepare_config_and_inputs() a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : List[str] = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Union[str, Any] = False def lowerCamelCase__( self :Tuple ) -> List[str]: a__ = SwiftFormerModelTester(self ) a__ = ConfigTester( self ,config_class=__snake_case ,has_text_modality=__snake_case ,hidden_size=37 ,num_attention_heads=12 ,num_hidden_layers=12 ,) def lowerCamelCase__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: pass def lowerCamelCase__( self :str ) -> List[Any]: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case ,nn.Linear ) ) def lowerCamelCase__( self :str ) -> int: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__snake_case ) def lowerCamelCase__( self :List[str] ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase__( self :str ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def lowerCamelCase__( self :List[str] ) -> Dict: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = SwiftFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: pass def lowerCamelCase__( self :Optional[Any] ) -> List[str]: def check_hidden_states_output(__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ): a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) a__ = outputs.hidden_states a__ = 8 self.assertEqual(len(__snake_case ) ,__snake_case ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__snake_case ) ): self.assertEqual( hidden_states[i].shape ,torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) ,) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: def _config_zero_init(__snake_case :List[str] ): a__ = copy.deepcopy(__snake_case ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__snake_case ,__snake_case ,1E-10 ) if isinstance(getattr(__snake_case ,__snake_case ,__snake_case ) ,__snake_case ): a__ = _config_zero_init(getattr(__snake_case ,__snake_case ) ) setattr(__snake_case ,__snake_case ,__snake_case ) return configs_no_init a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: a__ = model_class(config=__snake_case ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() ,[0.0, 1.0] ,msg=F'Parameter {name} of model {model_class} seems not properly initialized' ,) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> str: pass def __lowercase ( ): a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case_ (unittest.TestCase ): @cached_property def lowerCamelCase__( self :List[Any] ) -> List[Any]: return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def lowerCamelCase__( self :List[str] ) -> Optional[Any]: a__ = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(__snake_case ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__snake_case ,return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a__ = model(**__snake_case ) # verify the logits a__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__snake_case ) a__ = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__snake_case ,atol=1E-4 ) )
361
def __lowercase ( __lowerCAmelCase : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) a__ = [True] * (num + 1) a__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): a__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() snake_case : Optional[Any] = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
109
0
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.dummy_uncond_unet UpperCAmelCase_ = KarrasVeScheduler() UpperCAmelCase_ = KarrasVePipeline(unet=_snake_case , scheduler=_snake_case) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe(num_inference_steps=2 , generator=_snake_case , output_type='''numpy''').images UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe(num_inference_steps=2 , generator=_snake_case , output_type='''numpy''' , return_dict=_snake_case)[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''google/ncsnpp-celebahq-256''' UpperCAmelCase_ = UNetaDModel.from_pretrained(_snake_case) UpperCAmelCase_ = KarrasVeScheduler() UpperCAmelCase_ = KarrasVePipeline(unet=_snake_case , scheduler=_snake_case) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe(num_inference_steps=20 , generator=_snake_case , output_type='''numpy''').images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
51
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : int = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCamelCase : Optional[Any] = HfApi() _lowerCamelCase : str = {} # fmt: off _lowerCamelCase : Optional[int] = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) _lowerCamelCase : Dict = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) _lowerCamelCase : Optional[Any] = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) _lowerCamelCase : List[Any] = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) _lowerCamelCase : Optional[Any] = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) _lowerCamelCase : Optional[int] = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) _lowerCamelCase : Dict = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) _lowerCamelCase : Optional[Any] = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) _lowerCamelCase : int = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) _lowerCamelCase : List[str] = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) _lowerCamelCase : Union[str, Any] = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) _lowerCamelCase : str = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) _lowerCamelCase : Dict = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) _lowerCamelCase : Any = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) _lowerCamelCase : Any = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on _lowerCamelCase : List[Any] = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCamelCase : Union[str, Any] = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(f"Started running {mod.modelId}!!!") if mod.modelId.startswith('CompVis'): _lowerCamelCase : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: _lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCamelCase : Optional[Any] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCamelCase : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3 ) print(f"{mod.modelId} has passed successfully!!!")
337
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ : List[str] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['''PoolFormerFeatureExtractor'''] lowercase__ : int = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
264
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( __a : Dict[str, torch.Tensor] ): '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = [] for rt in rc.restypes: UpperCamelCase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCamelCase__ = {name: i for i, name in enumerate(__a )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.intaa , device=protein["""aatype"""].device , ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.intaa , device=protein["""aatype"""].device , ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.floataa , device=protein["""aatype"""].device , ) UpperCamelCase__ = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase__ = restype_atomaa_mask[protein_aatype] UpperCamelCase__ = residx_atomaa_mask UpperCamelCase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCamelCase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCamelCase__ = rc.restype_atoa[restype_letter] UpperCamelCase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCamelCase__ = rc.atom_order[atom_name] UpperCamelCase__ = 1 UpperCamelCase__ = restype_atomaa_mask[protein_aatype] UpperCamelCase__ = residx_atomaa_mask return protein def __magic_name__ ( __a : Dict[str, torch.Tensor] ): '''simple docstring''' UpperCamelCase__ = tree_map(lambda __a : torch.tensor(__a , device=batch["""aatype"""].device ) , __a , np.ndarray ) UpperCamelCase__ = tensor_tree_map(lambda __a : np.array(__a ) , make_atomaa_masks(__a ) ) return out
244
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _A = logging.get_logger(__name__) def lowerCamelCase__ ( a__ : bool , a__ : bool ) -> str: def run_func(a__ : List[Any] ): @wraps(a__ ) def run_in_eager_mode(*a__ : str , **a__ : List[Any] ): return func(*a__ , **a__ ) @wraps(a__ ) @tf.function(experimental_compile=a__ ) def run_in_graph_mode(*a__ : str , **a__ : Tuple ): return func(*a__ , **a__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowerCamelCase__ ( a__ : int , a__ : int , a__ : int ) -> ["tf.Tensor"]: UpperCamelCase_ = random.Random() UpperCamelCase_ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(a__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : TensorFlowBenchmarkArguments A__ : PretrainedConfig A__ : str = "TensorFlow" @property def lowerCamelCase_ ( self ): """simple docstring""" return tf.__version__ def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase_ = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_inference ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase_ = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_train ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCamelCase_ = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase_ = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_inference ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCamelCase_ = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase_ = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_train ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) UpperCamelCase_ = ( hasattr(__UpperCamelCase , """architectures""" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase_ = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase_ = __import__("""transformers""" , fromlist=[model_class] ) UpperCamelCase_ = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: UpperCamelCase_ = TF_MODEL_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCamelCase_ = config.vocab_size if hasattr(__UpperCamelCase , """vocab_size""" ) else config.encoder.vocab_size UpperCamelCase_ = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , training=__UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__UpperCamelCase , training=__UpperCamelCase ) UpperCamelCase_ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) UpperCamelCase_ = ( hasattr(__UpperCamelCase , """architectures""" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase_ = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase_ = __import__("""transformers""" , fromlist=[model_class] ) UpperCamelCase_ = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: UpperCamelCase_ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCamelCase_ = config.vocab_size if hasattr(__UpperCamelCase , """vocab_size""" ) else config.encoder.vocab_size UpperCamelCase_ = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCamelCase_ = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCamelCase_ = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCamelCase_ = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCamelCase_ = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients UpperCamelCase_ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(__UpperCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCamelCase_ = timeit.repeat( __UpperCamelCase , repeat=self.args.repeat , number=1_0 , ) return min(__UpperCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) UpperCamelCase_ = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) UpperCamelCase_ = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() UpperCamelCase_ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCamelCase_ = nvml.nvmlDeviceGetMemoryInfo(__UpperCamelCase ) UpperCamelCase_ = meminfo.used UpperCamelCase_ = Memory(__UpperCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) UpperCamelCase_ = None else: UpperCamelCase_ = measure_peak_memory_cpu(__UpperCamelCase ) UpperCamelCase_ = Memory(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCamelCase_ = stop_memory_tracing(__UpperCamelCase ) if memory is None: UpperCamelCase_ = summary.total else: UpperCamelCase_ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
363
def lowerCamelCase__ ( a__ : list , a__ : list , a__ : int , a__ : int , a__ : int ) -> int: if index == number_of_items: return 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = knapsack(a__ , a__ , a__ , a__ , index + 1 ) if weights[index] <= max_weight: UpperCamelCase_ = values[index] + knapsack( a__ , a__ , a__ , max_weight - weights[index] , index + 1 ) return max(a__ , a__ ) if __name__ == "__main__": import doctest doctest.testmod()
261
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: snake_case : List[Any] = None snake_case : int = logging.get_logger(__name__) snake_case : Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} snake_case : Dict = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } snake_case : List[str] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } snake_case : List[str] = "▁" # Segments (not really needed) snake_case : List[str] = 0 snake_case : Tuple = 1 snake_case : str = 2 snake_case : Union[str, Any] = 3 snake_case : Optional[Any] = 4 class _snake_case ( snake_case ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = 'left' UpperCamelCase__ = XLNetTokenizer def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[str] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , ) __magic_name__ : Union[str, Any] = 3 __magic_name__ : Union[str, Any] = do_lower_case __magic_name__ : List[Any] = remove_space __magic_name__ : List[Any] = keep_accents __magic_name__ : str = vocab_file __magic_name__ : Union[str, Any] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Optional[Any] = [self.sep_token_id] __magic_name__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Any = [self.sep_token_id] __magic_name__ : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ : str = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
281
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : int = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" __magic_name__ : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert("RGB" ) return image def lowerCAmelCase_ ( _snake_case : str ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : List[str] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def lowerCAmelCase_ ( _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Optional[Any] ) -> int: '''simple docstring''' __magic_name__ : Tuple = dct.pop(_snake_case ) __magic_name__ : int = val def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Optional[Any] ) -> Dict: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __magic_name__ : List[Any] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __magic_name__ : Optional[Any] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __magic_name__ : Optional[int] = torch.cat((q_bias, torch.zeros_like(_snake_case , requires_grad=_snake_case ), v_bias) ) __magic_name__ : Union[str, Any] = qkv_bias def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : str ) -> int: '''simple docstring''' __magic_name__ : List[Any] = 364 if "coco" in model_name else 224 __magic_name__ : Union[str, Any] = BlipaVisionConfig(image_size=_snake_case ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __magic_name__ : List[str] = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=_snake_case ).to_dict() elif "opt-6.7b" in model_name: __magic_name__ : Any = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=_snake_case ).to_dict() elif "t5-xl" in model_name: __magic_name__ : Dict = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __magic_name__ : int = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() __magic_name__ : List[Any] = BlipaConfig(vision_config=_snake_case , text_config=_snake_case ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : str=None , _snake_case : Dict=False ) -> List[Any]: '''simple docstring''' __magic_name__ : Optional[int] = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) __magic_name__ : List[Any] = tokenizer("\n" , add_special_tokens=_snake_case ).input_ids[0] __magic_name__ , __magic_name__ : Tuple = get_blipa_config(_snake_case , eos_token_id=_snake_case ) __magic_name__ : Union[str, Any] = BlipaForConditionalGeneration(_snake_case ).eval() __magic_name__ : Any = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } __magic_name__ , __magic_name__ : Union[str, Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) __magic_name__ : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = load_model_and_preprocess( name=_snake_case , model_type=_snake_case , is_eval=_snake_case , device=_snake_case ) original_model.eval() print("Done!" ) # update state dict keys __magic_name__ : Dict = original_model.state_dict() __magic_name__ : str = create_rename_keys(_snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __magic_name__ : Any = state_dict.pop(_snake_case ) if key.startswith("Qformer.bert" ): __magic_name__ : Optional[int] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: __magic_name__ : Any = key.replace("self" , "attention" ) if "opt_proj" in key: __magic_name__ : Union[str, Any] = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: __magic_name__ : Optional[int] = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): __magic_name__ : List[str] = key.replace("opt" , "language" ) if key.startswith("t5" ): __magic_name__ : Tuple = key.replace("t5" , "language" ) __magic_name__ : Dict = val # read in qv biases read_in_q_v_bias(_snake_case , _snake_case ) __magic_name__ , __magic_name__ : Tuple = hf_model.load_state_dict(_snake_case , strict=_snake_case ) assert len(_snake_case ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __magic_name__ : List[Any] = load_demo_image() __magic_name__ : Tuple = vis_processors["eval"](_snake_case ).unsqueeze(0 ).to(_snake_case ) __magic_name__ : Dict = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(_snake_case ) # create processor __magic_name__ : Optional[Any] = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=_snake_case , image_std=_snake_case ) __magic_name__ : Dict = BlipaProcessor(image_processor=_snake_case , tokenizer=_snake_case ) __magic_name__ : Union[str, Any] = processor(images=_snake_case , return_tensors="pt" ).pixel_values.to(_snake_case ) # make sure processor creates exact same pixel values assert torch.allclose(_snake_case , _snake_case ) original_model.to(_snake_case ) hf_model.to(_snake_case ) with torch.no_grad(): if "opt" in model_name: __magic_name__ : List[Any] = original_model({"image": original_pixel_values, "text_input": [""]} ).logits __magic_name__ : Optional[int] = hf_model(_snake_case , _snake_case ).logits else: __magic_name__ : int = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits __magic_name__ : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __magic_name__ : List[str] = hf_model(_snake_case , _snake_case , labels=_snake_case ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __magic_name__ : List[str] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=_snake_case ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __magic_name__ : Tuple = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=_snake_case ) else: # cast to same type __magic_name__ : str = logits.dtype assert torch.allclose(original_logits.to(_snake_case ) , _snake_case , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) __magic_name__ : Optional[int] = "" __magic_name__ : Dict = tokenizer(_snake_case , return_tensors="pt" ).input_ids.to(_snake_case ) __magic_name__ : int = original_model.generate({"image": original_pixel_values} ) __magic_name__ : Optional[Any] = hf_model.generate( _snake_case , _snake_case , do_sample=_snake_case , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , _snake_case ) __magic_name__ : Tuple = input_ids.shape[1] __magic_name__ : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_snake_case ) __magic_name__ : Union[str, Any] = [text.strip() for text in output_text] print("HF generation:" , _snake_case ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() snake_case : Union[str, Any] = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) snake_case : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
281
1
from collections import defaultdict def snake_case( __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' lowercase : str = first_str.lower().strip() lowercase : Any = second_str.lower().strip() # Remove whitespace lowercase : int = first_str.replace(''' ''' , '''''' ) lowercase : Any = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__magic_name__ ) != len(__magic_name__ ): return False # Default values for count should be 0 lowercase : defaultdict[str, int] = defaultdict(__magic_name__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(__magic_name__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase_ = input('Enter the first string ').strip() lowerCAmelCase_ = input('Enter the second string ').strip() lowerCAmelCase_ = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
358
from string import ascii_uppercase lowerCAmelCase_ = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase_ = dict(enumerate(ascii_uppercase)) def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Optional[Any] = len(__magic_name__ ) lowercase : Any = 0 while True: if x == i: lowercase : Any = 0 if len(__magic_name__ ) == len(__magic_name__ ): break key += key[i] i += 1 return key def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : str = '''''' lowercase : Dict = 0 for letter in message: if letter == " ": cipher_text += " " else: lowercase : Dict = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Any = '''''' lowercase : str = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase : Any = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def snake_case( ) -> None: '''simple docstring''' lowercase : Dict = '''THE GERMAN ATTACK''' lowercase : Dict = '''SECRET''' lowercase : Union[str, Any] = generate_key(__magic_name__ , __magic_name__ ) lowercase : List[str] = cipher_text(__magic_name__ , __magic_name__ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(__magic_name__ , __magic_name__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
116
0
def UpperCAmelCase_ ( __snake_case ) -> List[str]: """simple docstring""" _lowercase ='''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCAmelCase_ ( __snake_case ) -> List[Any]: """simple docstring""" _lowercase =[chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _lowercase =remove_duplicates(key.upper() ) _lowercase =len(_a ) # First fill cipher with key characters _lowercase ={alphabet[i]: char for i, char in enumerate(_a )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_a ) , 26 ): _lowercase =alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _lowercase =alphabet[i - offset] _lowercase =char return cipher_alphabet def UpperCAmelCase_ ( __snake_case , __snake_case ) -> int: """simple docstring""" return "".join(cipher_map.get(_a , _a ) for ch in message.upper() ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase ={v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_a , _a ) for ch in message.upper() ) def UpperCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" _lowercase =input('''Enter message to encode or decode: ''' ).strip() _lowercase =input('''Enter keyword: ''' ).strip() _lowercase =input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: _lowercase ={'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) _lowercase =create_cipher_map(_a ) print(func(_a , _a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
5
'''simple docstring''' class _a : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase = {} # Mapping from char to TrieNode UpperCAmelCase = False def A ( self : int , lowercase : list[str] ): '''simple docstring''' for word in words: self.insert(lowercase ) def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: UpperCAmelCase = TrieNode() UpperCAmelCase = curr.nodes[char] UpperCAmelCase = True def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: return False UpperCAmelCase = curr.nodes[char] return curr.is_leaf def A ( self : str , lowercase : str ): '''simple docstring''' def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool: if index == len(lowercase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase = False return len(curr.nodes ) == 0 UpperCAmelCase = word[index] UpperCAmelCase = curr.nodes.get(lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase = _delete(lowercase , lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowercase , 0 ) def snake_case_ (_a : TrieNode , _a : str ): if node.is_leaf: print(_a , end=''' ''' ) for key, value in node.nodes.items(): print_words(_a , word + key ) def snake_case_ (): UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase = TrieNode() root.insert_many(_a ) # print_words(root, "") assert all(root.find(_a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def snake_case_ (_a : str , _a : bool ): print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' ) def snake_case_ (): assert test_trie() def snake_case_ (): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
34
0
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ['''flax'''] ) class _UpperCAmelCase ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ =['''flax'''] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ['''flax'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ['''flax'''] )
263
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : Dict=30 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=32 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : Optional[int]=37 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[Any]=10 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]=2 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = num_patches + 2 def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Tuple ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = TFDeiTModel(config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = TFDeiTForMaskedImageModeling(config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFDeiTForMaskedImageModeling(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassification(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassification(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowercase_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = TFDeiTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Any ): pass def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Dense ) ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any]=False ): SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowerCAmelCase_ ( self : Union[str, Any] ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = TFDeiTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def UpperCAmelCase_ ( ) -> str: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : List[str] ): return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCAmelCase , return_tensors='tf' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
225
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Any ) -> List[str]: __lowerCamelCase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) __lowerCamelCase = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice. __lowerCamelCase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
339
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None: if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(__lowerCAmelCase ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
339
1
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __UpperCAmelCase ={ "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } __UpperCAmelCase =AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=False ) -> List[str]: __lowerCamelCase , __lowerCamelCase = create_model( '''HTSAT-tiny''' , '''roberta''' , UpperCamelCase__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=UpperCamelCase__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[Any]: __lowerCamelCase = {} __lowerCamelCase = r'''.*sequential.(\d+).*''' __lowerCamelCase = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowerCamelCase = key.replace(UpperCamelCase__ , UpperCamelCase__ ) if re.match(UpperCamelCase__ , UpperCamelCase__ ): # replace sequential layers with list __lowerCamelCase = re.match(UpperCamelCase__ , UpperCamelCase__ ).group(1 ) __lowerCamelCase = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(UpperCamelCase__ )//3}.linear.""" ) elif re.match(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = int(re.match(UpperCamelCase__ , UpperCamelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __lowerCamelCase = 1 if projecton_layer == 0 else 2 __lowerCamelCase = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value __lowerCamelCase = value __lowerCamelCase = mixed_qkv.size(0 ) // 3 __lowerCamelCase = mixed_qkv[:qkv_dim] __lowerCamelCase = mixed_qkv[qkv_dim : qkv_dim * 2] __lowerCamelCase = mixed_qkv[qkv_dim * 2 :] __lowerCamelCase = query_layer __lowerCamelCase = key_layer __lowerCamelCase = value_layer else: __lowerCamelCase = value return model_state_dict def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = init_clap(UpperCamelCase__ , enable_fusion=UpperCamelCase__ ) clap_model.eval() __lowerCamelCase = clap_model.state_dict() __lowerCamelCase = rename_state_dict(UpperCamelCase__ ) __lowerCamelCase = ClapConfig() __lowerCamelCase = enable_fusion __lowerCamelCase = ClapModel(UpperCamelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) transformers_config.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") __UpperCAmelCase =parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
67
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowercase ( A_ )-> Dict: '''simple docstring''' a : str = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: a : Union[str, Any] = 128 elif "12-12" in model_name: a : List[Any] = 12 a : str = 12 elif "14-14" in model_name: a : List[Any] = 14 a : Optional[int] = 14 elif "16-16" in model_name: a : Any = 16 a : List[Any] = 16 else: raise ValueError("Model not supported" ) a : Optional[int] = "huggingface/label-files" if "speech-commands" in model_name: a : Optional[int] = 35 a : List[str] = "speech-commands-v2-id2label.json" else: a : Optional[Any] = 527 a : Tuple = "audioset-id2label.json" a : List[str] = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) a : Union[str, Any] = {int(A_ ): v for k, v in idalabel.items()} a : Any = idalabel a : str = {v: k for k, v in idalabel.items()} return config def lowercase ( A_ )-> Tuple: '''simple docstring''' if "module.v" in name: a : Union[str, Any] = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: a : List[Any] = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: a : Union[str, Any] = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: a : str = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: a : Union[str, Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: a : Union[str, Any] = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: a : str = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: a : Tuple = name.replace("attn" , "attention.self" ) if "norm1" in name: a : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a : Union[str, Any] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a : Optional[Any] = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: a : Tuple = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: a : List[str] = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: a : Optional[int] = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def lowercase ( A_ , A_ )-> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): a : str = orig_state_dict.pop(A_ ) if "qkv" in key: a : int = key.split("." ) a : Optional[int] = int(key_split[3] ) a : int = config.hidden_size if "weight" in key: a : List[str] = val[:dim, :] a : Any = val[dim : dim * 2, :] a : int = val[-dim:, :] else: a : Optional[Any] = val[:dim] a : Union[str, Any] = val[dim : dim * 2] a : str = val[-dim:] else: a : str = val return orig_state_dict def lowercase ( A_ )-> Dict: '''simple docstring''' a : Union[str, Any] = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(A_ , A_ ) @torch.no_grad() def lowercase ( A_ , A_ , A_=False )-> Optional[int]: '''simple docstring''' a : Optional[int] = get_audio_spectrogram_transformer_config(A_ ) a : Dict = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict a : Any = model_name_to_url[model_name] a : List[Any] = torch.hub.load_state_dict_from_url(A_ , map_location="cpu" ) # remove some keys remove_keys(A_ ) # rename some keys a : Union[str, Any] = convert_state_dict(A_ , A_ ) # load 🤗 model a : List[str] = ASTForAudioClassification(A_ ) model.eval() model.load_state_dict(A_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 a : Tuple = -4.2_6_7_7_3_9_3 if "speech-commands" not in model_name else -6.8_4_5_9_7_8 a : Union[str, Any] = 4.5_6_8_9_9_7_4 if "speech-commands" not in model_name else 5.5_6_5_4_5_2_6 a : str = 1_024 if "speech-commands" not in model_name else 128 a : List[Any] = ASTFeatureExtractor(mean=A_ , std=A_ , max_length=A_ ) if "speech-commands" in model_name: a : List[str] = load_dataset("speech_commands" , "v0.02" , split="validation" ) a : int = dataset[0]["audio"]["array"] else: a : Tuple = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) a , a : Tuple = torchaudio.load(A_ ) a : Optional[Any] = waveform.squeeze().numpy() a : Union[str, Any] = feature_extractor(A_ , sampling_rate=16_000 , return_tensors="pt" ) # forward pass a : Optional[Any] = model(**A_ ) a : List[str] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": a : Any = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": a : Optional[int] = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": a : List[str] = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": a : Tuple = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": a : int = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": a : Any = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": a : Dict = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] ) elif model_name == "ast-finetuned-speech-commands-v2": a : Union[str, Any] = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , A_ , atol=1e-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(A_ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowercase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
40
0
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ ( tf.keras.optimizers.schedules.LearningRateSchedule): def __init__( self : str , __UpperCamelCase : float , __UpperCamelCase : Callable , __UpperCamelCase : int , __UpperCamelCase : float = 1.0 , __UpperCamelCase : str = None , ) -> Tuple: super().__init__() _UpperCamelCase = initial_learning_rate _UpperCamelCase = warmup_steps _UpperCamelCase = power _UpperCamelCase = decay_schedule_fn _UpperCamelCase = name def __call__( self : int , __UpperCamelCase : Tuple ) -> List[Any]: with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _UpperCamelCase = tf.cast(__UpperCamelCase , tf.floataa ) _UpperCamelCase = tf.cast(self.warmup_steps , tf.floataa ) _UpperCamelCase = global_step_float / warmup_steps_float _UpperCamelCase = self.initial_learning_rate * tf.math.pow(__UpperCamelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=__UpperCamelCase , ) def _UpperCamelCase ( self : List[Any] ) -> Dict: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def lowercase ( a__ : float , a__ : int , a__ : int , a__ : float = 0.0 , a__ : float = 0.9 , a__ : float = 0.999 , a__ : float = 1e-8 , a__ : Optional[float] = None , a__ : Optional[float] = None , a__ : float = 0.0 , a__ : float = 1.0 , a__ : Optional[List[str]] = None , ) -> Any: _UpperCamelCase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=a__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=a__ , ) if num_warmup_steps: _UpperCamelCase = WarmUp( initial_learning_rate=a__ , decay_schedule_fn=a__ , warmup_steps=a__ , ) if weight_decay_rate > 0.0: _UpperCamelCase = AdamWeightDecay( learning_rate=a__ , weight_decay_rate=a__ , beta_a=a__ , beta_a=a__ , epsilon=a__ , clipnorm=a__ , global_clipnorm=a__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=a__ , ) else: _UpperCamelCase = tf.keras.optimizers.Adam( learning_rate=a__ , beta_a=a__ , beta_a=a__ , epsilon=a__ , clipnorm=a__ , global_clipnorm=a__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ ( _lowercase): def __init__( self : str , __UpperCamelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_0_1 , __UpperCamelCase : float = 0.9 , __UpperCamelCase : float = 0.9_9_9 , __UpperCamelCase : float = 1E-7 , __UpperCamelCase : bool = False , __UpperCamelCase : float = 0.0 , __UpperCamelCase : Optional[List[str]] = None , __UpperCamelCase : Optional[List[str]] = None , __UpperCamelCase : str = "AdamWeightDecay" , **__UpperCamelCase : Union[str, Any] , ) -> Optional[int]: super().__init__(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = weight_decay_rate _UpperCamelCase = include_in_weight_decay _UpperCamelCase = exclude_from_weight_decay @classmethod def _UpperCamelCase ( cls : Optional[Any] , __UpperCamelCase : Union[str, Any] ) -> List[Any]: _UpperCamelCase = {'''WarmUp''': WarmUp} return super(__UpperCamelCase , cls ).from_config(__UpperCamelCase , custom_objects=__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any ) -> List[str]: super(__UpperCamelCase , self )._prepare_local(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : str ) -> List[str]: _UpperCamelCase = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def _UpperCamelCase ( self : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[Any] ) -> Optional[int]: _UpperCamelCase , _UpperCamelCase = list(zip(*__UpperCamelCase ) ) return super(__UpperCamelCase , self ).apply_gradients(zip(__UpperCamelCase , __UpperCamelCase ) , name=__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ) -> List[str]: if apply_state is None: return self._decayed_lr_t[var_dtype], {} _UpperCamelCase = apply_state or {} _UpperCamelCase = apply_state.get((var_device, var_dtype) ) if coefficients is None: _UpperCamelCase = self._fallback_apply_state(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _UpperCamelCase ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=None ) -> Tuple: _UpperCamelCase , _UpperCamelCase = self._get_lr(var.device , var.dtype.base_dtype , __UpperCamelCase ) _UpperCamelCase = self._decay_weights_op(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) with tf.control_dependencies([decay] ): return super(__UpperCamelCase , self )._resource_apply_dense(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any=None ) -> int: _UpperCamelCase , _UpperCamelCase = self._get_lr(var.device , var.dtype.base_dtype , __UpperCamelCase ) _UpperCamelCase = self._decay_weights_op(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) with tf.control_dependencies([decay] ): return super(__UpperCamelCase , self )._resource_apply_sparse(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Any ) -> Tuple: _UpperCamelCase = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def _UpperCamelCase ( self : Dict , __UpperCamelCase : Any ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__UpperCamelCase , __UpperCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__UpperCamelCase , __UpperCamelCase ) is not None: return False return True class UpperCAmelCase_ ( _lowercase): def __init__( self : Dict ) -> Optional[Any]: _UpperCamelCase = [] _UpperCamelCase = None @property def _UpperCamelCase ( self : int ) -> Dict: if self._accum_steps is None: _UpperCamelCase = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=__UpperCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _UpperCamelCase ( self : str ) -> List[str]: if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : List[str] , __UpperCamelCase : int ) -> Optional[Any]: if not self._gradients: _UpperCamelCase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__UpperCamelCase ) , trainable=__UpperCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(__UpperCamelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(__UpperCamelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , __UpperCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__UpperCamelCase ) self._accum_steps.assign_add(1 ) def _UpperCamelCase ( self : Tuple ) -> Optional[Any]: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__UpperCamelCase ) )
54
"""simple docstring""" from __future__ import annotations import math def lowercase ( a__ : int ) -> list[int]: if num <= 0: _UpperCamelCase = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(a__ ) _UpperCamelCase = [True] * (num + 1) _UpperCamelCase = [] _UpperCamelCase = 2 _UpperCamelCase = int(math.sqrt(a__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a__ ) # Set multiples of start be False for i in range(start * start , num + 1 , a__ ): if sieve[i] is True: _UpperCamelCase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(a__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
54
1
'''simple docstring''' __lowerCAmelCase = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCAmelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCAmelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
89
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __magic_name__ ( _UpperCamelCase ): @require_torch def __lowercase ( self : Tuple ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Optional[int] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _a : List[str] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _a : Tuple = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _a : List[Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase ) BertModel.from_pretrained(_UpperCAmelCase ) BertTokenizer.from_pretrained(_UpperCAmelCase ) pipeline(task='fill-mask' ,model=_UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _a : Tuple = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : int = '1' _a : List[Any] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : Any ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Dict = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _a : Optional[int] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _a : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _a : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase ) BertModel.from_pretrained(_UpperCAmelCase ) BertTokenizer.from_pretrained(_UpperCAmelCase ) pipeline(task='fill-mask' ,model=_UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _a : str = self.get_env() _a : Optional[Any] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Union[str, Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _a : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _a : str = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _a : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _a : Dict = self.get_env() _a : int = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # next emulate no network _a : List[Any] = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : int = '1' _a : Any = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : int ): _a : Optional[Any] = '\nfrom transformers import pipeline\n ' _a : str = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _a : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _a : List[Any] = self.get_env() _a : Dict = '1' _a : Dict = [sys.executable, '-c', '\n'.join([load, mock, run] )] _a : str = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' ,result.stderr.decode().replace('\n' ,'' ) ,) @require_torch def __lowercase ( self : int ): _a : Optional[int] = '\nfrom transformers import AutoModel\n ' _a : List[Any] = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _a : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _a : Tuple = self.get_env() _a : List[str] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : Optional[Any] = '1' _a : Any = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() )
89
1
'''simple docstring''' def UpperCamelCase_ ( A__ : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
1
def lowerCAmelCase_ ( ): return [ a * b * (10_00 - a - b) for a in range(1 ,9_99) for b in range(UpperCamelCase__ ,9_99) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"{solution() = }")
149
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _UpperCAmelCase ( a ): '''simple docstring''' def __init__( self , *A , **A ) -> None: warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , A , ) super().__init__(*A , **A )
263
0
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__(self : int , __a : int = 128 , __a : int = 256 , __a : float = 20_00.0 , __a : int = 768 , __a : int = 12 , __a : int = 12 , __a : int = 64 , __a : int = 2048 , __a : float = 0.1 , ): super().__init__() UpperCAmelCase_ = nn.Sequential( nn.Linear(__a , d_model * 4 , bias=__a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__a ) , nn.SiLU() , ) UpperCAmelCase_ = nn.Embedding(__a , __a ) UpperCAmelCase_ = False UpperCAmelCase_ = nn.Linear(__a , __a , bias=__a ) UpperCAmelCase_ = nn.Dropout(p=__a ) UpperCAmelCase_ = nn.ModuleList() for lyr_num in range(__a ): # FiLM conditional T5 decoder UpperCAmelCase_ = DecoderLayer(d_model=__a , d_kv=__a , num_heads=__a , d_ff=__a , dropout_rate=__a ) self.decoders.append(__a ) UpperCAmelCase_ = TaLayerNorm(__a ) UpperCAmelCase_ = nn.Dropout(p=__a ) UpperCAmelCase_ = nn.Linear(__a , __a , bias=__a ) def _lowercase (self : List[str] , __a : str , __a : List[str] ): UpperCAmelCase_ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _lowercase (self : Dict , __a : Union[str, Any] , __a : Optional[int] , __a : Any ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase_ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase_ = self.conditioning_emb(__a ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase_ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase_ = torch.broadcast_to( torch.arange(__a , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase_ = self.position_encoding(__a ) UpperCAmelCase_ = self.continuous_inputs_projection(__a ) inputs += position_encodings UpperCAmelCase_ = self.dropout(__a ) # decoder: No padding present. UpperCAmelCase_ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase_ = [(x, self.encoder_decoder_mask(__a , __a )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase_ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase_ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase_ = lyr( __a , conditioning_emb=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , )[0] UpperCAmelCase_ = self.decoder_norm(__a ) UpperCAmelCase_ = self.post_dropout(__a ) UpperCAmelCase_ = self.spec_out(__a ) return spec_out class __A ( nn.Module ): def __init__(self : Optional[Any] , __a : Union[str, Any] , __a : int , __a : Any , __a : List[Any] , __a : Optional[int] , __a : Dict=1E-6 ): super().__init__() UpperCAmelCase_ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__a , d_kv=__a , num_heads=__a , dropout_rate=__a ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__a , d_kv=__a , num_heads=__a , dropout_rate=__a , layer_norm_epsilon=__a , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__a , d_ff=__a , dropout_rate=__a , layer_norm_epsilon=__a ) ) def _lowercase (self : int , __a : Dict , __a : Optional[int]=None , __a : Union[str, Any]=None , __a : List[str]=None , __a : Dict=None , __a : Optional[Any]=None , ): UpperCAmelCase_ = self.layer[0]( __a , conditioning_emb=__a , attention_mask=__a , ) if encoder_hidden_states is not None: UpperCAmelCase_ = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) UpperCAmelCase_ = self.layer[1]( __a , key_value_states=__a , attention_mask=__a , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase_ = self.layer[-1](__a , __a ) return (hidden_states,) class __A ( nn.Module ): def __init__(self : int , __a : List[str] , __a : Optional[int] , __a : int , __a : List[Any] ): super().__init__() UpperCAmelCase_ = TaLayerNorm(__a ) UpperCAmelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=__a ) UpperCAmelCase_ = Attention(query_dim=__a , heads=__a , dim_head=__a , out_bias=__a , scale_qk=__a ) UpperCAmelCase_ = nn.Dropout(__a ) def _lowercase (self : Optional[Any] , __a : Optional[Any] , __a : Dict=None , __a : Optional[Any]=None , ): # pre_self_attention_layer_norm UpperCAmelCase_ = self.layer_norm(__a ) if conditioning_emb is not None: UpperCAmelCase_ = self.FiLMLayer(__a , __a ) # Self-attention block UpperCAmelCase_ = self.attention(__a ) UpperCAmelCase_ = hidden_states + self.dropout(__a ) return hidden_states class __A ( nn.Module ): def __init__(self : Dict , __a : int , __a : Union[str, Any] , __a : int , __a : int , __a : List[Any] ): super().__init__() UpperCAmelCase_ = Attention(query_dim=__a , heads=__a , dim_head=__a , out_bias=__a , scale_qk=__a ) UpperCAmelCase_ = TaLayerNorm(__a , eps=__a ) UpperCAmelCase_ = nn.Dropout(__a ) def _lowercase (self : Optional[int] , __a : str , __a : List[str]=None , __a : Tuple=None , ): UpperCAmelCase_ = self.layer_norm(__a ) UpperCAmelCase_ = self.attention( __a , encoder_hidden_states=__a , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase_ = hidden_states + self.dropout(__a ) return layer_output class __A ( nn.Module ): def __init__(self : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : int , __a : Optional[int] ): super().__init__() UpperCAmelCase_ = TaDenseGatedActDense(d_model=__a , d_ff=__a , dropout_rate=__a ) UpperCAmelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=__a ) UpperCAmelCase_ = TaLayerNorm(__a , eps=__a ) UpperCAmelCase_ = nn.Dropout(__a ) def _lowercase (self : Optional[Any] , __a : Any , __a : List[str]=None ): UpperCAmelCase_ = self.layer_norm(__a ) if conditioning_emb is not None: UpperCAmelCase_ = self.film(__a , __a ) UpperCAmelCase_ = self.DenseReluDense(__a ) UpperCAmelCase_ = hidden_states + self.dropout(__a ) return hidden_states class __A ( nn.Module ): def __init__(self : Dict , __a : Union[str, Any] , __a : List[Any] , __a : int ): super().__init__() UpperCAmelCase_ = nn.Linear(__a , __a , bias=__a ) UpperCAmelCase_ = nn.Linear(__a , __a , bias=__a ) UpperCAmelCase_ = nn.Linear(__a , __a , bias=__a ) UpperCAmelCase_ = nn.Dropout(__a ) UpperCAmelCase_ = NewGELUActivation() def _lowercase (self : Optional[Any] , __a : int ): UpperCAmelCase_ = self.act(self.wi_a(__a ) ) UpperCAmelCase_ = self.wi_a(__a ) UpperCAmelCase_ = hidden_gelu * hidden_linear UpperCAmelCase_ = self.dropout(__a ) UpperCAmelCase_ = self.wo(__a ) return hidden_states class __A ( nn.Module ): def __init__(self : Optional[Any] , __a : str , __a : List[Any]=1E-6 ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.ones(__a ) ) UpperCAmelCase_ = eps def _lowercase (self : Union[str, Any] , __a : Dict ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 UpperCAmelCase_ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__a ) UpperCAmelCase_ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase_ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __A ( nn.Module ): def _lowercase (self : Optional[int] , __a : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(__a , 3.0 )) )) class __A ( nn.Module ): def __init__(self : int , __a : Union[str, Any] , __a : List[Any] ): super().__init__() UpperCAmelCase_ = nn.Linear(__a , out_features * 2 , bias=__a ) def _lowercase (self : Dict , __a : Union[str, Any] , __a : Any ): UpperCAmelCase_ = self.scale_bias(__a ) UpperCAmelCase_ , UpperCAmelCase_ = torch.chunk(__a , 2 , -1 ) UpperCAmelCase_ = x * (1 + scale) + shift return x
106
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE_: List[str] =get_logger() SCREAMING_SNAKE_CASE_: Optional[dict] =None class __A ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__(self : List[Any] , __a : Optional[int]=None , __a : Any=None , **__a : Dict ): super().__init__(features=__a ) import jax from jaxlib.xla_client import Device if isinstance(__a , __a ): raise ValueError( f"""Expected {device} to be a `str` not {type(__a )}, as `jaxlib.xla_extension.Device` """ "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) UpperCAmelCase_ = device if isinstance(__a , __a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) UpperCAmelCase_ = str(jax.devices()[0] ) UpperCAmelCase_ = jnp_array_kwargs @staticmethod def _lowercase (): import jax return {str(__a ): device for device in jax.devices()} def _lowercase (self : str , __a : Tuple ): import jax import jax.numpy as jnp if isinstance(__a , __a ) and column: if all( isinstance(__a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__a , axis=0 ) return column def _lowercase (self : Any , __a : Optional[int] ): import jax import jax.numpy as jnp if isinstance(__a , (str, bytes, type(__a )) ): return value elif isinstance(__a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase_ = {} if isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase_ = {"dtype": jnp.intaa} else: UpperCAmelCase_ = {"dtype": jnp.intaa} elif isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase_ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__a , PIL.Image.Image ): UpperCAmelCase_ = np.asarray(__a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__a , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase (self : int , __a : Any ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__a , "__array__" ) and not isinstance(__a , jax.Array ): UpperCAmelCase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) elif isinstance(__a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) return self._tensorize(__a ) def _lowercase (self : Union[str, Any] , __a : dict ): return map_nested(self._recursive_tensorize , __a , map_list=__a ) def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_row(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_row(__a ) return self.recursive_tensorize(__a ) def _lowercase (self : Tuple , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_column(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_column(__a , pa_table.column_names[0] ) UpperCAmelCase_ = self.recursive_tensorize(__a ) UpperCAmelCase_ = self._consolidate(__a ) return column def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_batch(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_batch(__a ) UpperCAmelCase_ = self.recursive_tensorize(__a ) for column_name in batch: UpperCAmelCase_ = self._consolidate(batch[column_name] ) return batch
106
1
"""simple docstring""" import requests UpperCAmelCase__ : Any = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def lowercase_ ( _snake_case ): # fetching a list of articles in json format SCREAMING_SNAKE_CASE__ : List[Any] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] ,1 ): print(f'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
25
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )] # Reverse whole list _UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": __A : List[str] = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
260
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ :str = '''▁''' lowerCAmelCase__ :int = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase__ :Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } lowerCAmelCase__ :List[str] = { '''google/pegasus-xsum''': 5_1_2, } lowerCAmelCase__ :List[str] = logging.get_logger(__name__) class __a ( UpperCAmelCase ): _a : Any = VOCAB_FILES_NAMES _a : Tuple = VOCAB_FILES_NAMES _a : str = PRETRAINED_VOCAB_FILES_MAP _a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : List[Any] = ['input_ids', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<mask_2>" , _SCREAMING_SNAKE_CASE="<mask_1>" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=103 , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" _UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) _UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _UpperCAmelCase = additional_special_tokens_extended else: _UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = mask_token_sent _UpperCAmelCase = vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict _UpperCAmelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def UpperCAmelCase__ ( self ) -> Dict[str, int]: """simple docstring""" _UpperCAmelCase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _UpperCAmelCase = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _UpperCAmelCase = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token _UpperCAmelCase = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=False ) -> List[str]: """simple docstring""" return 1 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
185
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __a ( UpperCAmelCase ): _a : Optional[int] = 'MCTCTFeatureExtractor' _a : int = 'AutoTokenizer' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _UpperCAmelCase = kwargs.pop('raw_speech' ) else: _UpperCAmelCase = kwargs.pop('audio' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('sampling_rate' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('text' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _UpperCAmelCase = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase = encodings['input_ids'] return inputs def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('input_features' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('labels' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if input_features is not None: _UpperCAmelCase = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if labels is not None: _UpperCAmelCase = self.tokenizer.pad(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCAmelCase = labels['input_ids'] return input_features def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @contextmanager def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer yield _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False
185
1
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar a_ = TypeVar("""_T""") class __snake_case ( Generic[_T] ): """simple docstring""" def __init__( self , __lowerCamelCase = None ): '''simple docstring''' __A : list[_T] = list(iterable or [] ) __A : list[_T] = [] def __len__( self ): '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self ): '''simple docstring''' return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' self._stacka.append(__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = self._stacka.pop __A : Dict = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
179
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """bert""" def __init__( self , __lowerCamelCase=3_0522 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : Dict = vocab_size __A : Any = hidden_size __A : str = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = hidden_act __A : List[Any] = intermediate_size __A : Tuple = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Optional[Any] = type_vocab_size __A : Optional[Any] = initializer_range __A : Dict = layer_norm_eps __A : Any = position_embedding_type __A : Optional[int] = use_cache __A : str = classifier_dropout class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCamelCase__( self ): '''simple docstring''' if self.task == "multiple-choice": __A : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __A : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
179
1
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be an 'int' type" ) _UpperCAmelCase : List[Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
368
from typing import Any class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = data _UpperCAmelCase : Any = None class a : def __init__( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase : str = temp.next print() def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = Node(A_ ) _UpperCAmelCase : Tuple = self.head _UpperCAmelCase : Tuple = new_node def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if node_data_a == node_data_a: return else: _UpperCAmelCase : int = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : Tuple = node_a.next _UpperCAmelCase : Dict = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : List[Any] = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
189
0
def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[int]] ): def update_area_of_max_square(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase = update_area_of_max_square(SCREAMING_SNAKE_CASE__ , col + 1 ) __lowerCAmelCase = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: __lowerCAmelCase = 1 + min([right, diagonal, down] ) __lowerCAmelCase = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) return sub_problem_sol else: return 0 __lowerCAmelCase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: __lowerCAmelCase = 1 + min([right, diagonal, down] ) __lowerCAmelCase = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase = [0] __lowerCAmelCase = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE__ )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE__ ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[int]] ): __lowerCAmelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase = dp_array[row][col + 1] __lowerCAmelCase = dp_array[row + 1][col + 1] __lowerCAmelCase = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = max(dp_array[row][col] , SCREAMING_SNAKE_CASE__ ) else: __lowerCAmelCase = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[int]] ): __lowerCAmelCase = [0] * (cols + 1) __lowerCAmelCase = [0] * (cols + 1) __lowerCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase = current_row[col + 1] __lowerCAmelCase = next_row[col + 1] __lowerCAmelCase = next_row[col] if mat[row][col] == 1: __lowerCAmelCase = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = max(current_row[col] , SCREAMING_SNAKE_CASE__ ) else: __lowerCAmelCase = 0 __lowerCAmelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
92
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,) lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_UpperCAmelCase ) return config def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ): UpperCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.full_loop() UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
346
0
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging a__ : Dict = logging.get_logger(__name__) a__ : Union[str, Any] = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class UpperCAmelCase__ ( UpperCAmelCase_): @add_start_docstrings(lowercase ) def __call__( self , lowercase , lowercase , **lowercase ) -> bool: raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = None ) -> Any: __UpperCamelCase = max_length __UpperCamelCase = max_position_embeddings @add_start_docstrings(lowercase ) def __call__( self , lowercase , lowercase , **lowercase ) -> bool: __UpperCamelCase = input_ids.shape[-1] __UpperCamelCase = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " """exceptions, performance degradation, or nothing at all.""" ) return is_done class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase ) -> int: warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " """with `max_length = start_length + max_new_tokens` instead.""" , lowercase , ) __UpperCamelCase = start_length __UpperCamelCase = max_new_tokens __UpperCamelCase = start_length + max_new_tokens @add_start_docstrings(lowercase ) def __call__( self , lowercase , lowercase , **lowercase ) -> bool: return input_ids.shape[-1] >= self.max_length class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = None ) -> Optional[Any]: __UpperCamelCase = max_time __UpperCamelCase = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase ) def __call__( self , lowercase , lowercase , **lowercase ) -> bool: return time.time() - self.initial_timestamp > self.max_time class UpperCAmelCase__ ( UpperCAmelCase_): @add_start_docstrings(lowercase ) def __call__( self , lowercase , lowercase , **lowercase ) -> bool: return any(criteria(lowercase , lowercase ) for criteria in self ) @property def __lowerCamelCase ( self ) -> Optional[int]: for stopping_criterium in self: if isinstance(lowercase , lowercase ): return stopping_criterium.max_length elif isinstance(lowercase , lowercase ): return stopping_criterium.max_length return None def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = stopping_criteria.max_length __UpperCamelCase = deepcopy(__A ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" ,__A ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__A ) ) return new_stopping_criteria
243
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": a__ : Optional[int] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') a__ : Optional[int] = f'''https://www.google.com/search?q={query}&num=100''' a__ : Union[str, Any] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: a__ : Optional[Any] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: a__ : Union[str, Any] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
243
1
"""simple docstring""" def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' if not all(char in "01" for char in bin_string): raise ValueError("Non-binary value was passed to the function") if not bin_string: raise ValueError("Empty string was passed to the function") __lowercase = "" while len(UpperCamelCase_) % 3 != 0: __lowercase = "0" + bin_string __lowercase = [ bin_string[index : index + 3] for index in range(len(UpperCamelCase_)) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __lowercase = 0 for index, val in enumerate(UpperCamelCase_): oct_val += int(2 ** (2 - index) * int(UpperCamelCase_)) oct_string += str(UpperCamelCase_) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
1
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowerCamelCase__ = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Any: lowerCAmelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) lowerCAmelCase_ = self.transformer_dir shutil.copy( os.path.join(_a , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = "src/transformers" shutil.rmtree(self.transformer_dir ) def __a ( self , _a , _a , _a , _a=None ) -> Union[str, Any]: lowerCAmelCase_ = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowerCAmelCase_ = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result lowerCAmelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase_ = black.format_str(_a , mode=_a ) lowerCAmelCase_ = os.path.join(self.transformer_dir , "new_code.py" ) with open(_a , "w" , newline="\n" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , "r" ) as f: self.assertTrue(f.read() , _a ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(_a , _a ) def __a ( self ) -> Optional[int]: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , _a , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , _a ) , ) # Copy consistency with a really long name lowerCAmelCase_ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , f"{long_class_name}LMPredictionHead" , re.sub("Bert" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , _a , overwrite_result=re.sub("Bert" , "TestModel" , _a ) , ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) lowerCAmelCase_ , lowerCAmelCase_ = check_copies.convert_to_localized_md( _a , _a , localized_readme["format_model_list"] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) lowerCAmelCase_ , lowerCAmelCase_ = check_copies.convert_to_localized_md( _a , _a , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase_ , lowerCAmelCase_ = check_copies.convert_to_localized_md( _a , _a , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
22
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = TFCamembertModel.from_pretrained('jplu/tf-camembert-base') _UpperCAmelCase = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _UpperCAmelCase = model(A)['last_hidden_state'] _UpperCAmelCase = tf.TensorShape((1, 10, 7_68)) self.assertEqual(output.shape , A) # compare the actual values for a slice. _UpperCAmelCase = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
339
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any]=False ) -> str: '''simple docstring''' try: _UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase = strtobool(_UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value UpperCAmelCase__ = parse_flag_from_env("RUN_SLOW", default=False) def A ( _UpperCAmelCase : List[str] ) -> List[str]: '''simple docstring''' return unittest.skip('Test was skipped' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Dict ) -> str: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> str: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : str ) -> str: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Tuple ) -> int: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any=None , _UpperCAmelCase : List[Any]=None ) -> Dict: '''simple docstring''' if test_case is None: return partial(_UpperCAmelCase , version=_UpperCAmelCase ) return unittest.skipUnless(is_torch_version('>=' , _UpperCAmelCase ) , F"test requires torch version >= {version}" )(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> int: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_UpperCAmelCase ) UpperCAmelCase__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A ( _UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_UpperCAmelCase ) class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = True @classmethod def _lowerCamelCase ( cls : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() @classmethod def _lowerCamelCase ( cls : Union[str, Any]) -> str: """simple docstring""" if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir).glob('**/*'): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int] , A : Union[mock.Mock, List[mock.Mock]]) -> Tuple: """simple docstring""" _UpperCAmelCase = mocks if isinstance(A , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = AcceleratorState() _UpperCAmelCase = tensor[None].clone().to(state.device ) _UpperCAmelCase = gather(_UpperCAmelCase ).cpu() _UpperCAmelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCAmelCase ): return False return True class __lowerCAmelCase : def __init__( self : Optional[Any] , A : Union[str, Any] , A : Optional[int] , A : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = returncode _UpperCAmelCase = stdout _UpperCAmelCase = stderr async def A ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' while True: _UpperCAmelCase = await stream.readline() if line: callback(_UpperCAmelCase ) else: break async def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Union[str, Any]=False ) -> _RunOutput: '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(_UpperCAmelCase ) ) _UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase = [] _UpperCAmelCase = [] def tee(_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str="" ): _UpperCAmelCase = line.decode('utf-8' ).rstrip() sink.append(_UpperCAmelCase ) if not quiet: print(_UpperCAmelCase , _UpperCAmelCase , file=_UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCAmelCase : tee(_UpperCAmelCase , _UpperCAmelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCAmelCase : tee(_UpperCAmelCase , _UpperCAmelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=_UpperCAmelCase , ) return _RunOutput(await p.wait() , _UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Dict=None , _UpperCAmelCase : str=None , _UpperCAmelCase : str=180 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : List[Any]=True ) -> _RunOutput: '''simple docstring''' _UpperCAmelCase = asyncio.get_event_loop() _UpperCAmelCase = loop.run_until_complete( _stream_subprocess(_UpperCAmelCase , env=_UpperCAmelCase , stdin=_UpperCAmelCase , timeout=_UpperCAmelCase , quiet=_UpperCAmelCase , echo=_UpperCAmelCase ) ) _UpperCAmelCase = ' '.join(_UpperCAmelCase ) if result.returncode > 0: _UpperCAmelCase = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class __lowerCAmelCase ( A ): pass def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str=False ) -> Tuple: '''simple docstring''' try: _UpperCAmelCase = subprocess.check_output(_UpperCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCAmelCase , 'decode' ): _UpperCAmelCase = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(_UpperCAmelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
339
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCamelCase__ (): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT): with pytest.raises(_UpperCAmelCase): requests.request('GET' , 'https://huggingface.co') with pytest.raises(requests.exceptions.ConnectTimeout): requests.request('GET' , 'https://huggingface.co' , timeout=1.0) @pytest.mark.integration def lowerCamelCase__ (): with offline(OfflineSimulationMode.CONNECTION_FAILS): with pytest.raises(requests.exceptions.ConnectionError): requests.request('GET' , 'https://huggingface.co') def lowerCamelCase__ (): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1): with pytest.raises(_UpperCAmelCase): http_head('https://huggingface.co')
361
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained('jplu/tf-camembert-base') SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE = model(a)['last_hidden_state'] SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768)) self.assertEqual(output.shape , a) # compare the actual values for a slice. SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
327
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Tuple = "deta" snake_case__ : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[Any]=9_0_0 , UpperCAmelCase__ : Optional[int]=2_0_4_8 , UpperCAmelCase__ : Optional[int]=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : int=8 , UpperCAmelCase__ : Optional[int]=6 , UpperCAmelCase__ : str=1_0_2_4 , UpperCAmelCase__ : Optional[Any]=8 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple="relu" , UpperCAmelCase__ : int=2_5_6 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[int]=1.0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Any="sine" , UpperCAmelCase__ : Optional[int]=5 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=3_0_0 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : List[str]=5 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Union[str, Any]=0.25 , **UpperCAmelCase__ : Dict , ) -> Union[str, Any]: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = backbone_config.pop("model_type" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def UpperCAmelCase_ ( self : str ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: return self.d_model def UpperCAmelCase_ ( self : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
54
"""simple docstring""" from __future__ import annotations import pandas as pd def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [0] * no_of_processes __SCREAMING_SNAKE_CASE = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = burst_time[i] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 9_9999_9999 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowerCAmelCase_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __SCREAMING_SNAKE_CASE = remaining_time[j] __SCREAMING_SNAKE_CASE = j __SCREAMING_SNAKE_CASE = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __SCREAMING_SNAKE_CASE = remaining_time[short] if minm == 0: __SCREAMING_SNAKE_CASE = 9_9999_9999 if remaining_time[short] == 0: complete += 1 __SCREAMING_SNAKE_CASE = False # Find finish time of current process __SCREAMING_SNAKE_CASE = increment_time + 1 # Calculate waiting time __SCREAMING_SNAKE_CASE = finish_time - arrival_time[short] __SCREAMING_SNAKE_CASE = finar - burst_time[short] if waiting_time[short] < 0: __SCREAMING_SNAKE_CASE = 0 # Increment time increment_time += 1 return waiting_time def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [0] * no_of_processes for i in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = burst_time[i] + waiting_time[i] return turn_around_time def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for i in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = total_waiting_time + waiting_time[i] __SCREAMING_SNAKE_CASE = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') a__ : Optional[Any] = int(input()) a__ : Optional[int] = [0] * no_of_processes a__ : int = [0] * no_of_processes a__ : List[Any] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) a__ , a__ : Tuple = map(int, input().split()) a__ : int = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a__ : Dict = burst_time a__ : Any = no_of_processes a__ : Optional[int] = waiting_time a__ : Union[str, Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) a__ : str = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
54
1
'''simple docstring''' __A : Tuple = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __A : Dict = [{"type": "code", "content": INSTALL_CONTENT}] __A : List[str] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
89
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : List[Any]=2 , lowerCamelCase : int=True , lowerCamelCase : str=False , lowerCamelCase : List[str]=10 , lowerCamelCase : Dict=3 , lowerCamelCase : str=32 * 4 , lowerCamelCase : Tuple=32 * 6 , lowerCamelCase : int=4 , lowerCamelCase : Optional[int]=32 , ) -> List[Any]: lowerCAmelCase_ : Tuple = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : str = use_auxiliary_loss lowerCAmelCase_ : Optional[Any] = num_queries lowerCAmelCase_ : List[str] = num_channels lowerCAmelCase_ : Optional[Any] = min_size lowerCAmelCase_ : Dict = max_size lowerCAmelCase_ : List[Any] = num_labels lowerCAmelCase_ : List[Any] = mask_feature_size def __lowercase ( self : str ) -> List[Any]: lowerCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase ) lowerCAmelCase_ : int = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase ) lowerCAmelCase_ : List[Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase ) > 0.5 ).float() lowerCAmelCase_ : Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase ) > 0.5).long() lowerCAmelCase_ : List[Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowercase ( self : Optional[int] ) -> Optional[int]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __lowercase ( self : Tuple ) -> Optional[Any]: lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def __lowercase ( self : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase_ : Any = output.encoder_hidden_states lowerCAmelCase_ : Dict = output.pixel_decoder_hidden_states lowerCAmelCase_ : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase ) , config.decoder_config.decoder_layers ) def __lowercase ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple=False ) -> List[Any]: with torch.no_grad(): lowerCAmelCase_ : int = MaskFormerModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : List[Any] = model(pixel_values=lowerCamelCase , pixel_mask=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = model(lowerCamelCase , output_hidden_states=lowerCamelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : Any , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] ) -> Dict: lowerCAmelCase_ : Tuple = MaskFormerForInstanceSegmentation(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() def comm_check_on_output(lowerCamelCase : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase_ : Dict = model(pixel_values=lowerCamelCase , pixel_mask=lowerCamelCase ) lowerCAmelCase_ : List[str] = model(lowerCamelCase ) comm_check_on_output(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = model( pixel_values=lowerCamelCase , pixel_mask=lowerCamelCase , mask_labels=lowerCamelCase , class_labels=lowerCamelCase ) comm_check_on_output(lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowercase = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def __lowercase ( self : Dict ) -> Optional[Any]: lowerCAmelCase_ : Tuple = MaskFormerModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def __lowercase ( self : List[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __lowercase ( self : Tuple ) -> List[Any]: lowerCAmelCase_, lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase , **lowerCamelCase , output_hidden_states=lowerCamelCase ) def __lowercase ( self : Union[str, Any] ) -> str: lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCamelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def __lowercase ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def __lowercase ( self : Union[str, Any] ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def __lowercase ( self : Any ) -> str: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def __lowercase ( self : List[Any] ) -> Any: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowercase ( self : str ) -> Optional[int]: pass def __lowercase ( self : Tuple ) -> List[str]: lowerCAmelCase_, lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class(lowerCamelCase ) lowerCAmelCase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) @slow def __lowercase ( self : Optional[int] ) -> List[str]: for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCAmelCase_ : List[str] = MaskFormerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def __lowercase ( self : Dict ) -> int: lowerCAmelCase_ : Any = (self.model_tester.min_size,) * 2 lowerCAmelCase_ : Dict = { """pixel_values""": torch.randn((2, 3, *size) , device=lowerCamelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=lowerCamelCase ), """class_labels""": torch.zeros(2 , 10 , device=lowerCamelCase ).long(), } lowerCAmelCase_ : Dict = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCamelCase ) lowerCAmelCase_ : str = model(**lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def __lowercase ( self : int ) -> int: lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase , **lowerCamelCase , output_hidden_states=lowerCamelCase ) def __lowercase ( self : Dict ) -> List[str]: lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = model_class(lowerCamelCase ).to(lowerCamelCase ) lowerCAmelCase_ : Tuple = model(**lowerCamelCase , output_attentions=lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def __lowercase ( self : int ) -> Union[str, Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase_ : Optional[int] = self.all_model_classes[1] lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ : Union[str, Any] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowerCAmelCase_ : str = model(lowerCamelCase , mask_labels=lowerCamelCase , class_labels=lowerCamelCase ).loss loss.backward() def __lowercase ( self : Any ) -> Union[str, Any]: # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase_ : List[str] = self.all_model_classes[1] lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Dict = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowerCAmelCase_ : Union[str, Any] = model(lowerCamelCase , mask_labels=lowerCamelCase , class_labels=lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase_ : List[str] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCAmelCase_ : Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase_ : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A : List[Any] = 1E-4 def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __snake_case ( unittest.TestCase): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ) -> List[Any]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def __lowercase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase_ : Optional[int] = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(lowerCamelCase ) lowerCAmelCase_ : Dict = self.default_image_processor lowerCAmelCase_ : Optional[int] = prepare_img() lowerCAmelCase_ : Dict = image_processor(lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**lowerCamelCase ) lowerCAmelCase_ : Any = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) lowerCAmelCase_ : Union[str, Any] = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) lowerCAmelCase_ : Optional[Any] = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def __lowercase ( self : Optional[int] ) -> Optional[int]: lowerCAmelCase_ : Union[str, Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(lowerCamelCase ) .eval() ) lowerCAmelCase_ : Union[str, Any] = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**lowerCamelCase ) # masks_queries_logits lowerCAmelCase_ : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCAmelCase_ : Any = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] lowerCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase ).to(lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) # class_queries_logits lowerCAmelCase_ : Optional[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase_ : Tuple = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def __lowercase ( self : Optional[int] ) -> List[str]: lowerCAmelCase_ : List[str] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(lowerCamelCase ) .eval() ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Any = image_processor(lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) lowerCAmelCase_ : List[str] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**lowerCamelCase ) # masks_queries_logits lowerCAmelCase_ : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCAmelCase_ : Optional[Any] = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] lowerCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase ).to(lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) # class_queries_logits lowerCAmelCase_ : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase_ : int = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def __lowercase ( self : Union[str, Any] ) -> List[str]: lowerCAmelCase_ : Dict = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(lowerCamelCase ) .eval() ) lowerCAmelCase_ : List[str] = self.default_image_processor lowerCAmelCase_ : int = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) lowerCAmelCase_ : List[str] = inputs["""pixel_values"""].to(lowerCamelCase ) lowerCAmelCase_ : Tuple = [el.to(lowerCamelCase ) for el in inputs["""mask_labels"""]] lowerCAmelCase_ : Union[str, Any] = [el.to(lowerCamelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowerCAmelCase_ : Any = model(**lowerCamelCase ) self.assertTrue(outputs.loss is not None )
89
1
def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _lowerCAmelCase (_lowerCAmelCase = 1_00): UpperCamelCase_ = 1 UpperCamelCase_ = 2 for i in range(2 , max_n + 1): UpperCamelCase_ = pre_numerator UpperCamelCase_ = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase_ = cur_numerator UpperCamelCase_ = e_cont * pre_numerator + temp return sum_digits(__lowerCamelCase) if __name__ == "__main__": print(F"{solution() = }")
128
def __A ( __lowerCamelCase ) -> int: a = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) a = hex_num[0] == """-""" if is_negative: a = hex_num[1:] try: a = int(__lowerCamelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) a = """""" while int_num > 0: a = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
228
0
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" UpperCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for row in range(SCREAMING_SNAKE_CASE_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , SCREAMING_SNAKE_CASE_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
60
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """bridgetower_vision_model""" def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=3 , _lowercase=16 , _lowercase=288 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=False , _lowercase=True , _lowercase=False , **_lowercase , )-> Optional[Any]: super().__init__(**_lowercase ) UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_channels UpperCamelCase_ = patch_size UpperCamelCase_ = image_size UpperCamelCase_ = initializer_factor UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = stop_gradient UpperCamelCase_ = share_layernorm UpperCamelCase_ = remove_last_layer @classmethod def UpperCAmelCase_ ( cls , _lowercase , **_lowercase )-> "PretrainedConfig": UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(_lowercase , **_lowercase ) if config_dict.get("model_type" ) == "bridgetower": UpperCamelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = """bridgetower_text_model""" def __init__( self , _lowercase=50_265 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=1 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=514 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , **_lowercase , )-> Optional[int]: super().__init__(**_lowercase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = initializer_factor UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id UpperCamelCase_ = eos_token_id @classmethod def UpperCAmelCase_ ( cls , _lowercase , **_lowercase )-> "PretrainedConfig": UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(_lowercase , **_lowercase ) if config_dict.get("model_type" ) == "bridgetower": UpperCamelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """bridgetower""" def __init__( self , _lowercase=True , _lowercase="gelu" , _lowercase=768 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=False , _lowercase="add" , _lowercase=12 , _lowercase=6 , _lowercase=False , _lowercase=False , _lowercase=None , _lowercase=None , **_lowercase , )-> List[Any]: # TODO: remove this once the Hub files are updated. UpperCamelCase_ = kwargs.pop("text_config_dict" , _lowercase ) UpperCamelCase_ = kwargs.pop("vision_config_dict" , _lowercase ) super().__init__(**_lowercase ) UpperCamelCase_ = share_cross_modal_transformer_layers UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_size UpperCamelCase_ = initializer_factor UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = share_link_tower_layers UpperCamelCase_ = link_tower_type UpperCamelCase_ = num_attention_heads UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = tie_word_embeddings UpperCamelCase_ = init_layernorm_from_vision_encoder if text_config is None: UpperCamelCase_ = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: UpperCamelCase_ = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) UpperCamelCase_ = BridgeTowerTextConfig(**_lowercase ) UpperCamelCase_ = BridgeTowerVisionConfig(**_lowercase ) @classmethod def UpperCAmelCase_ ( cls , _lowercase , _lowercase , **_lowercase )-> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowercase ) def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.text_config.to_dict() UpperCamelCase_ = self.vision_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
60
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase ( UpperCamelCase__ ): def UpperCAmelCase_ ( self :Union[str, Any] )-> List[str]: A__ = tempfile.mkdtemp() A__ = 5 # Realm tok A__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] A__ = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) A__ = os.path.join(lowercase_ , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) A__ = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) def UpperCAmelCase_ ( self :Any )-> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def UpperCAmelCase_ ( self :int )-> int: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self :Tuple )-> Any: A__ = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCAmelCase_ ( self :Tuple )-> List[str]: A__ = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def UpperCAmelCase_ ( self :int )-> str: A__ = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=lowercase_ , ) return block_records def UpperCAmelCase_ ( self :int )-> Union[str, Any]: A__ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[int]: A__ = self.get_config() A__ = self.get_dummy_retriever() A__ = retriever.tokenizer A__ = np.array([0, 3] , dtype="long" ) A__ = tokenizer(["Test question"] ).input_ids A__ = tokenizer( ["the fourth"] , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , ).input_ids A__ = config.reader_seq_len A__, A__, A__, A__ = retriever( lowercase_ , lowercase_ , answer_ids=lowercase_ , max_length=lowercase_ , return_tensors="np" ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def UpperCAmelCase_ ( self :List[Any] )-> Any: A__ = self.get_config() A__ = self.get_dummy_retriever() A__ = retriever.tokenizer A__ = np.array([0, 3, 5] , dtype="long" ) A__ = tokenizer(["Test question"] ).input_ids A__ = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , ).input_ids A__ = config.reader_seq_len A__, A__, A__, A__ = retriever( lowercase_ , lowercase_ , answer_ids=lowercase_ , max_length=lowercase_ , return_tensors="np" ) self.assertEqual([False, True, True] , lowercase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowercase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowercase_ ) def UpperCAmelCase_ ( self :Dict )-> Union[str, Any]: A__ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path A__ = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: A__ = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) A__ = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
237
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): __lowercase = KandinskyVaaPipeline __lowercase = [ """image_embeds""", """negative_image_embeds""", ] __lowercase = ["""image_embeds""", """negative_image_embeds"""] __lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase = False @property def UpperCAmelCase_ ( self :Optional[Any] )-> str: return 32 @property def UpperCAmelCase_ ( self :int )-> List[Any]: return 32 @property def UpperCAmelCase_ ( self :Optional[Any] )-> Dict: return self.time_input_dim @property def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self :Any )-> List[Any]: return 1_00 @property def UpperCAmelCase_ ( self :Union[str, Any] )-> Union[str, Any]: torch.manual_seed(0 ) A__ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } A__ = UNetaDConditionModel(**lowercase_ ) return model @property def UpperCAmelCase_ ( self :Any )-> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self :Dict )-> Union[str, Any]: torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowercase_ , ) A__ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self :Dict , lowercase_ :int , lowercase_ :Union[str, Any]=0 )-> Dict: A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase_ ) if str(lowercase_ ).startswith("mps" ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self :Optional[Any] )-> str: A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) A__ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = pipe(**self.get_dummy_inputs(lowercase_ ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Dict )-> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self :Any )-> List[Any]: A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) A__ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) A__ = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) A__ = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) A__ = "red cat, 4k photo" A__ = torch.Generator(device="cuda" ).manual_seed(0 ) A__, A__ = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() A__ = torch.Generator(device="cuda" ).manual_seed(0 ) A__ = pipeline( image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=1_00 , output_type="np" , ) A__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
237
1
from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self , __lowerCAmelCase = 0 ): UpperCamelCase__ = key def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) UpperCamelCase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(a_ ) ^ key ) for ch in content] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) UpperCamelCase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(a_ ) ^ key ) for ch in content] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = 0 ): assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) UpperCamelCase__ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCamelCase__ = '''''' for ch in content: ans += chr(ord(a_ ) ^ key ) return ans def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = 0 ): assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) UpperCamelCase__ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCamelCase__ = '''''' for ch in content: ans += chr(ord(a_ ) ^ key ) return ans def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = 0 ): assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) try: with open(a_ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(a_ , a_ ) ) except OSError: return False return True def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) try: with open(a_ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(a_ , a_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
352
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Any = """xlnet""" snake_case : Optional[Any] = ["""mems"""] snake_case : Any = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowerCAmelCase=32000 , __lowerCAmelCase=1024 , __lowerCAmelCase=24 , __lowerCAmelCase=16 , __lowerCAmelCase=4096 , __lowerCAmelCase="gelu" , __lowerCAmelCase=True , __lowerCAmelCase="bi" , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=-1 , __lowerCAmelCase=False , __lowerCAmelCase="last" , __lowerCAmelCase=True , __lowerCAmelCase="tanh" , __lowerCAmelCase=0.1 , __lowerCAmelCase=5 , __lowerCAmelCase=5 , __lowerCAmelCase=5 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = n_layer UpperCamelCase__ = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCamelCase__ = d_model // n_head UpperCamelCase__ = ff_activation UpperCamelCase__ = d_inner UpperCamelCase__ = untie_r UpperCamelCase__ = attn_type UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = dropout UpperCamelCase__ = mem_len UpperCamelCase__ = reuse_len UpperCamelCase__ = bi_data UpperCamelCase__ = clamp_len UpperCamelCase__ = same_length UpperCamelCase__ = summary_type UpperCamelCase__ = summary_use_proj UpperCamelCase__ = summary_activation UpperCamelCase__ = summary_last_dropout UpperCamelCase__ = start_n_top UpperCamelCase__ = end_n_top UpperCamelCase__ = bos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , __lowerCAmelCase , ) UpperCamelCase__ = kwargs["""use_cache"""] UpperCamelCase__ = use_mems_eval UpperCamelCase__ = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def _lowerCamelCase ( self ): logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowerCamelCase ( self , __lowerCAmelCase ): # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
87
0
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __snake_case = 299792458 # Symbols __snake_case , __snake_case , __snake_case , __snake_case = symbols('''ct x y z''') def a ( __a ) -> float: '''simple docstring''' if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def a ( __a ) -> float: '''simple docstring''' return 1 / sqrt(1 - beta(__a ) ** 2 ) def a ( __a ) -> np.ndarray: '''simple docstring''' return np.array( [ [gamma(__a ), -gamma(__a ) * beta(__a ), 0, 0], [-gamma(__a ) * beta(__a ), gamma(__a ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a ( __a , __a = None ) -> np.ndarray: '''simple docstring''' if event is None: UpperCamelCase__ :Any = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__a ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __snake_case = transform(29979245) print('''Example of four vector: ''') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __snake_case = {ct: c, x: 1, y: 1, z: 1} __snake_case = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
97
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if name is None: UpperCamelCase = None else: UpperCamelCase = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" UpperCamelCase = fmt.format(_SCREAMING_SNAKE_CASE ) # Print and recurse (if needed). if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if msg is not None: print(_SCREAMING_SNAKE_CASE ) for k in val.keys(): recursive_print(_SCREAMING_SNAKE_CASE , val[k] , spaces + 2 ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): print(_SCREAMING_SNAKE_CASE , ":" , val.size() ) else: print(_SCREAMING_SNAKE_CASE , ":" , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] UpperCamelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] UpperCamelCase = param.view(*_SCREAMING_SNAKE_CASE ) UpperCamelCase = param.transpose(0 , 2 ) UpperCamelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] UpperCamelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] UpperCamelCase = param.view(*_SCREAMING_SNAKE_CASE ) UpperCamelCase = param.transpose(0 , 1 ).contiguous() UpperCamelCase = param.view(*_SCREAMING_SNAKE_CASE ) return param def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = {} # old versions did not store training args UpperCamelCase = input_state_dict.get("args" , _SCREAMING_SNAKE_CASE ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) UpperCamelCase = ds_args.padded_vocab_size UpperCamelCase = ds_args.max_position_embeddings UpperCamelCase = ds_args.hidden_size UpperCamelCase = ds_args.num_layers UpperCamelCase = ds_args.num_attention_heads UpperCamelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. UpperCamelCase = config.n_head # The hidden_size per head. UpperCamelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): UpperCamelCase = input_state_dict["checkpoint_version"] else: UpperCamelCase = 0.0 # The model. UpperCamelCase = input_state_dict["model"] # The language model. UpperCamelCase = model["language_model"] # The embeddings. UpperCamelCase = lm["embedding"] # The word embeddings. UpperCamelCase = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. UpperCamelCase = word_embeddings[: config.vocab_size, :] UpperCamelCase = word_embeddings # The position embeddings. UpperCamelCase = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] UpperCamelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. UpperCamelCase = pos_embeddings # The transformer. UpperCamelCase = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. UpperCamelCase = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. UpperCamelCase = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. UpperCamelCase = layer_re.match(_SCREAMING_SNAKE_CASE ) # Stop if that's not a layer if m is None: break # The index of the layer. UpperCamelCase = int(m.group(1 ) ) # The name of the operation. UpperCamelCase = m.group(2 ) # Is it a weight or a bias? UpperCamelCase = m.group(3 ) # The name of the layer. UpperCamelCase = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): UpperCamelCase = "ln_1" if op_name.startswith("input" ) else "ln_2" UpperCamelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. UpperCamelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = causal_mask # Insert a "dummy" tensor for masked_bias. UpperCamelCase = torch.tensor(-1e4 , dtype=torch.floataa ) UpperCamelCase = masked_bias UpperCamelCase = fix_query_key_value_ordering(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 3 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. UpperCamelCase = out_val.transpose(0 , 1 ).contiguous() # Store. UpperCamelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": UpperCamelCase = fix_query_key_value_ordering(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 3 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Store. No change of shape. UpperCamelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": UpperCamelCase = megatron_to_transformers[op_name] UpperCamelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": UpperCamelCase = megatron_to_transformers[op_name] UpperCamelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. UpperCamelCase = transformer["final_layernorm.weight"] UpperCamelCase = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. UpperCamelCase = word_embeddings # It should be done! return output_state_dict def a__ ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=_SCREAMING_SNAKE_CASE , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=_SCREAMING_SNAKE_CASE , help="An optional config json file describing the pre-trained model." , ) UpperCamelCase = parser.parse_args() # Extract the basename. UpperCamelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: UpperCamelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" ) else: UpperCamelCase = torch.load(args.path_to_checkpoint , map_location="cpu" ) UpperCamelCase = input_state_dict.get("args" , _SCREAMING_SNAKE_CASE ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: UpperCamelCase = "gelu_fast" elif ds_args.openai_gelu: UpperCamelCase = "gelu_new" else: UpperCamelCase = "gelu" else: # in the very early days this used to be "gelu_new" UpperCamelCase = "gelu_new" # Spell out all parameters in case the defaults change. UpperCamelCase = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_SCREAMING_SNAKE_CASE , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=_SCREAMING_SNAKE_CASE , summary_activation=_SCREAMING_SNAKE_CASE , summary_proj_to_labels=_SCREAMING_SNAKE_CASE , summary_first_dropout=0.1 , scale_attn_weights=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE , bos_token_id=50_256 , eos_token_id=50_256 , ) else: UpperCamelCase = GPTaConfig.from_json_file(args.config_file ) UpperCamelCase = ["GPT2LMHeadModel"] # Convert. print("Converting" ) UpperCamelCase = convert_megatron_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: UpperCamelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": UpperCamelCase = "gpt2" elif tokenizer_type == "PretrainedFromHF": UpperCamelCase = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: UpperCamelCase = "gpt2" UpperCamelCase = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = type(_SCREAMING_SNAKE_CASE ).__name__ UpperCamelCase = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) # Store the state_dict to file. UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , "pytorch_model.bin" ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
153
0
"""simple docstring""" from math import factorial def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float ) -> float: if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) __a = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __a = float(factorial(lowerCAmelCase__ ) ) coefficient /= factorial(lowerCAmelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
363
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'vit_mae' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = decoder_num_attention_heads __a = decoder_hidden_size __a = decoder_num_hidden_layers __a = decoder_intermediate_size __a = mask_ratio __a = norm_pix_loss
11
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A__ : str = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _TestCommandArgs(dataset=__lowerCAmelCase , all_configs=__lowerCAmelCase , save_infos=__lowerCAmelCase ) lowercase__ = TestCommand(*__lowerCAmelCase ) test_command.run() lowercase__ = os.path.join(__lowerCAmelCase , '''README.md''' ) assert os.path.exists(__lowerCAmelCase ) lowercase__ = DatasetInfosDict.from_directory(__lowerCAmelCase ) lowercase__ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 235_1563, '''num_examples''': 1_0000, }, { '''name''': '''validation''', '''num_bytes''': 23_8418, '''num_examples''': 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase__ = getattr(dataset_infos['''default'''] , __lowerCAmelCase ), getattr(expected_dataset_infos['''default'''] , __lowerCAmelCase ) if key == "num_bytes": assert is_apercent_close(__lowerCAmelCase , __lowerCAmelCase ) elif key == "splits": assert list(__lowerCAmelCase ) == list(__lowerCAmelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
207
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Union[str, Any] =logging.get_logger(__name__) lowerCamelCase : str ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase : str ={ '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } lowerCamelCase : str ={'''facebook/blenderbot-3B''': 128} class __a ( A__ ): _lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : int = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : Tuple = BlenderbotTokenizer def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Tuple="replace" , SCREAMING_SNAKE_CASE : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : Tuple="<s>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE : str="<pad>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<mask>" , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : List[Any]=True , **SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , errors=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase__ : str = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) UpperCamelCase__ : Union[str, Any] = add_prefix_space UpperCamelCase__ : Union[str, Any] = pre_tok_class(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = add_prefix_space UpperCamelCase__ : Optional[int] = "post_processor" UpperCamelCase__ : Union[str, Any] = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: UpperCamelCase__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase__ : Tuple = tuple(state["sep"] ) if "cls" in state: UpperCamelCase__ : Optional[int] = tuple(state["cls"] ) UpperCamelCase__ : List[Any] = False if state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase__ : str = add_prefix_space UpperCamelCase__ : Optional[Any] = True if state.get("trim_offsets" , SCREAMING_SNAKE_CASE ) != trim_offsets: UpperCamelCase__ : Optional[Any] = trim_offsets UpperCamelCase__ : Tuple = True if changes_to_apply: UpperCamelCase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE , state.pop("type" ) ) UpperCamelCase__ : Dict = component_class(**SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowercase ( self : Union[str, Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Dict = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else value UpperCamelCase__ : str = value def __lowercase ( self : Any , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' UpperCamelCase__ : List[Any] = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' UpperCamelCase__ : Dict = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = [self.sep_token_id] UpperCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : "Conversation" ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = " ".join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = self.encode(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > self.model_max_length: UpperCamelCase__ : Dict = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
189
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__(self : List[str] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=7 , snake_case__ : Optional[int]=3 , snake_case__ : Union[str, Any]=18 , snake_case__ : Tuple=30 , snake_case__ : Optional[Any]=4_00 , snake_case__ : List[Any]=True , snake_case__ : List[Any]=None , snake_case__ : Tuple=True , snake_case__ : Tuple=None , snake_case__ : Tuple=True , snake_case__ : List[Any]=[0.48145466, 0.4578275, 0.40821073] , snake_case__ : Dict=[0.26862954, 0.26130258, 0.27577711] , snake_case__ : Optional[int]=True , ) -> List[str]: '''simple docstring''' snake_case : List[str] = size if size is not None else {"height": 2_24, "width": 2_24} snake_case : str = crop_size if crop_size is not None else {"height": 18, "width": 18} snake_case : List[str] = parent snake_case : Tuple = batch_size snake_case : Optional[Any] = num_channels snake_case : List[Any] = image_size snake_case : List[Any] = min_resolution snake_case : Union[str, Any] = max_resolution snake_case : int = do_resize snake_case : Dict = size snake_case : List[Any] = do_center_crop snake_case : str = crop_size snake_case : List[Any] = do_normalize snake_case : int = image_mean snake_case : List[Any] = image_std snake_case : List[str] = do_convert_rgb def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Optional[int]=False , snake_case__ : List[Any]=False , snake_case__ : Union[str, Any]=False ) -> Union[str, Any]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: snake_case : List[Any] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: snake_case : int = [] for i in range(self.batch_size ): snake_case , snake_case : List[str] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension snake_case : Optional[int] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] if torchify: snake_case : Optional[Any] = [torch.from_numpy(snake_case__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : List[Any] = ChineseCLIPImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[Any]: '''simple docstring''' snake_case : List[str] = ChineseCLIPImageProcessingTester(self , do_center_crop=snake_case__ ) @property def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 2_24, "width": 2_24} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) snake_case : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input snake_case : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : Optional[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input snake_case : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : int = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input snake_case : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : List[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : int = ChineseCLIPImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=snake_case__ ) snake_case : Tuple = 3 @property def _SCREAMING_SNAKE_CASE (self : str ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict: '''simple docstring''' snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Any = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input snake_case : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : Tuple = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase_ = logging.getLogger(__name__) @dataclass class snake_case : a_ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Optional[str] = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) a_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class snake_case : a_ : str = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) a_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) a_ : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCamelCase ( ) ->int: """simple docstring""" a_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) a_ = import_module("tasks" ) try: a_ = getattr(UpperCAmelCase , model_args.task_type ) a_ = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task a_ = token_classification_task.get_labels(data_args.labels ) a_ = dict(enumerate(UpperCAmelCase ) ) a_ = len(UpperCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid={label: i for i, label in enumerate(UpperCAmelCase )} , cache_dir=model_args.cache_dir , ) a_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) a_ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets a_ = ( TokenClassificationDataset( token_classification_task=UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , labels=UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a_ = ( TokenClassificationDataset( token_classification_task=UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , labels=UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCAmelCase , UpperCAmelCase ) -> Tuple[List[int], List[int]]: a_ = np.argmax(UpperCAmelCase , axis=2 ) a_ , a_ = preds.shape a_ = [[] for _ in range(UpperCAmelCase )] a_ = [[] for _ in range(UpperCAmelCase )] for i in range(UpperCAmelCase ): for j in range(UpperCAmelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCAmelCase ) -> Dict: a_ , a_ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCAmelCase , UpperCAmelCase ), "precision": precision_score(UpperCAmelCase , UpperCAmelCase ), "recall": recall_score(UpperCAmelCase , UpperCAmelCase ), "f1": fa_score(UpperCAmelCase , UpperCAmelCase ), } # Data collator a_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a_ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a_ = trainer.evaluate() a_ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , UpperCAmelCase , UpperCAmelCase ) writer.write("%s = %s\n" % (key, value) ) results.update(UpperCAmelCase ) # Predict if training_args.do_predict: a_ = TokenClassificationDataset( token_classification_task=UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , labels=UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) a_ , a_ , a_ = trainer.predict(UpperCAmelCase ) a_ , a_ = align_predictions(UpperCAmelCase , UpperCAmelCase ) a_ = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , UpperCAmelCase , UpperCAmelCase ) writer.write("%s = %s\n" % (key, value) ) # Save predictions a_ = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return results def UpperCamelCase ( UpperCAmelCase ) ->Dict: """simple docstring""" main() if __name__ == "__main__": main()
243
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = ["""vqvae"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->List[str]: super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , mel=__UpperCAmelCase , vqvae=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: return 50 if isinstance(self.scheduler , __UpperCAmelCase) else 10_00 @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=True , ) ->Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: a_ = steps or self.get_default_steps() self.scheduler.set_timesteps(__UpperCAmelCase) a_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__UpperCAmelCase , device=self.device , ) a_ = noise a_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__UpperCAmelCase , __UpperCAmelCase) a_ = self.mel.audio_slice_to_image(__UpperCAmelCase) a_ = np.frombuffer(input_image.tobytes() , dtype="uint8").reshape( (input_image.height, input_image.width)) a_ = (input_image / 2_55) * 2 - 1 a_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a_ = self.vqvae.encode(torch.unsqueeze(__UpperCAmelCase , 0)).latent_dist.sample( generator=__UpperCAmelCase)[0] a_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: a_ = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , self.scheduler.timesteps[start_step - 1]) a_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a_ = int(mask_start_secs * pixels_per_second) a_ = int(mask_end_secs * pixels_per_second) a_ = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __UpperCAmelCase): a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase)["sample"] else: a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase)["sample"] if isinstance(self.scheduler , __UpperCAmelCase): a_ = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , )["prev_sample"] else: a_ = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase , )["prev_sample"] if mask is not None: if mask_start > 0: a_ = mask[:, step, :, :mask_start] if mask_end > 0: a_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a_ = 1 / self.vqvae.config.scaling_factor * images a_ = self.vqvae.decode(__UpperCAmelCase)["sample"] a_ = (images / 2 + 0.5).clamp(0 , 1) a_ = images.cpu().permute(0 , 2 , 3 , 1).numpy() a_ = (images * 2_55).round().astype("uint8") a_ = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__UpperCAmelCase , mode="RGB").convert("L") for _ in images)) a_ = [self.mel.image_to_audio(__UpperCAmelCase) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__UpperCAmelCase)[:, np.newaxis, :]) , **ImagePipelineOutput(__UpperCAmelCase)) @torch.no_grad() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 50) ->np.ndarray: assert isinstance(self.scheduler , __UpperCAmelCase) self.scheduler.set_timesteps(__UpperCAmelCase) a_ = np.array( [np.frombuffer(image.tobytes() , dtype="uint8").reshape((1, image.height, image.width)) for image in images]) a_ = (sample / 2_55) * 2 - 1 a_ = torch.Tensor(__UpperCAmelCase).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a_ = self.scheduler.alphas_cumprod[t] a_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a_ = 1 - alpha_prod_t a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase)["sample"] a_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output a_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->torch.Tensor: a_ = acos(torch.dot(torch.flatten(__UpperCAmelCase) , torch.flatten(__UpperCAmelCase)) / torch.norm(__UpperCAmelCase) / torch.norm(__UpperCAmelCase)) return sin((1 - alpha) * theta) * xa / sin(__UpperCAmelCase) + sin(alpha * theta) * xa / sin(__UpperCAmelCase)
243
1
from heapq import heappop, heappush import numpy as np def snake_case_ ( snake_case , snake_case , snake_case , snake_case , ) -> tuple[float | int, list[tuple[int, int]]]: lowercase__: Optional[int] = grid.shape lowercase__: Dict = [-1, 1, 0, 0] lowercase__: int = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase__: List[str] = [(0, source)], set() lowercase__: Dict = np.full((rows, cols) , np.inf ) lowercase__: Dict = 0 lowercase__: List[Any] = np.empty((rows, cols) , dtype=snake_case ) lowercase__: List[Any] = None while queue: (lowercase__): List[str] = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase__: Optional[int] = [] while (x, y) != source: path.append((x, y) ) lowercase__: Tuple = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): lowercase__: Any = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase__: List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) lowercase__: Optional[Any] = dist + 1 lowercase__: Any = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
368
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = '''▁''' __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} __lowerCAmelCase = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } __lowerCAmelCase = {'''vinai/bartpho-syllable''': 10_24} class __a ( __UpperCamelCase ): __lowercase : int = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__: List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token lowercase__: Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) lowercase__: Dict = vocab_file lowercase__: str = monolingual_vocab_file lowercase__: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__: List[Any] = {} lowercase__: Optional[int] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: str = cnt cnt += 1 with open(lowerCAmelCase__ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): lowercase__: Optional[Any] = line.strip().split()[0] lowercase__: Optional[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: Optional[int] = len(self.fairseq_tokens_to_ids ) lowercase__: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = self.__dict__.copy() lowercase__: Tuple = None lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__: Union[str, Any] = {} lowercase__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: Optional[int] = [self.cls_token_id] lowercase__: Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Dict = [self.sep_token_id] lowercase__: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[Any] = ''.join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: int = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCAmelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'{str(lowerCAmelCase__ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
288
0
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Dict = BarthezTokenizer _lowerCamelCase : Dict = BarthezTokenizerFast _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = True def lowercase ( self : Any ): super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) _UpperCAmelCase = tokenizer def lowercase ( self : Dict ): _UpperCAmelCase = "<pad>" _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(snake_case_ ) , 1_0_1_1_2_2 ) def lowercase ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def lowercase ( self : Optional[Any] ): _UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowercase ( self : Any ): if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = tokenizer.tokenize(snake_case_ ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) _UpperCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case_ ) _UpperCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowercase ( self : int ): # fmt: off _UpperCAmelCase = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=snake_case_ , )
22
'''simple docstring''' __SCREAMING_SNAKE_CASE :List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
22
1
import os from math import logaa def A ( lowercase = "base_exp.txt" ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase ) , lowercase ) ) ): UpperCamelCase , UpperCamelCase = list(map(lowercase , line.split(',' ) ) ) if x * logaa(lowercase ) > largest: UpperCamelCase = x * logaa(lowercase ) UpperCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
365
from __future__ import annotations class lowercase : def __init__( self , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase , UpperCamelCase = text, pattern UpperCamelCase , UpperCamelCase = len(A_ ), len(A_ ) def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __UpperCamelCase ( self ) -> list[int]: """simple docstring""" # searches pattern in text and returns index positions UpperCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): UpperCamelCase = self.mismatch_in_text(A_ ) if mismatch_index == -1: positions.append(A_ ) else: UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] ) UpperCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _UpperCAmelCase : Union[str, Any] = "ABAABA" _UpperCAmelCase : Any = "AB" _UpperCAmelCase : Dict = BoyerMooreSearch(text, pattern) _UpperCAmelCase : Optional[int] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
110
0
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = StableUnCLIPPipeline __UpperCamelCase = TEXT_TO_IMAGE_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __UpperCamelCase = False def UpperCAmelCase__ ( self :List[Any] ) -> Any: UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) UpperCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :str , lowercase_ :Dict=0 ) -> List[str]: if str(lowercase_ ).startswith('mps' ): UpperCAmelCase = torch.manual_seed(lowercase_ ) else: UpperCAmelCase = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self :Optional[Any] ) -> int: UpperCAmelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Any ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase = pipe('anime turle' , generator=lowercase_ , output_type='np' ) UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Tuple ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
78
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class A_ : """simple docstring""" def UpperCAmelCase__ ( self :Any ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase__ ( self :List[Any] ) -> Any: torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase__ ( self :List[str] ) -> str: UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase = inputs['prompt'] UpperCAmelCase = inputs['generator'] UpperCAmelCase = inputs['num_inference_steps'] UpperCAmelCase = inputs['output_type'] if "image" in inputs: UpperCAmelCase = inputs['image'] else: UpperCAmelCase = None if "mask_image" in inputs: UpperCAmelCase = inputs['mask_image'] else: UpperCAmelCase = None if "original_image" in inputs: UpperCAmelCase = inputs['original_image'] else: UpperCAmelCase = None UpperCAmelCase , UpperCAmelCase = pipe.encode_prompt(lowercase_ ) # inputs with prompt converted to embeddings UpperCAmelCase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) UpperCAmelCase = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowercase_ , lowercase_ ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCAmelCase = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase = inputs['generator'] UpperCAmelCase = inputs['num_inference_steps'] UpperCAmelCase = inputs['output_type'] # inputs with prompt converted to embeddings UpperCAmelCase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image UpperCAmelCase = pipe_loaded(**lowercase_ )[0] UpperCAmelCase = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1E-4 ) def UpperCAmelCase__ ( self :List[Any] ) -> str: UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) UpperCAmelCase = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase = pipe_loaded(**lowercase_ )[0] UpperCAmelCase = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1E-4 )
78
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
331
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase : Optional[int] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "retribert" def __init__( self : int , __SCREAMING_SNAKE_CASE : str=30_522 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : List[str]=3_072 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1E-12 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : Tuple=0 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = share_encoders __SCREAMING_SNAKE_CASE = projection_dim
331
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm UpperCamelCase__ = logging.get_logger(__name__) @dataclass class lowerCamelCase_ ( snake_case__ ): lowerCAmelCase__ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : str , **_A : List[str] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase__ : List[str] = deprecated_arg[3:] setattr(self , __snake_case , not kwargs.pop(__snake_case ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) UpperCAmelCase__ : List[Any] = kwargs.pop('''torchscript''' , self.torchscript ) UpperCAmelCase__ : Union[str, Any] = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) UpperCAmelCase__ : str = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**__snake_case ) lowerCAmelCase__ = field(default=snake_case__ , metadata={'help': 'Trace the models using torchscript'} ) lowerCAmelCase__ = field(default=snake_case__ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) lowerCAmelCase__ = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def lowercase_ ( self : List[str] ): '''simple docstring''' requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: UpperCAmelCase__ : Dict = torch.device('''cpu''' ) UpperCAmelCase__ : List[str] = 0 elif is_torch_tpu_available(): UpperCAmelCase__ : List[Any] = xm.xla_device() UpperCAmelCase__ : List[str] = 0 else: UpperCAmelCase__ : Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) UpperCAmelCase__ : Optional[Any] = torch.cuda.device_count() return device, n_gpu @property def lowercase_ ( self : Optional[int] ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def lowercase_ ( self : Dict ): '''simple docstring''' requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowercase_ ( self : Dict ): '''simple docstring''' requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def lowercase_ ( self : Any ): '''simple docstring''' requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def lowercase_ ( self : Tuple ): '''simple docstring''' return self.n_gpu > 0
181
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE : List[Any] = "PoolFormerConfig" # Base docstring _SCREAMING_SNAKE_CASE : Any = "sail/poolformer_s12" _SCREAMING_SNAKE_CASE : str = [1, 5_12, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE : Any = "sail/poolformer_s12" _SCREAMING_SNAKE_CASE : List[Any] = "tabby, tabby cat" _SCREAMING_SNAKE_CASE : List[str] = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ = 0.0 ,UpperCamelCase_ = False ): """simple docstring""" if drop_prob == 0.0 or not training: return input snake_case = 1 - drop_prob snake_case = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case = keep_prob + torch.rand(UpperCamelCase_ ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize snake_case = input.div(UpperCamelCase_ ) * random_tensor return output class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case = None ): super().__init__() snake_case = drop_prob def a_ ( self , __snake_case ): return drop_path(__snake_case , self.drop_prob , self.training ) def a_ ( self ): return "p={}".format(self.drop_prob ) class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None ): super().__init__() snake_case = patch_size if isinstance(__snake_case , collections.abc.Iterable ) else (patch_size, patch_size) snake_case = stride if isinstance(__snake_case , collections.abc.Iterable ) else (stride, stride) snake_case = padding if isinstance(__snake_case , collections.abc.Iterable ) else (padding, padding) snake_case = nn.Convad(__snake_case , __snake_case , kernel_size=__snake_case , stride=__snake_case , padding=__snake_case ) snake_case = norm_layer(__snake_case ) if norm_layer else nn.Identity() def a_ ( self , __snake_case ): snake_case = self.projection(__snake_case ) snake_case = self.norm(__snake_case ) return embeddings class A__ ( nn.GroupNorm ): """simple docstring""" def __init__( self , __snake_case , **__snake_case ): super().__init__(1 , __snake_case , **__snake_case ) class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case ): super().__init__() snake_case = nn.AvgPoolad(__snake_case , stride=1 , padding=pool_size // 2 , count_include_pad=__snake_case ) def a_ ( self , __snake_case ): return self.pool(__snake_case ) - hidden_states class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case ): super().__init__() snake_case = nn.Convad(__snake_case , __snake_case , 1 ) snake_case = nn.Convad(__snake_case , __snake_case , 1 ) snake_case = PoolFormerDropPath(__snake_case ) if isinstance(config.hidden_act , __snake_case ): snake_case = ACTaFN[config.hidden_act] else: snake_case = config.hidden_act def a_ ( self , __snake_case ): snake_case = self.conva(__snake_case ) snake_case = self.act_fn(__snake_case ) snake_case = self.drop(__snake_case ) snake_case = self.conva(__snake_case ) snake_case = self.drop(__snake_case ) return hidden_states class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): super().__init__() snake_case = PoolFormerPooling(__snake_case ) snake_case = PoolFormerOutput(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case = PoolFormerGroupNorm(__snake_case ) snake_case = PoolFormerGroupNorm(__snake_case ) # Useful for training neural nets snake_case = PoolFormerDropPath(__snake_case ) if drop_path > 0.0 else nn.Identity() snake_case = config.use_layer_scale if config.use_layer_scale: snake_case = nn.Parameter( config.layer_scale_init_value * torch.ones((__snake_case) ) , requires_grad=__snake_case ) snake_case = nn.Parameter( config.layer_scale_init_value * torch.ones((__snake_case) ) , requires_grad=__snake_case ) def a_ ( self , __snake_case ): if self.use_layer_scale: snake_case = self.pooling(self.before_norm(__snake_case ) ) snake_case = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case = hidden_states + self.drop_path(__snake_case ) snake_case = () snake_case = self.output(self.after_norm(__snake_case ) ) snake_case = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case = hidden_states + self.drop_path(__snake_case ) snake_case = (output,) + outputs return outputs else: snake_case = self.drop_path(self.pooling(self.before_norm(__snake_case ) ) ) # First residual connection snake_case = pooling_output + hidden_states snake_case = () # Second residual connection inside the PoolFormerOutput block snake_case = self.drop_path(self.output(self.after_norm(__snake_case ) ) ) snake_case = hidden_states + layer_output snake_case = (output,) + outputs return outputs class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case ): super().__init__() snake_case = config # stochastic depth decay rule snake_case = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case = nn.ModuleList(__snake_case ) # Transformer blocks snake_case = [] snake_case = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __snake_case , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__snake_case ) ) snake_case = nn.ModuleList(__snake_case ) def a_ ( self , __snake_case , __snake_case=False , __snake_case=True ): snake_case = () if output_hidden_states else None snake_case = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case = layers # Get patch embeddings from hidden_states snake_case = embedding_layer(__snake_case ) # Send the embeddings through the blocks for _, blk in enumerate(__snake_case ): snake_case = blk(__snake_case ) snake_case = layer_outputs[0] if output_hidden_states: snake_case = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = PoolFormerConfig __magic_name__ = 'poolformer' __magic_name__ = 'pixel_values' __magic_name__ = True def a_ ( self , __snake_case ): if isinstance(__snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__snake_case , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def a_ ( self , __snake_case , __snake_case=False ): if isinstance(__snake_case , __snake_case ): snake_case = value _SCREAMING_SNAKE_CASE : Optional[Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _SCREAMING_SNAKE_CASE : Dict = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , snake_case__ , ) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case ): super().__init__(__snake_case ) snake_case = config snake_case = PoolFormerEncoder(__snake_case ) # Initialize weights and apply final processing self.post_init() def a_ ( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a_ ( self , __snake_case = None , __snake_case = None , __snake_case = None , ): snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) snake_case = self.encoder( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , ) snake_case = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__snake_case , hidden_states=encoder_outputs.hidden_states , ) class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case ): super().__init__() snake_case = nn.Linear(config.hidden_size , config.hidden_size ) def a_ ( self , __snake_case ): snake_case = self.dense(__snake_case ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , snake_case__ , ) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case ): super().__init__(__snake_case ) snake_case = config.num_labels snake_case = PoolFormerModel(__snake_case ) # Final norm snake_case = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a_ ( self , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , ): snake_case = return_dict if return_dict is not None else self.config.use_return_dict snake_case = self.poolformer( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , ) snake_case = outputs[0] snake_case = self.classifier(self.norm(__snake_case ).mean([-2, -1] ) ) snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case = '''single_label_classification''' else: snake_case = '''multi_label_classification''' if self.config.problem_type == "regression": snake_case = MSELoss() if self.num_labels == 1: snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case = loss_fct(__snake_case , __snake_case ) elif self.config.problem_type == "single_label_classification": snake_case = CrossEntropyLoss() snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case = BCEWithLogitsLoss() snake_case = loss_fct(__snake_case , __snake_case ) if not return_dict: snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
127
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 32 def a__ ( snake_case__ , snake_case__ = 16 ) -> Optional[Any]: lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase = 16 elif accelerator.mixed_precision != "no": lowerCamelCase = 8 else: lowerCamelCase = None return tokenizer.pad( snake_case__ , padding="""longest""" , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : Optional[Any] = mocked_dataloaders # noqa: F811 def a__ ( snake_case__ , snake_case__ ) -> Tuple: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , snake_case__ ) == "1": lowerCamelCase = 2 # Initialize accelerator lowerCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase = config["""lr"""] lowerCamelCase = int(config["""num_epochs"""] ) lowerCamelCase = int(config["""seed"""] ) lowerCamelCase = int(config["""batch_size"""] ) lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case__ ) def inner_training_loop(snake_case__ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase = AdamW(params=model.parameters() , lr=snake_case__ ) lowerCamelCase , lowerCamelCase = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate scheduler lowerCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=1_00 , num_training_steps=(len(snake_case__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase = model(**snake_case__ ) lowerCamelCase = outputs.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase = model(**snake_case__ ) lowerCamelCase = outputs.logits.argmax(dim=-1 ) lowerCamelCase , lowerCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , snake_case__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ) -> str: lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=snake_case__ , default=snake_case__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCamelCase = parser.parse_args() lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
168
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_a , speech_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , feature_extractor=_a , ) def _lowerCAmelCase ( self , _a = "auto" ): """simple docstring""" if slice_size == "auto": lowerCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def _lowerCAmelCase ( self ): """simple docstring""" self.enable_attention_slicing(_a ) @torch.no_grad() def __call__( self , _a , _a=16_000 , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): """simple docstring""" lowerCamelCase = self.speech_processor.feature_extractor( _a , return_tensors="""pt""" , sampling_rate=_a ).input_features.to(self.device ) lowerCamelCase = self.speech_model.generate(_a , max_length=480_000 ) lowerCamelCase = self.speech_processor.tokenizer.batch_decode(_a , skip_special_tokens=_a , normalize=_a )[ 0 ] if isinstance(_a , _a ): lowerCamelCase = 1 elif isinstance(_a , _a ): lowerCamelCase = len(_a ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(_a )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(_a )}.' ) # get prompt text embeddings lowerCamelCase = self.tokenizer( _a , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase , lowerCamelCase , lowerCamelCase = text_embeddings.shape lowerCamelCase = text_embeddings.repeat(1 , _a , 1 ) lowerCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , _a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase = 42 if negative_prompt is None: lowerCamelCase = [""""""] * batch_size elif type(_a ) is not type(_a ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(_a )} !=' f' {type(_a )}.' ) elif isinstance(_a , _a ): lowerCamelCase = [negative_prompt] elif batch_size != len(_a ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(_a )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: lowerCamelCase = negative_prompt lowerCamelCase = text_input_ids.shape[-1] lowerCamelCase = self.tokenizer( _a , padding="""max_length""" , max_length=_a , truncation=_a , return_tensors="""pt""" , ) lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase = uncond_embeddings.shape[1] lowerCamelCase = uncond_embeddings.repeat(1 , _a , 1 ) lowerCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , _a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase = torch.randn(_a , generator=_a , device="""cpu""" , dtype=_a ).to( self.device ) else: lowerCamelCase = torch.randn(_a , generator=_a , device=self.device , dtype=_a ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase = {} if accepts_eta: lowerCamelCase = eta for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual lowerCamelCase = self.unet(_a , _a , encoder_hidden_states=_a ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase , lowerCamelCase = noise_pred.chunk(2 ) lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a , _a ) lowerCamelCase = 1 / 0.18_215 * latents lowerCamelCase = self.vae.decode(_a ).sample lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase = self.numpy_to_pil(_a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_a , nsfw_content_detected=_a )
168
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __A = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": __A = 'hopper-medium-v2' __A = gym.make(env_name) __A = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) __A = env.reset() __A = 0 __A = 0 __A = 10_00 __A = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __A = pipeline(obs, planning_horizon=32) # execute action in environment __A = env.step(denorm_actions) __A = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) __A = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
90
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = ViTImageProcessor if is_vision_available() else None @property def UpperCamelCase ( self: str ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = (3, 32, 1_28) A__ = tempfile.mkdtemp() # fmt: off A__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on A__ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) A__ = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 1_28}, } A__ = os.path.join(self.tmpdirname , UpperCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: List[str] , **UpperCamelCase: Union[str, Any] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase ( self: List[Any] , **UpperCamelCase: str ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) A__ = Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) return image_input def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_image_processor() A__ = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) A__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_image_processor() A__ = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) A__ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(UpperCamelCase , return_tensors="""np""" ) A__ = processor(images=UpperCamelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) A__ = """test""" A__ = processor(text=UpperCamelCase ) A__ = tokenizer(UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) A__ = """test""" A__ = self.prepare_image_inputs() A__ = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.char_decode(UpperCamelCase ) A__ = tokenizer.batch_decode(UpperCamelCase ) A__ = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) A__ = None A__ = self.prepare_image_inputs() A__ = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) A__ = torch.randn(1 , 27 , 38 ) A__ = torch.randn(1 , 27 , 5_02_57 ) A__ = torch.randn(1 , 27 , 3_05_22 ) A__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
335
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Optional[int] = '''mask2former''' _UpperCamelCase : Optional[int] = ['''swin'''] _UpperCamelCase : Tuple = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Optional[int] , _A : Optional[Dict] = None , _A : int = 256 , _A : int = 256 , _A : int = 256 , _A : int = 1_024 , _A : str = "relu" , _A : int = 6 , _A : int = 10 , _A : int = 8 , _A : float = 0.0 , _A : int = 2_048 , _A : bool = False , _A : bool = False , _A : int = 4 , _A : int = 255 , _A : int = 100 , _A : float = 0.1 , _A : float = 2.0 , _A : float = 5.0 , _A : float = 5.0 , _A : int = 12_544 , _A : float = 3.0 , _A : float = 0.75 , _A : float = 0.02 , _A : float = 1.0 , _A : bool = True , _A : List[int] = [4, 8, 16, 32] , _A : bool = None , **_A : Any , ) -> Union[str, Any]: """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) lowercase : Optional[Any] = CONFIG_MAPPING['''swin''']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_A , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_A , _A ): lowercase : Union[str, Any] = backbone_config.pop('''model_type''' ) lowercase : Optional[int] = CONFIG_MAPPING[backbone_model_type] lowercase : Tuple = config_class.from_dict(_A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) lowercase : List[str] = backbone_config lowercase : List[Any] = feature_size lowercase : Optional[Any] = mask_feature_size lowercase : List[str] = hidden_dim lowercase : Dict = encoder_feedforward_dim lowercase : List[str] = activation_function lowercase : Optional[Any] = encoder_layers lowercase : Dict = decoder_layers lowercase : List[str] = num_attention_heads lowercase : Dict = dropout lowercase : Tuple = dim_feedforward lowercase : Any = pre_norm lowercase : str = enforce_input_projection lowercase : Tuple = common_stride lowercase : int = ignore_value lowercase : str = num_queries lowercase : Tuple = no_object_weight lowercase : Optional[int] = class_weight lowercase : str = mask_weight lowercase : List[str] = dice_weight lowercase : List[Any] = train_num_points lowercase : List[str] = oversample_ratio lowercase : List[Any] = importance_sample_ratio lowercase : int = init_std lowercase : Dict = init_xavier_std lowercase : Optional[Any] = use_auxiliary_loss lowercase : Union[str, Any] = feature_strides lowercase : Optional[int] = output_auxiliary_logits lowercase : Optional[Any] = decoder_layers super().__init__(**_A ) @classmethod def __a ( cls : Optional[int] , _A : PretrainedConfig , **_A : List[str] ) -> str: """simple docstring""" return cls( backbone_config=_A , **_A , ) def __a ( self : Tuple ) -> Dict[str, any]: """simple docstring""" lowercase : str = copy.deepcopy(self.__dict__ ) lowercase : Optional[Any] = self.backbone_config.to_dict() lowercase : Dict = self.__class__.model_type return output
116
import os from collections.abc import Iterator def snake_case( __magic_name__ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__magic_name__ ): lowercase : Tuple = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__magic_name__ )[1] in (".py", ".ipynb"): yield os.path.join(__magic_name__ , __magic_name__ ).lstrip('''./''' ) def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' return F"""{i * ' '}*""" if i else "\n##" def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Dict = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__magic_name__ ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(__magic_name__ )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def snake_case( __magic_name__ = "." ) -> None: '''simple docstring''' lowercase : str = '''''' for filepath in sorted(good_file_paths(__magic_name__ ) ): lowercase , lowercase : Optional[int] = os.path.split(__magic_name__ ) if filepath != old_path: lowercase : str = print_path(__magic_name__ , __magic_name__ ) lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase : Optional[Any] = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) lowercase : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F"""{md_prefix(__magic_name__ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
116
1
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowerCAmelCase = TypeVar('T') def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return (position - 1) // 2 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return (2 * position) + 1 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return (2 * position) + 2 class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__(self ) -> None: _snake_case = [] _snake_case = {} _snake_case = 0 def __len__(self ) -> int: return self.elements def __repr__(self ) -> str: return str(self.heap ) def lowercase (self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _snake_case = self.elements self.elements += 1 self._bubble_up(UpperCAmelCase ) def lowercase (self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _snake_case, _snake_case = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _snake_case, _snake_case = self.heap[0] self._bubble_down(UpperCAmelCase ) return elem def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: # Update the weight of the given key _snake_case = self.position_map[elem] _snake_case = (elem, weight) if position > 0: _snake_case = get_parent_position(UpperCAmelCase ) _snake_case, _snake_case = self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCAmelCase ) else: self._bubble_down(UpperCAmelCase ) else: self._bubble_down(UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _snake_case = self.position_map[elem] if curr_pos == 0: return None _snake_case = get_parent_position(UpperCAmelCase ) _snake_case, _snake_case = self.heap[curr_pos] _snake_case, _snake_case = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_up(UpperCAmelCase ) return None def lowercase (self , UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _snake_case = self.position_map[elem] _snake_case, _snake_case = self.heap[curr_pos] _snake_case = get_child_left_position(UpperCAmelCase ) _snake_case = get_child_right_position(UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _snake_case, _snake_case = self.heap[child_left_position] _snake_case, _snake_case = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) if child_left_position < self.elements: _snake_case, _snake_case = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) else: return None if child_right_position < self.elements: _snake_case, _snake_case = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) return None def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: # Swap the nodes at the given positions _snake_case = self.heap[nodea_pos][0] _snake_case = self.heap[nodea_pos][0] _snake_case, _snake_case = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _snake_case = nodea_pos _snake_case = nodea_pos class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__(self ) -> None: _snake_case = {} _snake_case = 0 def __repr__(self ) -> str: return str(self.connections ) def __len__(self ) -> int: return self.nodes def lowercase (self , UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _snake_case = {} self.nodes += 1 def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(UpperCAmelCase ) self.add_node(UpperCAmelCase ) _snake_case = weight _snake_case = weight def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , ): _snake_case = {node: maxsize for node in graph.connections} _snake_case = {node: None for node in graph.connections} _snake_case = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization _snake_case = priority_queue.extract_min() _snake_case = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _snake_case = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) _snake_case = node # running prim's algorithm while not priority_queue.is_empty(): _snake_case = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _snake_case = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) _snake_case = node return dist, parent
341
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
341
1
"""simple docstring""" from torch import nn def UpperCamelCase ( UpperCAmelCase ) ->List[Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
362
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __A =logging.get_logger(__name__) __A ={ 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = '''dpt''' def __init__( self , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-1_2 , _lowerCamelCase=384 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=[2, 5, 8, 11] , _lowerCamelCase="project" , _lowerCamelCase=[4, 2, 1, 0.5] , _lowerCamelCase=[96, 192, 384, 768] , _lowerCamelCase=256 , _lowerCamelCase=-1 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.4 , _lowerCamelCase=255 , _lowerCamelCase=0.1 , _lowerCamelCase=[1, 1024, 24, 24] , _lowerCamelCase=[0, 1] , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__(**__lowerCamelCase) UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""") UpperCAmelCase__ : int = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } UpperCAmelCase__ : Dict = BitConfig(**__lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): logger.info("""Initializing the config with a `BiT` backbone.""") UpperCAmelCase__ : Optional[Any] = BitConfig(**__lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''') UpperCAmelCase__ : Any = backbone_featmap_shape UpperCAmelCase__ : Optional[Any] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""") else: UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : int = [] UpperCAmelCase__ : Any = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = initializer_range UpperCAmelCase__ : Optional[Any] = layer_norm_eps UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Any = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Union[str, Any] = qkv_bias UpperCAmelCase__ : List[Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""") UpperCAmelCase__ : int = readout_type UpperCAmelCase__ : Union[str, Any] = reassemble_factors UpperCAmelCase__ : str = neck_hidden_sizes UpperCAmelCase__ : Optional[Any] = fusion_hidden_size UpperCAmelCase__ : Union[str, Any] = head_in_index UpperCAmelCase__ : List[str] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) UpperCAmelCase__ : str = use_auxiliary_head UpperCAmelCase__ : Union[str, Any] = auxiliary_loss_weight UpperCAmelCase__ : Any = semantic_loss_ignore_index UpperCAmelCase__ : Any = semantic_classifier_dropout def snake_case__ ( self): UpperCAmelCase__ : str = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: UpperCAmelCase__ : Optional[Any] = self.backbone_config.to_dict() UpperCAmelCase__ : Optional[int] = self.__class__.model_type return output
163
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase)
11
0
def a__ ( __UpperCamelCase , __UpperCamelCase ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) SCREAMING_SNAKE_CASE_ = str(bin(__UpperCamelCase ) ) binary_number += "0" * shift_amount return binary_number def a__ ( __UpperCamelCase , __UpperCamelCase ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) SCREAMING_SNAKE_CASE_ = str(bin(__UpperCamelCase ) )[2:] if shift_amount >= len(__UpperCamelCase ): return "0b0" SCREAMING_SNAKE_CASE_ = binary_number[: len(__UpperCamelCase ) - shift_amount] return "0b" + shifted_binary_number def a__ ( __UpperCamelCase , __UpperCamelCase ): if number >= 0: # Get binary representation of positive number SCREAMING_SNAKE_CASE_ = "0" + str(bin(__UpperCamelCase ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number SCREAMING_SNAKE_CASE_ = len(bin(__UpperCamelCase )[3:] ) # Find 2's complement of number SCREAMING_SNAKE_CASE_ = bin(abs(__UpperCamelCase ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE_ = ( "1" + "0" * (binary_number_length - len(__UpperCamelCase )) + binary_number ) if shift_amount >= len(__UpperCamelCase ): return "0b" + binary_number[0] * len(__UpperCamelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__UpperCamelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
305
from __future__ import annotations A : Dict = "#" class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = {} def __A ( self : List[Any] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = trie[char] SCREAMING_SNAKE_CASE_ = True def __A ( self : Union[str, Any] , __magic_name__ : str ) -> tuple | list: SCREAMING_SNAKE_CASE_ = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ = trie[char] else: return [] return self._elements(__magic_name__ ) def __A ( self : int , __magic_name__ : dict ) -> tuple: SCREAMING_SNAKE_CASE_ = [] for c, v in d.items(): SCREAMING_SNAKE_CASE_ = [" "] if c == END else [(c + s) for s in self._elements(__magic_name__ )] result.extend(__magic_name__ ) return tuple(__magic_name__ ) A : Union[str, Any] = Trie() A : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def a__ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=18 , UpperCAmelCase_ : Any=30 , UpperCAmelCase_ : int=400 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=[0.4814_5466, 0.457_8275, 0.4082_1073] , UpperCAmelCase_ : str=[0.2686_2954, 0.2613_0258, 0.2757_7711] , UpperCAmelCase_ : int=True , ) ->int: '''simple docstring''' lowerCamelCase__: Tuple =size if size is not None else {"height": 224, "width": 224} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCamelCase__: Dict =parent lowerCamelCase__: Union[str, Any] =batch_size lowerCamelCase__: Any =num_channels lowerCamelCase__: Any =image_size lowerCamelCase__: Dict =min_resolution lowerCamelCase__: int =max_resolution lowerCamelCase__: Union[str, Any] =do_resize lowerCamelCase__: Any =size lowerCamelCase__: Union[str, Any] =do_center_crop lowerCamelCase__: Optional[int] =crop_size lowerCamelCase__: Dict =do_normalize lowerCamelCase__: Optional[int] =image_mean lowerCamelCase__: int =image_std lowerCamelCase__: int =do_convert_rgb def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Union[str, Any]=False) ->Optional[int]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCamelCase__: str =[] for i in range(self.batch_size): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta)) else: lowerCamelCase__: int =[] for i in range(self.batch_size): lowerCamelCase__ , lowerCamelCase__: Tuple =np.random.choice(np.arange(self.min_resolution , self.max_resolution) , 2) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCamelCase__: List[str] =[Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] if torchify: lowerCamelCase__: Any =[torch.from_numpy(UpperCAmelCase_) for x in image_inputs] return image_inputs @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' lowerCamelCase__: List[Any] =ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCAmelCase_) @property def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_convert_rgb")) def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 224, "width": 224}) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: List[Any] =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' lowerCamelCase__: int =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: List[str] =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Optional[int] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: Optional[int] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Union[str, Any] =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCAmelCase_) lowerCamelCase__: Dict =3 @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Tuple =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_convert_rgb")) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' lowerCamelCase__: str =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: str =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: Optional[int] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase :str = filter(lambda __magic_name__ : p.requires_grad , model.parameters() ) UpperCamelCase :Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase_ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : Tuple ) -> Dict: """simple docstring""" if metric == "rouge2": UpperCamelCase :List[str] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": UpperCamelCase :int = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": UpperCamelCase :int = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" """ function.""" ) UpperCamelCase :Optional[Any] = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=f"""val_{metric}""" , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Any ) -> int: """simple docstring""" return EarlyStopping( monitor=f"""val_{metric}""" , mode="""min""" if """loss""" in metric else """max""" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class _SCREAMING_SNAKE_CASE ( pl.Callback ): def _A ( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :Optional[int] = {F"""lr_group_{i}""": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__snake_case ) @rank_zero_only def _A ( self : Tuple , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule , __lowerCamelCase : str , __lowerCamelCase : Dict=True ): logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) UpperCamelCase :Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results UpperCamelCase :List[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCamelCase :str = od / """test_results.txt""" UpperCamelCase :Any = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCamelCase :Tuple = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" UpperCamelCase :List[Any] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__snake_case ) generations_file.parent.mkdir(exist_ok=__snake_case ) with open(__snake_case , """a+""" ) as writer: for key in sorted(__snake_case ): if key in ["log", "progress_bar", "preds"]: continue UpperCamelCase :Optional[Any] = metrics[key] if isinstance(__snake_case , torch.Tensor ): UpperCamelCase :Dict = val.item() UpperCamelCase :Optional[int] = F"""{key}: {val:.6f}\n""" writer.write(__snake_case ) if not save_generations: return if "preds" in metrics: UpperCamelCase :Optional[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(__snake_case ) @rank_zero_only def _A ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): try: UpperCamelCase :List[str] = pl_module.model.model.num_parameters() except AttributeError: UpperCamelCase :List[Any] = pl_module.model.num_parameters() UpperCamelCase :Optional[Any] = count_trainable_parameters(__snake_case ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def _A ( self : Dict , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__snake_case , __snake_case , """test""" ) @rank_zero_only def _A ( self : Union[str, Any] , __lowerCamelCase : pl.Trainer , __lowerCamelCase : Union[str, Any] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
353
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] ) -> str: """simple docstring""" if "model" in orig_key: UpperCamelCase :Union[str, Any] = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: UpperCamelCase :Optional[int] = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: UpperCamelCase :Optional[int] = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: UpperCamelCase :Optional[int] = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: UpperCamelCase :Any = orig_key.split(""".""" )[0].split("""_""" )[-1] UpperCamelCase :List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: UpperCamelCase :str = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: UpperCamelCase :List[str] = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: UpperCamelCase :Optional[Any] = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: UpperCamelCase :Optional[Any] = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: UpperCamelCase :List[Any] = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: UpperCamelCase :Dict = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: UpperCamelCase :List[Any] = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: UpperCamelCase :Optional[int] = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: UpperCamelCase :Dict = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: UpperCamelCase :Tuple = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: UpperCamelCase :Any = """yoso.""" + orig_key return orig_key def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase :Any = orig_state_dict.pop(__magic_name__ ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCamelCase :Tuple = val UpperCamelCase :Dict = orig_state_dict["""cls.predictions.decoder.bias"""] UpperCamelCase :Union[str, Any] = torch.arange(__magic_name__ ).expand((1, -1) ) + 2 return orig_state_dict def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Optional[Any] = torch.load(__magic_name__ , map_location="""cpu""" )["""model_state_dict"""] UpperCamelCase :int = YosoConfig.from_json_file(__magic_name__ ) UpperCamelCase :Optional[Any] = YosoForMaskedLM(__magic_name__ ) UpperCamelCase :int = convert_checkpoint_helper(config.max_position_embeddings , __magic_name__ ) print(model.load_state_dict(__magic_name__ ) ) model.eval() model.save_pretrained(__magic_name__ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Dict = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
62
0
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=UpperCamelCase_ ): _a = ['''onnx'''] def __init__( self : str , *A_ : Dict , **A_ : Union[str, Any]): requires_backends(self , ['''onnx''']) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *A_ : List[str] , **A_ : Optional[Any]): requires_backends(cls , ['''onnx''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : Dict , **A_ : List[str]): requires_backends(cls , ['''onnx'''])
103
import numpy as np def __magic_name__ ( A : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __magic_name__ ( A : np.array ): '''simple docstring''' return vector * sigmoid(1.7_02 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
107
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig UpperCamelCase = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class snake_case_ ( __A ): __A : Any = "tapas" def __init__( self : List[str] , lowercase_ : Union[str, Any]=3_05_22 , lowercase_ : List[Any]=7_68 , lowercase_ : Optional[Any]=12 , lowercase_ : int=12 , lowercase_ : Dict=30_72 , lowercase_ : str="gelu" , lowercase_ : str=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , lowercase_ : List[str]=0.02 , lowercase_ : List[Any]=1E-12 , lowercase_ : str=0 , lowercase_ : Optional[int]=10.0 , lowercase_ : int=0 , lowercase_ : str=1.0 , lowercase_ : Optional[Any]=None , lowercase_ : List[Any]=1.0 , lowercase_ : List[Any]=False , lowercase_ : Optional[Any]=None , lowercase_ : Any=1.0 , lowercase_ : Optional[int]=1.0 , lowercase_ : Dict=False , lowercase_ : Any=False , lowercase_ : Dict="ratio" , lowercase_ : List[str]=None , lowercase_ : List[str]=None , lowercase_ : Dict=64 , lowercase_ : List[Any]=32 , lowercase_ : Optional[Any]=False , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : Optional[Any]=False , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=False , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , **lowercase_ : Any , ) -> Optional[int]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Any = vocab_size lowercase__ : Dict = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : int = hidden_act lowercase__ : Optional[int] = intermediate_size lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_sizes lowercase__ : str = initializer_range lowercase__ : Optional[Any] = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : List[str] = positive_label_weight lowercase__ : Union[str, Any] = num_aggregation_labels lowercase__ : Optional[Any] = aggregation_loss_weight lowercase__ : List[str] = use_answer_as_supervision lowercase__ : str = answer_loss_importance lowercase__ : List[str] = use_normalized_answer_loss lowercase__ : Tuple = huber_loss_delta lowercase__ : List[Any] = temperature lowercase__ : Optional[Any] = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : int = average_approximation_function lowercase__ : Optional[int] = cell_selection_preference lowercase__ : List[Any] = answer_loss_cutoff lowercase__ : str = max_num_rows lowercase__ : List[Any] = max_num_columns lowercase__ : List[Any] = average_logits_per_cell lowercase__ : List[str] = select_one_column lowercase__ : Any = allow_empty_column_selection lowercase__ : Union[str, Any] = init_cell_selection_weights_to_zero lowercase__ : Union[str, Any] = reset_position_index_per_cell lowercase__ : str = disable_per_token_loss # Aggregation hyperparameters lowercase__ : List[Any] = aggregation_labels lowercase__ : Union[str, Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , lowercase_ ): lowercase__ : int = {int(lowercase_ ): v for k, v in aggregation_labels.items()}
368
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } _lowerCAmelCase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } _lowerCAmelCase = { '''ctrl''': 256, } _lowerCAmelCase = { '''Pregnancy''': 16_8629, '''Christianity''': 7675, '''Explain''': 10_6423, '''Fitness''': 6_3440, '''Saving''': 6_3163, '''Ask''': 2_7171, '''Ass''': 9_5985, '''Joke''': 16_3509, '''Questions''': 4_5622, '''Thoughts''': 4_9605, '''Retail''': 5_2342, '''Feminism''': 16_4338, '''Writing''': 1_1992, '''Atheism''': 19_2263, '''Netflix''': 4_8616, '''Computing''': 3_9639, '''Opinion''': 4_3213, '''Alone''': 4_4967, '''Funny''': 5_8917, '''Gaming''': 4_0358, '''Human''': 4088, '''India''': 1331, '''Joker''': 7_7138, '''Diet''': 3_6206, '''Legal''': 1_1859, '''Norman''': 4939, '''Tip''': 7_2689, '''Weight''': 5_2343, '''Movies''': 4_6273, '''Running''': 2_3425, '''Science''': 2090, '''Horror''': 3_7793, '''Confession''': 6_0572, '''Finance''': 1_2250, '''Politics''': 1_6360, '''Scary''': 19_1985, '''Support''': 1_2654, '''Technologies''': 3_2516, '''Teenage''': 6_6160, '''Event''': 3_2769, '''Learned''': 6_7460, '''Notion''': 18_2770, '''Wikipedia''': 3_7583, '''Books''': 6665, '''Extract''': 7_6050, '''Confessions''': 10_2701, '''Conspiracy''': 7_5932, '''Links''': 6_3674, '''Narcissus''': 15_0425, '''Relationship''': 5_4766, '''Relationships''': 13_4796, '''Reviews''': 4_1671, '''News''': 4256, '''Translation''': 2_6820, '''multilingual''': 12_8406, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = set() lowerCAmelCase__ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ : List[Any] = char lowerCAmelCase__ : Optional[Any] = set(UpperCamelCase ) return pairs class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = VOCAB_FILES_NAMES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = CONTROL_CODES def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase="<unk>" ,**__UpperCAmelCase ) -> Optional[int]: super().__init__(unk_token=__UpperCAmelCase ,**__UpperCAmelCase ) with open(__UpperCAmelCase ,encoding="""utf-8""" ) as vocab_handle: lowerCAmelCase__ : int = json.load(__UpperCAmelCase ) lowerCAmelCase__ : Any = {v: k for k, v in self.encoder.items()} with open(__UpperCAmelCase ,encoding="""utf-8""" ) as merges_handle: lowerCAmelCase__ : Union[str, Any] = merges_handle.read().split("""\n""" )[1:-1] lowerCAmelCase__ : Optional[Any] = [tuple(merge.split() ) for merge in merges] lowerCAmelCase__ : int = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : List[Any] = {} @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return len(self.encoder ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: if token in self.cache: return self.cache[token] lowerCAmelCase__ : Optional[Any] = tuple(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) lowerCAmelCase__ : Any = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: lowerCAmelCase__ : List[str] = min(__UpperCAmelCase ,key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = bigram lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Dict = 0 while i < len(__UpperCAmelCase ): try: lowerCAmelCase__ : Optional[Any] = word.index(__UpperCAmelCase ,__UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ : Dict = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ : Tuple = tuple(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = new_word if len(__UpperCAmelCase ) == 1: break else: lowerCAmelCase__ : Dict = get_pairs(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = """@@ """.join(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = word[:-4] lowerCAmelCase__ : Optional[Any] = word return word def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : Any = re.findall(R"""\S+\n?""" ,__UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: return self.encoder.get(__UpperCAmelCase ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple: return self.decoder.get(__UpperCAmelCase ,self.unk_token ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Any = """ """.join(__UpperCAmelCase ).replace("""@@ """ ,"""""" ).strip() return out_string def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : List[Any] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : Optional[int] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__UpperCAmelCase ,ensure_ascii=__UpperCAmelCase ) + """\n""" ) lowerCAmelCase__ : int = 0 with open(__UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) lowerCAmelCase__ : Dict = token_index writer.write(""" """.join(__UpperCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
37
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
287
0
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets UpperCAmelCase__ = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" UpperCAmelCase__ = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" UpperCAmelCase__ = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : int) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string'), 'references': datasets.Value('string'), }) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any] , A : Any) -> Optional[int]: """simple docstring""" _UpperCAmelCase = 0.0 for i, j in zip(A , A): n_correct += 1.0 if math_equivalence.is_equiv(A , A) else 0.0 _UpperCAmelCase = n_correct / len(A) return { "accuracy": accuracy, }
358
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = ShapEImgaImgPipeline UpperCamelCase = ['''image'''] UpperCamelCase = ['''image'''] UpperCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" return 32 @property def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" return 32 @property def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" return 8 @property def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _UpperCAmelCase = CLIPVisionModel(A) return model @property def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" _UpperCAmelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_24 , ) return image_processor @property def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _UpperCAmelCase = PriorTransformer(**A) return model @property def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _UpperCAmelCase = ShapERenderer(**A) return model def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" _UpperCAmelCase = self.dummy_prior _UpperCAmelCase = self.dummy_image_encoder _UpperCAmelCase = self.dummy_image_processor _UpperCAmelCase = self.dummy_renderer _UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=10_24 , prediction_type='sample' , use_karras_sigmas=A , clip_sample=A , clip_sample_range=1.0 , ) _UpperCAmelCase = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : List[str] , A : Optional[Any] , A : Tuple=0) -> Dict: """simple docstring""" _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A)).to(A) if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = pipe(**self.get_dummy_inputs(A)) _UpperCAmelCase = output.images[0] _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCAmelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = torch_device == 'cpu' _UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=A , relax_max_difference=A , ) def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = 1 _UpperCAmelCase = 2 _UpperCAmelCase = self.get_dummy_inputs(A) for key in inputs.keys(): if key in self.batch_params: _UpperCAmelCase = batch_size * [inputs[key]] _UpperCAmelCase = pipe(**A , num_images_per_prompt=A)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png') _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy') _UpperCAmelCase = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img') _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = torch.Generator(device=A).manual_seed(0) _UpperCAmelCase = pipe( A , generator=A , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A , A)
290
0