code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=_UpperCamelCase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=_UpperCamelCase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=_UpperCamelCase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=_UpperCamelCase , default=1_000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=_UpperCamelCase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=_UpperCamelCase , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=_UpperCamelCase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) snake_case_ : List[Any] = parser.parse_args() return args def lowerCamelCase_ ( _UpperCamelCase ) -> Tuple: """simple docstring""" def fn(_UpperCamelCase ): return tokenizer(examples['''text'''] ) return fn def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = [] for i in range(len(tokenized_data['''input_ids'''] ) ): snake_case_ : Any = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } snake_case_ : Optional[int] = tf.train.Features(feature=_UpperCamelCase ) snake_case_ : Optional[Any] = tf.train.Example(features=_UpperCamelCase ) snake_case_ : Optional[Any] = example.SerializeToString() records.append(_UpperCamelCase ) return records def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ : int = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: snake_case_ : Union[str, Any] = min(len(_UpperCamelCase ) , args.limit ) snake_case_ : int = dataset.select(range(_UpperCamelCase ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) snake_case_ : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) snake_case_ : str = os.path.join(args.output_dir , args.split ) if not os.path.exists(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) else: snake_case_ : Optional[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. snake_case_ : Optional[Any] = tokenize_function(_UpperCamelCase ) snake_case_ : List[Any] = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_UpperCamelCase ): # Concatenate all texts. snake_case_ : Tuple = {k: sum(examples[k] , [] ) for k in examples.keys()} snake_case_ : List[str] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 snake_case_ : int = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. snake_case_ : Union[str, Any] = { k: [t[i : i + args.max_length] for i in range(0 , _UpperCamelCase , args.max_length )] for k, t in concatenated_examples.items() } return result snake_case_ : int = dataset_tokenized.map(_UpperCamelCase , batched=_UpperCamelCase , batch_size=1_000 , num_proc=4 ) snake_case_ : str = 0 snake_case_ : Optional[Any] = 0 for shard in range(0 , len(_UpperCamelCase ) , args.shard_size ): snake_case_ : Any = grouped_dataset[shard : shard + args.shard_size] snake_case_ : str = len(dataset_snapshot['''input_ids'''] ) snake_case_ : Union[str, Any] = os.path.join(_UpperCamelCase , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) snake_case_ : Dict = get_serialized_examples(_UpperCamelCase ) with tf.io.TFRecordWriter(_UpperCamelCase ) as out_file: for i in range(len(_UpperCamelCase ) ): snake_case_ : List[str] = serialized_examples[i] out_file.write(_UpperCamelCase ) print('''Wrote file {} containing {} records'''.format(_UpperCamelCase , _UpperCamelCase ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , '''w''' ) as f: print(f'''Total {args.split} records: {total_records}''' , file=_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = parse_args() main(args)
279
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : Any = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Any = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) snake_case_ : List[Any] = VideoClassificationPipeline(model=__magic_name__ , image_processor=__magic_name__ , top_k=2 ) snake_case_ : str = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' for example in examples: snake_case_ : Union[str, Any] = video_classifier(__magic_name__ ) self.assertEqual( __magic_name__ , [ {'''score''': ANY(__magic_name__ ), '''label''': ANY(__magic_name__ )}, {'''score''': ANY(__magic_name__ ), '''label''': ANY(__magic_name__ )}, ] , ) @require_torch def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Any = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' snake_case_ : str = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) snake_case_ : int = pipeline( '''video-classification''' , model=__magic_name__ , feature_extractor=__magic_name__ , frame_sampling_rate=4 ) snake_case_ : List[str] = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) snake_case_ : Union[str, Any] = video_classifier(__magic_name__ , top_k=2 ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}] , ) snake_case_ : int = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' pass
279
1
'''simple docstring''' from collections.abc import Iterable from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase = None ) -> List[Any]: A_ : int = value A_ : Node | None = None # Added in order to delete a node easier A_ : Node | None = None A_ : Node | None = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"{self.value}": (self.left, self.right)} , indent=1 ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase = None ) -> Dict: A_ : Union[str, Any] = root def __str__( self ) -> str: return str(self.root ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None: if new_children is not None: # reset its kids A_ : Optional[Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(_lowerCamelCase ): # If it is the right children A_ : Any = new_children else: A_ : Union[str, Any] = new_children else: A_ : Any = new_children def UpperCAmelCase_ ( self , _lowerCamelCase ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self ) -> bool: return self.root is None def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: A_ : Union[str, Any] = Node(_lowerCamelCase ) # create a new Node if self.empty(): # if Tree is empty A_ : Optional[int] = new_node # set its root else: # Tree is not empty A_ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: A_ : int = new_node # We insert the new node in a leaf break else: A_ : List[str] = parent_node.left else: if parent_node.right is None: A_ : Optional[int] = new_node break else: A_ : Tuple = parent_node.right A_ : Union[str, Any] = parent_node def UpperCAmelCase_ ( self , *_lowerCamelCase ) -> None: for value in values: self.__insert(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Node | None: if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: A_ : Tuple = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: A_ : Tuple = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self , _lowerCamelCase = None ) -> Node | None: if node is None: if self.root is None: return None A_ : List[str] = self.root if not self.empty(): while node.right is not None: A_ : Dict = node.right return node def UpperCAmelCase_ ( self , _lowerCamelCase = None ) -> Node | None: if node is None: A_ : Optional[int] = self.root if self.root is None: return None if not self.empty(): A_ : str = self.root while node.left is not None: A_ : int = node.left return node def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: A_ : Optional[Any] = self.search(_lowerCamelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_lowerCamelCase , _lowerCamelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(_lowerCamelCase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_lowerCamelCase , node.left ) else: A_ : Tuple = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore A_ : Union[str, Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self , _lowerCamelCase=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None: if node: self.inorder(_lowerCamelCase , node.left ) arr.append(node.value ) self.inorder(_lowerCamelCase , node.right ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : list[int] = [] self.inorder(_lowerCamelCase , _lowerCamelCase ) # append all values to list using inorder traversal return arr[k - 1] def UpperCAmelCase ( a_ ) -> list[Node]: """simple docstring""" A_ : List[Any] = [] if curr_node is not None: A_ : int = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def UpperCAmelCase ( ) -> None: """simple docstring""" A_ : int = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7) A_ : Union[str, Any] = BinarySearchTree() for i in testlist: t.insert(a_ ) # Prints all the elements of the list in order traversal print(a_ ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn't exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn't exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(a_ ) print(a_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
368
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" A_ : Dict = [] for part_id in partition_order: A_ : List[str] = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(a_ ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> int: """simple docstring""" A_ : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : Optional[int] = spark.range(1_0_0 ).repartition(1 ) A_ : Optional[Any] = Spark(a_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" A_ : str = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : List[str] = spark.range(1_0 ).repartition(2 ) A_ : List[str] = [1, 0] A_ : List[Any] = _generate_iterable_examples(a_ , a_ ) # Reverse the partitions. A_ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , a_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A_ , A_ : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> Any: """simple docstring""" A_ : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : Dict = spark.range(1_0 ).repartition(1 ) A_ : int = SparkExamplesIterable(a_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(a_ ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> int: """simple docstring""" A_ : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : Union[str, Any] = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A_ : Optional[int] = lambda a_ : x.reverse() A_ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , [2, 1, 0] ) A_ : Any = SparkExamplesIterable(a_ ).shuffle_data_sources(a_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(a_ ): A_ , A_ : Any = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : List[Any] = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 A_ : str = SparkExamplesIterable(a_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 A_ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(a_ ): A_ , A_ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A_ : Optional[Any] = SparkExamplesIterable(a_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 A_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(a_ ): A_ , A_ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> str: """simple docstring""" A_ : str = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : List[Any] = spark.range(1_0_0 ).repartition(1 ) A_ : str = Spark(a_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
164
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope __a = self.vocab_size - 1 def a__ ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __a = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , *lowerCamelCase ): __a = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ ) __a = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , *lowerCamelCase ): __a = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , *lowerCamelCase ): __a = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , *lowerCamelCase ): __a = self.num_labels __a = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class snake_case__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): _snake_case : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _snake_case : Any = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _snake_case : str = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): __a = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __a = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) __a = inputs_dict["labels"] __a = inputs_dict["labels"] __a = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) __a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def a__ ( self ): __a = OpenAIGPTModelTester(self ) __a = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , n_embd=37 ) def a__ ( self ): self.config_tester.run_common_tests() def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE__ ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a__ ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class snake_case__ ( unittest.TestCase ): @slow def a__ ( self ): __a = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(SCREAMING_SNAKE_CASE__ ) __a = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) # the president is __a = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __a = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE__ )
261
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class _lowercase : '''simple docstring''' _SCREAMING_SNAKE_CASE : float _SCREAMING_SNAKE_CASE : TreeNode | None = None _SCREAMING_SNAKE_CASE : TreeNode | None = None def UpperCamelCase_ ( snake_case_ : TreeNode | None ) -> bool: '''simple docstring''' def is_valid_tree(snake_case_ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(snake_case_ , snake_case_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(snake_case_ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( snake_case_ : TreeNode | None , snake_case_ : float , snake_case_ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , snake_case_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , snake_case_ ) ) return is_binary_search_tree_recursive_check(snake_case_ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
229
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( _a ): snake_case : List[str] = (UnCLIPScheduler,) def _lowerCamelCase ( self , **__lowerCAmelCase ): UpperCamelCase__ = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**__lowerCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowerCamelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCAmelCase ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowerCamelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCAmelCase , prev_timestep=__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) UpperCamelCase__ = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def _lowerCamelCase ( self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(variance_type="""learned_range""" ) UpperCamelCase__ = scheduler_class(**__lowerCAmelCase ) UpperCamelCase__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCAmelCase ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCAmelCase ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCAmelCase ) - -0.001_0011 < 1E-5 def _lowerCamelCase ( self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**__lowerCAmelCase ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter UpperCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCAmelCase ): # 1. predict noise residual UpperCamelCase__ = model(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 UpperCamelCase__ = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) UpperCamelCase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def _lowerCamelCase ( self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(25 ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter UpperCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCAmelCase ): # 1. predict noise residual UpperCamelCase__ = model(__lowerCAmelCase , __lowerCAmelCase ) if i + 1 == timesteps.shape[0]: UpperCamelCase__ = None else: UpperCamelCase__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCamelCase__ = scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , prev_timestep=__lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) UpperCamelCase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): pass
87
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase__ = logging.getLogger(__name__) def _UpperCamelCase (a__ :Union[str, Any] , a__ :Optional[Any] ): """simple docstring""" return (preds == labels).mean() @dataclass class __SCREAMING_SNAKE_CASE : snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case : Optional[str] = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __SCREAMING_SNAKE_CASE : snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) snake_case : int = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case : bool = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , a__ ) # Set seed set_seed(training_args.seed ) try: UpperCamelCase__ = processors[data_args.task_name]() UpperCamelCase__ = processor.get_labels() UpperCamelCase__ = len(a__ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCamelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , ) # Get datasets UpperCamelCase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCamelCase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(a__ :EvalPrediction ) -> Dict: UpperCamelCase__ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(a__ , p.label_ids )} # Data collator UpperCamelCase__ = DataCollatorWithPadding(a__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase__ = Trainer( model=a__ , args=a__ , train_dataset=a__ , eval_dataset=a__ , compute_metrics=a__ , data_collator=a__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase__ = trainer.evaluate() UpperCamelCase__ = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(a__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , a__ , a__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(a__ ) return results def _UpperCamelCase (a__ :Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
87
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() snake_case_ : Tuple = logging.get_logger("transformers.models.encodec") snake_case_ : Any = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } snake_case_ : List[str] = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } snake_case_ : Dict = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } snake_case_ : str = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } snake_case_ : List[str] = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } snake_case_ : Any = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } snake_case_ : Any = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } snake_case_ : Union[str, Any] = [] snake_case_ : List[Any] = [] def A (__A : str , __A : Optional[Any] , __A : List[str] , __A : int , __A : List[Any] ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): UpperCAmelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: UpperCAmelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "weight_ih_l0": UpperCAmelCase_ = value elif weight_type == "weight_hh_l0": UpperCAmelCase_ = value elif weight_type == "bias_ih_l0": UpperCAmelCase_ = value elif weight_type == "bias_hh_l0": UpperCAmelCase_ = value elif weight_type == "weight_ih_l1": UpperCAmelCase_ = value elif weight_type == "weight_hh_l1": UpperCAmelCase_ = value elif weight_type == "bias_ih_l1": UpperCAmelCase_ = value elif weight_type == "bias_hh_l1": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def A (__A : Optional[Any] , __A : Tuple ) -> Union[str, Any]: """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase_ , UpperCAmelCase_ = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A (__A : str , __A : List[str] , __A : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCAmelCase_ = MAPPING_24K elif model_name == "encodec_48khz": UpperCAmelCase_ = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase_ = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCAmelCase_ , UpperCAmelCase_ = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase_ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(SCREAMING_SNAKE_CASE_ )[0].split('''.''' )[-2] UpperCAmelCase_ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: UpperCAmelCase_ = '''weight_g''' elif "weight_v" in name: UpperCAmelCase_ = '''weight_v''' elif "weight_ih_l0" in name: UpperCAmelCase_ = '''weight_ih_l0''' elif "weight_hh_l0" in name: UpperCAmelCase_ = '''weight_hh_l0''' elif "bias_ih_l0" in name: UpperCAmelCase_ = '''bias_ih_l0''' elif "bias_hh_l0" in name: UpperCAmelCase_ = '''bias_hh_l0''' elif "weight_ih_l1" in name: UpperCAmelCase_ = '''weight_ih_l1''' elif "weight_hh_l1" in name: UpperCAmelCase_ = '''weight_hh_l1''' elif "bias_ih_l1" in name: UpperCAmelCase_ = '''bias_ih_l1''' elif "bias_hh_l1" in name: UpperCAmelCase_ = '''bias_hh_l1''' elif "bias" in name: UpperCAmelCase_ = '''bias''' elif "weight" in name: UpperCAmelCase_ = '''weight''' elif "running_mean" in name: UpperCAmelCase_ = '''running_mean''' elif "running_var" in name: UpperCAmelCase_ = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase_ = '''num_batches_tracked''' else: UpperCAmelCase_ = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def A (__A : Tuple , __A : Optional[int] , __A : int , __A : Optional[int]=None , __A : int=None , ) -> Optional[int]: """simple docstring""" if config_path is not None: UpperCAmelCase_ = EncodecConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCAmelCase_ = [8, 5, 4, 4] UpperCAmelCase_ = [2.2] UpperCAmelCase_ = 64 UpperCAmelCase_ = 32000 UpperCAmelCase_ = 2048 UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False elif model_name == "encodec_48khz": UpperCAmelCase_ = [8, 5, 4, 2] UpperCAmelCase_ = [3.0, 6.0, 12.0, 24.0] UpperCAmelCase_ = 48000 UpperCAmelCase_ = 2 UpperCAmelCase_ = False UpperCAmelCase_ = '''time_group_norm''' UpperCAmelCase_ = True UpperCAmelCase_ = 1.0 UpperCAmelCase_ = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCAmelCase_ = EncodecModel(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = torch.load(SCREAMING_SNAKE_CASE_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCAmelCase_ = original_checkpoint['''best_state'''] recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(SCREAMING_SNAKE_CASE_ ) model.push_to_hub(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": snake_case_ : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) snake_case_ : Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
51
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowercase (SCREAMING_SNAKE_CASE_ : BertModel , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Dict: SCREAMING_SNAKE_CASE = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') SCREAMING_SNAKE_CASE = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE_ : str ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return F'bert/{name}' def create_tf_var(SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : tf.Session ): SCREAMING_SNAKE_CASE = tf.dtypes.as_dtype(tensor.dtype ) SCREAMING_SNAKE_CASE = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: SCREAMING_SNAKE_CASE = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): SCREAMING_SNAKE_CASE = torch_tensor.T SCREAMING_SNAKE_CASE = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = session.run(SCREAMING_SNAKE_CASE_ ) print(F'Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}' ) SCREAMING_SNAKE_CASE = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ) -> Any: SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory in which to save tensorflow model' ) SCREAMING_SNAKE_CASE = parser.parse_args(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
113
0
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : Union[str, Any] = SwinConfig() a : Optional[int] = swin_name.split('_' ) a : Union[str, Any] = name_split[1] a : Dict = int(name_split[4] ) a : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : Any = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : int = 96 a : List[str] = (2, 2, 18, 2) a : int = (3, 6, 12, 24) elif model_size == "base": a : Tuple = 128 a : Optional[int] = (2, 2, 18, 2) a : List[Any] = (4, 8, 16, 32) else: a : Dict = 192 a : str = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Any = 21_841 else: a : str = 1_000 a : str = 'huggingface/label-files' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : int = idalabel a : str = {v: k for k, v in idalabel.items()} a : Dict = img_size a : List[Any] = num_classes a : str = embed_dim a : Dict = depths a : Union[str, Any] = num_heads a : int = window_size return config def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name: a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[int] = 'encoder.' + name if "attn.proj" in name: a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a : List[str] = 'layernorm.bias' if "head" in name: a : Union[str, Any] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: a : Optional[Any] = key.split('.' ) a : Dict = int(key_split[1] ) a : Optional[int] = int(key_split[3] ) a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Optional[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : List[Any] = val[-dim:, :] else: a : Dict = val[ :dim ] a : Union[str, Any] = val[ dim : dim * 2 ] a : Union[str, Any] = val[ -dim: ] else: a : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]: """simple docstring""" a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() a : str = get_swin_config(snake_case ) a : Optional[int] = SwinForImageClassification(snake_case ) model.eval() a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' ) a : int = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
345
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCamelCase : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : Tuple): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a : Dict = deepcopy(UpperCAmelCase_) elif os.path.exists(UpperCAmelCase_): with io.open(UpperCAmelCase_ , 'r' , encoding='utf-8') as f: a : Union[str, Any] = json.load(UpperCAmelCase_) else: try: a : Union[str, Any] = baseaa.urlsafe_baadecode(UpperCAmelCase_).decode('utf-8') a : List[str] = json.loads(UpperCAmelCase_) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""") a : Optional[int] = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = self.get_value('zero_optimization.stage' , -1) # offload a : Any = False if self.is_zeroa() or self.is_zeroa(): a : Tuple = set(['cpu', 'nvme']) a : int = set( [ self.get_value('zero_optimization.offload_optimizer.device'), self.get_value('zero_optimization.offload_param.device'), ]) if len(offload_devices & offload_devices_valid) > 0: a : List[str] = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[str] = self.config # find the config node of interest if it exists a : int = ds_key_long.split('.') a : Union[str, Any] = nodes.pop() for node in nodes: a : Union[str, Any] = config.get(UpperCAmelCase_) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=None): """simple docstring""" a , a : int = self.find_config_node(UpperCAmelCase_) if config is None: return default return config.get(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=False): """simple docstring""" a : Any = self.config # find the config node of interest if it exists a : Optional[Any] = ds_key_long.split('.') for node in nodes: a : List[str] = config a : int = config.get(UpperCAmelCase_) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""") else: return # if found remove it if parent_config is not None: parent_config.pop(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str): """simple docstring""" a : List[str] = self.get_value(UpperCAmelCase_) return False if value is None else bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : List[Any] = self.get_value(UpperCAmelCase_) return False if value is None else not bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return self._offload class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : int): """simple docstring""" a : Union[str, Any] = engine def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): """simple docstring""" self.engine.backward(UpperCAmelCase_ , **UpperCAmelCase_) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any): """simple docstring""" super().__init__(UpperCAmelCase_ , device_placement=UpperCAmelCase_ , scaler=UpperCAmelCase_) a : List[str] = hasattr(self.optimizer , 'overflow') def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict=None): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=0.0_01 , UpperCAmelCase_ : List[Any]=0 , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : int = params a : str = lr a : Tuple = weight_decay a : Dict = kwargs class UpperCamelCase : """simple docstring""" def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=0 , **UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = optimizer a : Tuple = total_num_steps a : Optional[Any] = warmup_num_steps a : List[str] = kwargs
345
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __A (unittest.TestCase , lowerCamelCase__): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" snake_case_ = load_tool("""text-classification""" ) self.tool.setup() snake_case_ = load_tool("""text-classification""" , remote=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = self.tool("""That\'s quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ , """positive""" ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = self.remote_tool("""That\'s quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ , """positive""" ) def lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" snake_case_ = self.tool(text="""That\'s quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ , """positive""" ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.remote_tool(text="""That\'s quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ , """positive""" )
347
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : @staticmethod def lowercase__ ( *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __UpperCamelCase ( unittest.TestCase ): lowercase : int =MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =pipeline( '''zero-shot-object-detection''', model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCamelCase_ =[ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =object_detector(examples[0], threshold=0.0 ) lowerCamelCase_ =len(lowerCAmelCase ) self.assertGreater(lowerCAmelCase, 0 ) self.assertEqual( lowerCAmelCase, [ { '''score''': ANY(lowerCAmelCase ), '''label''': ANY(lowerCAmelCase ), '''box''': {'''xmin''': ANY(lowerCAmelCase ), '''ymin''': ANY(lowerCAmelCase ), '''xmax''': ANY(lowerCAmelCase ), '''ymax''': ANY(lowerCAmelCase )}, } for i in range(lowerCAmelCase ) ], ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase__ ( self ): """simple docstring""" pass @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline( '''zero-shot-object-detection''', model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCamelCase_ =object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''', candidate_labels=['''cat''', '''remote''', '''couch'''], threshold=0.6_4, ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ], ) lowerCamelCase_ =object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ], threshold=0.6_4, ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ [ {'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ], ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline('''zero-shot-object-detection''' ) lowerCamelCase_ =object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''', candidate_labels=['''cat''', '''remote''', '''couch'''], ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ) lowerCamelCase_ =object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ], ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ], ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase__ ( self ): """simple docstring""" pass @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =0.2 lowerCamelCase_ =pipeline('''zero-shot-object-detection''' ) lowerCamelCase_ =object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''', candidate_labels=['''cat''', '''remote''', '''couch'''], threshold=lowerCAmelCase, ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ], ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =2 lowerCamelCase_ =pipeline('''zero-shot-object-detection''' ) lowerCamelCase_ =object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''', candidate_labels=['''cat''', '''remote''', '''couch'''], top_k=lowerCAmelCase, ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ], )
75
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ : List[str] = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] lowerCAmelCase_ : str = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase_ : List[Any] = {f"""funnel-transformer/{name}""": 5_12 for name in _model_names} lowerCAmelCase_ : List[Any] = {f"""funnel-transformer/{name}""": {'do_lower_case': True} for name in _model_names} class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_INIT_CONFIGURATION __a =FunnelTokenizer __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =2 def __init__( self : str , __a : Optional[Any]=None , __a : Optional[Any]=None , __a : List[str]=True , __a : str="<unk>" , __a : List[Any]="<sep>" , __a : Optional[int]="<pad>" , __a : str="<cls>" , __a : Union[str, Any]="<mask>" , __a : Dict="<s>" , __a : Tuple="</s>" , __a : Union[str, Any]=True , __a : str=True , __a : int=None , __a : int="##" , **__a : List[Any] , ): super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , bos_token=__a , eos_token=__a , clean_text=__a , tokenize_chinese_chars=__a , strip_accents=__a , wordpieces_prefix=__a , **__a , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __a ) != do_lower_case or normalizer_state.get("strip_accents" , __a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __a ) != tokenize_chinese_chars ): _a = getattr(__a , normalizer_state.pop("type" ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**__a ) _a = do_lower_case def UpperCamelCase__ ( self : Any , __a : Any , __a : Dict=None ): _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self : str , __a : List[int] , __a : Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self : str , __a : str , __a : Optional[str] = None ): _a = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
63
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='big_bird' def __init__( self : Optional[int] , __a : Dict=5_03_58 , __a : str=7_68 , __a : List[Any]=12 , __a : List[str]=12 , __a : Union[str, Any]=30_72 , __a : str="gelu_new" , __a : Dict=0.1 , __a : Union[str, Any]=0.1 , __a : Any=40_96 , __a : int=2 , __a : Tuple=0.02 , __a : List[Any]=1e-1_2 , __a : int=True , __a : List[str]=0 , __a : Tuple=1 , __a : Optional[Any]=2 , __a : Tuple=66 , __a : str="block_sparse" , __a : Tuple=True , __a : Optional[int]=False , __a : str=64 , __a : Tuple=3 , __a : Any=None , **__a : Dict , ): super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , ) _a = vocab_size _a = max_position_embeddings _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = type_vocab_size _a = layer_norm_eps _a = use_cache _a = rescale_embeddings _a = attention_type _a = use_bias _a = block_size _a = num_random_blocks _a = classifier_dropout class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : Optional[int] ): if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
63
1
from math import ceil, sqrt def __UpperCamelCase ( lowerCAmelCase__ : int = 1_0_0_0_0_0_0 ): __a : Union[str, Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __a : List[str] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __a : Optional[Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"""{solution() = }""")
361
import os import sys import unittest lowercase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase__ =os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase__ =os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : List[Any] ): __a : str = get_test_to_tester_mapping(snake_case_ ) __a : Tuple = get_test_to_tester_mapping(snake_case_ ) __a : Union[str, Any] = {'''BertModelTest''': '''BertModelTester'''} __a : Tuple = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase (self : str ): __a : Optional[int] = get_model_to_test_mapping(snake_case_ ) __a : Any = get_model_to_test_mapping(snake_case_ ) __a : List[Any] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } __a : Dict = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase (self : int ): __a : Any = get_model_to_tester_mapping(snake_case_ ) __a : List[str] = get_model_to_tester_mapping(snake_case_ ) __a : Any = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } __a : int = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ )
90
0
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
271
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ (__a : Optional[Any] , __a : str , __a : Optional[Any]=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" _a : str = nn.Parameter(__a ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" _a : Any = nn.Parameter(__a ) def UpperCAmelCase_ (__a : int , __a : Optional[Any] , __a : int ): """simple docstring""" _a : Tuple = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : Dict = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Optional[Any] , __a : Optional[int] , __a : List[str] ): """simple docstring""" _a : Dict = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : str = np.asarray(weights[2] ) _a : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Any , __a : Any , __a : Optional[Any] ): """simple docstring""" _a : List[str] = weights[0][0][0] _a : List[Any] = np.asarray(layer_norm_a[0] ) _a : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # lsh weights + output _a : List[str] = weights[0][1] if len(__a ) < 4: set_layer_weights_in_torch_lsh(__a , torch_block.attention , __a ) else: set_layer_weights_in_torch_local(__a , torch_block.attention , __a ) # intermediate weighs _a : Optional[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(__a ) == 4: _a : Union[str, Any] = intermediate_weights[2] # layernorm 2 _a : Any = np.asarray(intermediate_weights[0][0] ) _a : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # intermediate dense _a : Any = np.asarray(intermediate_weights[1][0] ) _a : Any = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) # intermediate out _a : Optional[int] = np.asarray(intermediate_weights[4][0] ) _a : int = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Dict , __a : Dict , __a : List[Any] ): """simple docstring""" _a : Optional[int] = torch_model.reformer # word embeds _a : Tuple = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__a ) , ) if isinstance(weights[3] , __a ): _a : Any = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : List[Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" _a : Any = nn.Parameter(torch.tensor(__a ) ) _a : List[str] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __a ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : Tuple = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__a , __a , __a ) # output layer norm _a : Optional[Any] = np.asarray(weights[7][0] ) _a : int = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # output embeddings _a : List[str] = np.asarray(weights[9][0] ) _a : int = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Tuple , __a : Optional[Any] , __a : Dict ): """simple docstring""" _a : List[Any] = ReformerConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) _a : int = ReformerModelWithLMHead(__a ) with open(__a , 'rb' ) as f: _a : Optional[Any] = pickle.load(__a )['weights'] set_model_weights_in_torch(__a , __a , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
271
1
'''simple docstring''' from __future__ import annotations __lowerCamelCase = 1.6021e-19 # units = C def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> float: if edge <= 0 or not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> float: if edge <= 0 or not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
101
1
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def __lowerCAmelCase (_UpperCamelCase ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class A__ ( _lowerCamelCase): @staticmethod def __lowerCamelCase ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=_SCREAMING_SNAKE_CASE , help='Name of the model to download' ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = model __lowerCAmelCase : int = cache __lowerCAmelCase : List[Any] = force __lowerCAmelCase : Any = trust_remote_code def __lowerCamelCase ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
86
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Union[str, Any] = DiTPipeline A_ : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS A_ : List[Any] = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } A_ : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS A_ : Tuple = False def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : List[str] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn='gelu-approximate' , num_embeds_ada_norm=10_00 , norm_type='ada_norm_zero' , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = AutoencoderKL() __lowerCAmelCase : Union[str, Any] = DDIMScheduler() __lowerCAmelCase : Dict = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __lowerCAmelCase : List[str] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : List[str] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'cpu' __lowerCAmelCase : Any = self.get_dummy_components() __lowerCAmelCase : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = pipe(**_SCREAMING_SNAKE_CASE ).images __lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowerCAmelCase : Optional[int] = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) __lowerCAmelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 ) def __lowerCamelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = torch.manual_seed(0 ) __lowerCAmelCase : int = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) __lowerCAmelCase : Optional[Any] = ['vase', 'umbrella', 'white shark', 'white wolf'] __lowerCAmelCase : Optional[Any] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCamelCase ( self ): __lowerCAmelCase : Any = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) __lowerCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) __lowerCAmelCase : Dict = ['vase', 'umbrella'] __lowerCAmelCase : List[str] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1E-1
86
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py UpperCAmelCase_ : List[str] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase_ : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. UpperCAmelCase_ : Optional[int] = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") UpperCAmelCase_ : Optional[Any] = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase_ : Tuple = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) UpperCAmelCase_ : Any = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def UpperCamelCase ( _A : Optional[Any] )-> str: """simple docstring""" A__ = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , _A ) return [m.group(0 ) for m in matches] def UpperCamelCase ( )-> Union[str, Any]: """simple docstring""" A__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES A__ = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. A__ = collections.defaultdict(_A ) A__ = collections.defaultdict(_A ) A__ = collections.defaultdict(_A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_A ): A__ = None if _re_tf_models.match(_A ) is not None: A__ = tf_models A__ = _re_tf_models.match(_A ).groups()[0] elif _re_flax_models.match(_A ) is not None: A__ = flax_models A__ = _re_flax_models.match(_A ).groups()[0] elif _re_pt_models.match(_A ) is not None: A__ = pt_models A__ = _re_pt_models.match(_A ).groups()[0] if lookup_dict is not None: while len(_A ) > 0: if attr_name in model_prefix_to_model_type: A__ = True break # Try again after removing the last word in the name A__ = "".join(camel_case_split(_A )[:-1] ) A__ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) A__ = list(_A ) all_models.sort() A__ = {"model_type": all_models} A__ = [pt_models[t] for t in all_models] A__ = [tf_models[t] for t in all_models] A__ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure A__ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: A__ = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: A__ = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: A__ = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. A__ = "AutoTokenizer" A__ = [processors[t] for t in all_models] return pd.DataFrame(_A ) def UpperCamelCase ( _A : List[str] )-> Optional[int]: """simple docstring""" A__ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: A__ = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] A__ = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(_A , _A , _A ): # The type of pipeline may not exist in this framework if not hasattr(_A , _A ): continue # First extract all model_names A__ = [] for name in getattr(_A , _A ).values(): if isinstance(_A , _A ): model_names.append(_A ) else: model_names.extend(list(_A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def UpperCamelCase ( _A : Union[str, Any] , _A : Optional[int] )-> Dict: """simple docstring""" A__ = get_frameworks_table() A__ = Dataset.from_pandas(_A ) A__ = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=_A ) A__ = Dataset.from_json(_A ) A__ = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(_A ) ) } A__ = update_pipeline_and_auto_class_table(_A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. A__ = sorted(table.keys() ) A__ = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) A__ = Dataset.from_pandas(_A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_A , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(_A , "pipeline_tags.json" ) ) if commit_sha is not None: A__ = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: A__ = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=_A , repo_type="dataset" , token=_A , commit_message=_A , ) def UpperCamelCase ( )-> Tuple: """simple docstring""" A__ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} A__ = transformers_module.pipelines.SUPPORTED_TASKS A__ = [] for key in pipeline_tasks: if key not in in_table: A__ = pipeline_tasks[key]["pt"] if isinstance(_A , (list, tuple) ): A__ = model[0] A__ = model.__name__ if model not in in_table.values(): missing.append(_A ) if len(_A ) > 0: A__ = ", ".join(_A ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") UpperCAmelCase_ : str = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
358
def UpperCamelCase ( _A : str , _A : str )-> str: """simple docstring""" A__ = len(_A ) A__ = len(_A ) A__ = ( first_str_length if first_str_length > second_str_length else second_str_length ) A__ = [] for char_count in range(_A ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_A ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
198
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Optional[int] ): __a : List[str] = '''laion/clap-htsat-unfused''' __a : Tuple = tempfile.mkdtemp() def lowerCAmelCase (self : Any , **snake_case_ : str ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase (self : Tuple , **snake_case_ : int ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase (self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase (self : Tuple ): __a : str = self.get_tokenizer() __a : List[Any] = self.get_feature_extractor() __a : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) __a : int = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase (self : Optional[int] ): __a : Optional[Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __a : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __a : Optional[Any] = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) __a : int = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase (self : Optional[int] ): __a : Tuple = self.get_feature_extractor() __a : Union[str, Any] = self.get_tokenizer() __a : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) __a : Optional[int] = floats_list((3, 1_0_0_0) ) __a : Any = feature_extractor(snake_case_ , return_tensors='''np''' ) __a : Union[str, Any] = processor(audios=snake_case_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase (self : Any ): __a : Optional[Any] = self.get_feature_extractor() __a : int = self.get_tokenizer() __a : Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) __a : int = '''This is a test string''' __a : Union[str, Any] = processor(text=snake_case_ ) __a : int = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase (self : List[str] ): __a : Optional[int] = self.get_feature_extractor() __a : str = self.get_tokenizer() __a : int = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) __a : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a : List[Any] = processor.batch_decode(snake_case_ ) __a : Any = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase (self : Dict ): __a : str = self.get_feature_extractor() __a : Dict = self.get_tokenizer() __a : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
216
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowercase__ =getLogger(__name__) def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 8 , lowerCAmelCase__ : int = 1_0_2_4 , lowerCAmelCase__ : Union[str, Any]="val" , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Union[str, Any]="summarization" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : int="" , **lowerCAmelCase__ : int , ): __a : List[Any] = str(lowerCAmelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=lowerCAmelCase__ ) __a : Tuple = Path(lowerCAmelCase__ ) __a : Dict = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase__ ) __a : Dict = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ).cuda() if fpaa: __a : str = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase__ , lowerCAmelCase__ ) # update config with task specific params __a : List[str] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __a : Dict = num_return_sequences __a : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: __a : Dict = tokenizer.model_max_length if prefix is None: __a : Dict = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __a : List[Any] = SeqaSeqDataset( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_target_length=1_0_2_4 , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __a : Tuple = ds.make_sortish_sampler(lowerCAmelCase__ , distributed=lowerCAmelCase__ , add_extra_examples=lowerCAmelCase__ , shuffle=lowerCAmelCase__ ) __a : List[Any] = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=ds.collate_fn ) __a : List[Any] = [] for batch in tqdm(lowerCAmelCase__ ): __a : Any = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , **lowerCAmelCase__ , ) __a : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) __a : int = batch['''ids'''] if num_return_sequences > 1: __a : List[str] = chunks(lowerCAmelCase__ , lowerCAmelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase__ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return results, sampler.num_replicas def __UpperCamelCase ( ): __a : str = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=lowerCAmelCase__ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=lowerCAmelCase__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=lowerCAmelCase__ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument( '''--type_path''' , type=lowerCAmelCase__ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=lowerCAmelCase__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=lowerCAmelCase__ , default=8 , required=lowerCAmelCase__ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=lowerCAmelCase__ , default=6_0_0 , required=lowerCAmelCase__ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument('''--tgt_lang''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( '''--prefix''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __a : int = time.time() __a , __a : Tuple = parser.parse_known_args() __a : Optional[int] = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase__ ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) __a : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) # this handles locking. __a : Dict = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __a : Optional[Any] = {} if args.src_lang is not None: __a : int = args.src_lang if args.tgt_lang is not None: __a : Optional[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase__ ) __a , __a : Tuple = eval_data_dir( args.data_dir , lowerCAmelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , ) if args.local_rank <= 0: __a : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) __a : List[str] = gather_results_from_each_node(lowerCAmelCase__ , lowerCAmelCase__ , args.sync_timeout ) __a : int = combine_partial_results(lowerCAmelCase__ ) if args.num_return_sequences > 1: __a : List[Any] = save_dir.joinpath('''pseudolabel_results.json''' ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return __a : Any = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(lowerCAmelCase__ ) as f: __a : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase__ )] # Calculate metrics, save metrics, and save _generations.txt __a : str = '''translation''' in args.task __a : List[str] = calculate_bleu if calc_bleu else calculate_rouge __a : Any = '''bleu''' if calc_bleu else '''rouge''' __a : Dict = score_fn(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Dict = len(lowerCAmelCase__ ) __a : str = time.time() - start_time __a : List[str] = round(runtime / metrics['''n_obs'''] , 4 ) __a : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics __a : Optional[int] = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ ) print(lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase__ , save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] ): __a : Optional[int] = [] for partial_result in partial_results: records.extend(lowerCAmelCase__ ) __a : Tuple = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x["id"] ) __a : Tuple = [x['''pred'''] for x in records] return preds def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ): # WAIT FOR lots of .json files __a : Tuple = time.time() logger.info('''waiting for all nodes to finish''' ) __a : Optional[int] = None while (time.time() - start_wait) < timeout: __a : Optional[int] = list(save_dir.glob('''rank_*.json''' ) ) if len(lowerCAmelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved __a : Tuple = lmap(lowerCAmelCase__ , lowerCAmelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
216
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Optional[int] ={'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] =['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Tuple =[ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCAmelCase__ : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE = [[0 for _ in range(a__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __SCREAMING_SNAKE_CASE = 1 for n in range(m + 1 ): for k in range(1 , a__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowerCAmelCase__ : Optional[Any] =int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowerCAmelCase__ : str =int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
118
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
133
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class A ( __UpperCAmelCase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : str = RetriBertTokenizer lowerCamelCase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase__ ) lowercase__ = do_lower_case def A__ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Dict: '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
164
0
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __A ( a_ :List[Any]=None , a_ :Tuple=None) -> List[Any]: return field(default_factory=lambda: default , metadata=a_) @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = field( metadata={'''help''': '''The csv file to plot.'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) __lowerCAmelCase = list_field( default=_UpperCamelCase , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def __A ( a_ :Optional[Any]) -> Any: try: int(a_) return True except ValueError: return False def __A ( a_ :List[Any]) -> Any: try: float(a_) return True except ValueError: return False class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : Dict = args __a : Tuple = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: __a : int = csv.DictReader(_UpperCAmelCase ) for row in reader: __a : Union[str, Any] = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None __a : Optional[int] = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None __a : Optional[Any] = float(row['''result'''] ) def _lowerCamelCase ( self ): __a , __a : Optional[int] = plt.subplots() __a : str = '''Time usage''' if self.args.is_time else '''Memory usage''' __a : str = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __a : str = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) __a : Dict = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) __a : Dict = self.result_dict[model_name]['''result'''] ((__a) , (__a)) : List[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __a : Any = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __a : Optional[int] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_UpperCAmelCase , ) else: __a : Dict = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__a) , (__a)) : Union[str, Any] = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) __a : Any = np.asarray(_UpperCAmelCase , _UpperCAmelCase )[: len(_UpperCAmelCase )] plt.scatter( _UpperCAmelCase , _UpperCAmelCase , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(_UpperCAmelCase , _UpperCAmelCase , '''--''' ) title_str += f""" {label_model_name} vs.""" __a : Optional[Any] = title_str[:-4] __a : Optional[int] = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(_UpperCAmelCase ) plt.xlabel(_UpperCAmelCase ) plt.ylabel(_UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __A ( ) -> List[str]: __a : List[str] = HfArgumentParser(a_) __a : Optional[int] = parser.parse_args_into_dataclasses()[0] __a : Tuple = Plot(args=a_) plot.plot() if __name__ == "__main__": main()
188
"""simple docstring""" def __A ( a_ :int) -> Union[str, Any]: __a : int = [] __a : Dict = [] __a : str = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator __a : Tuple = len(a_) if (len(a_) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8) , '''Stack'''.center(a_) , '''Postfix'''.center(a_) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(a_) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(a_) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(a_) == 0: stack.append(a_) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(a_) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(a_) # push x to stack print( x.center(8) , (''''''.join(a_)).ljust(a_) , (''''''.join(a_)).ljust(a_) , sep=''' | ''' , ) # Output in tabular format while len(a_) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( ''' '''.center(8) , (''''''.join(a_)).ljust(a_) , (''''''.join(a_)).ljust(a_) , sep=''' | ''' , ) # Output in tabular format return "".join(a_) # return Postfix as str def __A ( a_ :int) -> List[Any]: __a : Dict = list(infix[::-1]) # reverse the infix equation for i in range(len(a_)): if infix[i] == "(": __a : Union[str, Any] = ''')''' # change "(" to ")" elif infix[i] == ")": __a : List[str] = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(a_)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A = input('''\nEnter an Infix Equation = ''') # Input an Infix equation A = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
188
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class snake_case_ ( __A ): __A : List[Any] = "blenderbot-small" __A : Tuple = ["past_key_values"] __A : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , lowercase_ : Any=5_02_65 , lowercase_ : Optional[Any]=5_12 , lowercase_ : Optional[int]=8 , lowercase_ : Tuple=20_48 , lowercase_ : Any=16 , lowercase_ : Optional[int]=8 , lowercase_ : Any=20_48 , lowercase_ : Any=16 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : int="gelu" , lowercase_ : str=5_12 , lowercase_ : str=0.1 , lowercase_ : Optional[int]=0.0 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : str=1 , lowercase_ : int=False , lowercase_ : Optional[int]=0 , lowercase_ : Tuple=1 , lowercase_ : int=2 , lowercase_ : List[str]=2 , **lowercase_ : Tuple , ) -> Union[str, Any]: lowercase__ : Any = vocab_size lowercase__ : int = max_position_embeddings lowercase__ : Optional[Any] = d_model lowercase__ : List[str] = encoder_ffn_dim lowercase__ : List[str] = encoder_layers lowercase__ : List[Any] = encoder_attention_heads lowercase__ : List[str] = decoder_ffn_dim lowercase__ : Optional[Any] = decoder_layers lowercase__ : Union[str, Any] = decoder_attention_heads lowercase__ : int = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : Dict = activation_dropout lowercase__ : Union[str, Any] = activation_function lowercase__ : Dict = init_std lowercase__ : int = encoder_layerdrop lowercase__ : List[str] = decoder_layerdrop lowercase__ : str = use_cache lowercase__ : Dict = encoder_layers lowercase__ : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) class snake_case_ ( __A ): @property def __UpperCamelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowercase__ : Tuple = {0: "batch"} lowercase__ : Any = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowercase__ : Dict = {0: "batch", 1: "decoder_sequence"} lowercase__ : Tuple = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase__ : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowercase__ , lowercase__ : Any = self.num_layers for i in range(lowercase_ ): lowercase__ : List[str] = {0: "batch", 2: "past_sequence + sequence"} lowercase__ : Any = {0: "batch", 2: "past_sequence + sequence"} else: lowercase__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCamelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : Dict = super().outputs else: lowercase__ : List[str] = super(lowercase_ , self ).outputs if self.use_past: lowercase__ , lowercase__ : Optional[Any] = self.num_layers for i in range(lowercase_ ): lowercase__ : Dict = {0: "batch", 2: "past_sequence + sequence"} lowercase__ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCamelCase ( self : Tuple , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowercase__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Generate decoder inputs lowercase__ : str = seq_length if not self.use_past else 1 lowercase__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowercase__ : Union[str, Any] = dict(**lowercase_ , **lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase__ , lowercase__ : Union[str, Any] = common_inputs["input_ids"].shape lowercase__ : Optional[int] = common_inputs["decoder_input_ids"].shape[1] lowercase__ , lowercase__ : List[str] = self.num_attention_heads lowercase__ : Dict = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ : List[str] = decoder_seq_length + 3 lowercase__ : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase__ : Tuple = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(lowercase_ , lowercase_ )] , dim=1 ) lowercase__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase__ , lowercase__ : List[str] = self.num_layers lowercase__ : List[Any] = min(lowercase_ , lowercase_ ) lowercase__ : List[Any] = max(lowercase_ , lowercase_ ) - min_num_layers lowercase__ : int = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. lowercase__ : str = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(lowercase_ , lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def __UpperCamelCase ( self : Optional[Any] , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowercase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase__ , lowercase__ : str = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowercase__ : Dict = seqlen + 2 lowercase__ , lowercase__ : List[str] = self.num_layers lowercase__ , lowercase__ : Optional[Any] = self.num_attention_heads lowercase__ : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ : Optional[int] = common_inputs["attention_mask"].dtype lowercase__ : List[Any] = torch.cat( [common_inputs["attention_mask"], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) lowercase__ : Dict = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def __UpperCamelCase ( self : List[Any] , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ : List[Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ : Optional[Any] = tokenizer.num_special_tokens_to_add(lowercase_ ) lowercase__ : List[Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence lowercase__ : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase__ : Union[str, Any] = dict(tokenizer(lowercase_ , return_tensors=lowercase_ ) ) return common_inputs def __UpperCamelCase ( self : str , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) elif self.task == "causal-lm": lowercase__ : List[str] = self._generate_dummy_inputs_for_causal_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) else: lowercase__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) return common_inputs def __UpperCamelCase ( self : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : List[Any] ) -> Any: if self.task in ["default", "seq2seq-lm"]: lowercase__ : Dict = super()._flatten_past_key_values_(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : str = super(lowercase_ , self )._flatten_past_key_values_( lowercase_ , lowercase_ , lowercase_ , lowercase_ )
87
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : Union[str, Any] = LEDTokenizer __A : Union[str, Any] = LEDTokenizerFast __A : Optional[Any] = True def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().setUp() lowercase__ : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : Optional[int] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : Tuple = {"unk_token": "<unk>"} lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def __UpperCamelCase ( self : int , **lowercase_ : str ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : List[Any] , **lowercase_ : Any ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Any ) -> Tuple: return "lower newer", "lower newer" @cached_property def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def __UpperCamelCase ( self : Tuple ) -> int: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : str = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Dict = tokenizer(lowercase_ , max_length=len(lowercase_ ) , padding=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowercase_ , lowercase_ ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Tuple: lowercase__ : Dict = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[int] = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt" ) self.assertIn("input_ids" , lowercase_ ) self.assertIn("attention_mask" , lowercase_ ) self.assertNotIn("labels" , lowercase_ ) self.assertNotIn("decoder_attention_mask" , lowercase_ ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Any: lowercase__ : Dict = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Dict = tokenizer(text_target=lowercase_ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : int = tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=lowercase_ , truncation=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Any: lowercase__ : Union[str, Any] = ["A long paragraph for summarization."] lowercase__ : List[Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[Any] = tokenizer(lowercase_ , return_tensors="pt" ) lowercase__ : Dict = tokenizer(text_target=lowercase_ , return_tensors="pt" ) lowercase__ : Optional[int] = inputs["input_ids"] lowercase__ : str = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : int = ["Summary of the text.", "Another summary."] lowercase__ : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase__ : Tuple = tokenizer(lowercase_ , padding=lowercase_ ) lowercase__ : int = [[0] * len(lowercase_ ) for x in encoded_output["input_ids"]] lowercase__ : Any = tokenizer.pad(lowercase_ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowercase_ ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: pass def __UpperCamelCase ( self : int ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[str] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[Any] = "A, <mask> AllenNLP sentence." lowercase__ : Tuple = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowercase__ : List[str] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Any = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
87
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = data def __iter__( self ): """simple docstring""" for element in self.data: yield element def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any]=True ) -> List[Any]: '''simple docstring''' lowercase = Accelerator(even_batches=lowerCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCAmelCase__ ( lowerCAmelCase__ :Accelerator , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :bool = False ) -> Dict: '''simple docstring''' if iterable: lowercase = DummyIterableDataset(torch.as_tensor(range(lowerCAmelCase__ ) ) ) else: lowercase = TensorDataset(torch.as_tensor(range(lowerCAmelCase__ ) ) ) lowercase = DataLoader(lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowercase = accelerator.prepare(lowerCAmelCase__ ) return dl def UpperCAmelCase__ ( lowerCAmelCase__ :Accelerator , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :List[int] , ) -> Dict: '''simple docstring''' lowercase = create_dataloader(accelerator=lowerCAmelCase__ , dataset_size=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowercase = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCAmelCase__ ( ) -> Any: '''simple docstring''' lowercase = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase = create_accelerator(even_batches=lowerCAmelCase__ ) verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' lowercase = create_accelerator(even_batches=lowerCAmelCase__ ) lowercase = torch.nn.Linear(1 , 1 ) lowercase = accelerator.prepare(lowerCAmelCase__ ) lowercase = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(lowerCAmelCase__ ): lowercase = ddp_model(batch[0].float() ) lowercase = output.sum() loss.backward() batch_idxs.append(lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Tuple: '''simple docstring''' with warnings.catch_warnings(record=lowerCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , lowerCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' lowercase = True lowercase = False lowercase = create_accelerator(even_batches=lowerCAmelCase__ ) lowercase = torch.nn.Linear(1 , 1 ) lowercase = accelerator.prepare(lowerCAmelCase__ ) lowercase = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): lowercase = train_dl.batch_sampler.even_batches lowercase = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase__ ( ) -> int: '''simple docstring''' lowercase = True lowercase = False lowercase = create_accelerator(even_batches=lowerCAmelCase__ ) lowercase = torch.nn.Linear(1 , 1 ) lowercase = accelerator.prepare(lowerCAmelCase__ ) create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=lowerCAmelCase__ ) lowercase = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): lowercase = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' lowercase = create_accelerator() lowercase = torch.nn.Linear(1 , 1 ) lowercase = accelerator.prepare(lowerCAmelCase__ ) create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=lowerCAmelCase__ ) with warnings.catch_warnings(record=lowerCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): pass assert issubclass(w[-1].category , lowerCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCAmelCase__ ( ) -> Tuple: '''simple docstring''' lowercase = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) lowercase = accelerator.state.distributed_type lowercase = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(lowerCAmelCase__ ) lowercase = original_state if __name__ == "__main__": main()
32
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
1
"""simple docstring""" import string import numpy def _snake_case ( lowercase__ , lowercase__ ): return b if a == 0 else greatest_common_divisor(b % a , lowercase__ ) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCamelCase__ = numpy.vectorize(lambda lowercase : x % 36 ) lowerCamelCase__ = numpy.vectorize(lowercase ) def __init__( self , lowercase ): _lowerCamelCase : Optional[int] = self.modulus(lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _lowerCamelCase : Dict = encrypt_key.shape[0] def A_ ( self , lowercase ): return self.key_string.index(lowercase ) def A_ ( self , lowercase ): return self.key_string[round(lowercase )] def A_ ( self ): _lowerCamelCase : Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCamelCase : Dict = det % len(self.key_string ) _lowerCamelCase : List[Any] = len(self.key_string ) if greatest_common_divisor(lowercase , len(self.key_string ) ) != 1: _lowerCamelCase : List[Any] = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : int = [char for char in text.upper() if char in self.key_string] _lowerCamelCase : Optional[int] = chars[-1] while len(lowercase ) % self.break_key != 0: chars.append(lowercase ) return "".join(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : List[Any] = self.process_text(text.upper() ) _lowerCamelCase : Dict = '' for i in range(0 , len(lowercase ) - self.break_key + 1 , self.break_key ): _lowerCamelCase : Dict = text[i : i + self.break_key] _lowerCamelCase : Any = [self.replace_letters(lowercase ) for char in batch] _lowerCamelCase : Optional[Any] = numpy.array([vec] ).T _lowerCamelCase : int = self.modulus(self.encrypt_key.dot(lowercase ) ).T.tolist()[ 0 ] _lowerCamelCase : Tuple = ''.join( self.replace_digits(lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def A_ ( self ): _lowerCamelCase : Tuple = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCamelCase : Dict = det % len(self.key_string ) _lowerCamelCase : Tuple = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _lowerCamelCase : Optional[int] = i break _lowerCamelCase : Any = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowercase ) ) def A_ ( self , lowercase ): _lowerCamelCase : Any = self.make_decrypt_key() _lowerCamelCase : List[Any] = self.process_text(text.upper() ) _lowerCamelCase : Any = '' for i in range(0 , len(lowercase ) - self.break_key + 1 , self.break_key ): _lowerCamelCase : Optional[Any] = text[i : i + self.break_key] _lowerCamelCase : Optional[Any] = [self.replace_letters(lowercase ) for char in batch] _lowerCamelCase : Union[str, Any] = numpy.array([vec] ).T _lowerCamelCase : List[Any] = self.modulus(decrypt_key.dot(lowercase ) ).T.tolist()[0] _lowerCamelCase : Tuple = ''.join( self.replace_digits(lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _snake_case ( ): _lowerCamelCase : Optional[int] = int(input('Enter the order of the encryption key: ' ) ) _lowerCamelCase : str = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(lowercase__ ): _lowerCamelCase : str = [int(lowercase__ ) for x in input().split()] hill_matrix.append(lowercase__ ) _lowerCamelCase : Optional[int] = HillCipher(numpy.array(lowercase__ ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _lowerCamelCase : str = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _lowerCamelCase : Dict = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(lowercase__ ) ) elif option == "2": _lowerCamelCase : Any = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
96
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "pix2struct_text_model" snake_case = ["past_key_values"] snake_case = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _SCREAMING_SNAKE_CASE=5_0244 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' A_ : Optional[int] = vocab_size A_ : Any = hidden_size A_ : Optional[Any] = d_kv A_ : int = d_ff A_ : int = num_layers A_ : Dict = num_heads A_ : Any = relative_attention_num_buckets A_ : int = relative_attention_max_distance A_ : Optional[Any] = dropout_rate A_ : Optional[Any] = layer_norm_epsilon A_ : List[Any] = initializer_factor A_ : Optional[int] = use_cache A_ : Optional[Any] = eos_token_id A_ : List[Any] = decoder_start_token_id # for backwards compatibility A_ : int = dense_act_fn super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , tie_word_embeddings=_SCREAMING_SNAKE_CASE , is_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @classmethod def _snake_case ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) A_ , A_ : Union[str, Any] = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A_ : Any = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "pix2struct_vision_model" def __init__( self , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=1e-10 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , **_SCREAMING_SNAKE_CASE , )->Optional[int]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A_ : Dict = hidden_size A_ : Union[str, Any] = patch_embed_hidden_size A_ : Optional[Any] = d_ff A_ : Optional[Any] = dropout_rate A_ : int = num_hidden_layers A_ : Tuple = num_attention_heads A_ : List[str] = initializer_range A_ : List[str] = initializer_factor A_ : Union[str, Any] = attention_dropout A_ : Union[str, Any] = layer_norm_eps A_ : Dict = dense_act_fn A_ : Union[str, Any] = seq_len A_ : Optional[Any] = relative_attention_num_buckets A_ : Tuple = relative_attention_max_distance A_ : List[Any] = d_kv @classmethod def _snake_case ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) A_ , A_ : str = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A_ : Any = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "pix2struct" snake_case = True def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , )->Any: '''simple docstring''' super().__init__(tie_word_embeddings=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text_config is None: A_ : Dict = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: A_ : List[Any] = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) A_ : int = PixaStructTextConfig(**_SCREAMING_SNAKE_CASE ) A_ : Dict = PixaStructVisionConfig(**_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.text_config.decoder_start_token_id A_ : Tuple = self.text_config.pad_token_id A_ : Union[str, Any] = self.text_config.eos_token_id A_ : str = initializer_factor A_ : Tuple = initializer_range A_ : List[str] = self.initializer_range A_ : int = self.initializer_range A_ : List[Any] = is_vqa @classmethod def _snake_case ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : List[Any] = copy.deepcopy(self.__dict__ ) A_ : Dict = self.text_config.to_dict() A_ : int = self.vision_config.to_dict() A_ : List[str] = self.__class__.model_type return output
186
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = "cpu" , lowercase_ = None ) -> Optional[Any]: A__ = torch.load(SCREAMING_SNAKE_CASE_ , map_location=SCREAMING_SNAKE_CASE_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) A__ = v.half() if save_path is None: # overwrite src_path A__ = src_path torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": fire.Fire(convert)
364
"""simple docstring""" import baseaa def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> bytes: return baseaa.aaaencode(string.encode("utf-8" ) ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: return baseaa.aaadecode(lowercase_ ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
230
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ : Any = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Tuple = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE_ : str = parse(importlib.metadata.version('torch')) def _snake_case ( UpperCAmelCase_ : Union[str, Version] , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) A__ = STR_OPERATION_TO_FUNC[operation] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): A__ = parse(importlib.metadata.version(UpperCAmelCase_ ) ) return operation(UpperCAmelCase_ , parse(UpperCAmelCase_ ) ) def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return compare_versions(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
335
1
"""simple docstring""" import requests from bsa import BeautifulSoup def _a ( _snake_case = "AAPL" ): """simple docstring""" UpperCAmelCase = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' UpperCAmelCase = BeautifulSoup(requests.get(_snake_case ).text , """html.parser""" ) UpperCAmelCase = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
234
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCamelCase = ["""text""", """image""", """audio"""] def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_snake_case , _snake_case ): inputs.append(create_inputs(_snake_case ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] for output in outputs: if isinstance(_snake_case , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(_snake_case , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(_snake_case , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class lowerCamelCase__ : def _UpperCamelCase ( self ): self.assertTrue(hasattr(self.tool ,"""inputs""" ) ) self.assertTrue(hasattr(self.tool ,"""outputs""" ) ) UpperCAmelCase = self.tool.inputs for _input in inputs: if isinstance(_input ,A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCAmelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*A ) # There is a single output if len(self.tool.outputs ) == 1: UpperCAmelCase = [outputs] self.assertListEqual(output_types(A ) ,self.tool.outputs ) def _UpperCamelCase ( self ): self.assertTrue(hasattr(self.tool ,"""description""" ) ) self.assertTrue(hasattr(self.tool ,"""default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*A ) if not isinstance(A ,A ): UpperCAmelCase = [outputs] self.assertEqual(len(A ) ,len(self.tool.outputs ) ) for output, output_type in zip(A ,self.tool.outputs ): UpperCAmelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(A ,A ) ) def _UpperCamelCase ( self ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = [] for _input, input_type in zip(A ,self.tool.inputs ): if isinstance(A ,A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCAmelCase = self.tool(*A ) if not isinstance(A ,A ): UpperCAmelCase = [outputs] self.assertEqual(len(A ) ,len(self.tool.outputs ) )
234
1
import os import pytest from attr import dataclass a__ = """us-east-1""" # defaults region @dataclass class snake_case : '''simple docstring''' snake_case_ : Optional[Any] = 42 snake_case_ : Dict = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" snake_case_ : str = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 5_00, """save_steps""": 55_00, } snake_case_ : Optional[int] = {**hyperparameters, """max_steps""": 10_00} @property def UpperCamelCase_ ( self : Union[str, Any]) -> str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCamelCase_ ( self : str) -> str: """simple docstring""" return F'''{self.framework}-transfromers-test''' @property def UpperCamelCase_ ( self : List[str]) -> str: """simple docstring""" return F'''./tests/sagemaker/scripts/{self.framework}''' @property def UpperCamelCase_ ( self : Optional[int]) -> str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: _snake_case : Any = SageMakerTestEnvironment(framework=request.cls.framework )
317
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __A = random.Random() def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str]=1.0 , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" if rng is None: __lowerCamelCase = global_rng __lowerCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=400 , lowerCamelCase__=2_000 , lowerCamelCase__=10 , lowerCamelCase__=160 , lowerCamelCase__=8 , lowerCamelCase__=0.0 , lowerCamelCase__=4_000 , lowerCamelCase__=False , lowerCamelCase__=True , ) -> List[str]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = min_seq_length __lowerCamelCase = max_seq_length __lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCamelCase = padding_value __lowerCamelCase = sampling_rate __lowerCamelCase = return_attention_mask __lowerCamelCase = do_normalize __lowerCamelCase = feature_size __lowerCamelCase = chunk_length __lowerCamelCase = hop_length def lowercase_ ( self ) -> Any: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self , lowerCamelCase__=False , lowerCamelCase__=False ) -> Optional[int]: '''simple docstring''' def _flatten(lowerCamelCase__ ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: __lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowerCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCamelCase = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = WhisperFeatureExtractor if is_speech_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = WhisperFeatureExtractionTester(self ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) __lowerCamelCase = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = feat_extract_first.to_dict() __lowerCamelCase = feat_extract_second.to_dict() __lowerCamelCase = feat_extract_first.mel_filters __lowerCamelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(lowerCamelCase__ , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCamelCase__ ) __lowerCamelCase = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) __lowerCamelCase = feat_extract_first.to_dict() __lowerCamelCase = feat_extract_second.to_dict() __lowerCamelCase = feat_extract_first.mel_filters __lowerCamelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowerCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test feature size __lowerCamelCase = feature_extractor(lowerCamelCase__ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __lowerCamelCase = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test batched __lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='np' ).input_features __lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowerCamelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] __lowerCamelCase = np.asarray(lowerCamelCase__ ) __lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='np' ).input_features __lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test truncation required __lowerCamelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] __lowerCamelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] __lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs_truncated] __lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='np' ).input_features __lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' import torch __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCamelCase = np.random.rand(100 , 32 ).astype(np.floataa ) __lowerCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowerCamelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __lowerCamelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __lowerCamelCase = ds.sort('id' ).select(range(lowerCamelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowercase_ ( self ) -> Tuple: '''simple docstring''' # fmt: off __lowerCamelCase = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on __lowerCamelCase = self._load_datasamples(1 ) __lowerCamelCase = WhisperFeatureExtractor() __lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCamelCase__ , atol=1e-4 ) ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCamelCase = self._load_datasamples(1 )[0] __lowerCamelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue __lowerCamelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase__ )[0] self.assertTrue(np.all(np.mean(lowerCamelCase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__ ) - 1 ) < 1e-3 ) )
90
0
"""simple docstring""" from __future__ import annotations import numpy as np def __lowercase ( _a ): snake_case_ : Dict = np.shape(_a ) if rows != columns: snake_case_ : Optional[int] = ( '''\'table\' has to be of square shaped array but got a ''' f"{rows}x{columns} array:\n{table}" ) raise ValueError(_a ) snake_case_ : str = np.zeros((rows, columns) ) snake_case_ : Optional[Any] = np.zeros((rows, columns) ) for i in range(_a ): for j in range(_a ): snake_case_ : List[Any] = sum(lower[i][k] * upper[k][j] for k in range(_a ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) snake_case_ : Any = (table[i][j] - total) / upper[j][j] snake_case_ : Tuple = 1 for j in range(_a , _a ): snake_case_ : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(_a ) ) snake_case_ : Optional[Any] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ : Union[str, Any] = get_tests_dir('''fixtures''') class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): # A mock response for an HTTP head request to emulate server down snake_case_ : Any = mock.Mock() snake_case_ : Tuple = 500 snake_case_ : Dict = {} snake_case_ : Optional[Any] = HTTPError snake_case_ : Optional[int] = {} # Download this model to make sure it's in the cache. snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowercase_ ) as mock_head: snake_case_ : Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self : Optional[int] ): # This test is for deprecated behavior and can be removed in v5 snake_case_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase): @classmethod def _snake_case ( cls : List[Any] ): snake_case_ : Dict = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _snake_case ( cls : int ): try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def _snake_case ( self : Any ): snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''test-feature-extractor''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): CustomFeatureExtractor.register_for_auto_class() snake_case_ : int = CustomFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) snake_case_ : List[str] = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
155
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase__ )] ) lowercase = np.array(lowerCAmelCase__ ) lowercase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase__ ) ) , x.transpose() ) , lowerCAmelCase__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = (1, 2, 1) lowercase = (1, 1, 0, 7) lowercase = SARIMAX( lowerCAmelCase__ , exog=lowerCAmelCase__ , order=lowerCAmelCase__ , seasonal_order=lowerCAmelCase__ ) lowercase = model.fit(disp=lowerCAmelCase__ , maxiter=600 , method='''nm''' ) lowercase = model_fit.predict(1 , len(lowerCAmelCase__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = regressor.predict(lowerCAmelCase__ ) return y_pred[0] def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' train_user.sort() lowercase = np.percentile(lowerCAmelCase__ , 25 ) lowercase = np.percentile(lowerCAmelCase__ , 75 ) lowercase = qa - qa lowercase = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 lowercase = 0 for i in list_vote: if i > actual_result: lowercase = not_safe + 1 else: if abs(abs(lowerCAmelCase__ ) - abs(lowerCAmelCase__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase__ :int = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] lowercase__ :Any = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) lowercase__ :Tuple = Normalizer().fit_transform(data_input_df.values) # split data lowercase__ :Union[str, Any] = normalize_df[:, 2].tolist() lowercase__ :Tuple = normalize_df[:, 0].tolist() lowercase__ :List[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase__ :Optional[Any] = normalize_df[:, [1, 2]].tolist() lowercase__ :str = x[: len(x) - 1] lowercase__ :Dict = x[len(x) - 1 :] # for linear regression & sarimax lowercase__ :Tuple = total_date[: len(total_date) - 1] lowercase__ :Any = total_user[: len(total_user) - 1] lowercase__ :str = total_match[: len(total_match) - 1] lowercase__ :Optional[int] = total_date[len(total_date) - 1 :] lowercase__ :int = total_user[len(total_user) - 1 :] lowercase__ :Union[str, Any] = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase__ :int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase__ :Dict = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
101
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Tuple =ShapEPipeline lowercase_ : List[Any] =['''prompt'''] lowercase_ : int =['''prompt'''] lowercase_ : Union[str, Any] =[ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowercase_ : Optional[int] =False @property def A__ ( self): return 3_2 @property def A__ ( self): return 3_2 @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 8 @property def A__ ( self): lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') return tokenizer @property def A__ ( self): torch.manual_seed(0) lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(A__) @property def A__ ( self): torch.manual_seed(0) lowercase = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase = PriorTransformer(**A__) return model @property def A__ ( self): torch.manual_seed(0) lowercase = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase = ShapERenderer(**A__) return model def A__ ( self): lowercase = self.dummy_prior lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_renderer lowercase = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=1_0_2_4 ,prediction_type='''sample''' ,use_karras_sigmas=A__ ,clip_sample=A__ ,clip_sample_range=1.0 ,) lowercase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def A__ ( self): lowercase = '''cpu''' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = pipe(**self.get_dummy_inputs(A__)) lowercase = output.images[0] lowercase = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) lowercase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def A__ ( self): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def A__ ( self): lowercase = torch_device == '''cpu''' lowercase = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=A__ ,relax_max_difference=A__ ,) def A__ ( self): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = 1 lowercase = 2 lowercase = self.get_dummy_inputs(A__) for key in inputs.keys(): if key in self.batch_params: lowercase = batch_size * [inputs[key]] lowercase = pipe(**A__ ,num_images_per_prompt=A__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''') lowercase = ShapEPipeline.from_pretrained('''openai/shap-e''') lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = torch.Generator(device=A__).manual_seed(0) lowercase = pipe( '''a shark''' ,generator=A__ ,guidance_scale=15.0 ,num_inference_steps=6_4 ,frame_size=6_4 ,output_type='''np''' ,).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(A__ ,A__)
101
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
103
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = "arrow", **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__( split=SCREAMING_SNAKE_CASE_, features=SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, keep_in_memory=SCREAMING_SNAKE_CASE_, streaming=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Any = load_from_cache_file UpperCamelCase : Any = file_format UpperCamelCase : str = Spark( df=SCREAMING_SNAKE_CASE_, features=SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, working_dir=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) def snake_case_ ( self ) -> Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCamelCase : Dict = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=SCREAMING_SNAKE_CASE_, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split )
103
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str]=13 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Dict=[10, 20, 30, 40] , __UpperCAmelCase : Any=[2, 2, 3, 2] , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=37 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Tuple=10 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Optional[Any]=["stage2", "stage3", "stage4"] , __UpperCAmelCase : Optional[int]=[2, 3, 4] , __UpperCAmelCase : Any=None , ): a : Union[str, Any] = parent a : Optional[int] = batch_size a : str = image_size a : List[Any] = num_channels a : List[str] = num_stages a : Optional[int] = hidden_sizes a : List[Any] = depths a : int = is_training a : Optional[int] = use_labels a : str = intermediate_size a : str = hidden_act a : int = num_labels a : Tuple = initializer_range a : Optional[Any] = out_features a : List[Any] = out_indices a : Union[str, Any] = scope def __snake_case ( self : List[str]): a : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : str = None if self.use_labels: a : Any = ids_tensor([self.batch_size] , self.num_labels) a : Optional[Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self : int): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __snake_case ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Dict): a : int = ConvNextVaModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[str] = model(__UpperCAmelCase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Dict): a : Optional[Any] = ConvNextVaForImageClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[str] = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str]): a : Optional[int] = ConvNextVaBackbone(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[Any] = model(__UpperCAmelCase) # verify hidden states self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None a : Any = None a : Optional[int] = ConvNextVaBackbone(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Optional[Any] = model(__UpperCAmelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def __snake_case ( self : Union[str, Any]): a : str = self.prepare_config_and_inputs() a , a , a : Any = config_and_inputs a : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict def __snake_case ( self : Union[str, Any]): a : int = self.prepare_config_and_inputs() a , a , a : Optional[int] = config_and_inputs a : Optional[int] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _A ( _a ,_a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Tuple = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) UpperCAmelCase : Optional[int] = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase : Optional[int] = False UpperCAmelCase : str = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : List[str] = False UpperCAmelCase : Optional[Any] = False def __snake_case ( self : List[str]): a : Tuple = ConvNextVaModelTester(self) a : str = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def __snake_case ( self : str): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Any): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds") def __snake_case ( self : Optional[int]): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings") def __snake_case ( self : int): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking") def __snake_case ( self : str): pass def __snake_case ( self : Optional[int]): if not self.model_tester.is_training: return for model_class in self.all_model_classes: a , a : Dict = self.model_tester.prepare_config_and_inputs_with_labels() a : Tuple = True if model_class.__name__ in [ *get_values(__UpperCAmelCase), *get_values(__UpperCAmelCase), ]: continue a : int = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.train() a : Dict = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) a : Optional[int] = model(**__UpperCAmelCase).loss loss.backward() def __snake_case ( self : Dict): if not self.model_tester.is_training: return for model_class in self.all_model_classes: a , a : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() a : Optional[int] = False a : Optional[Any] = True if ( model_class.__name__ in [*get_values(__UpperCAmelCase), *get_values(__UpperCAmelCase)] or not model_class.supports_gradient_checkpointing ): continue a : Tuple = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.gradient_checkpointing_enable() model.train() a : Union[str, Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) a : Optional[int] = model(**__UpperCAmelCase).loss loss.backward() def __snake_case ( self : Dict): a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Any = model_class(__UpperCAmelCase) a : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Any = [*signature.parameters.keys()] a : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def __snake_case ( self : Dict): a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def __snake_case ( self : Optional[Any]): def check_hidden_states_output(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int]): a : Optional[int] = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() with torch.no_grad(): a : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a : List[Any] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase) , expected_num_stages + 1) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a , a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Dict = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Optional[int]): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def __snake_case ( self : Optional[Any]): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Tuple = ConvNextVaModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def lowercase ( )-> List[str]: '''simple docstring''' a : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : Union[str, Any]): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") if is_vision_available() else None @slow def __snake_case ( self : int): a : Optional[int] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224").to(__UpperCAmelCase) a : Any = self.default_image_processor a : Union[str, Any] = prepare_img() a : List[str] = preprocessor(images=__UpperCAmelCase , return_tensors="pt").to(__UpperCAmelCase) # forward pass with torch.no_grad(): a : Any = model(**__UpperCAmelCase) # verify the logits a : str = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a : Union[str, Any] = torch.tensor([0.9_996, 0.1_966, -0.4_386]).to(__UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4))
40
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __a: Tuple = None __a: Tuple = logging.get_logger(__name__) __a: Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __a: Optional[Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 __a: Tuple = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = TaTokenizer SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=100 , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> Union[str, Any]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase__ : Union[str, Any] = [F"""<extra_id_{i}>""" for i in range(__lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ : Dict = len(set(filter(lambda __lowerCAmelCase : bool('''extra_id_''' in str(__lowerCAmelCase ) ) , __lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , extra_ids=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : Union[str, Any] = vocab_file lowercase__ : Optional[int] = False if not self.vocab_file else True lowercase__ : Any = extra_ids @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __lowerCAmelCase , ) return max_model_length def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[Any] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) logger.info(F"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCAmelCase( self ) -> List[Any]: return list( set(filter(lambda __lowerCAmelCase : bool(re.search(r'''<extra_id_\d+>''' , __lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCAmelCase( self ) -> Tuple: return [self.convert_tokens_to_ids(__lowerCAmelCase ) for token in self.get_sentinel_tokens()]
198
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = TextToVideoSDPipeline UpperCamelCase = TEXT_TO_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. UpperCamelCase = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def lowercase__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=0 ) -> int: '''simple docstring''' if str(_UpperCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**_UpperCAmelCase ) UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**_UpperCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' pass def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
241
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase_ = model_name.find("patch" ) UpperCAmelCase_ = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) UpperCAmelCase_ = XCLIPVisionConfig(patch_size=lowerCAmelCase__ , num_frames=lowerCAmelCase__ ) if "large" in model_name: UpperCAmelCase_ = 768 UpperCAmelCase_ = 3072 UpperCAmelCase_ = 12 UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 16 UpperCAmelCase_ = 24 UpperCAmelCase_ = 768 UpperCAmelCase_ = 3072 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ = 336 UpperCAmelCase_ = XCLIPConfig.from_text_vision_configs(lowerCAmelCase__ , lowerCAmelCase__ ) if "large" in model_name: UpperCAmelCase_ = 768 return config def a__ ( lowerCAmelCase__ ): # text encoder if name == "token_embedding.weight": UpperCAmelCase_ = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": UpperCAmelCase_ = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: UpperCAmelCase_ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: UpperCAmelCase_ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: UpperCAmelCase_ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: UpperCAmelCase_ = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): UpperCAmelCase_ = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase_ = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: UpperCAmelCase_ = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase_ = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": UpperCAmelCase_ = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): UpperCAmelCase_ = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: UpperCAmelCase_ = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: UpperCAmelCase_ = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: UpperCAmelCase_ = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: UpperCAmelCase_ = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: UpperCAmelCase_ = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase_ = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: UpperCAmelCase_ = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": UpperCAmelCase_ = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): UpperCAmelCase_ = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): UpperCAmelCase_ = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(lowerCAmelCase__ ) if "attn.in_proj" in key: UpperCAmelCase_ = key.split("." ) if key.startswith("visual" ): UpperCAmelCase_ = key_split[3] UpperCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase_ = val[ :dim, : ] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[ -dim:, : ] else: UpperCAmelCase_ = val[ :dim ] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase_ = val[ :dim, : ] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[ -dim:, : ] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[-dim:] elif key.startswith("mit" ): UpperCAmelCase_ = key_split[2] UpperCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = key_split[2] UpperCAmelCase_ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = rename_key(lowerCAmelCase__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase_ = val.T UpperCAmelCase_ = val return orig_state_dict def a__ ( lowerCAmelCase__ ): if num_frames == 8: UpperCAmelCase_ = "eating_spaghetti_8_frames.npy" elif num_frames == 16: UpperCAmelCase_ = "eating_spaghetti.npy" elif num_frames == 32: UpperCAmelCase_ = "eating_spaghetti_32_frames.npy" UpperCAmelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=lowerCAmelCase__ , repo_type="dataset" , ) UpperCAmelCase_ = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False ): UpperCAmelCase_ = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } UpperCAmelCase_ = model_to_url[model_name] UpperCAmelCase_ = 8 if "16-frames" in model_name: UpperCAmelCase_ = 16 elif "shot" in model_name: UpperCAmelCase_ = 32 UpperCAmelCase_ = get_xclip_config(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = XCLIPModel(lowerCAmelCase__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase_ = "pytorch_model.bin" gdown.cached_download(lowerCAmelCase__ , lowerCAmelCase__ , quiet=lowerCAmelCase__ ) UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" )["model"] else: UpperCAmelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )["model"] UpperCAmelCase_ = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = XCLIPModel(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase_ = 336 if model_name == "xclip-large-patch14-16-frames" else 224 UpperCAmelCase_ = VideoMAEImageProcessor(size=lowerCAmelCase__ ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase_ = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase_ = XCLIPProcessor(image_processor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) UpperCAmelCase_ = prepare_video(lowerCAmelCase__ ) UpperCAmelCase_ = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=lowerCAmelCase__ , return_tensors="pt" , padding=lowerCAmelCase__ ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase__ ) # Verify outputs UpperCAmelCase_ = outputs.logits_per_video UpperCAmelCase_ = logits_per_video.softmax(dim=1 ) print("Probs:" , lowerCAmelCase__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase_ = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase_ = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase_ = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase_ = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase_ = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase_ = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(lowerCAmelCase__ , organization="nielsr" ) processor.push_to_hub(lowerCAmelCase__ , organization="nielsr" ) slow_tokenizer.push_to_hub(lowerCAmelCase__ , organization="nielsr" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
241
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[str] = """▁""" UpperCAmelCase : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCAmelCase : Tuple = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } UpperCAmelCase : str = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off UpperCAmelCase : Tuple = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowercase : int = ["""input_ids""", """attention_mask"""] _lowercase : List[int] = [] _lowercase : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: '''simple docstring''' a__ : Any =AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token a__ : str ={} if sp_model_kwargs is None else sp_model_kwargs a__ : Dict =kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) a__ : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) a__ : str =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a__ : Optional[int] ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a__ : Dict =1 a__ : List[Any] =len(self.sp_model ) a__ : List[str] ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } a__ : Optional[int] ={v: k for k, v in self.lang_code_to_id.items()} a__ : Any =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a__ : Tuple ={v: k for k, v in self.fairseq_tokens_to_ids.items()} a__ : Optional[int] =src_lang if src_lang is not None else "en_XX" a__ : int =self.lang_code_to_id[self._src_lang] a__ : Dict =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowercase ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def _lowercase ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' a__ : Tuple =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Dict: '''simple docstring''' a__ : Tuple =self.__dict__.copy() a__ : List[Any] =None return state def __setstate__( self , lowerCAmelCase__ ) -> None: '''simple docstring''' a__ : Union[str, Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : Optional[int] ={} a__ : str =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Union[str, Any] ={self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a__ : Union[str, Any] =self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowercase ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' a__ : str =[] a__ : Tuple ="" a__ : str =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token a__ : Optional[int] =True a__ : Dict =[] else: current_sub_tokens.append(lowerCAmelCase__ ) a__ : Optional[Any] =False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : List[str] =os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , "wb" ) as fi: a__ : Optional[int] =self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) a__ : List[str] =[1] * len(self.prefix_tokens ) a__ : List[str] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a__ : Any =src_lang a__ : Optional[int] =self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Any =self.convert_tokens_to_ids(lowerCAmelCase__ ) a__ : int =tgt_lang_id return inputs def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = "en_XX" , lowerCAmelCase__ = None , lowerCAmelCase__ = "ro_RO" , **lowerCAmelCase__ , ) -> BatchEncoding: '''simple docstring''' a__ : Optional[Any] =src_lang a__ : Optional[int] =tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ) -> str: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' a__ : Tuple =self.lang_code_to_id[src_lang] a__ : Optional[Any] =[self.cur_lang_code_id] a__ : Optional[int] =[self.eos_token_id] def _lowercase ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' a__ : Tuple =self.lang_code_to_id[tgt_lang] a__ : List[Any] =[self.cur_lang_code_id] a__ : str =[self.eos_token_id]
95
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowercase__ : int , lowercase__ : List[str] , lowercase__ : List[str] ): # Initialise PyTorch model snake_case : Optional[Any] = TaConfig.from_json_file(lowercase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case : Tuple = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
148
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } snake_case_ = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Tuple = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : Optional[int] = RobertaTokenizer def __init__(self : int , a__ : Dict=None , a__ : List[Any]=None , a__ : Any=None , a__ : List[str]="replace" , a__ : Dict="<s>" , a__ : str="</s>" , a__ : List[str]="</s>" , a__ : Optional[int]="<s>" , a__ : List[Any]="<unk>" , a__ : Tuple="<pad>" , a__ : Optional[int]="<mask>" , a__ : Tuple=False , a__ : Tuple=True , **a__ : int , ): """simple docstring""" super().__init__( a__ , a__ , tokenizer_file=a__ , errors=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , trim_offsets=a__ , **a__ , ) __snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , a__ ) != add_prefix_space: __snake_case = getattr(a__ , pre_tok_state.pop('''type''' ) ) __snake_case = add_prefix_space __snake_case = pre_tok_class(**a__ ) __snake_case = add_prefix_space __snake_case = '''post_processor''' __snake_case = getattr(self.backend_tokenizer , a__ , a__ ) if tokenizer_component_instance: __snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case = tuple(state['''sep'''] ) if "cls" in state: __snake_case = tuple(state['''cls'''] ) __snake_case = False if state.get('''add_prefix_space''' , a__ ) != add_prefix_space: __snake_case = add_prefix_space __snake_case = True if state.get('''trim_offsets''' , a__ ) != trim_offsets: __snake_case = trim_offsets __snake_case = True if changes_to_apply: __snake_case = getattr(a__ , state.pop('''type''' ) ) __snake_case = component_class(**a__ ) setattr(self.backend_tokenizer , a__ , a__ ) @property def a (self : Union[str, Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def a (self : Optional[int] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else value __snake_case = value def a (self : str , *a__ : Union[str, Any] , **a__ : int ): """simple docstring""" __snake_case = kwargs.get('''is_split_into_words''' , a__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a__ , **a__ ) def a (self : Dict , *a__ : int , **a__ : List[str] ): """simple docstring""" __snake_case = kwargs.get('''is_split_into_words''' , a__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*a__ , **a__ ) def a (self : Dict , a__ : str , a__ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def a (self : Optional[int] , a__ : Any , a__ : List[str]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a (self : Tuple , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
238
from __future__ import annotations snake_case_ = [True] * 1000001 snake_case_ = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): snake_case_ = False i += 1 def lowerCamelCase__ ( snake_case_ : int ) -> bool: return seive[n] def lowerCamelCase__ ( snake_case_ : int ) -> bool: return any(digit in '''02468''' for digit in str(snake_case_ ) ) def lowerCamelCase__ ( snake_case_ : int = 100_0000 ) -> list[int]: __snake_case = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(snake_case_ ) and not contains_an_even_digit(snake_case_ ): __snake_case = str(snake_case_ ) __snake_case = [int(str_num[j:] + str_num[:j] ) for j in range(len(snake_case_ ) )] if all(is_prime(snake_case_ ) for i in list_nums ): result.append(snake_case_ ) return result def lowerCamelCase__ ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(F'{len(find_circular_primes()) = }')
238
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A__: str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys A__: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str ) -> Optional[int]: '''simple docstring''' _a , _a : List[str] =text, pattern _a , _a : Union[str, Any] =len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __UpperCAmelCase ( self :Union[str, Any] ) -> list[int]: '''simple docstring''' # searches pattern in text and returns index positions _a : Union[str, Any] =[] for i in range(self.textLen - self.patLen + 1 ): _a : Any =self.mismatch_in_text(SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(SCREAMING_SNAKE_CASE ) else: _a : int =self.match_in_pattern(self.text[mismatch_index] ) _a : List[str] =( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A__: Any = '''ABAABA''' A__: int = '''AB''' A__: Optional[int] = BoyerMooreSearch(text, pattern) A__: Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
276
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> float: return 1_0 - x * x def __lowerCamelCase ( _lowercase , _lowercase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(_lowercase ) * equation(_lowercase ) >= 0: raise ValueError("""Wrong space!""" ) UpperCAmelCase : Any = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase : str = (a + b) / 2 # Check if middle point is root if equation(_lowercase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowercase ) * equation(_lowercase ) < 0: UpperCAmelCase : Union[str, Any] = c else: UpperCAmelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : int=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 * 8 , SCREAMING_SNAKE_CASE__ : Dict=3_2 * 8 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6_4 , ) -> str: a_ : Optional[Any] = parent a_ : List[Any] = batch_size a_ : List[Any] = is_training a_ : str = use_auxiliary_loss a_ : str = num_queries a_ : str = num_channels a_ : Union[str, Any] = min_size a_ : Union[str, Any] = max_size a_ : int = num_labels a_ : List[Any] = hidden_dim a_ : int = hidden_dim def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: a_ : Any = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( SCREAMING_SNAKE_CASE__ ) a_ : int = torch.ones([self.batch_size, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE__ ) a_ : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE__ ) > 0.5 ).float() a_ : int = (torch.rand((self.batch_size, self.num_labels) , device=SCREAMING_SNAKE_CASE__ ) > 0.5).long() a_ : Any = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ : Any = MaskaFormerConfig( hidden_size=self.hidden_dim , ) a_ : Tuple = self.num_queries a_ : Tuple = self.num_labels a_ : Optional[int] = [1, 1, 1, 1] a_ : Union[str, Any] = self.num_channels a_ : str = 6_4 a_ : List[Any] = 1_2_8 a_ : Tuple = self.hidden_dim a_ : Dict = self.hidden_dim a_ : Optional[Any] = self.hidden_dim return config def SCREAMING_SNAKE_CASE ( self : Any ) -> str: a_ , a_ , a_ , a_ , a_ : List[str] = self.prepare_config_and_inputs() a_ : Dict = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: a_ : List[str] = output.encoder_hidden_states a_ : Any = output.pixel_decoder_hidden_states a_ : List[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) , config.decoder_layers ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> Optional[int]: with torch.no_grad(): a_ : int = MaskaFormerModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Dict = model(pixel_values=SCREAMING_SNAKE_CASE__ , pixel_mask=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: a_ : Dict = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE__ : List[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): a_ : str = model(pixel_values=SCREAMING_SNAKE_CASE__ , pixel_mask=SCREAMING_SNAKE_CASE__ ) a_ : str = model(SCREAMING_SNAKE_CASE__ ) comm_check_on_output(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = model( pixel_values=SCREAMING_SNAKE_CASE__ , pixel_mask=SCREAMING_SNAKE_CASE__ , mask_labels=SCREAMING_SNAKE_CASE__ , class_labels=SCREAMING_SNAKE_CASE__ ) comm_check_on_output(SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case__ : List[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case__ : Dict = False snake_case__ : Optional[int] = False snake_case__ : Tuple = False snake_case__ : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : str ) -> str: a_ : Optional[Any] = MaskaFormerModelTester(self ) a_ : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: a_ , a_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: pass def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Dict = model_class(SCREAMING_SNAKE_CASE__ ) a_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Optional[Any] = [*signature.parameters.keys()] a_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> str: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: a_ : Any = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: a_ : List[str] = (self.model_tester.min_size,) * 2 a_ : Dict = { 'pixel_values': torch.randn((2, 3, *size) , device=SCREAMING_SNAKE_CASE__ ), 'mask_labels': torch.randn((2, 1_0, *size) , device=SCREAMING_SNAKE_CASE__ ), 'class_labels': torch.zeros(2 , 1_0 , device=SCREAMING_SNAKE_CASE__ ).long(), } a_ : Optional[int] = self.model_tester.get_config() a_ : int = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = model(**SCREAMING_SNAKE_CASE__ ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Any = model_class(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) a_ : str = model(**SCREAMING_SNAKE_CASE__ , output_attentions=SCREAMING_SNAKE_CASE__ ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: if not self.model_tester.is_training: return a_ : Optional[int] = self.all_model_classes[1] a_ , a_ , a_ , a_ , a_ : int = self.model_tester.prepare_config_and_inputs() a_ : int = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.train() a_ : List[str] = model(SCREAMING_SNAKE_CASE__ , mask_labels=SCREAMING_SNAKE_CASE__ , class_labels=SCREAMING_SNAKE_CASE__ ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: a_ : Dict = self.all_model_classes[1] a_ , a_ , a_ , a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs() a_ : Dict = True a_ : Optional[int] = True a_ : List[Any] = model_class(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) model.train() a_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , mask_labels=SCREAMING_SNAKE_CASE__ , class_labels=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() a_ : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() a_ : Union[str, Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() a_ : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: """simple docstring""" a_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: return "facebook/mask2former-swin-small-coco-instance" @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: a_ : Tuple = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE__ ) a_ : Any = self.default_image_processor a_ : Union[str, Any] = prepare_img() a_ : List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE__ , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): a_ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=SCREAMING_SNAKE_CASE__ ) ) a_ : str = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=SCREAMING_SNAKE_CASE__ ) ) a_ : str = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: a_ : str = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE__ ).eval() a_ : List[Any] = self.default_image_processor a_ : Tuple = prepare_img() a_ : Optional[int] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE__ , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): a_ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) # masks_queries_logits a_ : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) a_ : List[str] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] a_ : Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=SCREAMING_SNAKE_CASE__ ) ) # class_queries_logits a_ : Tuple = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) a_ : Optional[int] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE__ ).eval() a_ : List[str] = self.default_image_processor a_ : List[str] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='pt' , ) a_ : Any = inputs['pixel_values'].to(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = [el.to(SCREAMING_SNAKE_CASE__ ) for el in inputs['mask_labels']] a_ : str = [el.to(SCREAMING_SNAKE_CASE__ ) for el in inputs['class_labels']] with torch.no_grad(): a_ : Tuple = model(**SCREAMING_SNAKE_CASE__ ) self.assertTrue(outputs.loss is not None )
32
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? snake_case__ : Any = '''ssube/stable-diffusion-x4-upscaler-onnx''' def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : int=0 ) -> Tuple: a_ : Union[str, Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ) a_ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.get_dummy_inputs() a_ : int = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : Tuple = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : List[Any] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = self.get_dummy_inputs() a_ : List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : str = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: a_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.get_dummy_inputs() a_ : Dict = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Optional[Any] = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: a_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.get_dummy_inputs() a_ : Dict = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : int = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.get_dummy_inputs() a_ : List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Union[str, Any] = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : List[str] = ort.SessionOptions() a_ : int = False return options def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) a_ : int = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default a_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = 'A fantasy landscape, trending on artstation' a_ : str = torch.manual_seed(0 ) a_ : List[str] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) a_ : Dict = output.images a_ : Any = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a_ : str = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) a_ : List[str] = init_image.resize((1_2_8, 1_2_8) ) a_ : Dict = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) a_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Any = 'A fantasy landscape, trending on artstation' a_ : Tuple = torch.manual_seed(0 ) a_ : Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) a_ : str = output.images a_ : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a_ : Tuple = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
32
1
'''simple docstring''' import math import unittest def lowerCAmelCase__ ( lowerCamelCase : int ): assert isinstance(lowerCamelCase ,lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowerCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Tuple): self.assertTrue(is_prime(2)) self.assertTrue(is_prime(3)) self.assertTrue(is_prime(5)) self.assertTrue(is_prime(7)) self.assertTrue(is_prime(11)) self.assertTrue(is_prime(13)) self.assertTrue(is_prime(17)) self.assertTrue(is_prime(19)) self.assertTrue(is_prime(23)) self.assertTrue(is_prime(29)) def A ( self : int): with self.assertRaises(SCREAMING_SNAKE_CASE): is_prime(-19) self.assertFalse( is_prime(0) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2)) self.assertFalse(is_prime(2 * 3)) self.assertFalse(is_prime(3 * 3)) self.assertFalse(is_prime(3 * 5)) self.assertFalse(is_prime(3 * 5 * 7)) if __name__ == "__main__": unittest.main()
227
'''simple docstring''' from __future__ import annotations class __lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : list[list[int]]): _A : Dict = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(SCREAMING_SNAKE_CASE) != 0: _A : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(SCREAMING_SNAKE_CASE) != cols: raise error for value in row: if not isinstance(SCREAMING_SNAKE_CASE , (int, float)): raise error _A : str = rows else: _A : Tuple = [] def A ( self : Optional[Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def A ( self : List[str]): return len(self.rows) @property def A ( self : Optional[int]): return len(self.rows[0]) @property def A ( self : Optional[int]): return (self.num_rows, self.num_columns) @property def A ( self : Any): return self.order[0] == self.order[1] def A ( self : int): _A : Union[str, Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(SCREAMING_SNAKE_CASE) def A ( self : List[Any]): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def A ( self : Tuple): return bool(self.determinant()) def A ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int): _A : str = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(SCREAMING_SNAKE_CASE).determinant() def A ( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int): if (row + column) % 2 == 0: return self.get_minor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return -1 * self.get_minor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def A ( self : Optional[int]): return Matrix( [ [self.get_minor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def A ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def A ( self : Tuple): _A : str = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(SCREAMING_SNAKE_CASE) def A ( self : Tuple): _A : str = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : str): return str(self.rows) def __str__( self : Optional[int]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(SCREAMING_SNAKE_CASE) for value in row]) + '.]' for row in self.rows ]) + "]" ) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int | None = None): _A : Tuple = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): raise type_error for value in row: if not isinstance(SCREAMING_SNAKE_CASE , (int, float)): raise type_error if len(SCREAMING_SNAKE_CASE) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(SCREAMING_SNAKE_CASE) else: _A : List[str] = self.rows[0:position] + [row] + self.rows[position:] def A ( self : List[Any] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int | None = None): _A : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): raise type_error for value in column: if not isinstance(SCREAMING_SNAKE_CASE , (int, float)): raise type_error if len(SCREAMING_SNAKE_CASE) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: _A : str = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: _A : Dict = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[str] , SCREAMING_SNAKE_CASE : object): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): return NotImplemented return self.rows == other.rows def __ne__( self : Any , SCREAMING_SNAKE_CASE : object): return not self == other def __neg__( self : Optional[Any]): return self * -1 def __add__( self : Any , SCREAMING_SNAKE_CASE : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : List[str] , SCREAMING_SNAKE_CASE : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Dict , SCREAMING_SNAKE_CASE : Matrix | int | float): if isinstance(SCREAMING_SNAKE_CASE , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Any , SCREAMING_SNAKE_CASE : int): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') _A : Union[str, Any] = self for _ in range(other - 1): result *= self return result @classmethod def A ( cls : List[str] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int]): return sum(row[i] * column[i] for i in range(len(SCREAMING_SNAKE_CASE))) if __name__ == "__main__": import doctest doctest.testmod()
227
1
lowerCAmelCase__ = 0 # The first color of the flag. lowerCAmelCase__ = 1 # The second color of the flag. lowerCAmelCase__ = 2 # The third color of the flag. lowerCAmelCase__ = (red, white, blue) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list ) -> list: '''simple docstring''' if not sequence: return [] if len(SCREAMING_SNAKE_CASE_ ) == 1: return list(SCREAMING_SNAKE_CASE_ ) A__ = 0 A__ = len(SCREAMING_SNAKE_CASE_ ) - 1 A__ = 0 while mid <= high: if sequence[mid] == colors[0]: A__ , A__ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: A__ , A__ = sequence[high], sequence[mid] high -= 1 else: A__ = F'The elements inside the sequence must contains only {colors} values' raise ValueError(SCREAMING_SNAKE_CASE_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase__ = [int(item.strip()) for item in user_input.split(""",""")] print(f"""{dutch_national_flag_sort(unsorted)}""")
68
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> list: '''simple docstring''' A__ = int(SCREAMING_SNAKE_CASE_ ) if n_element < 1: A__ = ValueError("a should be a positive number" ) raise my_error A__ = [1] A__ , A__ , A__ = (0, 0, 0) A__ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase__ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase__ = hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
68
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _snake_case ( unittest.TestCase ): UpperCamelCase__ = MODEL_FOR_MASKED_LM_MAPPING UpperCamelCase__ = TF_MODEL_FOR_MASKED_LM_MAPPING def SCREAMING_SNAKE_CASE ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) __magic_name__ : Optional[int] = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-05, "token": 38_015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25_506, "token_str": " accuser"}, ] , ) __magic_name__ : str = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-05, "token": 38_015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-05, "token": 25_506, "token_str": " accuser", }, ] , ) __magic_name__ : int = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-05, "token": 13_606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-05, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-05, "token": 2_941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) __magic_name__ : Any = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-05, "token": 35_676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-05, "token": 16_416, "token_str": "ELS"}, ] , ) __magic_name__ : Tuple = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-05, "token": 35_676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16_416, "token_str": "ELS"}, ] , ) __magic_name__ : Any = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-05, "token": 2_941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-05, "token": 13_606, "token_str": " Clara"}, ] , ) __magic_name__ : Union[str, Any] = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { "score": 2.2e-05, "token": 35_676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-05, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-05, "token": 35_676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-05, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() __magic_name__ : str = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(_a ) @slow @require_tf def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Tuple = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_a ) , [ {"sequence": "My name is John", "score": 0.0_08, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.0_07, "token": 1_573, "token_str": " Chris"}, ] , ) __magic_name__ : Dict = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_a ) , [ { "sequence": "The largest city in France is Paris", "score": 0.2_51, "token": 2_201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.2_14, "token": 12_790, "token_str": " Lyon", }, ] , ) __magic_name__ : List[str] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"sequence": "My name is Patrick", "score": 0.0_05, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.0_00, "token": 13_606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.0_00, "token": 2_941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) __magic_name__ : Tuple = None __magic_name__ : Optional[int] = None self.run_pipeline_test(_a , [] ) @require_tf def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) __magic_name__ : Any = None __magic_name__ : Any = None self.run_pipeline_test(_a , [] ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) __magic_name__ : int = FillMaskPipeline(model=_a , tokenizer=_a ) __magic_name__ : Optional[Any] = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Union[str, Any] = fill_masker.tokenizer __magic_name__ : int = fill_masker.model __magic_name__ : int = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ] , ) __magic_name__ : List[Any] = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ] , ) __magic_name__ : Tuple = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ], [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("This is" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : str = tokenizer.get_vocab() __magic_name__ : Any = sorted(vocab.keys() )[:2] # Pipeline argument __magic_name__ : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) __magic_name__ : Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ] , ) __magic_name__ : str = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , _a ) __magic_name__ : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(_a ) ) # Call argument __magic_name__ : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) __magic_name__ : Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ] , ) __magic_name__ : List[str] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , _a ) __magic_name__ : Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(_a ) ) # Score equivalence __magic_name__ : Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_a ) __magic_name__ : Optional[int] = [top_mask["token_str"] for top_mask in outputs] __magic_name__ : Union[str, Any] = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): __magic_name__ : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_a ) __magic_name__ : Dict = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): __magic_name__ : int = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): __magic_name__ : int = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[""] ) with self.assertRaises(_a ): __magic_name__ : str = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets="" ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) __magic_name__ : int = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ] , ) __magic_name__ : List[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) __magic_name__ : List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Tuple = tokenizer.get_vocab() __magic_name__ : List[str] = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 __magic_name__ : int = sorted(vocab.keys() )[:3] __magic_name__ : Any = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results __magic_name__ : Optional[Any] = [el["token_str"] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): __magic_name__ : Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) __magic_name__ : Optional[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __magic_name__ : str = sorted(vocab.keys() )[:3] __magic_name__ : Tuple = [targets[0], targets[1], targets[0], targets[2], targets[1]] __magic_name__ : Tuple = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : str = FillMaskPipeline(model=_a , tokenizer=_a ) __magic_name__ : str = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ], [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ], [ {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, {"sequence": ANY(_a ), "score": ANY(_a ), "token": ANY(_a ), "token_str": ANY(_a )}, ], ] , )
41
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( snake_case ): UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'BridgeTowerImageProcessor' UpperCamelCase__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , _a , _a ): super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): __magic_name__ : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask __magic_name__ : List[str] = self.image_processor( _a , return_tensors=_a , do_normalize=_a , do_center_crop=_a , **_a ) encoding.update(_a ) return encoding def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.tokenizer.model_input_names __magic_name__ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
41
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class UpperCAmelCase__ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): """simple docstring""" def __init__( self , A_=None , **A_ ) -> Union[str, Any]: super().__init__(features=A_ ) __UpperCamelCase =torch_tensor_kwargs import torch # noqa import torch at initialization def _a ( self , A_ ) -> Union[str, Any]: import torch if isinstance(A_ , A_ ) and column: if all( isinstance(A_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(A_ ) return column def _a ( self , A_ ) -> Any: import torch if isinstance(A_ , (str, bytes, type(A_ )) ): return value elif isinstance(A_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCamelCase ={} if isinstance(A_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCamelCase ={'dtype': torch.intaa} elif isinstance(A_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCamelCase ={'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A_ , PIL.Image.Image ): __UpperCamelCase =np.asarray(A_ ) return torch.tensor(A_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _a ( self , A_ ) -> Any: import torch # support for torch, tf, jax etc. if hasattr(A_ , '__array__' ) and not isinstance(A_ , torch.Tensor ): __UpperCamelCase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A_ ) for substruct in data_struct] ) elif isinstance(A_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A_ ) for substruct in data_struct] ) return self._tensorize(A_ ) def _a ( self , A_ ) -> List[Any]: return map_nested(self._recursive_tensorize , A_ , map_list=A_ ) def _a ( self , A_ ) -> Mapping: __UpperCamelCase =self.numpy_arrow_extractor().extract_row(A_ ) __UpperCamelCase =self.python_features_decoder.decode_row(A_ ) return self.recursive_tensorize(A_ ) def _a ( self , A_ ) -> "torch.Tensor": __UpperCamelCase =self.numpy_arrow_extractor().extract_column(A_ ) __UpperCamelCase =self.python_features_decoder.decode_column(A_ , pa_table.column_names[0] ) __UpperCamelCase =self.recursive_tensorize(A_ ) __UpperCamelCase =self._consolidate(A_ ) return column def _a ( self , A_ ) -> Mapping: __UpperCamelCase =self.numpy_arrow_extractor().extract_batch(A_ ) __UpperCamelCase =self.python_features_decoder.decode_batch(A_ ) __UpperCamelCase =self.recursive_tensorize(A_ ) for column_name in batch: __UpperCamelCase =self._consolidate(batch[column_name] ) return batch
62
from typing import TYPE_CHECKING from ...utils import _LazyModule _A = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "trocr" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : str = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self ,UpperCAmelCase_=5_02_65 ,UpperCAmelCase_=10_24 ,UpperCAmelCase_=12 ,UpperCAmelCase_=16 ,UpperCAmelCase_=40_96 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=True ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=0 ,UpperCAmelCase_=2 ,**UpperCAmelCase_ ,): _lowercase : List[Any] = vocab_size _lowercase : Optional[Any] = d_model _lowercase : List[Any] = decoder_layers _lowercase : Optional[int] = decoder_attention_heads _lowercase : Dict = decoder_ffn_dim _lowercase : Any = activation_function _lowercase : Tuple = max_position_embeddings _lowercase : int = dropout _lowercase : Union[str, Any] = attention_dropout _lowercase : Optional[Any] = activation_dropout _lowercase : List[Any] = init_std _lowercase : List[Any] = decoder_layerdrop _lowercase : str = use_cache _lowercase : Tuple = scale_embedding _lowercase : Optional[int] = use_learned_position_embeddings _lowercase : str = layernorm_embedding super().__init__( pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,decoder_start_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ,)
361
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
118
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
118
1
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ : str = get_logger(__name__) lowercase__ : List[str] = Path(__file__).parent / '''model_card_template.md''' lowercase__ : Union[str, Any] = uuida().hex lowercase__ : Tuple = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[int] = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __lowercase ( _a = None ): snake_case_ : List[str] = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_a , _a ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(_a , _a ): ua += "; " + user_agent return ua def __lowercase ( _a , _a = None , _a = None ): if token is None: snake_case_ : Union[str, Any] = HfFolder.get_token() if organization is None: snake_case_ : int = whoami(_a )['''name'''] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def __lowercase ( _a , _a ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_a , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ : Union[str, Any] = args.hub_token if hasattr(_a , '''hub_token''' ) else None snake_case_ : Dict = get_full_repo_name(_a , token=_a ) snake_case_ : List[str] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_a , model_name=_a , repo_name=_a , dataset_name=args.dataset_name if hasattr(_a , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_a , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_a , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_a , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_a , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_a , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_a , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_a , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_a , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ : Tuple = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_a ) def __lowercase ( _a , _a = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ : Tuple = str(Path(_a ).as_posix() ) snake_case_ : int = re.search(r'''snapshots/([^/]+)/''' , _a ) if search is None: return None snake_case_ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ : str = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowercase__ : List[Any] = os.path.join(hf_cache_home, '''diffusers''') def __lowercase ( _a = None , _a = None ): if new_cache_dir is None: snake_case_ : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ : List[str] = old_diffusers_cache snake_case_ : Union[str, Any] = Path(_a ).expanduser() snake_case_ : str = Path(_a ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ : List[Any] = new_cache_dir / old_blob_path.relative_to(_a ) new_blob_path.parent.mkdir(parents=_a , exist_ok=_a ) os.replace(_a , _a ) try: os.symlink(_a , _a ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ : Optional[Any] = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowercase__ : Optional[int] = 0 else: with open(cache_version_file) as f: try: lowercase__ : Optional[Any] = int(f.read()) except ValueError: lowercase__ : Optional[Any] = 0 if cache_version < 1: lowercase__ : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowercase__ : Optional[Any] = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __lowercase ( _a , _a = None ): if variant is not None: snake_case_ : str = weights_name.split('''.''' ) snake_case_ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] snake_case_ : List[Any] = '''.'''.join(_a ) return weights_name def __lowercase ( _a , *, _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a=None , ): snake_case_ : Dict = str(_a ) if os.path.isfile(_a ): return pretrained_model_name_or_path elif os.path.isdir(_a ): if os.path.isfile(os.path.join(_a , _a ) ): # Load from a PyTorch checkpoint snake_case_ : Dict = os.path.join(_a , _a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_a , _a , _a ) ): snake_case_ : List[Any] = os.path.join(_a , _a , _a ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_a ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ : str = hf_hub_download( _a , filename=_add_variant(_a , _a ) , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , _a , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_a , _a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(_a , _a )}' so that the correct variant file can be added." , _a , ) try: # 2. Load model file as usual snake_case_ : Tuple = hf_hub_download( _a , filename=_a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " '''this model name. Check the model page at ''' f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
155
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() def _snake_case ( self : List[str] ): snake_case_, snake_case_ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) snake_case_ : Union[str, Any] = '''A painting of a squirrel eating a burger''' snake_case_ : Tuple = jax.device_count() snake_case_ : Dict = num_samples * [prompt] snake_case_ : Tuple = sd_pipe.prepare_inputs(lowercase_ ) snake_case_ : str = replicate(lowercase_ ) snake_case_ : Any = shard(lowercase_ ) snake_case_ : Optional[int] = jax.random.PRNGKey(0 ) snake_case_ : Union[str, Any] = jax.random.split(lowercase_ , jax.device_count() ) snake_case_ : Optional[Any] = sd_pipe(lowercase_ , lowercase_ , lowercase_ , num_inference_steps=25 , jit=lowercase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) snake_case_ : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ : str = images[0, 253:256, 253:256, -1] snake_case_ : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ : int = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _snake_case ( self : str ): snake_case_ : Optional[Any] = '''stabilityai/stable-diffusion-2''' snake_case_, snake_case_ : Union[str, Any] = FlaxDPMSolverMultistepScheduler.from_pretrained(lowercase_ , subfolder='''scheduler''' ) snake_case_, snake_case_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( lowercase_ , scheduler=lowercase_ , revision='''bf16''' , dtype=jnp.bfloataa , ) snake_case_ : List[Any] = scheduler_params snake_case_ : int = '''A painting of a squirrel eating a burger''' snake_case_ : str = jax.device_count() snake_case_ : Union[str, Any] = num_samples * [prompt] snake_case_ : int = sd_pipe.prepare_inputs(lowercase_ ) snake_case_ : List[str] = replicate(lowercase_ ) snake_case_ : List[Any] = shard(lowercase_ ) snake_case_ : int = jax.random.PRNGKey(0 ) snake_case_ : Tuple = jax.random.split(lowercase_ , jax.device_count() ) snake_case_ : int = sd_pipe(lowercase_ , lowercase_ , lowercase_ , num_inference_steps=25 , jit=lowercase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) snake_case_ : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ : List[str] = images[0, 253:256, 253:256, -1] snake_case_ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ : Optional[int] = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
155
1
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" while b: a , a :Optional[Any] = b, a % b return a def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(UpperCAmelCase_ , a % b ) def __lowerCamelCase ( ): """simple docstring""" print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
94
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
"""simple docstring""" __A : List[Any] = 256 # Modulus to hash a string __A : int = 1000003 def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) if p_len > t_len: return False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 # Calculating the hash of pattern and substring of text for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _UpperCAmelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _UpperCAmelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase ( ): '''simple docstring''' _UpperCAmelCase = '''abc1abc12''' _UpperCAmelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _UpperCAmelCase = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 2) _UpperCAmelCase = '''ABABX''' _UpperCAmelCase = '''ABABZABABYABABX''' assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 3) _UpperCAmelCase = '''AAAB''' _UpperCAmelCase = '''ABAAAAAB''' assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 4) _UpperCAmelCase = '''abcdabcy''' _UpperCAmelCase = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 5) _UpperCAmelCase = '''Lü''' _UpperCAmelCase = '''Lüsai''' assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Lue''' assert not rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
359
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
0
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __A ( a_ :List[Any]) -> str: # picklable for multiprocessing return x.sum() def __A ( a_ :str) -> List[Any]: # picklable for multiprocessing return i + 1 @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __lowercase ( _UpperCamelCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : int = {} __a : Any = [] __a : Tuple = 1 __a : Any = [1, 2] __a : str = {'''a''': 1, '''b''': 2} __a : Union[str, Any] = {'''a''': [1, 2], '''b''': [3, 4]} __a : int = {'''a''': {'''1''': 1}, '''b''': 2} __a : Optional[int] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} __a : List[str] = {} __a : List[str] = [] __a : Optional[int] = 2 __a : Optional[Any] = [2, 3] __a : int = {'''a''': 2, '''b''': 3} __a : List[Any] = {'''a''': [2, 3], '''b''': [4, 5]} __a : Tuple = {'''a''': {'''1''': 2}, '''b''': 3} __a : List[str] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) __a : Optional[Any] = 2 self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) , _UpperCAmelCase ) __a : Optional[int] = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} __a : Optional[Any] = {'''a''': 2, '''b''': 0, '''c''': 2} __a : Optional[int] = { '''a''': np.eye(2 ).astype(_UpperCAmelCase ), '''b''': np.zeros(3 ).astype(_UpperCAmelCase ), '''c''': np.ones(2 ).astype(_UpperCAmelCase ), } self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase , map_numpy=_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_UpperCAmelCase , _UpperCAmelCase , map_numpy=_UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_UpperCAmelCase , _UpperCAmelCase , map_numpy=_UpperCAmelCase , num_proc=_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_UpperCAmelCase , _UpperCAmelCase , map_numpy=_UpperCAmelCase , num_proc=_UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda _UpperCAmelCase : x + 1 , _UpperCAmelCase , num_proc=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = {'''a''': 1, '''b''': 2} __a : List[Any] = {'''a''': 3, '''b''': 4} __a : Any = {'''a''': 5, '''b''': 6} __a : List[str] = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): class __lowercase : '''simple docstring''' __lowerCAmelCase = '''bar''' __a : Union[str, Any] = Foo() self.assertEqual(foo.my_attr , '''bar''' ) with temporary_assignment(_UpperCAmelCase , '''my_attr''' , '''BAR''' ): self.assertEqual(foo.my_attr , '''BAR''' ) self.assertEqual(foo.my_attr , '''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __A ( a_ :str , a_ :Optional[Any] , a_ :List[Any]) -> str: with patch('''datasets.utils.py_utils._single_map_nested''') as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''') as mock_multiprocessing_pool: __a : Any = {F"""{i}""": i for i in range(a_)} __a : Tuple = map_nested(lambda a_: x + 10 , a_ , num_proc=a_ , parallel_min_length=16) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __lowercase ( _UpperCamelCase ): '''simple docstring''' @require_tf def _lowerCamelCase ( self ): import tensorflow as tf from tensorflow.keras import layers __a : Optional[int] = layers.Dense(2 ) def gen_random_output(): __a : Optional[Any] = tf.random.uniform((1, 3) ) return model(_UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=_UpperCAmelCase ): __a : List[Any] = gen_random_output() with temp_seed(42 , set_tensorflow=_UpperCAmelCase ): __a : Union[str, Any] = gen_random_output() __a : str = gen_random_output() np.testing.assert_equal(_UpperCAmelCase , _UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def _lowerCamelCase ( self ): import torch def gen_random_output(): __a : int = torch.nn.Linear(3 , 2 ) __a : List[str] = torch.rand(1 , 3 ) return model(_UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=_UpperCAmelCase ): __a : Optional[Any] = gen_random_output() with temp_seed(42 , set_pytorch=_UpperCAmelCase ): __a : Any = gen_random_output() __a : str = gen_random_output() np.testing.assert_equal(_UpperCAmelCase , _UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def _lowerCamelCase ( self ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): __a : str = gen_random_output() with temp_seed(42 ): __a : Union[str, Any] = gen_random_output() __a : Union[str, Any] = gen_random_output() np.testing.assert_equal(_UpperCAmelCase , _UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('''input_data''' , [{}]) def __A ( a_ :str) -> int: __a : Optional[Any] = NestedDataStructure(a_).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def __A ( a_ :Optional[int] , a_ :List[str]) -> str: __a : Union[str, Any] = NestedDataStructure(a_).flatten() assert output == expected_output def __A ( ) -> List[Any]: __a : Union[str, Any] = A(x=1 , y='''foobar''') __a : List[Any] = {'''x''': 1, '''y''': '''foobar'''} assert asdict(a_) == expected_output __a : Any = {'''a''': {'''b''': A(x=10 , y='''foo''')}, '''c''': [A(x=20 , y='''bar''')]} __a : List[Any] = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(a_) == expected_output with pytest.raises(a_): asdict([1, A(x=10 , y='''foo''')]) def __A ( a_ :str) -> Any: return text.split() def __A ( a_ :List[str]) -> Dict: yield (time.time(), content) time.sleep(2) yield (time.time(), content) def __A ( ) -> str: with Pool(2) as pool: __a : List[str] = list(iflatmap_unordered(a_ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10)) assert out.count('''hello''') == 10 assert out.count('''there''') == 10 assert len(a_) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2) as pool: __a : Any = list(iflatmap_unordered(a_ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10)) assert out.count('''hello''') == 10 assert out.count('''there''') == 10 assert len(a_) == 20 # check that we get items as fast as possible with Pool(2) as pool: __a : Any = [] for yield_time, content in iflatmap_unordered( a_ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}]): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(a_) assert out.count('''a''') == 2 assert out.count('''b''') == 2 assert len(a_) == 4
160
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A = NewType('''DataClass''', Any) A = NewType('''DataClassType''', Any) def __A ( a_ :List[str]) -> Tuple: if isinstance(a_ , a_): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""") def __A ( a_ :list) -> Callable[[str], Any]: __a : Any = {str(a_): choice for choice in choices} return lambda a_: str_to_choice.get(a_ , a_) def __A ( *, a_ :Union[str, List[str]] = None , a_ :str = None , a_ :Any = dataclasses.MISSING , a_ :Callable[[], Any] = dataclasses.MISSING , a_ :dict = None , **a_ :str , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __a : List[Any] = {} if aliases is not None: __a : Optional[Any] = aliases if help is not None: __a : int = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 42 def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ): # To make the default appear when using --help if "formatter_class" not in kwargs: __a : str = ArgumentDefaultsHelpFormatter super().__init__(**_UpperCAmelCase ) if dataclasses.is_dataclass(_UpperCAmelCase ): __a : int = [dataclass_types] __a : Optional[Any] = list(_UpperCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_UpperCAmelCase ) @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = f"""--{field.name}""" __a : Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _UpperCAmelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __a : Dict = kwargs.pop('''aliases''' , [] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = [aliases] __a : Tuple = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(_UpperCAmelCase , '''UnionType''' ) and isinstance(_UpperCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_UpperCAmelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(_UpperCAmelCase ) not in field.type.__args__: # filter `str` in Union __a : List[str] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __a : List[str] = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __a : List[str] = ( field.type.__args__[0] if isinstance(_UpperCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __a : Optional[Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __a : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , _UpperCAmelCase ) and issubclass(field.type , _UpperCAmelCase )): if origin_type is Literal: __a : int = field.type.__args__ else: __a : List[str] = [x.value for x in field.type] __a : Any = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __a : Tuple = field.default else: __a : Optional[int] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __a : Any = copy(_UpperCAmelCase ) # Hack because type=bool in argparse does not behave as we want. __a : List[str] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __a : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __a : List[Any] = default # This tells argparse we accept 0 or 1 value after --field_name __a : Union[str, Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) __a : List[Any] = True elif isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ): __a : Dict = field.type.__args__[0] __a : Optional[int] = '''+''' if field.default_factory is not dataclasses.MISSING: __a : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: __a : List[Any] = True else: __a : int = field.type if field.default is not dataclasses.MISSING: __a : Optional[Any] = field.default elif field.default_factory is not dataclasses.MISSING: __a : Optional[int] = field.default_factory() else: __a : Union[str, Any] = True parser.add_argument(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __a : Any = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): if hasattr(_UpperCAmelCase , '''_argument_group_name''' ): __a : Any = self.add_argument_group(dtype._argument_group_name ) else: __a : Optional[Any] = self try: __a : Dict[str, type] = get_type_hints(_UpperCAmelCase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_UpperCAmelCase ): __a : Union[str, Any] = '''.'''.join(map(_UpperCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_UpperCAmelCase ): if not field.init: continue __a : str = type_hints[field.name] self._parse_dataclass_field(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __a : int = [] if args_filename: args_files.append(Path(_UpperCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __a : Optional[Any] = ArgumentParser() args_file_parser.add_argument(_UpperCAmelCase , type=_UpperCAmelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __a , __a : List[Any] = args_file_parser.parse_known_args(args=_UpperCAmelCase ) __a : Union[str, Any] = vars(_UpperCAmelCase ).get(args_file_flag.lstrip('''-''' ) , _UpperCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_UpperCAmelCase ) for p in cmd_args_file_paths] ) __a : Union[str, Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __a : Dict = file_args + args if args is not None else file_args + sys.argv[1:] __a , __a : str = self.parse_known_args(args=_UpperCAmelCase ) __a : Optional[int] = [] for dtype in self.dataclass_types: __a : Optional[int] = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} __a : List[str] = {k: v for k, v in vars(_UpperCAmelCase ).items() if k in keys} for k in keys: delattr(_UpperCAmelCase , _UpperCAmelCase ) __a : int = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_UpperCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): __a : Tuple = set(args.keys() ) __a : List[str] = [] for dtype in self.dataclass_types: __a : Dict = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} __a : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __a : Tuple = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_UpperCAmelCase )}""" ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): with open(Path(_UpperCAmelCase ) , encoding='''utf-8''' ) as open_json_file: __a : int = json.loads(open_json_file.read() ) __a : str = self.parse_dict(_UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): __a : Tuple = self.parse_dict(yaml.safe_load(Path(_UpperCAmelCase ).read_text() ) , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
160
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int]=1024 , SCREAMING_SNAKE_CASE : List[str]=1024 , SCREAMING_SNAKE_CASE : List[Any]=False , **SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" UpperCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(a__ ) UpperCamelCase__ : Optional[int] = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''train''' , **a__ ) UpperCamelCase__ : List[Any] = tok.pad_token_id def get_lens(SCREAMING_SNAKE_CASE : Any ): UpperCamelCase__ : Optional[Any] = tqdm( DataLoader(a__ , batch_size=512 , num_workers=8 , shuffle=a__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCamelCase__ : Tuple = [] for batch in dl: UpperCamelCase__ : Dict = batch['''input_ids'''].ne(a__ ).sum(1 ).tolist() UpperCamelCase__ : Dict = batch['''labels'''].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__ , a__ ): max_lens.append(max(a__ , a__ ) ) else: max_lens.extend(a__ ) return max_lens UpperCamelCase__ : List[Any] = get_lens(a__ ) UpperCamelCase__ : int = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''val''' , **a__ ) UpperCamelCase__ : str = get_lens(a__ ) pickle_save(a__ , train_ds.len_file ) pickle_save(a__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
370
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _a ( SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class __magic_name__ : A: str = field( metadata={"help": "The csv file to plot."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Disable logarithmic scale when plotting"} , ) A: bool = field( default=__lowerCAmelCase , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) A: Optional[str] = field( default=__lowerCAmelCase , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) A: Optional[List[str]] = list_field( default=__lowerCAmelCase , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def _a ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" try: int(SCREAMING_SNAKE_CASE ) return True except ValueError: return False def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" try: float(SCREAMING_SNAKE_CASE ) return True except ValueError: return False class __magic_name__ : def __init__( self : Any , lowerCamelCase__ : Dict ) -> Dict: '''simple docstring''' UpperCamelCase__ : int = args UpperCamelCase__ : Any = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCamelCase__ : Union[str, Any] = csv.DictReader(lowerCamelCase__ ) for row in reader: UpperCamelCase__ : Union[str, Any] = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCamelCase__ : Any = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCamelCase__ : Any = float(row['''result'''] ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = plt.subplots() UpperCamelCase__ : Dict = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCamelCase__ : int = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCamelCase__ : Tuple = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCamelCase__ : Tuple = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCamelCase__ : Dict = self.result_dict[model_name]['''result'''] ((UpperCamelCase__) , (UpperCamelCase__)) : int = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCamelCase__ : Optional[int] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCamelCase__ : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCamelCase__ , ) else: UpperCamelCase__ : Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCamelCase__) , (UpperCamelCase__)) : str = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCamelCase__ : Optional[Any] = np.asarray(lowerCamelCase__ , lowerCamelCase__ )[: len(lowerCamelCase__ )] plt.scatter( lowerCamelCase__ , lowerCamelCase__ , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(lowerCamelCase__ , lowerCamelCase__ , '''--''' ) title_str += F" {label_model_name} vs." UpperCamelCase__ : Optional[Any] = title_str[:-4] UpperCamelCase__ : List[Any] = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(lowerCamelCase__ ) plt.xlabel(lowerCamelCase__ ) plt.ylabel(lowerCamelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = HfArgumentParser(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = parser.parse_args_into_dataclasses()[0] UpperCamelCase__ : Dict = Plot(args=SCREAMING_SNAKE_CASE ) plot.plot() if __name__ == "__main__": main()
51
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : int = '''pix2struct_text_model''' SCREAMING_SNAKE_CASE_ : int = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : List[str] = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self ,SCREAMING_SNAKE_CASE__=5_02_44 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=64 ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=1_28 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=1E-6 ,SCREAMING_SNAKE_CASE__=1.0 ,SCREAMING_SNAKE_CASE__="gelu_new" ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ,**SCREAMING_SNAKE_CASE__ ,) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = vocab_size __SCREAMING_SNAKE_CASE :Optional[int] = hidden_size __SCREAMING_SNAKE_CASE :Dict = d_kv __SCREAMING_SNAKE_CASE :Union[str, Any] = d_ff __SCREAMING_SNAKE_CASE :Any = num_layers __SCREAMING_SNAKE_CASE :List[str] = num_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = relative_attention_num_buckets __SCREAMING_SNAKE_CASE :Optional[Any] = relative_attention_max_distance __SCREAMING_SNAKE_CASE :Optional[Any] = dropout_rate __SCREAMING_SNAKE_CASE :Any = layer_norm_epsilon __SCREAMING_SNAKE_CASE :List[str] = initializer_factor __SCREAMING_SNAKE_CASE :Optional[int] = use_cache __SCREAMING_SNAKE_CASE :Optional[int] = eos_token_id __SCREAMING_SNAKE_CASE :Any = decoder_start_token_id # for backwards compatibility __SCREAMING_SNAKE_CASE :Any = dense_act_fn super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,decoder_start_token_id=SCREAMING_SNAKE_CASE__ ,tie_word_embeddings=SCREAMING_SNAKE_CASE__ ,is_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) @classmethod def _UpperCamelCase ( cls ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __SCREAMING_SNAKE_CASE :Optional[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : str = '''pix2struct_vision_model''' def __init__( self ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=64 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__="gelu_new" ,SCREAMING_SNAKE_CASE__=1E-6 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=1E-10 ,SCREAMING_SNAKE_CASE__=1.0 ,SCREAMING_SNAKE_CASE__=40_96 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=1_28 ,**SCREAMING_SNAKE_CASE__ ,) -> int: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE :Optional[Any] = patch_embed_hidden_size __SCREAMING_SNAKE_CASE :Dict = d_ff __SCREAMING_SNAKE_CASE :int = dropout_rate __SCREAMING_SNAKE_CASE :int = num_hidden_layers __SCREAMING_SNAKE_CASE :List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE :List[Any] = initializer_range __SCREAMING_SNAKE_CASE :int = initializer_factor __SCREAMING_SNAKE_CASE :Union[str, Any] = attention_dropout __SCREAMING_SNAKE_CASE :Dict = layer_norm_eps __SCREAMING_SNAKE_CASE :int = dense_act_fn __SCREAMING_SNAKE_CASE :Optional[Any] = seq_len __SCREAMING_SNAKE_CASE :Dict = relative_attention_num_buckets __SCREAMING_SNAKE_CASE :int = relative_attention_max_distance __SCREAMING_SNAKE_CASE :int = d_kv @classmethod def _UpperCamelCase ( cls ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __SCREAMING_SNAKE_CASE :Dict = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '''pix2struct''' SCREAMING_SNAKE_CASE_ : Optional[Any] = True def __init__( self ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=1.0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[int]: """simple docstring""" super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) if text_config is None: __SCREAMING_SNAKE_CASE :Optional[int] = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: __SCREAMING_SNAKE_CASE :List[str] = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) __SCREAMING_SNAKE_CASE :Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = self.text_config.decoder_start_token_id __SCREAMING_SNAKE_CASE :List[Any] = self.text_config.pad_token_id __SCREAMING_SNAKE_CASE :Optional[Any] = self.text_config.eos_token_id __SCREAMING_SNAKE_CASE :int = initializer_factor __SCREAMING_SNAKE_CASE :int = initializer_range __SCREAMING_SNAKE_CASE :Dict = self.initializer_range __SCREAMING_SNAKE_CASE :Union[str, Any] = self.initializer_range __SCREAMING_SNAKE_CASE :List[str] = is_vqa @classmethod def _UpperCamelCase ( cls ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE :Optional[int] = self.text_config.to_dict() __SCREAMING_SNAKE_CASE :List[Any] = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE :int = self.__class__.model_type return output
191
"""simple docstring""" import qiskit def __lowerCamelCase ( a_ : int , a_ : int ) -> qiskit.result.counts.Counts: __SCREAMING_SNAKE_CASE :Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __SCREAMING_SNAKE_CASE :Union[str, Any] = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __SCREAMING_SNAKE_CASE :Tuple = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase_ = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
191
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : List[str] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_snake_case ) != count_coins(_snake_case ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_snake_case ) + abs(_snake_case ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_snake_case , _snake_case ) return get_distrib(_snake_case )[0] if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") a =logging.getLogger(__name__) @dataclass class A_ : _UpperCAmelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A_ : _UpperCAmelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input training data file (a text file).'''} ) _UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) _UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase ( self : str): if self.train_file is not None: __lowerCamelCase : str = self.train_file.split('.')[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __lowerCamelCase : List[str] = self.validation_file.split('.')[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A_ : _UpperCAmelCase : PreTrainedTokenizerBase _UpperCAmelCase : Union[bool, str, PaddingStrategy] = True _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None def __call__( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : Union[str, Any] = 'label' if 'label' in features[0].keys() else 'labels' __lowerCamelCase : Any = [feature.pop(SCREAMING_SNAKE_CASE__) for feature in features] __lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = len(features[0]['input_ids']) __lowerCamelCase : Optional[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(SCREAMING_SNAKE_CASE__)] for feature in features ] __lowerCamelCase : List[Any] = list(chain(*SCREAMING_SNAKE_CASE__)) __lowerCamelCase : List[str] = self.tokenizer.pad( SCREAMING_SNAKE_CASE__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) # Un-flatten __lowerCamelCase : Optional[int] = {k: v.view(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,-1) for k, v in batch.items()} # Add back labels __lowerCamelCase : str = torch.tensor(SCREAMING_SNAKE_CASE__ ,dtype=torch.intaa) return batch def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , lowerCamelCase__ , lowerCamelCase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCamelCase : int = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowerCamelCase : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __lowerCamelCase : Union[str, Any] = {} if data_args.train_file is not None: __lowerCamelCase : Optional[Any] = data_args.train_file if data_args.validation_file is not None: __lowerCamelCase : List[str] = data_args.validation_file __lowerCamelCase : Optional[Any] = data_args.train_file.split('.' )[-1] __lowerCamelCase : Optional[Any] = load_dataset( lowerCamelCase__ , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __lowerCamelCase : Optional[Any] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCamelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCamelCase : Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __lowerCamelCase : Optional[Any] = [F"ending{i}" for i in range(4 )] __lowerCamelCase : int = 'sent1' __lowerCamelCase : Optional[Any] = 'sent2' if data_args.max_seq_length is None: __lowerCamelCase : List[Any] = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __lowerCamelCase : Union[str, Any] = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __lowerCamelCase : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase__ ): __lowerCamelCase : Any = [[context] * 4 for context in examples[context_name]] __lowerCamelCase : Dict = examples[question_header_name] __lowerCamelCase : List[str] = [ [F"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(lowerCamelCase__ ) ] # Flatten out __lowerCamelCase : Any = list(chain(*lowerCamelCase__ ) ) __lowerCamelCase : List[str] = list(chain(*lowerCamelCase__ ) ) # Tokenize __lowerCamelCase : List[Any] = tokenizer( lowerCamelCase__ , lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __lowerCamelCase : Any = raw_datasets['train'] if data_args.max_train_samples is not None: __lowerCamelCase : Optional[Any] = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) __lowerCamelCase : Any = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __lowerCamelCase : Union[str, Any] = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __lowerCamelCase : Tuple = raw_datasets['validation'] if data_args.max_eval_samples is not None: __lowerCamelCase : Optional[int] = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) __lowerCamelCase : Optional[int] = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __lowerCamelCase : Dict = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __lowerCamelCase : Dict = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase__ ): __lowerCamelCase , __lowerCamelCase : List[str] = eval_predictions __lowerCamelCase : Union[str, Any] = np.argmax(lowerCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __lowerCamelCase : List[str] = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , ) # Training if training_args.do_train: __lowerCamelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: __lowerCamelCase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCamelCase : int = last_checkpoint __lowerCamelCase : Optional[int] = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCamelCase : int = train_result.metrics __lowerCamelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) __lowerCamelCase : Tuple = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics('train' , lowerCamelCase__ ) trainer.save_metrics('train' , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCamelCase : Tuple = trainer.evaluate() __lowerCamelCase : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) __lowerCamelCase : Optional[int] = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics('eval' , lowerCamelCase__ ) trainer.save_metrics('eval' , lowerCamelCase__ ) __lowerCamelCase : Any = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
73
import qiskit def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> qiskit.result.counts.Counts: __lowerCamelCase : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCamelCase : List[str] = qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowerCamelCase : List[Any] = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
73
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( _A , _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = IFInpaintingSuperResolutionPipeline lowerCAmelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : Tuple ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : Tuple , __snake_case : Optional[int] , __snake_case : str=0 ): if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase_ = torch.manual_seed(__snake_case ) else: UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(__snake_case ) ).to(__snake_case ) UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase_ ( self : int ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase_ ( self : List[str] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowerCamelCase_ ( self : Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase_ ( self : int ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase_ ( self : Union[str, Any] ): self._test_save_load_local() def lowerCamelCase_ ( self : List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
177
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=3_05_22, type=int) _lowerCamelCase = parser.parse_args() logger.info(F"Loading data from {args.data_file}") with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F"Dump to {args.token_counts_dump}") with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
177
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case : Optional[int] = str(bin(lowercase ) ) binary_number += "0" * shift_amount return binary_number def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case : Dict = str(bin(lowercase ) )[2:] if shift_amount >= len(lowercase ): return "0b0" snake_case : str = binary_number[: len(lowercase ) - shift_amount] return "0b" + shifted_binary_number def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number >= 0: # Get binary representation of positive number snake_case : Optional[Any] = """0""" + str(bin(lowercase ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number snake_case : Dict = len(bin(lowercase )[3:] ) # Find 2's complement of number snake_case : Optional[Any] = bin(abs(lowercase ) - (1 << binary_number_length) )[3:] snake_case : Tuple = ( """1""" + """0""" * (binary_number_length - len(lowercase )) + binary_number ) if shift_amount >= len(lowercase ): return "0b" + binary_number[0] * len(lowercase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(lowercase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
124
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if exponent == 1: return base if exponent % 2 == 0: A_ : List[str] = _modexpt(lowerCAmelCase__ , exponent // 2 , lowerCAmelCase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCAmelCase__ , exponent - 1 , lowerCAmelCase__ )) % modulo_value def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 1_777 , SCREAMING_SNAKE_CASE = 1_855 , SCREAMING_SNAKE_CASE = 8 ): A_ : List[str] = base for _ in range(1 , lowerCAmelCase__ ): A_ : Any = _modexpt(lowerCAmelCase__ , lowerCAmelCase__ , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
366
from collections import deque from .hash_table import HashTable class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : List[str] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_SCREAMING_SNAKE_CASE ) A_ : Tuple = self.values[key] def _snake_case ( self )->List[Any]: '''simple docstring''' return ( sum(self.charge_factor - len(_SCREAMING_SNAKE_CASE ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None )->Any: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_SCREAMING_SNAKE_CASE ) == 0 ): return key return super()._collision_resolution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
65
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _A : str =( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _A : list[int] =[ord(letter) for letter in string.ascii_lowercase] _A : set[int] ={ord(char) for char in VALID_CHARS} _A : list[str] =["the", "be", "to", "of", "and", "in", "that", "have"] def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> str | None: lowerCamelCase__ : str = "" lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int for keychar, cipherchar in zip(cycle(UpperCamelCase ) , UpperCamelCase ): lowerCamelCase__ : List[Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase ) return decoded def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[str]: lowerCamelCase__ : list[str] = [] for key in product(UpperCamelCase , repeat=3 ): lowerCamelCase__ : List[Any] = try_key(UpperCamelCase , UpperCamelCase ) if encoded is not None: possibles.append(UpperCamelCase ) return possibles def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "p059_cipher.txt" ) -> int: lowerCamelCase__ : list[int] lowerCamelCase__ : list[str] lowerCamelCase__ : str lowerCamelCase__ : str lowerCamelCase__ : str = Path(UpperCamelCase ).parent.joinpath(UpperCamelCase ).read_text(encoding="""utf-8""" ) lowerCamelCase__ : List[Any] = [int(UpperCamelCase ) for number in data.strip().split(""",""" )] lowerCamelCase__ : Optional[int] = filter_valid_chars(UpperCamelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ : Dict = filter_common_word(UpperCamelCase , UpperCamelCase ) if len(UpperCamelCase ) == 1: break lowerCamelCase__ : Union[str, Any] = possibles[0] return sum(ord(UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
41
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCamelCase__ , lowerCamelCase__ : Tuple = y, x % y return abs(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ () -> Tuple: try: lowerCamelCase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowerCamelCase__ : Any = int(nums[0] ) lowerCamelCase__ : Optional[Any] = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
41
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : @staticmethod def SCREAMING_SNAKE_CASE_( *lowercase , **lowercase ) -> Optional[int]: pass @is_pipeline_test @require_vision @require_timm @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCAmelCase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> Any: lowerCamelCase_ = ObjectDetectionPipeline(model=lowercase , image_processor=lowercase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> List[Any]: lowerCamelCase_ = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(lowercase ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase , { "score": ANY(lowercase ), "label": ANY(lowercase ), "box": {"xmin": ANY(lowercase ), "ymin": ANY(lowercase ), "xmax": ANY(lowercase ), "ymax": ANY(lowercase )}, } , ) import datasets lowerCamelCase_ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowerCamelCase_ = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] lowerCamelCase_ = object_detector(lowercase , threshold=0.0 ) self.assertEqual(len(lowercase ) , len(lowercase ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase , { "score": ANY(lowercase ), "label": ANY(lowercase ), "box": {"xmin": ANY(lowercase ), "ymin": ANY(lowercase ), "xmax": ANY(lowercase ), "ymax": ANY(lowercase )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: pass @require_torch def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = "hf-internal-testing/tiny-detr-mobilenetsv3" lowerCamelCase_ = AutoModelForObjectDetection.from_pretrained(lowercase ) lowerCamelCase_ = AutoFeatureExtractor.from_pretrained(lowercase ) lowerCamelCase_ = ObjectDetectionPipeline(model=lowercase , feature_extractor=lowercase ) lowerCamelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) lowerCamelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = "facebook/detr-resnet-50" lowerCamelCase_ = AutoModelForObjectDetection.from_pretrained(lowercase ) lowerCamelCase_ = AutoFeatureExtractor.from_pretrained(lowercase ) lowerCamelCase_ = ObjectDetectionPipeline(model=lowercase , feature_extractor=lowercase ) lowerCamelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowerCamelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = "facebook/detr-resnet-50" lowerCamelCase_ = pipeline("object-detection" , model=lowercase ) lowerCamelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowerCamelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = 0.9_9_8_5 lowerCamelCase_ = "facebook/detr-resnet-50" lowerCamelCase_ = pipeline("object-detection" , model=lowercase ) lowerCamelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowercase ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = "Narsil/layoutlmv3-finetuned-funsd" lowerCamelCase_ = 0.9_9_9_3 lowerCamelCase_ = pipeline("object-detection" , model=lowercase , threshold=lowercase ) lowerCamelCase_ = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
47
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __A =True except ImportError: __A =False __A =logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_ ( lowerCamelCase__ ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): @staticmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> int: lowerCamelCase_ = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=lowercase , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=lowercase , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=lowercase ) def __init__( self , lowercase , lowercase , lowercase=None , *lowercase ) -> List[str]: lowerCamelCase_ = testing lowerCamelCase_ = testing_file lowerCamelCase_ = path def SCREAMING_SNAKE_CASE_( self ) -> str: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCamelCase_ = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(lowercase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) lowerCamelCase_ = ( Path(lowercase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCamelCase_ = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase ) ) else: with open(self._testing_file , "r" ) as configuration_file: lowerCamelCase_ = json.load(lowercase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase , extra_context=lowercase , ) lowerCamelCase_ = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: lowerCamelCase_ = json.load(lowercase ) lowerCamelCase_ = configuration["lowercase_modelname"] lowerCamelCase_ = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) lowerCamelCase_ = "PyTorch" in generate_tensorflow_pytorch_and_flax lowerCamelCase_ = "TensorFlow" in generate_tensorflow_pytorch_and_flax lowerCamelCase_ = "Flax" in generate_tensorflow_pytorch_and_flax lowerCamelCase_ = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowercase , exist_ok=lowercase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=lowercase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , "w" ): pass shutil.move( f'{directory}/__init__.py' , f'{model_dir}/__init__.py' , ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' , f'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(lowercase ): with open(lowercase , "r" ) as f: lowerCamelCase_ = f.readlines() with open(lowercase , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' , f'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' , f'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' , f'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' , f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase , lowercase , lowercase ): # Create temp file lowerCamelCase_ , lowerCamelCase_ = mkstemp() lowerCamelCase_ = False with fdopen(lowercase , "w" ) as new_file: with open(lowercase ) as old_file: for line in old_file: new_file.write(lowercase ) if line_to_copy_below in line: lowerCamelCase_ = True for line_to_copy in lines_to_copy: new_file.write(lowercase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(lowercase , lowercase ) # Remove original file remove(lowercase ) # Move new file move(lowercase , lowercase ) def skip_units(lowercase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase ): with open(lowercase ) as datafile: lowerCamelCase_ = [] lowerCamelCase_ = False lowerCamelCase_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCamelCase_ = line.split("\"" )[1] lowerCamelCase_ = skip_units(lowercase ) elif "# Below: " in line and "##" not in line: lowerCamelCase_ = line.split("\"" )[1] lowerCamelCase_ = skip_units(lowercase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase , lowercase , lowercase ) lowerCamelCase_ = [] elif "# Replace with" in line and "##" not in line: lowerCamelCase_ = [] elif "##" not in line: lines_to_copy.append(lowercase ) remove(lowercase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(lowercase )
47
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : int = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> list: if len(lowerCamelCase__ ) != 2 or len(a[0] ) != 2 or len(lowerCamelCase__ ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) __lowerCamelCase : Optional[int] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase__ ) ) ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase__ ) ) ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> tuple[list, list, list, list]: if len(lowerCamelCase__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) __lowerCamelCase : Tuple = len(lowerCamelCase__ ) __lowerCamelCase : List[Any] = matrix_length // 2 __lowerCamelCase : Dict = [[a[i][j] for j in range(lowerCamelCase__ , lowerCamelCase__ )] for i in range(lowerCamelCase__ )] __lowerCamelCase : str = [ [a[i][j] for j in range(lowerCamelCase__ , lowerCamelCase__ )] for i in range(lowerCamelCase__ , lowerCamelCase__ ) ] __lowerCamelCase : Dict = [[a[i][j] for j in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ )] __lowerCamelCase : Optional[Any] = [[a[i][j] for j in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ , lowerCamelCase__ )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> tuple[int, int]: return len(lowerCamelCase__ ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: print('\n'.join(str(lowerCamelCase__ ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> list: if matrix_dimensions(lowerCamelCase__ ) == (2, 2): return default_matrix_multiplication(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = split_matrix(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = split_matrix(lowerCamelCase__ ) __lowerCamelCase : str = actual_strassen(lowerCamelCase__ , matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : List[str] = actual_strassen(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : List[Any] = actual_strassen(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : Tuple = actual_strassen(lowerCamelCase__ , matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Optional[int] = actual_strassen(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Dict = actual_strassen(matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) , matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Tuple = actual_strassen(matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) , matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Dict = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : Tuple = matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : List[str] = matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Any = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) , lowerCamelCase__ ) # construct the new matrix from our 4 quadrants __lowerCamelCase : List[Any] = [] for i in range(len(lowerCamelCase__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowerCamelCase__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> list: if matrix_dimensions(lowerCamelCase__ )[1] != matrix_dimensions(lowerCamelCase__ )[0]: __lowerCamelCase : Any = ( 'Unable to multiply these matrices, please check the dimensions.\n' F"Matrix A: {matrixa}\n" F"Matrix B: {matrixa}" ) raise Exception(lowerCamelCase__ ) __lowerCamelCase : str = matrix_dimensions(lowerCamelCase__ ) __lowerCamelCase : List[str] = matrix_dimensions(lowerCamelCase__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCamelCase : str = max(*lowerCamelCase__ , *lowerCamelCase__ ) __lowerCamelCase : List[str] = int(math.pow(2 , math.ceil(math.loga(lowerCamelCase__ ) ) ) ) __lowerCamelCase : Any = matrixa __lowerCamelCase : int = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowerCamelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __lowerCamelCase : List[str] = actual_strassen(lowerCamelCase__ , lowerCamelCase__ ) # Removing the additional zeros for i in range(0 , lowerCamelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a =[ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a =[[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
73
0
import copy import random from transformers import CLIPTokenizer class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ) -> Dict: '''simple docstring''' super().__init__(*__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : int = {} def __lowerCamelCase ( self , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) -> int: '''simple docstring''' __UpperCamelCase : int = super().add_tokens(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' " `placeholder_token` that is not already in the tokenizer." ) def __lowerCamelCase ( self , __UpperCamelCase , *__UpperCamelCase , __UpperCamelCase=1 , **__UpperCamelCase ) -> Tuple: '''simple docstring''' __UpperCamelCase : Optional[Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) output.append(__UpperCamelCase ) else: __UpperCamelCase : Optional[Any] = [] for i in range(__UpperCamelCase ): __UpperCamelCase : Any = placeholder_token + f'''_{i}''' self.try_adding_tokens(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) output.append(__UpperCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) __UpperCamelCase : Optional[int] = output def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=1.0 ) -> Any: '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase : Tuple = [] for i in range(len(__UpperCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__UpperCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __UpperCamelCase : List[Any] = self.token_map[placeholder_token] __UpperCamelCase : Union[str, Any] = tokens[: 1 + int(len(__UpperCamelCase ) * prop_tokens_to_load )] if vector_shuffle: __UpperCamelCase : int = copy.copy(__UpperCamelCase ) random.shuffle(__UpperCamelCase ) __UpperCamelCase : Any = text.replace(__UpperCamelCase , " ".join(__UpperCamelCase ) ) return text def __call__( self , __UpperCamelCase , *__UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=1.0 , **__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( __UpperCamelCase , vector_shuffle=__UpperCamelCase , prop_tokens_to_load=__UpperCamelCase ) , *__UpperCamelCase , **__UpperCamelCase , ) def __lowerCamelCase ( self , __UpperCamelCase , *__UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=1.0 , **__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( __UpperCamelCase , vector_shuffle=__UpperCamelCase , prop_tokens_to_load=__UpperCamelCase ) , *__UpperCamelCase , **__UpperCamelCase , )
363
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase : int = logging.get_logger(__name__) lowercase : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict ): for attribute in key.split("." ): __UpperCamelCase : Any = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: __UpperCamelCase : Union[str, Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: __UpperCamelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCamelCase : Dict = value elif weight_type == "weight_g": __UpperCamelCase : Union[str, Any] = value elif weight_type == "weight_v": __UpperCamelCase : Union[str, Any] = value elif weight_type == "bias": __UpperCamelCase : str = value else: __UpperCamelCase : Union[str, Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): __UpperCamelCase : Optional[int] = [] __UpperCamelCase : List[Any] = fairseq_model.state_dict() __UpperCamelCase : List[str] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase : Any = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) __UpperCamelCase : Any = True else: for key, mapped_key in MAPPING.items(): __UpperCamelCase : Tuple = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): __UpperCamelCase : Dict = True if "*" in mapped_key: __UpperCamelCase : str = name.split(_lowerCAmelCase )[0].split("." )[-2] __UpperCamelCase : Optional[Any] = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: __UpperCamelCase : Any = "weight_g" elif "weight_v" in name: __UpperCamelCase : Optional[int] = "weight_v" elif "weight" in name: __UpperCamelCase : str = "weight" elif "bias" in name: __UpperCamelCase : List[str] = "bias" else: __UpperCamelCase : Optional[Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str ): __UpperCamelCase : Tuple = full_name.split("conv_layers." )[-1] __UpperCamelCase : Dict = name.split("." ) __UpperCamelCase : Optional[int] = int(items[0] ) __UpperCamelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCamelCase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCamelCase : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCamelCase : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCamelCase : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=True ): if config_path is not None: __UpperCamelCase : Dict = HubertConfig.from_pretrained(_lowerCAmelCase ) else: __UpperCamelCase : List[Any] = HubertConfig() if is_finetuned: if dict_path: __UpperCamelCase : int = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase : Optional[Any] = target_dict.pad_index __UpperCamelCase : Any = target_dict.bos_index __UpperCamelCase : List[str] = target_dict.eos_index __UpperCamelCase : Tuple = len(target_dict.symbols ) __UpperCamelCase : str = os.path.join(_lowerCAmelCase , "vocab.json" ) if not os.path.isdir(_lowerCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , _lowerCAmelCase ) __UpperCamelCase : int = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCAmelCase , ) __UpperCamelCase : List[Any] = True if config.feat_extract_norm == "layer" else False __UpperCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) __UpperCamelCase : int = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) __UpperCamelCase : Optional[Any] = HubertForCTC(_lowerCAmelCase ) else: __UpperCamelCase : Union[str, Any] = HubertModel(_lowerCAmelCase ) if is_finetuned: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCamelCase : Optional[Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowercase : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
171
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __snake_case ( _lowercase): snake_case__ : Dict = "Salesforce/blip-image-captioning-base" snake_case__ : Dict = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case__ : Tuple = "image_captioner" snake_case__ : Optional[Any] = AutoModelForVisionaSeq snake_case__ : List[str] = ["image"] snake_case__ : int = ["text"] def __init__( self : Optional[Any] , *__lowerCAmelCase : int , **__lowerCAmelCase : Dict ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : "Image" ): """simple docstring""" return self.pre_processor(images=__lowerCAmelCase , return_tensors='''pt''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Any ): """simple docstring""" return self.model.generate(**__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Tuple ): """simple docstring""" return self.pre_processor.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase )[0].strip()
72
"""simple docstring""" import math def snake_case_ ( A_ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(A_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( A_ : float = 0.1 ): '''simple docstring''' _lowerCamelCase : Optional[int] = 3 _lowerCamelCase : List[str] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1, (j + 2) * (j + 2), j + 1 ): primes += is_prime(A_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
72
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def _a ( _lowerCamelCase ) -> np.ndarray: """simple docstring""" __snake_case , __snake_case , __snake_case : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _a ( _lowerCamelCase ) -> np.ndarray: """simple docstring""" return (gray > 127) & (gray <= 255) def _a ( _lowerCamelCase , _lowerCamelCase ) -> np.ndarray: """simple docstring""" __snake_case : Optional[Any] = np.zeros_like(_lowerCamelCase ) __snake_case : List[Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __snake_case : Dict = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __snake_case : Dict = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __snake_case : Optional[int] = int(summation > 0 ) return output if __name__ == "__main__": # read original image __UpperCamelCase = Path(__file__).resolve().parent / "image_data" / "lena.jpg" __UpperCamelCase = np.array(Image.open(lena_path)) # kernel to be applied __UpperCamelCase = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __UpperCamelCase = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __UpperCamelCase = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
13
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
1
from datetime import datetime as dt import os from github import Github UpperCamelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def lowercase_ ( ): lowercase__ : Dict = Github(os.environ["GITHUB_TOKEN"]) lowercase__ : Optional[int] = g.get_repo("huggingface/transformers") lowercase__ : Optional[Any] = repo.get_issues(state="open") for issue in open_issues: lowercase__ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase: i.created_at , reverse=_lowerCamelCase) lowercase__ : Dict = comments[0] if len(_lowerCamelCase) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") if __name__ == "__main__": main()
87
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowercase ( enum.Enum ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 2 @add_end_docstrings(_lowerCamelCase ) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self ,*a_ ,**a_ ) -> Union[str, Any]: super().__init__(*a_ ,**a_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _UpperCAmelCase : List[str] = None if self.model.config.prefix is not None: _UpperCAmelCase : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _UpperCAmelCase : Union[str, Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[Any] = self._sanitize_parameters(prefix=a_ ,**self._forward_params ) _UpperCAmelCase : Optional[int] = {**self._preprocess_params, **preprocess_params} _UpperCAmelCase : List[Any] = {**self._forward_params, **forward_params} def _snake_case ( self ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,**a_ ,) -> Dict: _UpperCAmelCase : int = {} if prefix is not None: _UpperCAmelCase : Union[str, Any] = prefix if prefix: _UpperCAmelCase : Union[str, Any] = self.tokenizer( a_ ,padding=a_ ,add_special_tokens=a_ ,return_tensors=self.framework ) _UpperCAmelCase : Optional[int] = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' """ [None, 'hole']""" ) _UpperCAmelCase : Optional[Any] = handle_long_generation preprocess_params.update(a_ ) _UpperCAmelCase : str = generate_kwargs _UpperCAmelCase : str = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) _UpperCAmelCase : Any = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) _UpperCAmelCase : Tuple = ReturnType.TENSORS if return_type is not None: _UpperCAmelCase : int = return_type if clean_up_tokenization_spaces is not None: _UpperCAmelCase : Tuple = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCAmelCase : str = self.tokenizer.encode(a_ ,add_special_tokens=a_ ) if len(a_ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) _UpperCAmelCase : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _snake_case ( self ,*a_ ,**a_ ) -> Dict: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*a_ ,**a_ ) def __call__( self ,a_ ,**a_ ) -> str: return super().__call__(a_ ,**a_ ) def _snake_case ( self ,a_ ,a_="" ,a_=None ,**a_ ) -> Optional[Any]: _UpperCAmelCase : str = self.tokenizer( prefix + prompt_text ,padding=a_ ,add_special_tokens=a_ ,return_tensors=self.framework ) _UpperCAmelCase : Optional[Any] = prompt_text if handle_long_generation == "hole": _UpperCAmelCase : Dict = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: _UpperCAmelCase : str = generate_kwargs["""max_new_tokens"""] else: _UpperCAmelCase : Optional[int] = generate_kwargs.get("""max_length""" ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: _UpperCAmelCase : str = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) _UpperCAmelCase : Optional[Any] = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: _UpperCAmelCase : Optional[int] = inputs["""attention_mask"""][:, -keep_length:] return inputs def _snake_case ( self ,a_ ,**a_ ) -> Union[str, Any]: _UpperCAmelCase : Optional[Any] = model_inputs["""input_ids"""] _UpperCAmelCase : List[str] = model_inputs.get("""attention_mask""" ,a_ ) # Allow empty prompts if input_ids.shape[1] == 0: _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : int = 1 else: _UpperCAmelCase : List[str] = input_ids.shape[0] _UpperCAmelCase : Any = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _UpperCAmelCase : List[Any] = generate_kwargs.pop("""prefix_length""" ,0 ) if prefix_length > 0: _UpperCAmelCase : Optional[int] = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: _UpperCAmelCase : Optional[int] = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _UpperCAmelCase : str = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _UpperCAmelCase : Optional[int] = self.model.generate(input_ids=a_ ,attention_mask=a_ ,**a_ ) _UpperCAmelCase : Dict = generated_sequence.shape[0] if self.framework == "pt": _UpperCAmelCase : Optional[int] = generated_sequence.reshape(a_ ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": _UpperCAmelCase : Union[str, Any] = tf.reshape(a_ ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _snake_case ( self ,a_ ,a_=ReturnType.FULL_TEXT ,a_=True ) -> List[str]: _UpperCAmelCase : Optional[Any] = model_outputs["""generated_sequence"""][0] _UpperCAmelCase : Optional[int] = model_outputs["""input_ids"""] _UpperCAmelCase : List[str] = model_outputs["""prompt_text"""] _UpperCAmelCase : Optional[Any] = generated_sequence.numpy().tolist() _UpperCAmelCase : Dict = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _UpperCAmelCase : str = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _UpperCAmelCase : Tuple = self.tokenizer.decode( a_ ,skip_special_tokens=a_ ,clean_up_tokenization_spaces=a_ ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _UpperCAmelCase : Union[str, Any] = 0 else: _UpperCAmelCase : Tuple = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=a_ ,clean_up_tokenization_spaces=a_ ,) ) if return_type == ReturnType.FULL_TEXT: _UpperCAmelCase : Any = prompt_text + text[prompt_length:] else: _UpperCAmelCase : Dict = text[prompt_length:] _UpperCAmelCase : Union[str, Any] = {"""generated_text""": all_text} records.append(a_ ) return records
215
0
import enum import shutil import sys _SCREAMING_SNAKE_CASE = shutil.get_terminal_size() _SCREAMING_SNAKE_CASE = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class SCREAMING_SNAKE_CASE_ ( enum.Enum ): __lowerCAmelCase = 0 __lowerCAmelCase = 1 def lowercase( UpperCamelCase_ , UpperCamelCase_="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , lowerCAmelCase__ ) def lowercase( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def lowercase( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def lowercase( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
360
def lowercase( UpperCamelCase_ = 1000000 ) -> int: '''simple docstring''' UpperCamelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , UpperCamelCase_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
165
0
'''simple docstring''' from maths.prime_factors import prime_factors def UpperCamelCase_( snake_case : int ): '''simple docstring''' if not isinstance(snake_case , snake_case ): snake_case_ = f'Input value of [number={number}] must be an integer' raise TypeError(snake_case ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(snake_case ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
85
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : str = {} class __snake_case ( a ): UpperCAmelCase__ : str = '''llama''' UpperCAmelCase__ : Dict = ['''past_key_values'''] def __init__( self : str , _snake_case : List[str]=32000 , _snake_case : int=4096 , _snake_case : List[str]=11008 , _snake_case : Optional[int]=32 , _snake_case : List[Any]=32 , _snake_case : Tuple=None , _snake_case : int="silu" , _snake_case : List[Any]=2048 , _snake_case : List[str]=0.0_2 , _snake_case : Any=1e-6 , _snake_case : List[str]=True , _snake_case : Optional[Any]=0 , _snake_case : Dict=1 , _snake_case : List[Any]=2 , _snake_case : str=1 , _snake_case : Union[str, Any]=False , _snake_case : str=None , **_snake_case : List[Any] , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _snake_case) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _snake_case) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""") if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""")
51
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE__ : Union[str, Any] = k.replace(_A , _A ) if k.startswith("encoder" ): SCREAMING_SNAKE_CASE__ : Tuple = k.replace(".attn" , ".self_attn" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = k.replace("norm1" , "self_attn_layer_norm" ) SCREAMING_SNAKE_CASE__ : Dict = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): SCREAMING_SNAKE_CASE__ : Any = k.replace("norm1" , "self_attn_layer_norm" ) SCREAMING_SNAKE_CASE__ : int = k.replace("norm2" , "encoder_attn_layer_norm" ) SCREAMING_SNAKE_CASE__ : List[Any] = k.replace("norm3" , "final_layer_norm" ) return k def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: SCREAMING_SNAKE_CASE__ : int = sd.pop(_A ) SCREAMING_SNAKE_CASE__ : Optional[int] = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd SCREAMING_SNAKE_CASE__ : Optional[int] = v _lowerCamelCase : Any = ['START'] @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.load(_A , map_location="cpu" ) SCREAMING_SNAKE_CASE__ : Tuple = model["model"] SCREAMING_SNAKE_CASE__ : Union[str, Any] = BlenderbotConfig.from_json_file(_A ) SCREAMING_SNAKE_CASE__ : List[Any] = BlenderbotForConditionalGeneration(_A ) SCREAMING_SNAKE_CASE__ : int = m.model.state_dict().keys() SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue SCREAMING_SNAKE_CASE__ : int = rename_state_dict_key(_A ) if new_k not in valid_keys: failures.append([k, new_k] ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_A ) m.model.load_state_dict(_A , strict=_A ) m.half() m.save_pretrained(_A ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) _lowerCamelCase : str = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
355
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Any=2, _UpperCAmelCase : List[str]=3, _UpperCAmelCase : Union[str, Any]=4, _UpperCAmelCase : Union[str, Any]=2, _UpperCAmelCase : int=7, _UpperCAmelCase : Tuple=True, _UpperCAmelCase : int=True, _UpperCAmelCase : List[str]=True, _UpperCAmelCase : List[str]=True, _UpperCAmelCase : Tuple=9_9, _UpperCAmelCase : Any=3_6, _UpperCAmelCase : List[str]=2, _UpperCAmelCase : int=4, _UpperCAmelCase : str=3_7, _UpperCAmelCase : List[str]="gelu", _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : str=0.1, _UpperCAmelCase : Optional[int]=5_1_2, _UpperCAmelCase : Optional[Any]=1_6, _UpperCAmelCase : int=2, _UpperCAmelCase : Tuple=0.02, _UpperCAmelCase : Optional[int]=6, _UpperCAmelCase : List[Any]=6, _UpperCAmelCase : Any=3, _UpperCAmelCase : List[str]=4, _UpperCAmelCase : Tuple=None, _UpperCAmelCase : str=1_0_0_0, ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : List[Any] = image_size SCREAMING_SNAKE_CASE__ : List[Any] = patch_size SCREAMING_SNAKE_CASE__ : List[Any] = is_training SCREAMING_SNAKE_CASE__ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE__ : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE__ : List[Any] = use_labels SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = coordinate_size SCREAMING_SNAKE_CASE__ : Tuple = shape_size SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : List[str] = num_choices SCREAMING_SNAKE_CASE__ : Optional[Any] = scope SCREAMING_SNAKE_CASE__ : Any = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE__ : str = text_seq_length SCREAMING_SNAKE_CASE__ : Dict = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE__ : List[str] = self.text_seq_length + self.image_seq_length def A_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) SCREAMING_SNAKE_CASE__ : List[Any] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox[i, j, 3] SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox[i, j, 1] SCREAMING_SNAKE_CASE__ : Tuple = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE__ : Tuple = bbox[i, j, 2] SCREAMING_SNAKE_CASE__ : str = bbox[i, j, 0] SCREAMING_SNAKE_CASE__ : Dict = tmp_coordinate SCREAMING_SNAKE_CASE__ : Optional[int] = tf.constant(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A_ ( self : Tuple, _UpperCAmelCase : str, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Any, _UpperCAmelCase : List[Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFLayoutLMvaModel(config=_UpperCAmelCase ) # text + image SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase, pixel_values=_UpperCAmelCase, training=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, training=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : List[Any] = model(_UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_UpperCAmelCase, training=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE__ : Union[str, Any] = model({"pixel_values": pixel_values}, training=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def A_ ( self : List[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : int, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Dict, _UpperCAmelCase : List[str], _UpperCAmelCase : Dict, _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.num_labels SCREAMING_SNAKE_CASE__ : List[str] = TFLayoutLMvaForSequenceClassification(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase, training=_UpperCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def A_ ( self : List[Any], _UpperCAmelCase : str, _UpperCAmelCase : int, _UpperCAmelCase : str, _UpperCAmelCase : Any, _UpperCAmelCase : List[str], _UpperCAmelCase : List[str], _UpperCAmelCase : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.num_labels SCREAMING_SNAKE_CASE__ : Dict = TFLayoutLMvaForTokenClassification(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase, training=_UpperCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def A_ ( self : Dict, _UpperCAmelCase : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : int, _UpperCAmelCase : Any, _UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE__ : str = TFLayoutLMvaForQuestionAnswering(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, start_positions=_UpperCAmelCase, end_positions=_UpperCAmelCase, training=_UpperCAmelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def A_ ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__)) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : List[str] = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase_ = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : Optional[Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : Any, _UpperCAmelCase : Dict, _UpperCAmelCase : str, _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return True def A_ ( self : Optional[int], _UpperCAmelCase : Optional[int], _UpperCAmelCase : str, _UpperCAmelCase : Dict=False ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = copy.deepcopy(_UpperCAmelCase ) if model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = { k: tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_UpperCAmelCase, tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = tf.ones(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : str = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.intaa ) return inputs_dict def A_ ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFLayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=3_7 ) def A_ ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) if getattr(_UpperCAmelCase, "hf_compute_loss", _UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=_UpperCAmelCase )[0] ] SCREAMING_SNAKE_CASE__ : Dict = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = prepared_for_class.pop("input_ids" ) SCREAMING_SNAKE_CASE__ : Dict = model(_UpperCAmelCase, **_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: SCREAMING_SNAKE_CASE__ : str = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: SCREAMING_SNAKE_CASE__ : Any = -1_0_0 SCREAMING_SNAKE_CASE__ : Dict = tf.convert_to_tensor(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_UpperCAmelCase, **_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple SCREAMING_SNAKE_CASE__ : int = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function SCREAMING_SNAKE_CASE__ : List[Any] = prepared_for_class.keys() - inputs_dict.keys() SCREAMING_SNAKE_CASE__ : List[Any] = inspect.signature(model.call ).parameters SCREAMING_SNAKE_CASE__ : Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple SCREAMING_SNAKE_CASE__ : Tuple = {0: "input_ids"} for label_key in label_keys: SCREAMING_SNAKE_CASE__ : str = signature_names.index(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = label_key SCREAMING_SNAKE_CASE__ : str = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple SCREAMING_SNAKE_CASE__ : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: SCREAMING_SNAKE_CASE__ : int = prepared_for_class[value] SCREAMING_SNAKE_CASE__ : List[Any] = tuple(_UpperCAmelCase ) # Send to model SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def A_ ( self : Dict ) -> int: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : List[Any] ) -> int: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ : Optional[int] = type self.model_tester.create_and_check_model(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Dict ) -> Optional[Any]: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Dict ) -> str: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Any ) -> int: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> int: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : List[Any] = TFLayoutLMvaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _a ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) if is_vision_available() else None @slow def A_ ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Dict = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(images=_UpperCAmelCase, return_tensors="tf" ).pixel_values SCREAMING_SNAKE_CASE__ : int = tf.constant([[1, 2]] ) SCREAMING_SNAKE_CASE__ : int = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ), axis=0 ) # forward pass SCREAMING_SNAKE_CASE__ : Dict = model(input_ids=_UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, training=_UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ : Union[str, Any] = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], _UpperCAmelCase, atol=1E-4 ) )
191
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : str = logging.get_logger(__name__) A : List[Any] = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""distilbert""" __UpperCAmelCase : List[str] ={ """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self , __a=3_05_22 , __a=5_12 , __a=False , __a=6 , __a=12 , __a=7_68 , __a=4 * 7_68 , __a=0.1 , __a=0.1 , __a="gelu" , __a=0.0_2 , __a=0.1 , __a=0.2 , __a=0 , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = sinusoidal_pos_embds __lowerCAmelCase = n_layers __lowerCAmelCase = n_heads __lowerCAmelCase = dim __lowerCAmelCase = hidden_dim __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation __lowerCAmelCase = initializer_range __lowerCAmelCase = qa_dropout __lowerCAmelCase = seq_classif_dropout super().__init__(**__a , pad_token_id=__a ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @property def snake_case ( self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
57
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor snake_case : List[Any] = logging.getLogger(__name__) snake_case : Optional[int] = 50 # max width of layer names snake_case : Any = 70 # max width of quantizer names def __lowercase ( __lowerCAmelCase : Tuple ): a__ = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=__lowerCAmelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=__lowerCAmelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=__lowerCAmelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=__lowerCAmelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=__lowerCAmelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=__lowerCAmelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if args.calibrator == "max": a__ = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) a__ = 'histogram' elif args.calibrator == "mse": a__ = 'histogram' else: raise ValueError(F'Invalid calibrator {args.calibrator}' ) a__ = QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCAmelCase ) a__ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Dict=False ): logger.info('Configuring Model for Quantization' ) logger.info(F'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCAmelCase , ['embeddings'] , which='weight' , _disabled=__lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCAmelCase , [''] , _disabled=__lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCAmelCase , args.quant_disable_keyword , _disabled=__lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=__lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=__lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(__lowerCAmelCase , __lowerCAmelCase ) if args.clip_gelu: clip_gelu(__lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] ): logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'{name:80}: {module}' ) def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ): def fusea(__lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): for mod in [qq, qk, qv]: if not hasattr(__lowerCAmelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return a__ = qq._amax.detach().item() a__ = qk._amax.detach().item() a__ = qv._amax.detach().item() a__ = max(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) qq._amax.fill_(__lowerCAmelCase ) qk._amax.fill_(__lowerCAmelCase ) qv._amax.fill_(__lowerCAmelCase ) logger.info(F' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ): for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): a__ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCAmelCase ) a__ = mod._input_quantizer._amax.data.detach().item() logger.info(F'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def __lowercase ( __lowerCAmelCase : Optional[Any] ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: a__ = mod.weight.shape[0] a__ = mod._weight_quantizer._amax.detach() a__ = torch.ones(__lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def __lowercase ( __lowerCAmelCase : Union[str, Any] ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) a__ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) a__ = set(range(len(mod.weight.size() ) ) ) - axis_set a__ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCAmelCase , keepdims=__lowerCAmelCase ).detach() logger.info(F'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) a__ = amax def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int]=2_5 , __lowerCAmelCase : List[Any]=1_8_0 , __lowerCAmelCase : Tuple=None ): if ignore is None: a__ = [] elif not isinstance(__lowerCAmelCase , __lowerCAmelCase ): a__ = [ignore] a__ = 0 for name, mod in model.named_modules(): if not hasattr(__lowerCAmelCase , 'weight' ): continue a__ = max(__lowerCAmelCase , len(__lowerCAmelCase ) ) for name, mod in model.named_modules(): a__ = getattr(__lowerCAmelCase , '_input_quantizer' , __lowerCAmelCase ) a__ = getattr(__lowerCAmelCase , '_weight_quantizer' , __lowerCAmelCase ) if not hasattr(__lowerCAmelCase , 'weight' ): continue if type(__lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(__lowerCAmelCase ) is str and s in name]: continue a__ = F'Act:{input_q.extra_repr()}' a__ = F'Wgt:{weight_q.extra_repr()}' a__ = F'{name:{name_width}} {act_str} {wgt_str}' if len(__lowerCAmelCase ) <= line_width: logger.info(__lowerCAmelCase ) else: logger.info(F'{name:{name_width}} {act_str}' ) logger.info(F'{" ":{name_width}} {wgt_str}' ) def __lowercase ( __lowerCAmelCase : Dict ): a__ = 0 for name, mod in model.named_modules(): if isinstance(__lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F'{name:80} {mod}' ) count += 1 print(F'{count} TensorQuantizers found in model' ) def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict ): a__ = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(__lowerCAmelCase , __lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: logger.warning(F'{name} has no {quantizer}' ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int]="both" , **__lowerCAmelCase : str ): a__ = F'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += F' {k}={v}' if which in ["input", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '_input_quantizer' , __lowerCAmelCase , __lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '_weight_quantizer' , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , **__lowerCAmelCase : Optional[Any] ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_input_quantizer' ) or hasattr(__lowerCAmelCase , '_weight_quantizer' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): set_quantizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): a__ = F'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += F' {k}={v}' setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase )
240
0
"""simple docstring""" from math import ceil, sqrt def lowercase__ ( snake_case_ :int = 1_000_000 ): __UpperCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __UpperCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __UpperCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
360
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowercase : str = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : int = 14 ): if group not in primes: raise ValueError('''Unsupported Group''' ) __UpperCAmelCase = primes[group]['''prime'''] __UpperCAmelCase = primes[group]['''generator'''] __UpperCAmelCase = int(hexlify(urandom(32 ) ) , base=16 ) def a ( self : int ): return hex(self.__private_key )[2:] def a ( self : Dict ): __UpperCAmelCase = pow(self.generator , self.__private_key , self.prime ) return hex(_lowercase )[2:] def a ( self : Union[str, Any] , _lowercase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowercase , (self.prime - 1) // 2 , self.prime ) == 1 ) def a ( self : Optional[Any] , _lowercase : str ): __UpperCAmelCase = int(_lowercase , base=16 ) if not self.is_valid_public_key(_lowercase ): raise ValueError('''Invalid public key''' ) __UpperCAmelCase = pow(_lowercase , self.__private_key , self.prime ) return shaaaa(str(_lowercase ).encode() ).hexdigest() @staticmethod def a ( _lowercase : int , _lowercase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowercase , (prime - 1) // 2 , _lowercase ) == 1 ) @staticmethod def a ( _lowercase : str , _lowercase : str , _lowercase : int = 14 ): __UpperCAmelCase = int(_lowercase , base=16 ) __UpperCAmelCase = int(_lowercase , base=16 ) __UpperCAmelCase = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(_lowercase , _lowercase ): raise ValueError('''Invalid public key''' ) __UpperCAmelCase = pow(_lowercase , _lowercase , _lowercase ) return shaaaa(str(_lowercase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
86
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase (datasets.BuilderConfig ): """simple docstring""" _UpperCAmelCase :Optional[datasets.Features] = None class UpperCAmelCase (datasets.ArrowBasedBuilder ): """simple docstring""" _UpperCAmelCase :Optional[Any] = PandasConfig def _snake_case ( self ): return datasets.DatasetInfo(features=self.config.features ) def _snake_case ( self , _UpperCAmelCase ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase__: Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): lowercase__: Tuple = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__: Any = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase__: List[Any] = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__: int = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def _snake_case ( self , _UpperCAmelCase ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__: List[str] = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def _snake_case ( self , _UpperCAmelCase ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
177
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> tuple: if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
177
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
from __future__ import annotations import time import numpy as np __A = [8, 5, 9, 7] __A = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __A = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> None: '''simple docstring''' __lowerCamelCase = claim_vector __lowerCamelCase = allocated_resources_table __lowerCamelCase = maximum_claim_table def lowercase_ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowercase_ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowercase_ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowerCamelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowercase_ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(lowerCamelCase__ ): i for i in self.__need()} def lowercase_ ( self , **lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = self.__need() __lowerCamelCase = self.__allocated_resources_table __lowerCamelCase = self.__available_resources() __lowerCamelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __lowerCamelCase = False for each_need in need_list: __lowerCamelCase = True for index, need in enumerate(lowerCamelCase__ ): if need > available_resources[index]: __lowerCamelCase = False break if execution: __lowerCamelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCamelCase = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(lowerCamelCase__ ) # update available/freed resources stack __lowerCamelCase = np.array(lowerCamelCase__ ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(lowerCamelCase__ ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def lowercase_ ( self ) -> List[Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(lowerCamelCase__ ) + 1}""" + ' '.join(f"""{it:>8}""" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(lowerCamelCase__ ) + 1}""" + ' '.join(f"""{it:>8}""" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(lowerCamelCase__ ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(lowerCamelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
90
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __A = data_utils.TransfoXLTokenizer __A = data_utils.TransfoXLCorpus __A = data_utils __A = data_utils def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase__ , 'rb' ) as fp: __lowerCamelCase = pickle.load(UpperCamelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCamelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) __lowerCamelCase = corpus.vocab.__dict__ torch.save(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCamelCase__ ) __lowerCamelCase = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCamelCase = os.path.abspath(UpperCamelCase__ ) __lowerCamelCase = os.path.abspath(UpperCamelCase__ ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCamelCase = TransfoXLConfig() else: __lowerCamelCase = TransfoXLConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowerCamelCase = TransfoXLLMHeadModel(UpperCamelCase__ ) __lowerCamelCase = load_tf_weights_in_transfo_xl(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model __lowerCamelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(F"""Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F"""Save configuration file to {os.path.abspath(UpperCamelCase__ )}""" ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __A = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
90
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class A__ ( A__ ): A__ = 42 class A__ ( A__ , A__ ): A__ = True @register_to_config def __init__( self : List[str] , _a : int = 3 , _a : int = 3 , _a : Tuple[str] = ("DownEncoderBlock2D",) , _a : Tuple[str] = ("UpDecoderBlock2D",) , _a : Tuple[int] = (64,) , _a : int = 1 , _a : str = "silu" , _a : int = 4 , _a : int = 32 , _a : int = 32 , _a : float = 0.1_82_15 , ) -> Dict: '''simple docstring''' super().__init__() # pass init params to Encoder _SCREAMING_SNAKE_CASE =Encoder( in_channels=_a , out_channels=_a , down_block_types=_a , block_out_channels=_a , layers_per_block=_a , act_fn=_a , norm_num_groups=_a , double_z=_a , ) # pass init params to Decoder _SCREAMING_SNAKE_CASE =Decoder( in_channels=_a , out_channels=_a , up_block_types=_a , block_out_channels=_a , layers_per_block=_a , norm_num_groups=_a , act_fn=_a , ) _SCREAMING_SNAKE_CASE =nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _SCREAMING_SNAKE_CASE =nn.Convad(_a , _a , 1 ) _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False # only relevant if vae tiling is enabled _SCREAMING_SNAKE_CASE =self.config.sample_size _SCREAMING_SNAKE_CASE =( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _SCREAMING_SNAKE_CASE =int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _SCREAMING_SNAKE_CASE =0.25 def A ( self : Union[str, Any] , _a : Any , _a : List[str]=False ) -> Optional[int]: '''simple docstring''' if isinstance(_a , (Encoder, Decoder) ): _SCREAMING_SNAKE_CASE =value def A ( self : Optional[Any] , _a : bool = True ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =use_tiling def A ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.enable_tiling(_a ) def A ( self : List[str] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =True def A ( self : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A ( self : List[str] ) -> Dict[str, AttentionProcessor]: '''simple docstring''' _SCREAMING_SNAKE_CASE ={} def fn_recursive_add_processors(_a : str , _a : torch.nn.Module , _a : Dict[str, AttentionProcessor] ): if hasattr(_a , 'set_processor' ): _SCREAMING_SNAKE_CASE =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def A ( self : Any , _a : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(_a )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(_a : str , _a : torch.nn.Module , _a : Union[str, Any] ): if hasattr(_a , 'set_processor' ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def A ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def A ( self : Optional[Any] , _a : torch.FloatTensor , _a : bool = True ) -> AutoencoderKLOutput: '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_a , return_dict=_a ) if self.use_slicing and x.shape[0] > 1: _SCREAMING_SNAKE_CASE =[self.encoder(_a ) for x_slice in x.split(1 )] _SCREAMING_SNAKE_CASE =torch.cat(_a ) else: _SCREAMING_SNAKE_CASE =self.encoder(_a ) _SCREAMING_SNAKE_CASE =self.quant_conv(_a ) _SCREAMING_SNAKE_CASE =DiagonalGaussianDistribution(_a ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_a ) def A ( self : str , _a : torch.FloatTensor , _a : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_a , return_dict=_a ) _SCREAMING_SNAKE_CASE =self.post_quant_conv(_a ) _SCREAMING_SNAKE_CASE =self.decoder(_a ) if not return_dict: return (dec,) return DecoderOutput(sample=_a ) @apply_forward_hook def A ( self : str , _a : torch.FloatTensor , _a : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_slicing and z.shape[0] > 1: _SCREAMING_SNAKE_CASE =[self._decode(_a ).sample for z_slice in z.split(1 )] _SCREAMING_SNAKE_CASE =torch.cat(_a ) else: _SCREAMING_SNAKE_CASE =self._decode(_a ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_a ) def A ( self : Tuple , _a : Tuple , _a : int , _a : Optional[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =min(a.shape[2] , b.shape[2] , _a ) for y in range(_a ): _SCREAMING_SNAKE_CASE =a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def A ( self : Dict , _a : Union[str, Any] , _a : Optional[Any] , _a : Optional[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =min(a.shape[3] , b.shape[3] , _a ) for x in range(_a ): _SCREAMING_SNAKE_CASE =a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def A ( self : Union[str, Any] , _a : torch.FloatTensor , _a : bool = True ) -> AutoencoderKLOutput: '''simple docstring''' _SCREAMING_SNAKE_CASE =int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _SCREAMING_SNAKE_CASE =int(self.tile_latent_min_size * self.tile_overlap_factor ) _SCREAMING_SNAKE_CASE =self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _SCREAMING_SNAKE_CASE =[] for i in range(0 , x.shape[2] , _a ): _SCREAMING_SNAKE_CASE =[] for j in range(0 , x.shape[3] , _a ): _SCREAMING_SNAKE_CASE =x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _SCREAMING_SNAKE_CASE =self.encoder(_a ) _SCREAMING_SNAKE_CASE =self.quant_conv(_a ) row.append(_a ) rows.append(_a ) _SCREAMING_SNAKE_CASE =[] for i, row in enumerate(_a ): _SCREAMING_SNAKE_CASE =[] for j, tile in enumerate(_a ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _SCREAMING_SNAKE_CASE =self.blend_v(rows[i - 1][j] , _a , _a ) if j > 0: _SCREAMING_SNAKE_CASE =self.blend_h(row[j - 1] , _a , _a ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_a , dim=3 ) ) _SCREAMING_SNAKE_CASE =torch.cat(_a , dim=2 ) _SCREAMING_SNAKE_CASE =DiagonalGaussianDistribution(_a ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_a ) def A ( self : Optional[int] , _a : torch.FloatTensor , _a : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' _SCREAMING_SNAKE_CASE =int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _SCREAMING_SNAKE_CASE =int(self.tile_sample_min_size * self.tile_overlap_factor ) _SCREAMING_SNAKE_CASE =self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _SCREAMING_SNAKE_CASE =[] for i in range(0 , z.shape[2] , _a ): _SCREAMING_SNAKE_CASE =[] for j in range(0 , z.shape[3] , _a ): _SCREAMING_SNAKE_CASE =z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _SCREAMING_SNAKE_CASE =self.post_quant_conv(_a ) _SCREAMING_SNAKE_CASE =self.decoder(_a ) row.append(_a ) rows.append(_a ) _SCREAMING_SNAKE_CASE =[] for i, row in enumerate(_a ): _SCREAMING_SNAKE_CASE =[] for j, tile in enumerate(_a ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _SCREAMING_SNAKE_CASE =self.blend_v(rows[i - 1][j] , _a , _a ) if j > 0: _SCREAMING_SNAKE_CASE =self.blend_h(row[j - 1] , _a , _a ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_a , dim=3 ) ) _SCREAMING_SNAKE_CASE =torch.cat(_a , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_a ) def A ( self : Optional[int] , _a : torch.FloatTensor , _a : bool = False , _a : bool = True , _a : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' _SCREAMING_SNAKE_CASE =sample _SCREAMING_SNAKE_CASE =self.encode(_a ).latent_dist if sample_posterior: _SCREAMING_SNAKE_CASE =posterior.sample(generator=_a ) else: _SCREAMING_SNAKE_CASE =posterior.mode() _SCREAMING_SNAKE_CASE =self.decode(_a ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_a )
47
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase : List[Any] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCamelCase : Any = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCamelCase : Optional[Any] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCamelCase : Optional[Any] = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Tuple ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def A ( self : Union[str, Any] , _a : Union[str, Any] ) -> Optional[int]: '''simple docstring''' import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def A ( self : int , _a : Tuple , _a : List[str] , _a : List[str]=0.9 , _a : Dict=3 , _a : Optional[int]=0.5 ) -> Optional[int]: '''simple docstring''' if NLTK_VERSION >= version.Version('3.6.5' ): _SCREAMING_SNAKE_CASE =[ meteor_score.single_meteor_score( word_tokenize(_a ) , word_tokenize(_a ) , alpha=_a , beta=_a , gamma=_a ) for ref, pred in zip(_a , _a ) ] else: _SCREAMING_SNAKE_CASE =[ meteor_score.single_meteor_score(_a , _a , alpha=_a , beta=_a , gamma=_a ) for ref, pred in zip(_a , _a ) ] return {"meteor": np.mean(_a )}
47
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = {'''vocab_file''': '''spiece.model'''} _lowerCamelCase : int = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 _lowerCamelCase : Any = { '''t5-small''': 5_12, '''t5-base''': 5_12, '''t5-large''': 5_12, '''t5-3b''': 5_12, '''t5-11b''': 5_12, } _lowerCamelCase : List[str] = '''▁''' class lowercase ( __lowerCamelCase ): lowercase__ : int = VOCAB_FILES_NAMES lowercase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any]="</s>" , _UpperCamelCase : Optional[Any]="<unk>" , _UpperCamelCase : Optional[Any]="<pad>" , _UpperCamelCase : str=100 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Optional[Dict[str, Any]] = None , _UpperCamelCase : Optional[Any]=True , **_UpperCamelCase : List[Any] , ) -> Any: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE = [F"<extra_id_{i}>" for i in range(__lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens SCREAMING_SNAKE_CASE = len(set(filter(lambda _UpperCamelCase : bool("extra_id" in str(__lowercase ) ) , __lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( F"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) SCREAMING_SNAKE_CASE = legacy SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , extra_ids=__lowercase , additional_special_tokens=__lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = extra_ids SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) @staticmethod def __snake_case( _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: SCREAMING_SNAKE_CASE = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , __lowercase , ) return max_model_length @property def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def __snake_case( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) -> int: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__lowercase )) + [1] return ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) + [1] def __snake_case( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return list( set(filter(lambda _UpperCamelCase : bool(re.search(R"<extra_id_\d+>" , __lowercase ) ) is not None , self.additional_special_tokens ) ) ) def __snake_case( self : Tuple ) -> str: '''simple docstring''' return [self._convert_token_to_id(__lowercase ) for token in self.get_sentinel_tokens()] def __snake_case( self : Optional[int] , _UpperCamelCase : List[int] ) -> Optional[int]: '''simple docstring''' if len(__lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __snake_case( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __snake_case( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._add_eos_if_not_present(__lowercase ) if token_ids_a is None: return token_ids_a else: SCREAMING_SNAKE_CASE = self._add_eos_if_not_present(__lowercase ) return token_ids_a + token_ids_a def __getstate__( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : str , _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case( self : Dict , _UpperCamelCase : "TextInput" , **_UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' if not self.legacy: SCREAMING_SNAKE_CASE = SPIECE_UNDERLINE + text.replace(__lowercase , " " ) return super().tokenize(__lowercase , **__lowercase ) def __snake_case( self : Any , _UpperCamelCase : Dict , **_UpperCamelCase : Any ) -> Dict: '''simple docstring''' if not self.legacy: SCREAMING_SNAKE_CASE = text.startswith(__lowercase ) if is_first: SCREAMING_SNAKE_CASE = text[1:] SCREAMING_SNAKE_CASE = self.sp_model.encode(__lowercase , out_type=__lowercase ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(__lowercase ): SCREAMING_SNAKE_CASE = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def __snake_case( self : Any , _UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' if token.startswith("<extra_id_" ): SCREAMING_SNAKE_CASE = re.match(R"<extra_id_(\d+)>" , __lowercase ) SCREAMING_SNAKE_CASE = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(__lowercase ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : Optional[Any] ) -> Dict: '''simple docstring''' if index < self.sp_model.get_piece_size(): SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(__lowercase ) else: SCREAMING_SNAKE_CASE = F"<extra_id_{self.vocab_size - 1 - index}>" return token def __snake_case( self : Optional[int] , _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = '''''' SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowercase ) + token SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__lowercase ) SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def __snake_case( self : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple: '''simple docstring''' if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
350
from __future__ import annotations from collections.abc import Iterator class lowercase : def __init__( self : str , _UpperCamelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None class lowercase : def __init__( self : str , _UpperCamelCase : Node ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = tree def __snake_case( self : int , _UpperCamelCase : Node | None ) -> int: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : List[Any] ) -> Iterator[int]: '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
206
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) __a : Union[str, Any] = AutoTokenizer.from_pretrained('google/mt5-small' ) __a : Union[str, Any] = tokenizer('Hello there' , return_tensors='tf' ).input_ids __a : Dict = tokenizer('Hi I am' , return_tensors='tf' ).input_ids __a : Union[str, Any] = model(__a , labels=__a ).loss __a : List[str] = -tf.math.reduce_mean(__a ).numpy() __a : str = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
27
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class A__ ( __magic_name__ ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase__ : Dict = 8 # DPR tok lowerCAmelCase__ : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(a , exist_ok=a ) lowerCAmelCase__ : Union[str, Any] = os.path.join(a , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok lowerCAmelCase__ : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase__ : str = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase__ : Dict = {'unk_token': '<unk>'} lowerCAmelCase__ : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(a , exist_ok=a ) lowerCAmelCase__ : Optional[Any] = os.path.join(a , BART_VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : Any = os.path.join(a , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , 'rag_tokenizer' ) lowerCAmelCase__ : Any = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCAmelCase__ : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(a ) rag_tokenizer.save_pretrained(a ) lowerCAmelCase__ : List[str] = RagTokenizer.from_pretrained(a , config=a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) lowerCAmelCase__ : Any = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] lowerCAmelCase__ : List[str] = tokenizer(a ) self.assertIsNotNone(a ) @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) lowerCAmelCase__ : List[str] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] lowerCAmelCase__ : int = tokenizer(a ) self.assertIsNotNone(a )
212
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A_ = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( F"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" F" reinstalling {pkg}." ) if not ops[op](version.parse(snake_case__ ) , version.parse(snake_case__ ) ): raise ImportError( F"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" _snake_case : str = F"\n{hint}" if hint is not None else """""" # non-versioned check if re.match(R"""^[\w_\-\d]+$""" , snake_case__ ): _snake_case : Union[str, Any] = requirement, None, None else: _snake_case : Optional[int] = re.findall(R"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , snake_case__ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" F" got {requirement}" ) _snake_case : List[Any] = match[0] _snake_case : int = want_full.split(""",""" ) # there could be multiple requirements _snake_case : Dict = {} for w in want_range: _snake_case : List[Any] = re.findall(R"""^([\s!=<>]{1,2})(.+)""" , snake_case__ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" F" but got {requirement}" ) _snake_case : List[Any] = match[0] _snake_case : List[str] = want_ver if op not in ops: raise ValueError(F"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": _snake_case : List[Any] = """.""".join([str(snake_case__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return # check if any version is installed try: _snake_case : int = importlib.metadata.version(snake_case__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : Dict ): """simple docstring""" _snake_case : int = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(snake_case__ , snake_case__ )
367
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger() @dataclass class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = field(default_factory=__a ) lowercase__ = field(default_factory=__a ) def UpperCamelCase_ ( self: Optional[Any], a_: Union[str, Any], a_: Tensor, a_: Tensor ): '''simple docstring''' _snake_case : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(a_, nn.Convad ) or isinstance(a_, nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__( self: List[Any], a_: Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) ) @dataclass class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 0 lowercase__ = field(default_factory=__a ) lowercase__ = field(default_factory=__a ) def __call__( self: Dict, a_: Tensor ): '''simple docstring''' _snake_case : Tuple = Tracker(self.dest )(a_ ).parametrized _snake_case : int = Tracker(self.src )(a_ ).parametrized _snake_case : Tuple = list(filter(lambda a_ : type(a_ ) not in self.src_skip, a_ ) ) _snake_case : Union[str, Any] = list(filter(lambda a_ : type(a_ ) not in self.dest_skip, a_ ) ) if len(a_ ) != len(a_ ): raise Exception( f"Numbers of operations are different. Source module has {len(a_ )} operations while" f" destination module has {len(a_ )}." ) for dest_m, src_m in zip(a_, a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : ResNetConfig , snake_case__ : Path , snake_case__ : bool = True ): """simple docstring""" print(F"Converting {name}..." ) with torch.no_grad(): _snake_case : Dict = timm.create_model(snake_case__ , pretrained=snake_case__ ).eval() _snake_case : List[Any] = ResNetForImageClassification(snake_case__ ).eval() _snake_case : List[str] = ModuleTransfer(src=snake_case__ , dest=snake_case__ ) _snake_case : Optional[Any] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(snake_case__ ) assert torch.allclose(from_model(snake_case__ ) , our_model(snake_case__ ).logits ), "The model logits don't match the original one." _snake_case : Optional[int] = F"resnet{'-'.join(name.split('resnet' ) )}" print(snake_case__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=snake_case__ , ) # we can use the convnext one _snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=snake_case__ , ) print(F"Pushed {checkpoint_name}" ) def UpperCAmelCase__ (snake_case__ : Path , snake_case__ : str = None , snake_case__ : bool = True ): """simple docstring""" _snake_case : Optional[Any] = """imagenet-1k-id2label.json""" _snake_case : Optional[Any] = 10_00 _snake_case : str = (1, num_labels) _snake_case : List[Any] = """huggingface/label-files""" _snake_case : Union[str, Any] = num_labels _snake_case : Optional[int] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : str = idalabel _snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} _snake_case : Tuple = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) _snake_case : Optional[int] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return config, expected_shape if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) A_ = parser.parse_args() A_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
132
0
from pathlib import Path import numpy as np from PIL import Image def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def A_ ( _UpperCAmelCase ): return (gray > 1_27) & (gray <= 2_55) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = np.zeros_like(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE_: Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE_: str = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE_: Union[str, Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCAmelCase : List[str] = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" lowerCAmelCase : Tuple = np.array(Image.open(lena_path)) # kernel to be applied lowerCAmelCase : List[str] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCAmelCase : Optional[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCAmelCase : Tuple = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
13
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __snake_case : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase): def __init__( self , _UpperCamelCase , _UpperCamelCase=7_68 ): """simple docstring""" super().__init__(_lowercase ) lowerCAmelCase__ = proj_size lowerCAmelCase__ = CLIPVisionModel(_lowercase ) lowerCAmelCase__ = PaintByExampleMapper(_lowercase ) lowerCAmelCase__ = nn.LayerNorm(config.hidden_size ) lowerCAmelCase__ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowerCAmelCase__ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" lowerCAmelCase__ = self.model(pixel_values=_lowercase ) lowerCAmelCase__ = clip_output.pooler_output lowerCAmelCase__ = self.mapper(latent_states[:, None] ) lowerCAmelCase__ = self.final_layer_norm(_lowercase ) lowerCAmelCase__ = self.proj_out(_lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self , _UpperCamelCase ): """simple docstring""" super().__init__() lowerCAmelCase__ = (config.num_hidden_layers + 1) // 5 lowerCAmelCase__ = config.hidden_size lowerCAmelCase__ = 1 lowerCAmelCase__ = nn.ModuleList( [ BasicTransformerBlock(_lowercase , _lowercase , _lowercase , activation_fn='gelu' , attention_bias=_lowercase ) for _ in range(_lowercase ) ] ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" for block in self.blocks: lowerCAmelCase__ = block(_lowercase ) return hidden_states
370
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Tuple = BarthezTokenizer _SCREAMING_SNAKE_CASE : int = BarthezTokenizerFast _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Tuple = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_UpperCamelCase ) lowerCAmelCase__ = tokenizer def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = '<pad>' lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_UpperCamelCase ) , 10_11_22 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase__ = [0, 57, 30_18, 7_03_07, 91, 2] lowerCAmelCase__ = self.tokenizer( _UpperCamelCase , max_length=len(_UpperCamelCase ) , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCAmelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ = tokenizer.tokenize(_UpperCamelCase ) lowerCAmelCase__ = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(_UpperCamelCase ) lowerCAmelCase__ = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # fmt: off lowerCAmelCase__ = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCAmelCase__ = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_UpperCamelCase , )
122
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase_ : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=36 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1000 , ) ->List[Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = text_seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = coordinate_size lowerCAmelCase = shape_size lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase = text_seq_length lowerCAmelCase = (image_size // patch_size) ** 2 + 1 lowerCAmelCase = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->List[Any]: lowerCAmelCase = LayoutLMvaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # text + image lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase = model(pixel_values=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->int: lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : str = False UpperCAmelCase_ : List[Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase_ : Tuple = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = LayoutLMvaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) ->int: lowerCAmelCase = copy.deepcopy(__SCREAMING_SNAKE_CASE ) if model_class in get_values(__SCREAMING_SNAKE_CASE ): lowerCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE ): lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) elif model_class in get_values(__SCREAMING_SNAKE_CASE ): lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) elif model_class in [ *get_values(__SCREAMING_SNAKE_CASE ), ]: lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) elif model_class in [ *get_values(__SCREAMING_SNAKE_CASE ), ]: lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE , ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = LayoutLMvaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: return LayoutLMvaImageProcessor(apply_ocr=__SCREAMING_SNAKE_CASE ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values.to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor([[1, 2]] ) lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase = model( input_ids=input_ids.to(__SCREAMING_SNAKE_CASE ) , bbox=bbox.to(__SCREAMING_SNAKE_CASE ) , pixel_values=pixel_values.to(__SCREAMING_SNAKE_CASE ) , ) # verify the logits lowerCAmelCase = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
338
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: if isinstance(snake_case__ , snake_case__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" lowerCAmelCase = False if num < 0: lowerCAmelCase = True lowerCAmelCase = -num lowerCAmelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowercase__ ( unittest.TestCase , SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase_ = load_tool("text-classification" , remote=_UpperCAmelCase ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(_UpperCAmelCase , "positive" ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(_UpperCAmelCase , "positive" ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(_UpperCAmelCase , "positive" ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(_UpperCAmelCase , "positive" )
241
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase = 250_004 lowerCamelCase = 250_020 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartTokenizer UpperCamelCase = MBartTokenizerFast UpperCamelCase = True UpperCamelCase = True def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = MBartTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = MBartTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCAmelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''facebook/mbart-large-en-ro''' UpperCamelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] UpperCamelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] UpperCamelCase = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def lowercase__ ( cls : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250026, 250001] ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = MBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 250004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, } , )
241
1
'''simple docstring''' def __snake_case( _lowerCAmelCase = 10 ) -> str: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or n < 0: raise ValueError("""Invalid input""" ) snake_case__ : List[Any] = 10**n snake_case__ : Optional[Any] = 28_433 * (pow(2 , 7_830_457 , _lowerCAmelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
35
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Dict = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "camembert" def __init__( self, lowerCamelCase__=3_0522, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : List[Any] = vocab_size A : Dict = hidden_size A : str = num_hidden_layers A : List[Any] = num_attention_heads A : List[str] = hidden_act A : Tuple = intermediate_size A : Tuple = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : Tuple = type_vocab_size A : List[Any] = initializer_range A : str = layer_norm_eps A : Tuple = position_embedding_type A : str = use_cache A : Any = classifier_dropout class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
116
0
"""simple docstring""" A_ : Union[str, Any] =""" # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ A_ : Dict =[{"""type""": """code""", """content""": INSTALL_CONTENT}] A_ : Any ={ """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
80
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: A_ : Any =None A_ : Optional[int] =logging.get_logger(__name__) A_ : List[str] ={"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} A_ : List[Any] ={ """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } A_ : Any ={ """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } A_ : Union[str, Any] ="""▁""" class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : str = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ : int = BarthezTokenizer def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , **a__ , ) _lowerCamelCase = vocab_file _lowerCamelCase = False if not self.vocab_file else True def snake_case_ ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase = os.path.join( a__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
80
1
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 3.0 class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> str: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=__lowerCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCAmelCase( self ) -> Optional[int]: # If no defaults are changed, `to_kwargs` returns an empty dict. lowercase__ : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() lowercase__ : Dict = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) lowercase__ : Optional[int] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , __lowerCAmelCase ) @require_multi_gpu def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : List[Any] = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": __a: Union[str, Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __a: List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) __a: Optional[int] = torch.nn.Linear(1_00, 2_00) __a: Optional[Any] = accelerator.prepare(model) # Check the values changed in kwargs __a: List[str] = """""" __a: List[Any] = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
198
'''simple docstring''' import unittest from knapsack import knapsack as k class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[Any] = 0 lowercase__ : Any = [0] lowercase__ : List[Any] = [0] lowercase__ : Optional[Any] = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 0 ) lowercase__ : List[str] = [60] lowercase__ : List[str] = [10] lowercase__ : List[str] = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 0 ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Optional[Any] = 3 lowercase__ : List[Any] = [1, 2, 3] lowercase__ : Union[str, Any] = [3, 2, 1] lowercase__ : List[Any] = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 5 ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : int = 50 lowercase__ : Any = [60, 100, 120] lowercase__ : int = [10, 20, 30] lowercase__ : Optional[Any] = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 220 ) if __name__ == "__main__": unittest.main()
198
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
'''simple docstring''' import os import sys import unittest lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase : Optional[int] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : List[Any] = {'''BertModelTest''': '''BertModelTester'''} A : int = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : List[str] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A : Union[str, Any] = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : int = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Dict = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A : str = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
3
1
"""simple docstring""" import random def UpperCamelCase ( _A : Dict , _A : Optional[Any] , _A : List[str] = False )-> Optional[Any]: """simple docstring""" A__ = {i: [] for i in range(_A )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_A ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_A ): for j in range(i + 1 , _A ): if random.random() < probability: graph[i].append(_A ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_A ) return graph def UpperCamelCase ( _A : Union[str, Any] )-> Optional[int]: """simple docstring""" return { i: [j for j in range(_A ) if i != j] for i in range(_A ) } if __name__ == "__main__": import doctest doctest.testmod()
353
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCAmelCase_ : Dict = False @skip_mps class UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : Optional[Any] = StableDiffusionAttendAndExcitePipeline lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Any = TEXT_TO_IMAGE_PARAMS lowerCAmelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) lowerCAmelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __A ( cls ): super().setUpClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) @classmethod def __A ( cls ): super().tearDownClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) def __A ( self ): torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , ) A__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) A__ = CLIPTextModel(UpperCAmelCase__ ) A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCAmelCase__ ) else: A__ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) A__ = A__ = { "prompt": "a cat and a frog", "token_indices": [2, 5], "generator": generator, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", "max_iter_to_alter": 2, "thresholds": {0: 0.7}, } return inputs def __A ( self ): A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) A__ = self.get_dummy_inputs(UpperCAmelCase__ ) A__ = pipe(**UpperCAmelCase__ ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) A__ = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase__ , 1e-3 ) def __A ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __A ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __A ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __A ( self ): super().test_save_load_local(expected_max_difference=5e-4 ) def __A ( self ): super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class UpperCamelCase ( unittest.TestCase ): @classmethod def __A ( cls ): super().setUpClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) @classmethod def __A ( cls ): super().tearDownClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): A__ = torch.manual_seed(51 ) A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , safety_checker=UpperCAmelCase__ , torch_dtype=torch.floataa ) pipe.to("cuda" ) A__ = "a painting of an elephant with glasses" A__ = [5, 7] A__ = pipe( prompt=UpperCAmelCase__ , token_indices=UpperCAmelCase__ , guidance_scale=7.5 , generator=UpperCAmelCase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="numpy" , ).images[0] A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy" ) assert np.abs((expected_image - image).max() ) < 5e-1
198
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = """src/transformers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) __lowercase = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __lowercase = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules SCREAMING_SNAKE_CASE__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
325
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE__ :Dict = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Optional[Any] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output _UpperCamelCase : int = text_generator("This is a test" , do_sample=__a ) self.assertEqual( __a , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) _UpperCamelCase : List[Any] = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( __a , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) _UpperCamelCase : int = text_generator("This is a test" , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {"generated_token_ids": ANY(__a )}, {"generated_token_ids": ANY(__a )}, ] , ) _UpperCamelCase : int = text_generator.model.config.eos_token_id _UpperCamelCase : int = "<pad>" _UpperCamelCase : List[str] = text_generator( ["This is a test", "This is a second test"] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {"generated_token_ids": ANY(__a )}, {"generated_token_ids": ANY(__a )}, ], [ {"generated_token_ids": ANY(__a )}, {"generated_token_ids": ANY(__a )}, ], ] , ) @require_tf def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: _UpperCamelCase : Optional[int] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output _UpperCamelCase : Dict = text_generator("This is a test" , do_sample=__a ) self.assertEqual( __a , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) _UpperCamelCase : Optional[int] = text_generator(["This is a test", "This is a second test"] , do_sample=__a ) self.assertEqual( __a , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str] , __a : Tuple , __a : List[str] ) -> Dict: _UpperCamelCase : Optional[Any] = TextGenerationPipeline(model=__a , tokenizer=__a ) return text_generator, ["This is a test", "Another test"] def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: _UpperCamelCase : Optional[int] = "Hello I believe in" _UpperCamelCase : List[str] = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = text_generator(__a ) self.assertEqual( __a , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) _UpperCamelCase : Union[str, Any] = text_generator(__a , stop_sequence=" fe" ) self.assertEqual(__a , [{"generated_text": "Hello I believe in fe"}] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : str , __a : Any ) -> Union[str, Any]: _UpperCamelCase : List[Any] = text_generator.model _UpperCamelCase : Any = text_generator.tokenizer _UpperCamelCase : Optional[Any] = text_generator("This is a test" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _UpperCamelCase : int = text_generator("This is a test" , return_full_text=__a ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _UpperCamelCase : Union[str, Any] = pipeline(task="text-generation" , model=__a , tokenizer=__a , return_full_text=__a ) _UpperCamelCase : int = text_generator("This is a test" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _UpperCamelCase : int = text_generator("This is a test" , return_full_text=__a ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _UpperCamelCase : Optional[int] = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase : Any = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) with self.assertRaises(__a ): _UpperCamelCase : Optional[int] = text_generator("test" , return_full_text=__a , return_text=__a ) with self.assertRaises(__a ): _UpperCamelCase : Tuple = text_generator("test" , return_full_text=__a , return_tensors=__a ) with self.assertRaises(__a ): _UpperCamelCase : int = text_generator("test" , return_text=__a , return_tensors=__a ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase : Union[str, Any] = text_generator("" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase : Union[str, Any] = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase : int = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 500 , max_new_tokens=20 ) _UpperCamelCase : Optional[int] = text_generator("This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__a ): text_generator( "This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: import torch # Classic `model_kwargs` _UpperCamelCase : Any = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase : List[Any] = pipe("This is a test" ) self.assertEqual( __a , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase : int = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase : List[Any] = pipe("This is a test" ) self.assertEqual( __a , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase : Any = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase : Optional[Any] = pipe("This is a test" ) self.assertEqual( __a , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: import torch _UpperCamelCase : List[str] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch _UpperCamelCase : List[Any] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=__a , top_p=0.5 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: _UpperCamelCase : int = "Hello world" _UpperCamelCase : Optional[Any] = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": _UpperCamelCase : Tuple = logging.get_logger("transformers.generation.tf_utils" ) else: _UpperCamelCase : List[str] = logging.get_logger("transformers.generation.utils" ) _UpperCamelCase : Tuple = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__a ) as cl: _UpperCamelCase : Any = text_generator(__a , max_length=10 , max_new_tokens=1 ) self.assertIn(__a , cl.out ) # The user only sets one -> no warning with CaptureLogger(__a ) as cl: _UpperCamelCase : List[str] = text_generator(__a , max_new_tokens=1 ) self.assertNotIn(__a , cl.out ) with CaptureLogger(__a ) as cl: _UpperCamelCase : Optional[Any] = text_generator(__a , max_length=10 ) self.assertNotIn(__a , cl.out )
351
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
0
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> list[int]: if num <= 0: raise ValueError("""Input must be a positive integer""" ) _snake_case : Dict = [True] * (num + 1) _snake_case : Tuple = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , SCREAMING_SNAKE_CASE__ ): _snake_case : str = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() a__ = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
"""simple docstring""" from __future__ import annotations def _a ( _snake_case , _snake_case = None , _snake_case = None ): """simple docstring""" if start is None: UpperCAmelCase = 0 if end is None: UpperCAmelCase = len(_snake_case ) - 1 if start >= end: return UpperCAmelCase = (start + end) // 2 slowsort(_snake_case , _snake_case , _snake_case ) slowsort(_snake_case , mid + 1 , _snake_case ) if sequence[end] < sequence[mid]: UpperCAmelCase , UpperCAmelCase = sequence[mid], sequence[end] slowsort(_snake_case , _snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
234
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _UpperCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" for attribute in key.split(""".""" ): UpperCAmelCase = getattr(_snake_case , _snake_case ) if weight_type is not None: UpperCAmelCase = getattr(_snake_case , _snake_case ).shape else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(_snake_case )[0].split(""".""" )[-2] UpperCAmelCase = mapped_key.replace("""*""" , _snake_case ) if "weight_g" in name: UpperCAmelCase = """weight_g""" elif "weight_v" in name: UpperCAmelCase = """weight_v""" elif "bias" in name: UpperCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase = """weight""" else: UpperCAmelCase = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase = name.split(""".""" ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=True ): """simple docstring""" if config_path is not None: UpperCAmelCase = UniSpeechSatConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = UniSpeechSatConfig() UpperCAmelCase = """""" if is_finetuned: UpperCAmelCase = UniSpeechSatForCTC(_snake_case ) else: UpperCAmelCase = UniSpeechSatForPreTraining(_snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) UpperCAmelCase = model[0].eval() recursively_load_weights(_snake_case , _snake_case ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _UpperCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
234
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=13 , UpperCamelCase__ : Union[str, Any]=30 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : List[str]=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : int=10 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : List[str]=0.6 , UpperCamelCase__ : Dict=None , ) -> str: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = mask_ratio __magic_name__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowercase ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> str: """simple docstring""" __magic_name__ = TFViTMAEModel(config=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" __magic_name__ = TFViTMAEForPreTraining(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) # expected sequence length = num_patches __magic_name__ = (self.image_size // self.patch_size) ** 2 __magic_name__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __magic_name__ = 1 __magic_name__ = TFViTMAEForPreTraining(UpperCamelCase__ ) __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) __magic_name__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__)) = config_and_inputs __magic_name__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a__ = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} a__ = False a__ = False a__ = False a__ = False def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = TFViTMAEModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" pass def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = outputs_dict[0].numpy() __magic_name__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase__ : int ): __magic_name__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase__ ): __magic_name__ = v.numpy() else: __magic_name__ = np.array(UpperCamelCase__ ) return inputs_np_dict for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = prepare_numpy_arrays(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) __magic_name__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ = tf.constant(UpperCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __magic_name__ = tf_noise super().check_pt_tf_models(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase__ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(UpperCamelCase__ , UpperCamelCase__ ),) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase__ , """_keras_serializable""" , UpperCamelCase__ ) } __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ = tf.convert_to_tensor(UpperCamelCase__ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: __magic_name__ = main_layer_class(UpperCamelCase__ ) __magic_name__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __magic_name__ = tf.keras.Model(UpperCamelCase__ , outputs=main_layer(UpperCamelCase__ ) ) __magic_name__ = model(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , """keras_model.h5""" ) model.save(UpperCamelCase__ ) __magic_name__ = tf.keras.models.load_model( UpperCamelCase__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase__ , tf.keras.Model ) __magic_name__ = model(UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @slow def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ = outputs.last_hidden_state.numpy() __magic_name__ = 0 else: __magic_name__ = outputs.logits.numpy() __magic_name__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ , saved_model=UpperCamelCase__ ) __magic_name__ = model_class.from_pretrained(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ = after_outputs["""last_hidden_state"""].numpy() __magic_name__ = 0 else: __magic_name__ = after_outputs["""logits"""].numpy() __magic_name__ = 0 __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1E-5 ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase__ ) __magic_name__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __magic_name__ = model_class.from_config(model.config ) __magic_name__ = new_model(UpperCamelCase__ ) # Build model new_model.set_weights(model.get_weights() ) __magic_name__ = new_model(UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass @slow def _lowercase ( self : Any ) -> str: """simple docstring""" __magic_name__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCamelCase__ ) def a__ ( ): '''simple docstring''' __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _lowercase ( self : Dict ) -> int: """simple docstring""" np.random.seed(2 ) __magic_name__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __magic_name__ = ViTMAEConfig() __magic_name__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(1, num_patches) ) # forward pass __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) # verify the logits __magic_name__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) __magic_name__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1E-4 )
88
"""simple docstring""" from maths.prime_factors import prime_factors def __magic_name__ ( lowercase ): if not isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =f'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
173
0
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "linear" lowerCAmelCase_ = "cosine" lowerCAmelCase_ = "cosine_with_restarts" lowerCAmelCase_ = "polynomial" lowerCAmelCase_ = "constant" lowerCAmelCase_ = "constant_with_warmup" lowerCAmelCase_ = "piecewise_constant" def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 ): return LambdaLR(_SCREAMING_SNAKE_CASE , lambda _SCREAMING_SNAKE_CASE : 1 , last_epoch=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 ): def lr_lambda(_SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(_SCREAMING_SNAKE_CASE ) / float(max(1.0 , _SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , last_epoch=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 ): _snake_case = {} _snake_case = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: _snake_case, _snake_case = rule_str.split(""":""" ) _snake_case = int(_SCREAMING_SNAKE_CASE ) _snake_case = float(_SCREAMING_SNAKE_CASE ) _snake_case = value _snake_case = float(rule_list[-1] ) def create_rules_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): def rule_func(_SCREAMING_SNAKE_CASE ) -> float: _snake_case = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _snake_case = create_rules_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return LambdaLR(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , last_epoch=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=-1 ): def lr_lambda(_SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(_SCREAMING_SNAKE_CASE ) / float(max(1 , _SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.5 , _SCREAMING_SNAKE_CASE = -1 ): def lr_lambda(_SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(_SCREAMING_SNAKE_CASE ) / float(max(1 , _SCREAMING_SNAKE_CASE ) ) _snake_case = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = -1 ): def lr_lambda(_SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(_SCREAMING_SNAKE_CASE ) / float(max(1 , _SCREAMING_SNAKE_CASE ) ) _snake_case = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1E-7 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=-1 ): _snake_case = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(_SCREAMING_SNAKE_CASE ) / float(max(1 , _SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _snake_case = lr_init - lr_end _snake_case = num_training_steps - num_warmup_steps _snake_case = 1 - (current_step - num_warmup_steps) / decay_steps _snake_case = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = -1 , ): _snake_case = SchedulerType(_SCREAMING_SNAKE_CASE ) _snake_case = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_SCREAMING_SNAKE_CASE , last_epoch=_SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_SCREAMING_SNAKE_CASE , step_rules=_SCREAMING_SNAKE_CASE , last_epoch=_SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_SCREAMING_SNAKE_CASE , num_warmup_steps=_SCREAMING_SNAKE_CASE , last_epoch=_SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _SCREAMING_SNAKE_CASE , num_warmup_steps=_SCREAMING_SNAKE_CASE , num_training_steps=_SCREAMING_SNAKE_CASE , num_cycles=_SCREAMING_SNAKE_CASE , last_epoch=_SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _SCREAMING_SNAKE_CASE , num_warmup_steps=_SCREAMING_SNAKE_CASE , num_training_steps=_SCREAMING_SNAKE_CASE , power=_SCREAMING_SNAKE_CASE , last_epoch=_SCREAMING_SNAKE_CASE , ) return schedule_func( _SCREAMING_SNAKE_CASE , num_warmup_steps=_SCREAMING_SNAKE_CASE , num_training_steps=_SCREAMING_SNAKE_CASE , last_epoch=_SCREAMING_SNAKE_CASE )
270
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_SCREAMING_SNAKE_CASE , max_perimeter + 1 ): _snake_case = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_SCREAMING_SNAKE_CASE ): _snake_case = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 1000 ): _snake_case = pythagorean_triple(_SCREAMING_SNAKE_CASE ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
270
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = 1 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[Any] = (32, 32) lowerCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" def extract(*snake_case__ , **snake_case__ ): class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : int = torch.ones([0] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.pixel_values.to(snake_case__ ) return self return Out() return extract def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Dict = self.dummy_cond_unet lowerCAmelCase : List[str] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) lowerCAmelCase : Union[str, Any] = self.dummy_vae lowerCAmelCase : List[Any] = self.dummy_text_encoder lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase : Any = StableDiffusionPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase : List[str] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Union[str, Any] = "A painting of a squirrel eating a burger" lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(0 ) lowerCAmelCase : int = sd_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase : str = output.images lowerCAmelCase : List[str] = torch.Generator(device=snake_case__ ).manual_seed(0 ) lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=snake_case__ , )[0] lowerCAmelCase : Any = image[0, -3:, -3:, -1] lowerCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Any = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.dummy_cond_unet lowerCAmelCase : Any = PNDMScheduler(skip_prk_steps=snake_case__ ) lowerCAmelCase : Union[str, Any] = self.dummy_vae lowerCAmelCase : str = self.dummy_text_encoder lowerCAmelCase : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase : Union[str, Any] = StableDiffusionPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase : Optional[int] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Union[str, Any] = "A painting of a squirrel eating a burger" lowerCAmelCase : List[str] = torch.Generator(device=snake_case__ ).manual_seed(0 ) lowerCAmelCase : str = sd_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase : Union[str, Any] = output.images lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(0 ) lowerCAmelCase : Tuple = sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=snake_case__ , )[0] lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : List[Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) assert isinstance(pipe.scheduler , snake_case__ ) assert pipe.safety_checker is None lowerCAmelCase : Dict = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowerCAmelCase : Dict = StableDiffusionPipeline.from_pretrained(snake_case__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase : str = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.dummy_cond_unet lowerCAmelCase : Dict = PNDMScheduler(skip_prk_steps=snake_case__ ) lowerCAmelCase : str = self.dummy_vae lowerCAmelCase : List[Any] = self.dummy_text_encoder lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 lowerCAmelCase : str = unet.half() lowerCAmelCase : Union[str, Any] = vae.half() lowerCAmelCase : Any = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase : str = StableDiffusionPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase : Optional[Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : List[Any] = "A painting of a squirrel eating a burger" lowerCAmelCase : Any = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=snake_case__ ) lowerCAmelCase : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase : Tuple = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Dict = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) lowerCAmelCase : Any = 4_003_660_346 lowerCAmelCase : List[str] = 7 # without safety guidance (sld_guidance_scale = 0) lowerCAmelCase : Dict = torch.manual_seed(snake_case__ ) lowerCAmelCase : str = sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase : Optional[int] = output.images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase : str = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowerCAmelCase : int = torch.manual_seed(snake_case__ ) lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase : Optional[Any] = output.images lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase : Tuple = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=snake_case__ ) lowerCAmelCase : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase : Optional[Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : str = "padme amidala taking a bath artwork, safe for work, no nudity" lowerCAmelCase : Tuple = 2_734_971_755 lowerCAmelCase : Dict = 7 lowerCAmelCase : str = torch.manual_seed(snake_case__ ) lowerCAmelCase : List[str] = sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase : List[Any] = output.images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase : Any = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowerCAmelCase : List[str] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Union[str, Any] = sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase : List[Any] = output.images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) lowerCAmelCase : Union[str, Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) lowerCAmelCase : Dict = 1_044_355_234 lowerCAmelCase : Any = 12 lowerCAmelCase : Tuple = torch.manual_seed(snake_case__ ) lowerCAmelCase : Optional[Any] = sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase : int = output.images lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : int = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Optional[Any] = sd_pipe( [prompt] , generator=snake_case__ , guidance_scale=snake_case__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase : Optional[int] = output.images lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
108
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class a ( lowercase__ ): """simple docstring""" a : List[str] = 'MCTCTFeatureExtractor' a : str = 'AutoTokenizer' def __init__( self : Tuple , __lowercase : int , __lowercase : Dict ) -> Any: super().__init__(__lowercase , __lowercase ) __UpperCAmelCase : Optional[Any] = self.feature_extractor __UpperCAmelCase : Optional[int] = False def __call__( self : int , *__lowercase : Tuple , **__lowercase : Optional[int] ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowercase , **__lowercase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __UpperCAmelCase : Dict = kwargs.pop("""raw_speech""" ) else: __UpperCAmelCase : Dict = kwargs.pop("""audio""" , __lowercase ) __UpperCAmelCase : List[str] = kwargs.pop("""sampling_rate""" , __lowercase ) __UpperCAmelCase : Tuple = kwargs.pop("""text""" , __lowercase ) if len(__lowercase ) > 0: __UpperCAmelCase : Tuple = args[0] __UpperCAmelCase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __UpperCAmelCase : Tuple = self.feature_extractor(__lowercase , *__lowercase , sampling_rate=__lowercase , **__lowercase ) if text is not None: __UpperCAmelCase : str = self.tokenizer(__lowercase , **__lowercase ) if text is None: return inputs elif audio is None: return encodings else: __UpperCAmelCase : Dict = encodings["""input_ids"""] return inputs def UpperCAmelCase ( self : Optional[Any] , *__lowercase : List[Any] , **__lowercase : int ) -> List[Any]: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def UpperCAmelCase ( self : Optional[int] , *__lowercase : Optional[Any] , **__lowercase : List[str] ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowercase , **__lowercase ) __UpperCAmelCase : Optional[int] = kwargs.pop("""input_features""" , __lowercase ) __UpperCAmelCase : Optional[Any] = kwargs.pop("""labels""" , __lowercase ) if len(__lowercase ) > 0: __UpperCAmelCase : Union[str, Any] = args[0] __UpperCAmelCase : str = args[1:] if input_features is not None: __UpperCAmelCase : Any = self.feature_extractor.pad(__lowercase , *__lowercase , **__lowercase ) if labels is not None: __UpperCAmelCase : Union[str, Any] = self.tokenizer.pad(__lowercase , **__lowercase ) if labels is None: return input_features elif input_features is None: return labels else: __UpperCAmelCase : Any = labels["""input_ids"""] return input_features def UpperCAmelCase ( self : Any , *__lowercase : Union[str, Any] , **__lowercase : Dict ) -> List[Any]: return self.tokenizer.decode(*__lowercase , **__lowercase ) @contextmanager def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = self.tokenizer yield __UpperCAmelCase : List[Any] = self.feature_extractor __UpperCAmelCase : int = False
114
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE :Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Union[str, Any] = XLMProphetNetTokenizer UpperCamelCase_ :Any = False UpperCamelCase_ :Any = True def UpperCAmelCase_ ( self )-> Any: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = "[PAD]" UpperCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_lowercase ) , 1_012 ) def UpperCAmelCase_ ( self )-> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase ) UpperCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase_ = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCAmelCase_ ( self )-> Dict: return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = "Hello World!" UpperCamelCase_ = [35_389, 6_672, 49, 2] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def UpperCAmelCase_ ( self )-> List[str]: # fmt: off UpperCamelCase_ = {"input_ids": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
362
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE :Any = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[int] = XGLMTokenizer UpperCamelCase_ :List[str] = XGLMTokenizerFast UpperCamelCase_ :int = True UpperCamelCase_ :Dict = True def UpperCAmelCase_ ( self )-> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ = XGLMTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = "<pad>" UpperCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(_lowercase ) , 1_008 ) def UpperCAmelCase_ ( self )-> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = XGLMTokenizer(_lowercase , keep_accents=_lowercase ) UpperCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase_ = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCAmelCase_ ( self )-> Optional[Any]: return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def UpperCAmelCase_ ( self )-> Union[str, Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_lowercase , f.name ) UpperCamelCase_ = XGLMTokenizer(f.name , keep_accents=_lowercase ) UpperCamelCase_ = pickle.dumps(_lowercase ) pickle.loads(_lowercase ) def UpperCAmelCase_ ( self )-> str: if not self.test_rust_tokenizer: return UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = self.get_rust_tokenizer() UpperCamelCase_ = "I was born in 92000, and this is falsé." UpperCamelCase_ = tokenizer.tokenize(_lowercase ) UpperCamelCase_ = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) UpperCamelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) UpperCamelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) UpperCamelCase_ = self.get_rust_tokenizer() UpperCamelCase_ = tokenizer.encode(_lowercase ) UpperCamelCase_ = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = "Hello World!" UpperCamelCase_ = [2, 31_227, 4_447, 35] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off UpperCamelCase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: # fmt: off UpperCamelCase_ = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="facebook/xglm-564M" , padding=_lowercase , )
60
0
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowercase__ = TypeVar("""_T""") class __lowerCamelCase ( Generic[_T] ): '''simple docstring''' def __init__( self : Optional[int] , a_ : Iterable[_T] | None = None ): lowerCAmelCase_ : list[_T] = list(iterable or [] ) lowerCAmelCase_ : list[_T] = [] def __len__( self : str ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : List[Any] ): return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def lowerCamelCase ( self : List[str] , a_ : _T ): self._stacka.append(a_ ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : int = self._stacka.pop lowerCAmelCase_ : Any = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
241
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" return EnvironmentCommand() def __lowerCamelCase ( __UpperCamelCase ) -> Optional[int]: """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class __lowerCamelCase ( A__ ): '''simple docstring''' @staticmethod def lowerCamelCase ( a_ : ArgumentParser ): lowerCAmelCase_ : str = parser.add_parser("env" ) download_parser.set_defaults(func=a_ ) download_parser.add_argument( "--accelerate-config_file" , default=a_ , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=a_ ) def __init__( self : Dict , a_ : Dict , *a_ : str ): lowerCAmelCase_ : Union[str, Any] = accelerate_config_file def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Optional[int] = "not installed" if is_safetensors_available(): import safetensors lowerCAmelCase_ : int = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors lowerCAmelCase_ : Optional[Any] = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' lowerCAmelCase_ : List[Any] = "not installed" lowerCAmelCase_ : Dict = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCAmelCase_ : int = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a_ ): lowerCAmelCase_ : int = load_config_from_file(self._accelerate_config_file ).to_dict() lowerCAmelCase_ : Any = ( "\n".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(a_ , a_ ) else f'''\t{accelerate_config}''' ) lowerCAmelCase_ : Union[str, Any] = "not installed" lowerCAmelCase_ : Dict = "NA" if is_torch_available(): import torch lowerCAmelCase_ : Tuple = torch.__version__ lowerCAmelCase_ : Union[str, Any] = torch.cuda.is_available() lowerCAmelCase_ : List[str] = "not installed" lowerCAmelCase_ : Tuple = "NA" if is_tf_available(): import tensorflow as tf lowerCAmelCase_ : Union[str, Any] = tf.__version__ try: # deprecated in v2.1 lowerCAmelCase_ : Tuple = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCAmelCase_ : List[str] = bool(tf.config.list_physical_devices("GPU" ) ) lowerCAmelCase_ : Optional[Any] = "not installed" lowerCAmelCase_ : Optional[int] = "not installed" lowerCAmelCase_ : Tuple = "not installed" lowerCAmelCase_ : Tuple = "NA" if is_flax_available(): import flax import jax import jaxlib lowerCAmelCase_ : List[Any] = flax.__version__ lowerCAmelCase_ : Tuple = jax.__version__ lowerCAmelCase_ : List[Any] = jaxlib.__version__ lowerCAmelCase_ : str = jax.lib.xla_bridge.get_backend().platform lowerCAmelCase_ : Dict = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f'''{safetensors_version}''', "Accelerate version": f'''{accelerate_version}''', "Accelerate config": f'''{accelerate_config_str}''', "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Tensorflow version (GPU?)": f'''{tf_version} ({tf_cuda_available})''', "Flax version (CPU?/GPU?/TPU?)": f'''{flax_version} ({jax_backend})''', "Jax version": f'''{jax_version}''', "JaxLib version": f'''{jaxlib_version}''', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a_ ) ) return info @staticmethod def lowerCamelCase ( a_ : Tuple ): return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
241
1
"""simple docstring""" import torch from torch import nn class lowerCamelCase (nn.Module ): """simple docstring""" def __init__( self : Dict , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=1 , __magic_name__ : int=False ) -> int: super().__init__() SCREAMING_SNAKE_CASE_ = n_token SCREAMING_SNAKE_CASE_ = d_embed SCREAMING_SNAKE_CASE_ = d_proj SCREAMING_SNAKE_CASE_ = cutoffs + [n_token] SCREAMING_SNAKE_CASE_ = [0] + self.cutoffs SCREAMING_SNAKE_CASE_ = div_val SCREAMING_SNAKE_CASE_ = self.cutoffs[0] SCREAMING_SNAKE_CASE_ = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE_ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.zeros(self.n_clusters ) ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() SCREAMING_SNAKE_CASE_ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCamelCase , __lowerCamelCase ) ) ) else: self.out_projs.append(__lowerCamelCase ) self.out_layers.append(nn.Linear(__lowerCamelCase , __lowerCamelCase ) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE_ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCamelCase , __lowerCamelCase ) ) ) self.out_layers.append(nn.Linear(__lowerCamelCase , r_idx - l_idx ) ) SCREAMING_SNAKE_CASE_ = keep_order def __A ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] ) -> Union[str, Any]: if proj is None: SCREAMING_SNAKE_CASE_ = nn.functional.linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: SCREAMING_SNAKE_CASE_ = nn.functional.linear(__lowerCamelCase , proj.t().contiguous() ) SCREAMING_SNAKE_CASE_ = nn.functional.linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __A ( self : Dict , __magic_name__ : List[str] , __magic_name__ : int=None , __magic_name__ : Optional[Any]=False ) -> int: if labels is not None: # Shift so that tokens < n predict n SCREAMING_SNAKE_CASE_ = hidden[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE_ = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE_ = hidden.view(-1 , hidden.size(-1 ) ) SCREAMING_SNAKE_CASE_ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: SCREAMING_SNAKE_CASE_ = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: SCREAMING_SNAKE_CASE_ = self._compute_logit(__lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: SCREAMING_SNAKE_CASE_ = labels != -100 SCREAMING_SNAKE_CASE_ = torch.zeros_like(__lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE_ = ( -nn.functional.log_softmax(__lowerCamelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(__lowerCamelCase , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE_ = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE_ = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE_ = self.out_layers[i].weight SCREAMING_SNAKE_CASE_ = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCamelCase ) biases.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE_ = self._compute_logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(__lowerCamelCase , dim=1 ) if labels is None: SCREAMING_SNAKE_CASE_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: SCREAMING_SNAKE_CASE_ = torch.zeros_like(__lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [0] + self.cutoffs for i in range(len(__lowerCamelCase ) - 1 ): SCREAMING_SNAKE_CASE_ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: SCREAMING_SNAKE_CASE_ = (labels >= l_idx) & (labels < r_idx) SCREAMING_SNAKE_CASE_ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue SCREAMING_SNAKE_CASE_ = labels.index_select(0 , __lowerCamelCase ) - l_idx SCREAMING_SNAKE_CASE_ = head_logprob.index_select(0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = hidden.index_select(0 , __lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = hidden if i == 0: if labels is not None: SCREAMING_SNAKE_CASE_ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE_ = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE_ = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE_ = self._compute_logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(__lowerCamelCase , dim=1 ) SCREAMING_SNAKE_CASE_ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: SCREAMING_SNAKE_CASE_ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE_ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i SCREAMING_SNAKE_CASE_ = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowerCamelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __A ( self : List[Any] , __magic_name__ : int ) -> List[Any]: if self.n_clusters == 0: SCREAMING_SNAKE_CASE_ = self._compute_logit(__lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowerCamelCase , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE_ = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE_ = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE_ = self.out_layers[i].weight SCREAMING_SNAKE_CASE_ = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCamelCase ) biases.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE_ = self._compute_logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(__lowerCamelCase , dim=1 ) SCREAMING_SNAKE_CASE_ = [0] + self.cutoffs for i in range(len(__lowerCamelCase ) - 1 ): SCREAMING_SNAKE_CASE_ = cutoff_values[i], cutoff_values[i + 1] if i == 0: SCREAMING_SNAKE_CASE_ = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE_ = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE_ = self._compute_logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(__lowerCamelCase , dim=1 ) SCREAMING_SNAKE_CASE_ = head_logprob[:, -i] + tail_logprob_i SCREAMING_SNAKE_CASE_ = logprob_i return out
356
import torch def a__ ( ): if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
305
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) __lowercase : Tuple = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mobilenet_v2" def __init__(self , A=3 , A=2_2_4 , A=1.0 , A=8 , A=8 , A=6 , A=3_2 , A=True , A=True , A="relu6" , A=True , A=0.8 , A=0.02 , A=0.0_01 , A=2_5_5 , **A , ): super().__init__(**A ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) lowerCamelCase_ : Optional[int] = num_channels lowerCamelCase_ : Tuple = image_size lowerCamelCase_ : Dict = depth_multiplier lowerCamelCase_ : Optional[Any] = depth_divisible_by lowerCamelCase_ : Dict = min_depth lowerCamelCase_ : Optional[Any] = expand_ratio lowerCamelCase_ : Tuple = output_stride lowerCamelCase_ : Dict = first_layer_is_expansion lowerCamelCase_ : Union[str, Any] = finegrained_output lowerCamelCase_ : Optional[Any] = hidden_act lowerCamelCase_ : Tuple = tf_padding lowerCamelCase_ : List[str] = classifier_dropout_prob lowerCamelCase_ : List[Any] = initializer_range lowerCamelCase_ : List[Any] = layer_norm_eps lowerCamelCase_ : Dict = semantic_loss_ignore_index class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = version.parse("1.11" ) @property def UpperCAmelCase__ (self ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def UpperCAmelCase__ (self ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def UpperCAmelCase__ (self ): return 1E-4
318
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
1
from __future__ import annotations import os from collections.abc import Mapping a__ : Optional[int] = tuple[int, int] class UpperCAmelCase__ : def __init__( self , lowercase , lowercase ) -> None: __UpperCamelCase = vertices __UpperCamelCase = { (min(lowercase ), max(lowercase )): weight for edge, weight in edges.items() } def __lowerCamelCase ( self , lowercase , lowercase ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __UpperCamelCase = weight def __lowerCamelCase ( self ) -> Graph: __UpperCamelCase = Graph({min(self.vertices )} , {} ) __UpperCamelCase = 4_2 __UpperCamelCase = 4_2 __UpperCamelCase = 4_2 __UpperCamelCase = 4_2 while len(subgraph.vertices ) < len(self.vertices ): __UpperCamelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __UpperCamelCase = edge __UpperCamelCase = weight subgraph.add_edge(lowercase , lowercase ) return subgraph def _lowercase ( __A = "p107_network.txt" ): '''simple docstring''' __UpperCamelCase = os.path.abspath(os.path.dirname(__A ) ) __UpperCamelCase = os.path.join(__A ,__A ) __UpperCamelCase = {} __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 with open(__A ) as f: __UpperCamelCase = f.read().strip().split("""\n""" ) __UpperCamelCase = [line.split(""",""" ) for line in data] for edgea in range(1 ,len(__A ) ): for edgea in range(__A ): if adjaceny_matrix[edgea][edgea] != "-": __UpperCamelCase = int(adjaceny_matrix[edgea][edgea] ) __UpperCamelCase = Graph(set(range(len(__A ) ) ) ,__A ) __UpperCamelCase = graph.prims_algorithm() __UpperCamelCase = sum(graph.edges.values() ) __UpperCamelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
350
'''simple docstring''' from PIL import Image def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = image.size __UpperCamelCase = 0 __UpperCamelCase = image.load() for i in range(__A ): for j in range(__A ): __UpperCamelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(__A ): for i in range(__A ): __UpperCamelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": a__ : Optional[int] = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
243
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def __lowercase ( _UpperCamelCase, _UpperCamelCase = 16 ) ->Optional[int]: """simple docstring""" lowercase : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase : Any = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase : int = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase : Dict = datasets.map( snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase : List[Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase : Any = 16 elif accelerator.mixed_precision != "no": lowercase : int = 8 else: lowercase : str = None return tokenizer.pad( snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', ) # Instantiate dataloaders. lowercase : Dict = DataLoader( tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) lowercase : str = DataLoader( tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->int: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1": lowercase : Optional[Any] = 2 # New Code # lowercase : str = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase : Dict = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=snake_case_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : int = config["""lr"""] lowercase : str = int(config['''num_epochs'''] ) lowercase : Tuple = int(config['''seed'''] ) lowercase : Optional[Any] = int(config['''batch_size'''] ) lowercase : int = evaluate.load('''glue''', '''mrpc''' ) set_seed(snake_case_ ) lowercase : Dict = get_dataloaders(snake_case_, snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : Dict = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer lowercase : Any = AdamW(params=model.parameters(), lr=snake_case_ ) # Instantiate scheduler lowercase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=snake_case_, num_warmup_steps=100, num_training_steps=(len(snake_case_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase : List[Any] = accelerator.prepare( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case_ ): lowercase : List[Any] = model(**snake_case_ ) lowercase : Dict = output.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase : Dict = model(**snake_case_ ) lowercase : Any = outputs.logits.argmax(dim=-1 ) lowercase : Tuple = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case_, references=snake_case_, ) lowercase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", snake_case_ ) def __lowercase ( ) ->Union[str, Any]: """simple docstring""" lowercase : Any = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=snake_case_, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) lowercase : Tuple = parser.parse_args() lowercase : List[str] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(snake_case_, snake_case_ ) if __name__ == "__main__": main()
337
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.maximum(0,snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
26
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Union[str, Any] = "van" def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , _SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[64, 128, 320, 512] , _SCREAMING_SNAKE_CASE=[3, 3, 12, 3] , _SCREAMING_SNAKE_CASE=[8, 8, 4, 4] , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-6 , _SCREAMING_SNAKE_CASE=1E-2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , **_SCREAMING_SNAKE_CASE , )-> Union[str, Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =image_size lowerCamelCase_ =num_channels lowerCamelCase_ =patch_sizes lowerCamelCase_ =strides lowerCamelCase_ =hidden_sizes lowerCamelCase_ =depths lowerCamelCase_ =mlp_ratios lowerCamelCase_ =hidden_act lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =layer_scale_init_value lowerCamelCase_ =drop_path_rate lowerCamelCase_ =dropout_rate
49
from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =data lowerCamelCase_ =None lowerCamelCase_ =None def __UpperCamelCase ( _A : Node | None ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __UpperCamelCase ( _A : Node | None ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __UpperCamelCase ( _A : Node ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __UpperCamelCase ( ) ->None: # Main function for testing. """simple docstring""" lowerCamelCase_ =Node(1 ) lowerCamelCase_ =Node(2 ) lowerCamelCase_ =Node(3 ) lowerCamelCase_ =Node(4 ) lowerCamelCase_ =Node(5 ) lowerCamelCase_ =Node(6 ) lowerCamelCase_ =Node(7 ) lowerCamelCase_ =Node(8 ) lowerCamelCase_ =Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print("""Tree is: """ ) display(_A ) if __name__ == "__main__": main()
49
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : List[Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: snake_case__ , snake_case__ : List[str] = emb.weight.shape snake_case__ : List[Any] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) snake_case__ : str = emb.weight.data return lin_layer def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = torch.load(_lowerCAmelCase , map_location="""cpu""" ) snake_case__ : Any = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] snake_case__ : List[str] = mam_aaa["""model"""] remove_ignore_keys_(_lowerCAmelCase ) snake_case__ : Tuple = state_dict["""encoder.embed_tokens.weight"""].shape[0] snake_case__ : int = MaMaaaConfig( vocab_size=_lowerCAmelCase , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) snake_case__ : int = state_dict["""decoder.embed_tokens.weight"""] snake_case__ : int = MaMaaaForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) snake_case__ : Tuple = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") __a = parser.parse_args() __a = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
35
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): def update_area_of_max_square(UpperCAmelCase , UpperCAmelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase__ : int = update_area_of_max_square(UpperCAmelCase , col + 1 ) lowercase__ : Any = update_area_of_max_square(row + 1 , col + 1 ) lowercase__ : str = update_area_of_max_square(row + 1 , UpperCAmelCase ) if mat[row][col]: lowercase__ : List[Any] = 1 + min([right, diagonal, down] ) lowercase__ : List[Any] = max(largest_square_area[0] , UpperCAmelCase ) return sub_problem_sol else: return 0 lowercase__ : Dict = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): def update_area_of_max_square_using_dp_array( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase__ : int = update_area_of_max_square_using_dp_array(UpperCAmelCase , col + 1 , UpperCAmelCase ) lowercase__ : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , UpperCAmelCase ) lowercase__ : Any = update_area_of_max_square_using_dp_array(row + 1 , UpperCAmelCase , UpperCAmelCase ) if mat[row][col]: lowercase__ : Optional[int] = 1 + min([right, diagonal, down] ) lowercase__ : Any = max(largest_square_area[0] , UpperCAmelCase ) lowercase__ : int = sub_problem_sol return sub_problem_sol else: return 0 lowercase__ : Any = [0] lowercase__ : List[Any] = [[-1] * cols for _ in range(UpperCAmelCase )] update_area_of_max_square_using_dp_array(0 , 0 , UpperCAmelCase ) return largest_square_area[0] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase__ : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase__ : str = dp_array[row][col + 1] lowercase__ : Optional[Any] = dp_array[row + 1][col + 1] lowercase__ : str = dp_array[row + 1][col] if mat[row][col] == 1: lowercase__ : Dict = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase__ : str = max(dp_array[row][col] , UpperCAmelCase ) else: lowercase__ : Any = 0 return largest_square_area def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : List[str] = [0] * (cols + 1) lowercase__ : str = [0] * (cols + 1) lowercase__ : Tuple = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase__ : List[Any] = current_row[col + 1] lowercase__ : Any = next_row[col + 1] lowercase__ : Optional[Any] = next_row[col] if mat[row][col] == 1: lowercase__ : List[str] = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase__ : List[str] = max(current_row[col] , UpperCAmelCase ) else: lowercase__ : int = 0 lowercase__ : int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
198
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __SCREAMING_SNAKE_CASE ( _a , _a ): snake_case : Any = '''resnet''' snake_case : List[Any] = ['''basic''', '''bottleneck'''] def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=64 , __lowerCAmelCase=[256, 512, 1024, 2048] , __lowerCAmelCase=[3, 4, 6, 3] , __lowerCAmelCase="bottleneck" , __lowerCAmelCase="relu" , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): super().__init__(**_snake_case ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) UpperCamelCase__ = num_channels UpperCamelCase__ = embedding_size UpperCamelCase__ = hidden_sizes UpperCamelCase__ = depths UpperCamelCase__ = layer_type UpperCamelCase__ = hidden_act UpperCamelCase__ = downsample_in_first_stage UpperCamelCase__ = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(_snake_case ) + 1 )] UpperCamelCase__ , UpperCamelCase__ = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names ) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : str = version.parse("""1.11""" ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowerCamelCase ( self ): return 1E-3
357
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : List[Any] = """upernet""" def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=512 , __lowerCAmelCase=0.02 , __lowerCAmelCase=[1, 2, 3, 6] , __lowerCAmelCase=True , __lowerCAmelCase=0.4 , __lowerCAmelCase=384 , __lowerCAmelCase=256 , __lowerCAmelCase=1 , __lowerCAmelCase=False , __lowerCAmelCase=255 , **__lowerCAmelCase , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = backbone_config.get("""model_type""" ) UpperCamelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ = config_class.from_dict(__lowerCAmelCase ) UpperCamelCase__ = backbone_config UpperCamelCase__ = hidden_size UpperCamelCase__ = initializer_range UpperCamelCase__ = pool_scales UpperCamelCase__ = use_auxiliary_head UpperCamelCase__ = auxiliary_loss_weight UpperCamelCase__ = auxiliary_in_channels UpperCamelCase__ = auxiliary_channels UpperCamelCase__ = auxiliary_num_convs UpperCamelCase__ = auxiliary_concat_input UpperCamelCase__ = loss_ignore_index def _lowerCamelCase ( self ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.backbone_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
87
0
"""simple docstring""" import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): '''simple docstring''' def __init__( self , lowercase="sayef/fsner-bert-base-uncased" ): super(lowercase , self ).__init__() _lowerCamelCase : Optional[int] = AutoModel.from_pretrained(lowercase , return_dict=lowercase ) _lowerCamelCase : str = torch.nn.CosineSimilarity(3 , 1E-08 ) _lowerCamelCase : Optional[int] = torch.nn.Softmax(dim=1 ) def A_ ( self , **lowercase ): return self.bert(**lowercase ).last_hidden_state def A_ ( self , lowercase ): return token_embeddings.sum(2 , keepdim=lowercase ) def A_ ( self , lowercase , lowercase , lowercase=1 ): return self.softmax(T * self.cos(lowercase , lowercase ) ) def A_ ( self , lowercase , lowercase ): _lowerCamelCase : List[str] = W_supports['sizes'].tolist() _lowerCamelCase : List[Any] = W_supports['start_token_id'].item() _lowerCamelCase : Optional[Any] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _lowerCamelCase : Union[str, Any] = self.BERT(**lowercase ) _lowerCamelCase : Any = self.BERT(**lowercase ) _lowerCamelCase : str = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Optional[Any] = W_supports['input_ids'] == start_token_id _lowerCamelCase : Optional[int] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowercase ): if i == 0: _lowerCamelCase : str = 0 else: _lowerCamelCase : List[Any] = support_sizes[i - 1] _lowerCamelCase : str = S[s : s + size][start_token_masks[s : s + size]] _lowerCamelCase : List[Any] = S[s : s + size][end_token_masks[s : s + size]] _lowerCamelCase : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _lowerCamelCase : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _lowerCamelCase : Optional[Any] = torch.vstack((p_starts, p_start) ) _lowerCamelCase : Dict = torch.vstack((p_ends, p_end) ) else: _lowerCamelCase : Optional[Any] = p_start _lowerCamelCase : Optional[int] = p_end return p_starts, p_ends
96
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowercase__ = get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = """dummy_data""" lowerCamelCase__ = """datasets""" lowerCamelCase__ = False def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , lowercase = True , lowercase = None , ): _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Dict = dataset_name _lowerCamelCase : Union[str, Any] = cache_dir _lowerCamelCase : Dict = use_local_dummy_data _lowerCamelCase : Tuple = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : str = str(lowercase ) # to be downloaded _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : int = None @property def A_ ( self ): if self._dummy_file is None: _lowerCamelCase : Tuple = self.download_dummy_data() return self._dummy_file @property def A_ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def A_ ( self ): return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def A_ ( self ): _lowerCamelCase : List[str] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : int = cached_path( lowercase , cache_dir=self.cache_dir , extract_compressed_file=lowercase , force_extract=lowercase ) return os.path.join(lowercase , self.dummy_file_name ) @property def A_ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def A_ ( self ): if self._bucket_url is None: _lowerCamelCase : List[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def A_ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def A_ ( self , lowercase , *lowercase ): if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase , lowercase ): return self.create_dummy_data_dict(lowercase , lowercase ) elif isinstance(lowercase , (list, tuple) ): return self.create_dummy_data_list(lowercase , lowercase ) else: return self.create_dummy_data_single(lowercase , lowercase ) def A_ ( self , lowercase , *lowercase ): return self.download_and_extract(lowercase ) def A_ ( self , lowercase , lowercase ): return self.download_and_extract(lowercase ) def A_ ( self , lowercase , *lowercase , **lowercase ): return path def A_ ( self ): return {} def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[int] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase , lowercase ): for single_url in single_urls: download_callback(lowercase ) else: _lowerCamelCase : List[Any] = single_urls download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase , lowercase ): _lowerCamelCase : List[Any] = [os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) for x in single_urls] else: _lowerCamelCase : Optional[int] = single_urls _lowerCamelCase : List[Any] = os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) _lowerCamelCase : int = value # make sure that values are unique if all(isinstance(lowercase , lowercase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , lowercase ) ) for url in data_url ) _lowerCamelCase : int = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : List[str] = [data_url[0]] * len(lowercase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : str = os.path.join(lowercase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(lowercase ) return dummy_data_list def A_ ( self , lowercase , lowercase ): for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Tuple = os.path.join(lowercase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(lowercase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def A_ ( self ): pass def A_ ( self ): pass def A_ ( self , lowercase ): def _iter_archive_members(lowercase ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : str = Path(self.dummy_file ).parent _lowerCamelCase : Union[str, Any] = path.relative_to(lowercase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase ) _lowerCamelCase : Optional[int] = Path(lowercase ) _lowerCamelCase : Dict = _iter_archive_members(lowercase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(lowercase ).as_posix(), file_path.open('rb' ) def A_ ( self , lowercase ): if not isinstance(lowercase , lowercase ): _lowerCamelCase : List[str] = [paths] for path in paths: if os.path.isfile(lowercase ): if os.path.basename(lowercase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase ): if os.path.basename(lowercase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(lowercase ): if filename.startswith(('.', '__') ): continue yield os.path.join(lowercase , lowercase )
96
1
"""simple docstring""" def snake_case ( ): return [list(range(10_00 - i ,-10_00 - i ,-1 ) ) for i in range(10_00 )] lowerCamelCase_ = generate_large_matrix() lowerCamelCase_ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def snake_case ( A__ ): assert all(row == sorted(_a ,reverse=_a ) for row in grid ) assert all(list(_a ) == sorted(_a ,reverse=_a ) for col in zip(*_a ) ) def snake_case ( A__ ): UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[str] = len(_a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase_ : str = (left + right) // 2 UpperCAmelCase_ : Any = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase_ : Optional[int] = mid + 1 else: UpperCAmelCase_ : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_a ) def snake_case ( A__ ): UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Optional[Any] = len(grid[0] ) for i in range(len(_a ) ): UpperCAmelCase_ : Tuple = find_negative_index(grid[i][:bound] ) total += bound return (len(_a ) * len(grid[0] )) - total def snake_case ( A__ ): return len([number for row in grid for number in row if number < 0] ) def snake_case ( A__ ): UpperCAmelCase_ : List[Any] = 0 for row in grid: for i, number in enumerate(_a ): if number < 0: total += len(_a ) - i break return total def snake_case ( ): from timeit import timeit print("Running benchmarks" ) UpperCAmelCase_ : Any = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase_ : Any = timeit(F"""{func}(grid=grid)""" ,setup=_a ,number=5_00 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class UpperCamelCase_ (__A ): __magic_name__ = '''table-transformer''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[Any]=100 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : List[Any]=2_048 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : List[Any]=2_048 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]="relu" , lowerCAmelCase_ : List[Any]=256 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=0.0_2 , lowerCAmelCase_ : Any=1.0 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Dict="sine" , lowerCAmelCase_ : Optional[Any]="resnet50" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=0.1 , **lowerCAmelCase_ : Dict , ) -> Union[str, Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Dict = backbone_config.get("model_type" ) UpperCAmelCase_ : str = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowerCAmelCase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Optional[Any] = num_queries UpperCAmelCase_ : List[str] = d_model UpperCAmelCase_ : Union[str, Any] = encoder_ffn_dim UpperCAmelCase_ : Optional[Any] = encoder_layers UpperCAmelCase_ : List[str] = encoder_attention_heads UpperCAmelCase_ : int = decoder_ffn_dim UpperCAmelCase_ : int = decoder_layers UpperCAmelCase_ : Optional[int] = decoder_attention_heads UpperCAmelCase_ : List[str] = dropout UpperCAmelCase_ : Dict = attention_dropout UpperCAmelCase_ : Union[str, Any] = activation_dropout UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : int = init_std UpperCAmelCase_ : Any = init_xavier_std UpperCAmelCase_ : Union[str, Any] = encoder_layerdrop UpperCAmelCase_ : Dict = decoder_layerdrop UpperCAmelCase_ : Union[str, Any] = encoder_layers UpperCAmelCase_ : Any = auxiliary_loss UpperCAmelCase_ : List[str] = position_embedding_type UpperCAmelCase_ : Dict = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Tuple = dilation # Hungarian matcher UpperCAmelCase_ : Optional[Any] = class_cost UpperCAmelCase_ : List[Any] = bbox_cost UpperCAmelCase_ : Optional[int] = giou_cost # Loss coefficients UpperCAmelCase_ : Optional[int] = mask_loss_coefficient UpperCAmelCase_ : List[str] = dice_loss_coefficient UpperCAmelCase_ : Union[str, Any] = bbox_loss_coefficient UpperCAmelCase_ : Union[str, Any] = giou_loss_coefficient UpperCAmelCase_ : Dict = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.d_model class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> float: return 1e-5 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 12
253
0