code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: Tuple=None ) -> Tuple:
'''simple docstring'''
__lowerCamelCase : Optional[Any] = None
if token is not None:
__lowerCamelCase : List[str] = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
__lowerCamelCase : Tuple = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
__lowerCamelCase : List[Any] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json()
__lowerCamelCase : str = {}
try:
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
__lowerCamelCase : Any = math.ceil((result["total_count"] - 100) / 100 )
for i in range(_lowerCamelCase ):
__lowerCamelCase : List[Any] = requests.get(url + F"""&page={i + 2}""" , headers=_lowerCamelCase ).json()
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: Tuple=None ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase : int = None
if token is not None:
__lowerCamelCase : int = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
__lowerCamelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
__lowerCamelCase : Any = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json()
__lowerCamelCase : int = {}
try:
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
__lowerCamelCase : Optional[Any] = math.ceil((result["total_count"] - 100) / 100 )
for i in range(_lowerCamelCase ):
__lowerCamelCase : str = requests.get(url + F"""&page={i + 2}""" , headers=_lowerCamelCase ).json()
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Any ) -> int:
'''simple docstring'''
__lowerCamelCase : Optional[Any] = None
if token is not None:
__lowerCamelCase : Optional[int] = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
__lowerCamelCase : Dict = requests.get(_lowerCamelCase , headers=_lowerCamelCase , allow_redirects=_lowerCamelCase )
__lowerCamelCase : Tuple = result.headers["Location"]
__lowerCamelCase : Any = requests.get(_lowerCamelCase , allow_redirects=_lowerCamelCase )
__lowerCamelCase : Optional[Any] = os.path.join(_lowerCamelCase , F"""{artifact_name}.zip""" )
with open(_lowerCamelCase , "wb" ) as fp:
fp.write(response.content )
def lowercase_ ( _lowerCamelCase: Any , _lowerCamelCase: str=None ) -> str:
'''simple docstring'''
__lowerCamelCase : str = []
__lowerCamelCase : List[str] = []
__lowerCamelCase : Any = None
with zipfile.ZipFile(_lowerCamelCase ) as z:
for filename in z.namelist():
if not os.path.isdir(_lowerCamelCase ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_lowerCamelCase ) as f:
for line in f:
__lowerCamelCase : Dict = line.decode("UTF-8" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
__lowerCamelCase : Optional[int] = line[: line.index(": " )]
__lowerCamelCase : str = line[line.index(": " ) + len(": " ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("FAILED " ):
# `test` is the test method that failed
__lowerCamelCase : Optional[Any] = line[len("FAILED " ) :]
failed_tests.append(_lowerCamelCase )
elif filename == "job_name.txt":
__lowerCamelCase : Tuple = line
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_lowerCamelCase )} for `errors` """
F"""and {len(_lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
" problem." )
__lowerCamelCase : Union[str, Any] = None
if job_name and job_links:
__lowerCamelCase : Optional[Any] = job_links.get(_lowerCamelCase , _lowerCamelCase )
# A list with elements of the form (line of error, error, failed test)
__lowerCamelCase : Dict = [x + [y] + [job_link] for x, y in zip(_lowerCamelCase , _lowerCamelCase )]
return result
def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Any=None ) -> Dict:
'''simple docstring'''
__lowerCamelCase : Tuple = []
__lowerCamelCase : List[Any] = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for p in os.listdir(_lowerCamelCase ) if p.endswith(".zip" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_lowerCamelCase , job_links=_lowerCamelCase ) )
return errors
def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Any=None ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase : int = Counter()
counter.update([x[1] for x in logs] )
__lowerCamelCase : Any = counter.most_common()
__lowerCamelCase : List[str] = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
__lowerCamelCase : List[Any] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]}
__lowerCamelCase : int = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) )
return r
def lowercase_ ( _lowerCamelCase: List[Any] ) -> int:
'''simple docstring'''
__lowerCamelCase : str = test.split("::" )[0]
if test.startswith("tests/models/" ):
__lowerCamelCase : Optional[int] = test.split("/" )[2]
else:
__lowerCamelCase : Any = None
return test
def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Union[str, Any]=None ) -> Dict:
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = [(x[0], x[1], get_model(x[2] )) for x in logs]
__lowerCamelCase : Dict = [x for x in logs if x[2] is not None]
__lowerCamelCase : str = {x[2] for x in logs}
__lowerCamelCase : Any = {}
for test in tests:
__lowerCamelCase : str = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
__lowerCamelCase : Dict = counter.most_common()
__lowerCamelCase : str = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
__lowerCamelCase : List[str] = sum(error_counts.values() )
if n_errors > 0:
__lowerCamelCase : Union[str, Any] = {"count": n_errors, "errors": error_counts}
__lowerCamelCase : Optional[Any] = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) )
return r
def lowercase_ ( _lowerCamelCase: List[str] ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase : Tuple = "| no. | error | status |"
__lowerCamelCase : Union[str, Any] = "|-:|:-|:-|"
__lowerCamelCase : int = [header, sep]
for error in reduced_by_error:
__lowerCamelCase : int = reduced_by_error[error]["count"]
__lowerCamelCase : Union[str, Any] = F"""| {count} | {error[:100]} | |"""
lines.append(_lowerCamelCase )
return "\n".join(_lowerCamelCase )
def lowercase_ ( _lowerCamelCase: Tuple ) -> Dict:
'''simple docstring'''
__lowerCamelCase : Dict = "| model | no. of errors | major error | count |"
__lowerCamelCase : Optional[int] = "|-:|-:|-:|-:|"
__lowerCamelCase : Tuple = [header, sep]
for model in reduced_by_model:
__lowerCamelCase : int = reduced_by_model[model]["count"]
__lowerCamelCase , __lowerCamelCase : str = list(reduced_by_model[model]["errors"].items() )[0]
__lowerCamelCase : Dict = F"""| {model} | {count} | {error[:60]} | {_count} |"""
lines.append(_lowerCamelCase )
return "\n".join(_lowerCamelCase )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
__A = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
__A = get_job_links(args.workflow_run_id, token=args.token)
__A = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
__A = k.find(''' / ''')
__A = k[index + len(''' / ''') :]
__A = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
__A = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
__A = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
__A = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
__A = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
__A = reduce_by_error(errors)
__A = reduce_by_model(errors)
__A = make_github_table(reduced_by_error)
__A = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
| 135
|
"""simple docstring"""
def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> List[str]:
'''simple docstring'''
assert x is not None
assert y is not None
__lowerCamelCase : Optional[int] = len(_lowerCamelCase )
__lowerCamelCase : Optional[int] = len(_lowerCamelCase )
# declaring the array for storing the dp values
__lowerCamelCase : Any = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
__lowerCamelCase : Dict = 1 if x[i - 1] == y[j - 1] else 0
__lowerCamelCase : List[Any] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
__lowerCamelCase : int = ""
__lowerCamelCase , __lowerCamelCase : int = m, n
while i > 0 and j > 0:
__lowerCamelCase : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
__lowerCamelCase : Any = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
__A = '''AGGTAB'''
__A = '''GXTXAYB'''
__A = 4
__A = '''GTAB'''
__A, __A = longest_common_subsequence(a, b)
print('''len =''', ln, ''', sub-sequence =''', subseq)
import doctest
doctest.testmod()
| 135
| 1
|
"""simple docstring"""
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def _a ( _SCREAMING_SNAKE_CASE="" ) -> str:
snake_case_ = tempfile.mkdtemp()
return os.path.join(_SCREAMING_SNAKE_CASE , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = torch.rand(12 , dtype=torch.floataa ) - 0.5
snake_case_ = AgentAudio(UpperCAmelCase_ )
snake_case_ = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(UpperCAmelCase_ , agent_type.to_raw() , atol=1E-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(UpperCAmelCase_ ) )
# Ensure that the file contains the same value as the original tensor
snake_case_ , snake_case_ = sf.read(UpperCAmelCase_ )
self.assertTrue(torch.allclose(UpperCAmelCase_ , torch.tensor(UpperCAmelCase_ ) , atol=1E-4 ) )
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = torch.rand(12 , dtype=torch.floataa ) - 0.5
snake_case_ = get_new_path(suffix=""".wav""" )
sf.write(UpperCAmelCase_ , UpperCAmelCase_ , 16_000 )
snake_case_ = AgentAudio(UpperCAmelCase_ )
self.assertTrue(torch.allclose(UpperCAmelCase_ , agent_type.to_raw() , atol=1E-4 ) )
self.assertEqual(agent_type.to_string() , UpperCAmelCase_ )
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = torch.randint(0 , 256 , (64, 64, 3) )
snake_case_ = AgentImage(UpperCAmelCase_ )
snake_case_ = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(UpperCAmelCase_ , agent_type._tensor , atol=1E-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(UpperCAmelCase_ ) )
def lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
snake_case_ = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png"""
snake_case_ = Image.open(UpperCAmelCase_ )
snake_case_ = AgentImage(UpperCAmelCase_ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(UpperCAmelCase_ ) )
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png"""
snake_case_ = Image.open(UpperCAmelCase_ )
snake_case_ = AgentImage(UpperCAmelCase_ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(UpperCAmelCase_ ) )
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = """Hey!"""
snake_case_ = AgentText(UpperCAmelCase_ )
self.assertEqual(UpperCAmelCase_ , agent_type.to_string() )
self.assertEqual(UpperCAmelCase_ , agent_type.to_raw() )
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
| 351
|
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = len(_SCREAMING_SNAKE_CASE )
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(i + 1 , _SCREAMING_SNAKE_CASE ):
if numbers[j] < numbers[i]:
snake_case_ , snake_case_ = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Optional[int] = input('Enter numbers separated by a comma:\n').strip()
__SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(',')]
print(exchange_sort(unsorted))
| 233
| 0
|
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
_A : int = ""
if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'):
class __SCREAMING_SNAKE_CASE ( tr.AbstractTransform ):
def __init__( self : Optional[Any] , A : str = " " ) ->Tuple:
lowerCamelCase__ : Tuple = sentence_delimiter
def __lowerCamelCase ( self : Union[str, Any] , A : str ) ->Optional[int]:
return list(UpperCamelCase__ )
def __lowerCamelCase ( self : List[str] , A : List[str] ) ->str:
lowerCamelCase__ : str = []
for sent_idx, sentence in enumerate(UpperCamelCase__ ):
chars.extend(self.process_string(UpperCamelCase__ ) )
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase__ ) - 1:
chars.append(self.sentence_delimiter )
return chars
_A : Any = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
_A : str = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
_A : str = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
_A : List[Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n"
_A : Tuple = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE ( datasets.Metric ):
def __lowerCamelCase ( self : Optional[Any] ) ->str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
'''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''',
] , )
def __lowerCamelCase ( self : List[str] , A : Optional[Any] , A : List[str] , A : Union[str, Any]=False ) ->Union[str, Any]:
if concatenate_texts:
return jiwer.compute_measures(
UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , )["wer"]
lowerCamelCase__ : List[Any] = 0
lowerCamelCase__ : str = 0
for prediction, reference in zip(UpperCamelCase__ , UpperCamelCase__ ):
lowerCamelCase__ : Dict = jiwer.compute_measures(
UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 142
|
'''simple docstring'''
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
_lowerCamelCase : Optional[int] = logging.getLogger(__name__)
def __lowerCamelCase ( A__=2 , A__=3 , A__=16 , A__ = 10 , A__ = 2 ) -> int:
"""simple docstring"""
def get_dataset(A__ ):
UpperCamelCase = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(A__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
UpperCamelCase = get_dataset(A__ )
UpperCamelCase = get_dataset(A__ )
UpperCamelCase = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 )
UpperCamelCase = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 )
return (train_dataloader, valid_dataloader)
def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ , A__=None ) -> int:
"""simple docstring"""
UpperCamelCase = []
for epoch in range(A__ ):
# Train quickly
model.train()
for batch in dataloader:
UpperCamelCase , UpperCamelCase = batch
UpperCamelCase = model(A__ )
UpperCamelCase = torch.nn.functional.mse_loss(A__ , A__ )
accelerator.backward(A__ )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple ):
"""simple docstring"""
super().__init__()
UpperCamelCase = nn.Parameter(torch.randn(1 ) )
UpperCamelCase = nn.Parameter(torch.randn(1 ) )
def A ( self : str , UpperCamelCase__ : Dict ):
"""simple docstring"""
return x * self.a + self.b
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
def A ( self : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
UpperCamelCase = DummyModel()
UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
UpperCamelCase , UpperCamelCase = dummy_dataloaders()
UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=UpperCamelCase__ , automatic_checkpoint_naming=UpperCamelCase__ )
# Train baseline
UpperCamelCase = Accelerator(project_config=UpperCamelCase__ )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 )
def A ( self : Optional[int] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
UpperCamelCase = DummyModel()
UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
UpperCamelCase , UpperCamelCase = dummy_dataloaders()
# Train baseline
UpperCamelCase = Accelerator()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Save initial
UpperCamelCase = os.path.join(UpperCamelCase__ , 'initial' )
accelerator.save_state(UpperCamelCase__ )
((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item()
UpperCamelCase = optimizer.state_dict()
UpperCamelCase = train(3 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item()
UpperCamelCase = optimizer.state_dict()
# Train partially
set_seed(4_2 )
UpperCamelCase = DummyModel()
UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
UpperCamelCase , UpperCamelCase = dummy_dataloaders()
UpperCamelCase = Accelerator()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
accelerator.load_state(UpperCamelCase__ )
((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item()
UpperCamelCase = optimizer.state_dict()
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
UpperCamelCase = train(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Save everything
UpperCamelCase = os.path.join(UpperCamelCase__ , 'checkpoint' )
accelerator.save_state(UpperCamelCase__ )
# Load everything back in and make sure all states work
accelerator.load_state(UpperCamelCase__ )
test_rands += train(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item()
UpperCamelCase = optimizer.state_dict()
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
def A ( self : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
UpperCamelCase = DummyModel()
UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
UpperCamelCase , UpperCamelCase = dummy_dataloaders()
UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase__ )
# Train baseline
UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Save initial
accelerator.save_state()
((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item()
UpperCamelCase = optimizer.state_dict()
UpperCamelCase = train(3 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item()
UpperCamelCase = optimizer.state_dict()
# Train partially
set_seed(4_2 )
UpperCamelCase = DummyModel()
UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
UpperCamelCase , UpperCamelCase = dummy_dataloaders()
UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCamelCase__ )
UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
accelerator.load_state(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_0' ) )
((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item()
UpperCamelCase = optimizer.state_dict()
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
UpperCamelCase = train(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_1' ) )
test_rands += train(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item()
UpperCamelCase = optimizer.state_dict()
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
def A ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = torch.tensor([1, 2, 3] )
UpperCamelCase = torch.tensor([2, 3, 4] )
UpperCamelCase = DummyModel()
UpperCamelCase = torch.optim.Adam(net.parameters() )
UpperCamelCase = Accelerator()
with self.assertRaises(UpperCamelCase__ ) as ve:
accelerator.register_for_checkpointing(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
UpperCamelCase = str(ve.exception )
self.assertTrue('Item at index 0' in message )
self.assertTrue('Item at index 1' in message )
self.assertFalse('Item at index 2' in message )
self.assertFalse('Item at index 3' in message )
def A ( self : Dict ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
UpperCamelCase = DummyModel()
UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
UpperCamelCase = torch.optim.lr_scheduler.StepLR(UpperCamelCase__ , step_size=1 , gamma=0.9_9 )
UpperCamelCase , UpperCamelCase = dummy_dataloaders()
UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase__ )
# Train baseline
UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Save initial
accelerator.save_state()
UpperCamelCase = scheduler.state_dict()
train(3 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
self.assertNotEqual(UpperCamelCase__ , scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_0' ) )
self.assertEqual(UpperCamelCase__ , scheduler.state_dict() )
def A ( self : List[str] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
UpperCamelCase = DummyModel()
UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase__ , total_limit=2 )
# Train baseline
UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ )
UpperCamelCase = accelerator.prepare(UpperCamelCase__ )
# Save 3 states:
for _ in range(1_1 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_9' ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_10' ) ) )
@require_cuda
def A ( self : Dict ):
"""simple docstring"""
UpperCamelCase = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
if __name__ == "__main__":
_lowerCamelCase : Optional[int] = "/tmp/accelerate/state_checkpointing"
_lowerCamelCase : Union[str, Any] = DummyModel()
_lowerCamelCase : Optional[Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3)
_lowerCamelCase : List[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
_lowerCamelCase ,_lowerCamelCase : Tuple = dummy_dataloaders()
_lowerCamelCase : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
_lowerCamelCase : Any = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase : Union[str, Any] = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
_lowerCamelCase ,_lowerCamelCase : Tuple = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
_lowerCamelCase : Any = group["params"][0].device
break
assert param_device.type == accelerator.device.type
_lowerCamelCase : Tuple = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu")
for group in optimizer.param_groups:
_lowerCamelCase : Optional[Any] = group["params"][0].device
break
assert (
param_device.type == torch.device("cpu").type
), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device")
for group in optimizer.param_groups:
_lowerCamelCase : Dict = group["params"][0].device
break
assert (
param_device.type == accelerator.device.type
), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match="Unsupported optimizer map location passed"):
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 28
| 0
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {"vocab_file": "spm_char.model"}
__UpperCAmelCase = {
"vocab_file": {
"microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model",
"microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model",
"microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model",
}
}
__UpperCAmelCase = {
"microsoft/speecht5_asr": 10_24,
"microsoft/speecht5_tts": 10_24,
"microsoft/speecht5_vc": 10_24,
}
class _SCREAMING_SNAKE_CASE ( lowercase_ ):
UpperCAmelCase_ :Any = VOCAB_FILES_NAMES
UpperCAmelCase_ :Any = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ :List[str] = ["input_ids", "attention_mask"]
def __init__( self , __A , __A="<s>" , __A="</s>" , __A="<unk>" , __A="<pad>" , __A = None , **__A , ) -> None:
lowerCAmelCase_ :List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , )
lowerCAmelCase_ :Optional[Any] = vocab_file
lowerCAmelCase_ :Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(a__ )
@property
def __lowerCAmelCase ( self ) -> str:
return self.sp_model.get_piece_size()
def __lowerCAmelCase ( self ) -> str:
lowerCAmelCase_ :List[str] = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[Any]:
lowerCAmelCase_ :Union[str, Any] = self.__dict__.copy()
lowerCAmelCase_ :str = None
return state
def __setstate__( self , __A ) -> Dict:
lowerCAmelCase_ :List[str] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
lowerCAmelCase_ :Tuple = {}
lowerCAmelCase_ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self , __A ) -> List[str]:
return self.sp_model.encode(a__ , out_type=a__ )
def __lowerCAmelCase ( self , __A ) -> Dict:
return self.sp_model.piece_to_id(a__ )
def __lowerCAmelCase ( self , __A ) -> int:
lowerCAmelCase_ :Any = self.sp_model.IdToPiece(a__ )
return token
def __lowerCAmelCase ( self , __A ) -> str:
lowerCAmelCase_ :int = []
lowerCAmelCase_ :Optional[Any] = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(a__ ) + token
lowerCAmelCase_ :Union[str, Any] = []
else:
current_sub_tokens.append(a__ )
out_string += self.sp_model.decode(a__ )
return out_string.strip()
def __lowerCAmelCase ( self , __A , __A=None ) -> List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self , __A , __A = None , __A = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ )
lowerCAmelCase_ :List[str] = [1]
if token_ids_a is None:
return ([0] * len(a__ )) + suffix_ones
return ([0] * len(a__ )) + ([0] * len(a__ )) + suffix_ones
def __lowerCAmelCase ( self , __A , __A = None ) -> Tuple[str]:
if not os.path.isdir(a__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase_ :List[str] = os.path.join(
a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , a__ )
elif not os.path.isfile(self.vocab_file ):
with open(a__ , """wb""" ) as fi:
lowerCAmelCase_ :Tuple = self.sp_model.serialized_model_proto()
fi.write(a__ )
return (out_vocab_file,)
| 353
|
"""simple docstring"""
def _snake_case ( lowercase__ : list , lowercase__ : list , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int:
'''simple docstring'''
if index == number_of_items:
return 0
lowerCAmelCase_ :Any = 0
lowerCAmelCase_ :str = 0
lowerCAmelCase_ :Dict = knapsack(lowercase__ , lowercase__ , lowercase__ , lowercase__ , index + 1 )
if weights[index] <= max_weight:
lowerCAmelCase_ :str = values[index] + knapsack(
lowercase__ , lowercase__ , lowercase__ , max_weight - weights[index] , index + 1 )
return max(lowercase__ , lowercase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1
| 0
|
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
UpperCamelCase__ = [
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''enhancement''',
'''new pipeline/model''',
'''new scheduler''',
'''wip''',
]
def a__ ( ) -> List[Any]:
UpperCAmelCase__ : List[Any] = Github(os.environ['''GITHUB_TOKEN'''] )
UpperCAmelCase__ : Any = g.get_repo('''huggingface/diffusers''' )
UpperCAmelCase__ : List[str] = repo.get_issues(state='''open''' )
for issue in open_issues:
UpperCAmelCase__ : Any = sorted(issue.get_comments() , key=lambda lowerCAmelCase__ : i.created_at , reverse=lowerCAmelCase__ )
UpperCAmelCase__ : Dict = comments[0] if len(lowerCAmelCase__ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='''closed''' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='''open''' )
issue.remove_from_labels('''stale''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
issue.add_to_labels('''stale''' )
if __name__ == "__main__":
main()
| 181
|
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
UpperCamelCase__ = True
except (ImportError, ModuleNotFoundError):
UpperCamelCase__ = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def a__ ( lowerCAmelCase__ ) -> str:
re.sub('''<n>''' , '''''' , lowerCAmelCase__ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(lowerCAmelCase__ ) )
| 181
| 1
|
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def a__ ( lowerCAmelCase__ ) -> str:
UpperCAmelCase__ : Optional[int] = image.size
UpperCAmelCase__ : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
UpperCAmelCase__ : Optional[Any] = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
UpperCAmelCase__ : Any = np.array(snake_case__ ).astype(np.floataa ) / 2_5_5.0
UpperCAmelCase__ : List[Any] = image[None].transpose(0 , 3 , 1 , 2 )
UpperCAmelCase__ : int = torch.from_numpy(snake_case__ )
return 2.0 * image - 1.0
class lowerCamelCase_ ( a__ ):
def __init__( self : Tuple , _A : Any , _A : Dict , _A : List[str] , ):
'''simple docstring'''
super().__init__()
self.register_modules(vqvae=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__( self : Optional[Any] , _A : List[str] = None , _A : Optional[Any] = 1 , _A : Optional[int] = 100 , _A : Dict = 0.0 , _A : str = None , _A : Tuple = "pil" , _A : Optional[Any] = True , ):
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ):
UpperCAmelCase__ : Union[str, Any] = 1
elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ):
UpperCAmelCase__ : int = image.shape[0]
else:
raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE_ )}""" )
if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ):
UpperCAmelCase__ : Optional[int] = preprocess(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase__ : str = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
UpperCAmelCase__ : Any = (batch_size, self.unet.config.in_channels // 2, height, width)
UpperCAmelCase__ : Union[str, Any] = next(self.unet.parameters() ).dtype
UpperCAmelCase__ : Union[str, Any] = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase__ : Union[str, Any] = image.to(device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=self.device )
UpperCAmelCase__ : Optional[int] = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
UpperCAmelCase__ : Optional[Any] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCAmelCase__ : List[str] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCAmelCase__ : List[str] = {}
if accepts_eta:
UpperCAmelCase__ : Optional[int] = eta
for t in self.progress_bar(SCREAMING_SNAKE_CASE_ ):
# concat latents and low resolution image in the channel dimension.
UpperCAmelCase__ : int = torch.cat([latents, image] , dim=1 )
UpperCAmelCase__ : Tuple = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# predict the noise residual
UpperCAmelCase__ : Any = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase__ : Dict = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample
# decode the image latents with the VQVAE
UpperCAmelCase__ : str = self.vqvae.decode(SCREAMING_SNAKE_CASE_ ).sample
UpperCAmelCase__ : Optional[int] = torch.clamp(SCREAMING_SNAKE_CASE_ , -1.0 , 1.0 )
UpperCAmelCase__ : Optional[Any] = image / 2 + 0.5
UpperCAmelCase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase__ : Optional[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
| 365
|
'''simple docstring'''
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase__ = 1_6
UpperCamelCase__ = 3_2
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict:
UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' )
UpperCAmelCase__ : str = DatasetDict(
{
'''train''': dataset['''train'''].select(lowerCAmelCase__ ),
'''validation''': dataset['''train'''].select(lowerCAmelCase__ ),
'''test''': dataset['''validation'''],
} )
def tokenize_function(lowerCAmelCase__ ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCAmelCase__ : Dict = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowerCAmelCase__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCAmelCase__ : Any = 16
elif accelerator.mixed_precision != "no":
UpperCAmelCase__ : Dict = 8
else:
UpperCAmelCase__ : List[Any] = None
return tokenizer.pad(
lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , )
# Instantiate dataloaders.
UpperCAmelCase__ : List[Any] = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
UpperCAmelCase__ : List[str] = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
UpperCAmelCase__ : List[Any] = DataLoader(
tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
return train_dataloader, eval_dataloader, test_dataloader
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
# New Code #
UpperCAmelCase__ : List[str] = []
# Download the dataset
UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' )
# Create our splits
UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase__ : Any = config['''lr''']
UpperCAmelCase__ : Any = int(config['''num_epochs'''] )
UpperCAmelCase__ : Any = int(config['''seed'''] )
UpperCAmelCase__ : Dict = int(config['''batch_size'''] )
UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
UpperCAmelCase__ : Optional[Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE
UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE
set_seed(lowerCAmelCase__ )
# New Code #
# Create our folds:
UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] )
UpperCAmelCase__ : Dict = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ )
# Instantiate scheduler
UpperCAmelCase__ : Any = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Now we train the model
for epoch in range(lowerCAmelCase__ ):
model.train()
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ )
UpperCAmelCase__ : Dict = outputs.loss
UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps
accelerator.backward(lowerCAmelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase__ : str = model(**lowerCAmelCase__ )
UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 )
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , )
UpperCAmelCase__ : str = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ )
# New Code #
# We also run predictions on the test set at the very end
UpperCAmelCase__ : int = []
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase__ : str = model(**lowerCAmelCase__ )
UpperCAmelCase__ : Union[str, Any] = outputs.logits
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 )
UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ )
accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ )
def a__ ( ) -> Any:
UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
# New Code #
parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' )
UpperCAmelCase__ : Tuple = parser.parse_args()
UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 299
| 0
|
'''simple docstring'''
from __future__ import annotations
import requests
a_ : List[Any] = set(
"""approved_at_utc approved_by author_flair_background_color
author_flair_css_class author_flair_richtext author_flair_template_id author_fullname
author_premium can_mod_post category clicked content_categories created_utc downs
edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta
is_original_content is_reddit_media_domain is_video link_flair_css_class
link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title
name permalink pwls quarantine saved score secure_media secure_media_embed selftext
subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type
total_awards_received ups upvote_ratio url user_reports""".split()
)
def a_ ( __snake_case : str , __snake_case : int = 1 , __snake_case : str = "new" , __snake_case : list | None = None ) -> dict:
"""simple docstring"""
lowerCamelCase_ =wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ):
lowerCamelCase_ =F'''Invalid search term: {invalid_search_terms}'''
raise ValueError(__snake_case )
lowerCamelCase_ =requests.get(
F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'''User-agent''': '''A random string'''} , )
if response.status_code == 429:
raise requests.HTTPError
lowerCamelCase_ =response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )}
lowerCamelCase_ ={}
for id_ in range(__snake_case ):
lowerCamelCase_ ={
item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
| 75
|
"""simple docstring"""
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
A : Union[str, Any] = imread(R"digital_image_processing/image_data/lena_small.jpg")
A : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY)
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = cn.convert_to_negative(_UpperCamelCase )
# assert negative_img array for at least one True
assert negative_img.any()
def _lowerCamelCase ( ):
'''simple docstring'''
with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img:
# Work around assertion for response
assert str(cc.change_contrast(_UpperCamelCase , 110 ) ).startswith(
"<PIL.Image.Image image mode=RGB size=100x100 at" )
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 )
# Assert ambiguous array
assert resp.all()
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 )
# assert ambiguous array for all == True
assert canny_img.all()
__lowerCAmelCase = canny.canny(_UpperCamelCase )
# assert canny array for at least one True
assert canny_array.any()
def _lowerCamelCase ( ):
'''simple docstring'''
assert gg.gaussian_filter(_UpperCamelCase , 5 , sigma=0.9 ).all()
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] )
__lowerCAmelCase = conv.img_convolve(_UpperCamelCase , _UpperCamelCase ).astype(_UpperCamelCase )
assert res.any()
def _lowerCamelCase ( ):
'''simple docstring'''
assert med.median_filter(_UpperCamelCase , 3 ).any()
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(_UpperCamelCase )
assert grad.any() and theta.any()
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = sp.make_sepia(_UpperCamelCase , 20 )
assert sepia.all()
def _lowerCamelCase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" ):
'''simple docstring'''
__lowerCAmelCase = bs.Burkes(imread(_UpperCamelCase , 1 ) , 120 )
burkes.process()
assert burkes.output_img.any()
def _lowerCamelCase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ):
'''simple docstring'''
__lowerCAmelCase = rs.NearestNeighbour(imread(_UpperCamelCase , 1 ) , 400 , 200 )
nn.process()
assert nn.output.any()
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = "digital_image_processing/image_data/lena.jpg"
# Reading the image and converting it to grayscale.
__lowerCAmelCase = imread(_UpperCamelCase , 0 )
# Test for get_neighbors_pixel function() return not None
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = image[x_coordinate][y_coordinate]
__lowerCAmelCase = lbp.get_neighbors_pixel(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
__lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) )
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0 , image.shape[0] ):
for j in range(0 , image.shape[1] ):
__lowerCAmelCase = lbp.local_binary_value(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
assert lbp_image.any()
| 57
| 0
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class UpperCAmelCase_ ( _lowercase):
snake_case__ = '''philschmid/bart-large-cnn-samsum'''
snake_case__ = (
'''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, '''
'''and returns a summary of the text.'''
)
snake_case__ = '''summarizer'''
snake_case__ = AutoTokenizer
snake_case__ = AutoModelForSeqaSeqLM
snake_case__ = ['''text''']
snake_case__ = ['''text''']
def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Dict ) -> Dict:
return self.pre_processor(__UpperCamelCase , return_tensors='''pt''' , truncation=__UpperCamelCase )
def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : List[str] ) -> int:
return self.model.generate(**__UpperCamelCase )[0]
def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str ) -> int:
return self.pre_processor.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase )
| 54
|
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class UpperCAmelCase_ ( _lowercase):
snake_case__ = ['''image_processor''', '''tokenizer''']
snake_case__ = '''OwlViTImageProcessor'''
snake_case__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Any , __UpperCamelCase : int=None , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : List[str] ) -> Union[str, Any]:
_UpperCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __UpperCamelCase , )
_UpperCamelCase = kwargs.pop('''feature_extractor''' )
_UpperCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__UpperCamelCase , __UpperCamelCase )
def __call__( self : List[str] , __UpperCamelCase : Dict=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]="max_length" , __UpperCamelCase : List[Any]="np" , **__UpperCamelCase : Optional[int] ) -> Optional[int]:
if text is None and query_images is None and images is None:
raise ValueError(
'''You have to specify at least one text or query image or image. All three cannot be none.''' )
if text is not None:
if isinstance(__UpperCamelCase , __UpperCamelCase ) or (isinstance(__UpperCamelCase , __UpperCamelCase ) and not isinstance(text[0] , __UpperCamelCase )):
_UpperCamelCase = [self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )]
elif isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(text[0] , __UpperCamelCase ):
_UpperCamelCase = []
# Maximum number of queries across batch
_UpperCamelCase = max([len(__UpperCamelCase ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__UpperCamelCase ) != max_num_queries:
_UpperCamelCase = t + [''' '''] * (max_num_queries - len(__UpperCamelCase ))
_UpperCamelCase = self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )
encodings.append(__UpperCamelCase )
else:
raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' )
if return_tensors == "np":
_UpperCamelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
_UpperCamelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
_UpperCamelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
_UpperCamelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
_UpperCamelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 )
_UpperCamelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
_UpperCamelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
_UpperCamelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
else:
raise ValueError('''Target return tensor type could not be returned''' )
_UpperCamelCase = BatchEncoding()
_UpperCamelCase = input_ids
_UpperCamelCase = attention_mask
if query_images is not None:
_UpperCamelCase = BatchEncoding()
_UpperCamelCase = self.image_processor(
__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ).pixel_values
_UpperCamelCase = query_pixel_values
if images is not None:
_UpperCamelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )
if text is not None and images is not None:
_UpperCamelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
_UpperCamelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase )
def _UpperCamelCase ( self : str , *__UpperCamelCase : str , **__UpperCamelCase : str ) -> List[Any]:
return self.image_processor.post_process(*__UpperCamelCase , **__UpperCamelCase )
def _UpperCamelCase ( self : str , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[Any] ) -> Optional[int]:
return self.image_processor.post_process_object_detection(*__UpperCamelCase , **__UpperCamelCase )
def _UpperCamelCase ( self : List[Any] , *__UpperCamelCase : List[str] , **__UpperCamelCase : Optional[Any] ) -> int:
return self.image_processor.post_process_image_guided_detection(*__UpperCamelCase , **__UpperCamelCase )
def _UpperCamelCase ( self : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Any ) -> str:
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def _UpperCamelCase ( self : Optional[int] , *__UpperCamelCase : Tuple , **__UpperCamelCase : List[Any] ) -> List[str]:
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
@property
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCamelCase , )
return self.image_processor_class
@property
def _UpperCamelCase ( self : List[str] ) -> Optional[Any]:
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCamelCase , )
return self.image_processor
| 54
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """realm"""
def __init__( self , lowercase=30522 , lowercase=768 , lowercase=128 , lowercase=12 , lowercase=12 , lowercase=8 , lowercase=3072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=256 , lowercase=10 , lowercase=1E-3 , lowercase=5 , lowercase=320 , lowercase=13353718 , lowercase=5000 , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ):
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
# Common config
_lowerCamelCase : Tuple = vocab_size
_lowerCamelCase : int = max_position_embeddings
_lowerCamelCase : List[Any] = hidden_size
_lowerCamelCase : Union[str, Any] = retriever_proj_size
_lowerCamelCase : Tuple = num_hidden_layers
_lowerCamelCase : List[str] = num_attention_heads
_lowerCamelCase : Union[str, Any] = num_candidates
_lowerCamelCase : Dict = intermediate_size
_lowerCamelCase : str = hidden_act
_lowerCamelCase : int = hidden_dropout_prob
_lowerCamelCase : Dict = attention_probs_dropout_prob
_lowerCamelCase : List[Any] = initializer_range
_lowerCamelCase : Union[str, Any] = type_vocab_size
_lowerCamelCase : str = layer_norm_eps
# Reader config
_lowerCamelCase : List[str] = span_hidden_size
_lowerCamelCase : str = max_span_width
_lowerCamelCase : Any = reader_layer_norm_eps
_lowerCamelCase : List[Any] = reader_beam_size
_lowerCamelCase : Any = reader_seq_len
# Retrieval config
_lowerCamelCase : Tuple = num_block_records
_lowerCamelCase : str = searcher_beam_size
| 96
|
'''simple docstring'''
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
_lowercase : Union[str, Any] = yaml.safe_load(
"\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n"
)
_lowercase : int = {
"name": "root",
"text": "",
"is_empty_text": True,
"subsections": [
{
"name": "Dataset Card for My Dataset",
"text": "",
"is_empty_text": True,
"subsections": [
{"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []},
{
"name": "Dataset Description",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [
{
"name": "Dataset Summary",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [],
},
{
"name": "Supported Tasks and Leaderboards",
"text": "",
"is_empty_text": True,
"subsections": [],
},
{"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []},
],
},
],
}
],
}
_lowercase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Any = {
"name": "root",
"text": "",
"is_empty_text": True,
"subsections": [
{
"name": "Dataset Card for My Dataset",
"text": "",
"is_empty_text": True,
"subsections": [
{"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []},
{
"name": "Dataset Description",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [
{
"name": "Dataset Summary",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [
{
"name": "Extra Ignored Subsection",
"text": "",
"is_empty_text": True,
"subsections": [],
}
],
},
{
"name": "Supported Tasks and Leaderboards",
"text": "",
"is_empty_text": True,
"subsections": [],
},
{"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []},
],
},
],
}
],
}
_lowercase : str = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : List[str] = (
"The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README."
)
_lowercase : Tuple = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Optional[Any] = (
"The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README."
)
_lowercase : Tuple = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Optional[int] = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README."
_lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Optional[Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)."
_lowercase : Optional[int] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n"
_lowercase : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'."
_lowercase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n"
_lowercase : int = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`."
_lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n"
_lowercase : int = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty."
_lowercase : List[str] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : str = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README."
_lowercase : Dict = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n"
_lowercase : List[str] = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README."
_lowercase : str = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README."
_lowercase : List[Any] = ""
_lowercase : Optional[Any] = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README."
_lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Optional[Any] = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections."
@pytest.mark.parametrize(
'''readme_md, expected_dict''' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ):
"""simple docstring"""
assert ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).to_dict() == expected_dict
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path='''root''' ) ) ):
lowercase_ : Optional[int] = ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path='''root''' ) ) ):
ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'''readme_md,''' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , suppress_parsing_errors=__SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'''readme_md, expected_dict''' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Optional[int] = Path(__SCREAMING_SNAKE_CASE ) / '''README.md'''
with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file:
readme_file.write(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : str = Path(__SCREAMING_SNAKE_CASE ) / '''README.md'''
with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file:
readme_file.write(__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = expected_error.format(path=__SCREAMING_SNAKE_CASE )
with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : int = ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Dict = Path(__SCREAMING_SNAKE_CASE ) / '''README.md'''
with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file:
readme_file.write(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = expected_error.format(path=__SCREAMING_SNAKE_CASE )
with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(__SCREAMING_SNAKE_CASE ) ):
ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'''readme_md,''' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Optional[int] = Path(__SCREAMING_SNAKE_CASE ) / '''README.md'''
with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file:
readme_file.write(__SCREAMING_SNAKE_CASE )
ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , suppress_parsing_errors=__SCREAMING_SNAKE_CASE )
| 93
| 0
|
"""simple docstring"""
lowerCamelCase__ = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 310
|
"""simple docstring"""
from __future__ import annotations
from math import pi
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]:
"""simple docstring"""
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 310
| 1
|
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowercase__ : List[str] = [
"python",
"tqdm",
"regex",
"requests",
"packaging",
"filelock",
"numpy",
"tokenizers",
"huggingface-hub",
"safetensors",
"accelerate",
"pyyaml",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def A_ ( snake_case : Optional[Any] , snake_case : Any=None ) -> Union[str, Any]:
'''simple docstring'''
require_version(deps[pkg] , snake_case )
| 328
|
import math
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = n
while left <= right:
__UpperCamelCase = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328
| 1
|
"""simple docstring"""
from __future__ import annotations
def A ( snake_case :list[int] ) -> int:
if not nums:
return 0
__UpperCamelCase = nums[0]
__UpperCamelCase = 0
for num in nums[1:]:
__UpperCamelCase , __UpperCamelCase = (
max_excluding + num,
max(snake_case , snake_case ),
)
return max(snake_case , snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 351
|
"""simple docstring"""
from math import isqrt
def A ( snake_case :int ) -> list[int]:
__UpperCamelCase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , snake_case , snake_case ):
__UpperCamelCase = False
return [i for i in range(2 , snake_case ) if is_prime[i]]
def A ( snake_case :int = 1_0**8 ) -> int:
__UpperCamelCase = calculate_prime_numbers(max_number // 2 )
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f'''{solution() = }''')
| 263
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A =logging.get_logger(__name__)
__A ={
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"
),
}
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
UpperCamelCase = """dpr"""
def __init__( self : List[str] , a_ : str=3_05_22 , a_ : Tuple=7_68 , a_ : Optional[int]=12 , a_ : Optional[int]=12 , a_ : List[str]=30_72 , a_ : int="gelu" , a_ : Dict=0.1 , a_ : List[str]=0.1 , a_ : List[Any]=5_12 , a_ : Optional[int]=2 , a_ : Optional[Any]=0.0_2 , a_ : Optional[Any]=1e-12 , a_ : Dict=0 , a_ : List[Any]="absolute" , a_ : int = 0 , **a_ : List[str] , ):
'''simple docstring'''
super().__init__(pad_token_id=a_ , **a_ )
__UpperCAmelCase : int = vocab_size
__UpperCAmelCase : List[Any] = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Tuple = num_attention_heads
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Dict = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : int = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = type_vocab_size
__UpperCAmelCase : int = initializer_range
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : List[str] = projection_dim
__UpperCAmelCase : Tuple = position_embedding_type
| 226
|
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__A =logging.get_logger(__name__)
__A ={
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
UpperCamelCase = """deberta-v2"""
def __init__( self : Optional[int] , a_ : List[str]=12_81_00 , a_ : Optional[Any]=15_36 , a_ : Optional[Any]=24 , a_ : List[Any]=24 , a_ : Optional[int]=61_44 , a_ : List[Any]="gelu" , a_ : Any=0.1 , a_ : Tuple=0.1 , a_ : Optional[Any]=5_12 , a_ : Tuple=0 , a_ : Dict=0.0_2 , a_ : Optional[Any]=1e-7 , a_ : List[str]=False , a_ : List[Any]=-1 , a_ : List[str]=0 , a_ : Optional[Any]=True , a_ : List[Any]=None , a_ : Optional[int]=0 , a_ : Tuple="gelu" , **a_ : List[str] , ):
'''simple docstring'''
super().__init__(**a_ )
__UpperCAmelCase : Any = hidden_size
__UpperCAmelCase : Any = num_hidden_layers
__UpperCAmelCase : List[Any] = num_attention_heads
__UpperCAmelCase : Union[str, Any] = intermediate_size
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : int = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : str = max_position_embeddings
__UpperCAmelCase : int = type_vocab_size
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : Optional[int] = relative_attention
__UpperCAmelCase : int = max_relative_positions
__UpperCAmelCase : Any = pad_token_id
__UpperCAmelCase : int = position_biased_input
# Backwards compatibility
if type(a_ ) == str:
__UpperCAmelCase : Optional[Any] = [x.strip() for x in pos_att_type.lower().split('''|''' )]
__UpperCAmelCase : Tuple = pos_att_type
__UpperCAmelCase : int = vocab_size
__UpperCAmelCase : Optional[Any] = layer_norm_eps
__UpperCAmelCase : str = kwargs.get('''pooler_hidden_size''' , a_ )
__UpperCAmelCase : Union[str, Any] = pooler_dropout
__UpperCAmelCase : Tuple = pooler_hidden_act
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
@property
def snake_case__ ( self : Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase : int = {0: '''batch''', 1: '''sequence'''}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] )
else:
return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] )
@property
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
return 12
def snake_case__ ( self : Any , a_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a_ : int = -1 , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional["TensorType"] = None , a_ : int = 3 , a_ : int = 40 , a_ : int = 40 , a_ : "PreTrainedTokenizerBase" = None , ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = super().generate_dummy_inputs(preprocessor=a_ , framework=a_ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 226
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_snake_case : List[str] = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Optional[int] = ['PerceiverFeatureExtractor']
_snake_case : Optional[Any] = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Any = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
_snake_case : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 369
|
_snake_case : List[str] = {
'meter': 'm',
'kilometer': 'km',
'megametre': 'Mm',
'gigametre': 'Gm',
'terametre': 'Tm',
'petametre': 'Pm',
'exametre': 'Em',
'zettametre': 'Zm',
'yottametre': 'Ym',
}
# Exponent of the factor(meter)
_snake_case : List[Any] = {
'm': 0,
'km': 3,
'Mm': 6,
'Gm': 9,
'Tm': 12,
'Pm': 15,
'Em': 18,
'Zm': 21,
'Ym': 24,
}
def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : str, lowerCAmelCase_ : str ):
__lowerCAmelCase = from_type.lower().strip('s' )
__lowerCAmelCase = to_type.lower().strip('s' )
__lowerCAmelCase = UNIT_SYMBOL.get(lowerCAmelCase_, lowerCAmelCase_ )
__lowerCAmelCase = UNIT_SYMBOL.get(lowerCAmelCase_, lowerCAmelCase_ )
if from_sanitized not in METRIC_CONVERSION:
__lowerCAmelCase = (
F"""Invalid 'from_type' value: {from_type!r}.\n"""
F"""Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}"""
)
raise ValueError(lowerCAmelCase_ )
if to_sanitized not in METRIC_CONVERSION:
__lowerCAmelCase = (
F"""Invalid 'to_type' value: {to_type!r}.\n"""
F"""Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}"""
)
raise ValueError(lowerCAmelCase_ )
__lowerCAmelCase = METRIC_CONVERSION[from_sanitized]
__lowerCAmelCase = METRIC_CONVERSION[to_sanitized]
__lowerCAmelCase = 1
if from_exponent > to_exponent:
__lowerCAmelCase = from_exponent - to_exponent
else:
__lowerCAmelCase = -(to_exponent - from_exponent)
return value * pow(10, lowerCAmelCase_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 207
| 0
|
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = str(id_ )
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : Union[str, Any] = {} # {vertex:distance}
def __lt__( self , lowercase_ ):
"""simple docstring"""
return self.key < other.key
def __repr__( self ):
"""simple docstring"""
return self.id
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
self.neighbors.append(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = weight
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1], __lowerCamelCase )
graph[b - 1].add_edge(graph[a - 1], __lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : int = []
for u in graph:
UpperCAmelCase_ : str = math.inf
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = 0
UpperCAmelCase_ : Any = graph[:]
while q:
UpperCAmelCase_ : List[Any] = min(__lowerCamelCase )
q.remove(__lowerCamelCase )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
UpperCAmelCase_ : int = u
UpperCAmelCase_ : int = u.edges[v.id]
for i in range(1, len(__lowerCamelCase ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def __a ( __lowerCamelCase, __lowerCamelCase ):
for u in graph:
UpperCAmelCase_ : Dict = math.inf
UpperCAmelCase_ : Optional[Any] = None
UpperCAmelCase_ : Optional[Any] = 0
UpperCAmelCase_ : Tuple = list(__lowerCamelCase )
hq.heapify(__lowerCamelCase )
while h:
UpperCAmelCase_ : str = hq.heappop(__lowerCamelCase )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
UpperCAmelCase_ : Dict = u
UpperCAmelCase_ : str = u.edges[v.id]
hq.heapify(__lowerCamelCase )
for i in range(1, len(__lowerCamelCase ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def __a ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 61
|
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = (DDIMParallelScheduler,)
SCREAMING_SNAKE_CASE__ : Optional[Any] = (("""eta""", 0.0), ("""num_inference_steps""", 50))
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**lowercase_ )
return config
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = self.scheduler_classes[0]
UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ )
UpperCAmelCase_ : int = scheduler_class(**lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : str = 10, 0.0
UpperCAmelCase_ : Optional[int] = self.dummy_model()
UpperCAmelCase_ : str = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for t in scheduler.timesteps:
UpperCAmelCase_ : Dict = model(lowercase_ , lowercase_ )
UpperCAmelCase_ : Dict = scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample
return sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowercase_ )
UpperCAmelCase_ : str = self.scheduler_classes[0]
UpperCAmelCase_ : List[str] = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=lowercase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=lowercase_ , num_inference_steps=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=lowercase_ , eta=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.scheduler_classes[0]
UpperCAmelCase_ : List[str] = self.get_scheduler_config()
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.scheduler_classes[0]
UpperCAmelCase_ : Optional[int] = self.get_scheduler_config()
UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = 10, 0.0
scheduler.set_timesteps(lowercase_ )
UpperCAmelCase_ : Union[str, Any] = self.dummy_model()
UpperCAmelCase_ : List[str] = self.dummy_sample_deter
UpperCAmelCase_ : Any = self.dummy_sample_deter + 0.1
UpperCAmelCase_ : int = self.dummy_sample_deter - 0.1
UpperCAmelCase_ : List[Any] = samplea.shape[0]
UpperCAmelCase_ : int = torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCAmelCase_ : int = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ )
UpperCAmelCase_ : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCAmelCase_ : Optional[Any] = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase_ )
UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : str = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2
assert abs(result_mean.item() - 0.49_82 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.full_loop()
UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : List[str] = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 52.53_02 ) < 1E-2
assert abs(result_mean.item() - 0.06_84 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : List[str] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : Dict = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2
assert abs(result_mean.item() - 0.19_51 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : int = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) )
UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2
assert abs(result_mean.item() - 0.19_41 ) < 1E-3
| 61
| 1
|
'''simple docstring'''
def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple:
__lowerCAmelCase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowerCAmelCase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowerCAmelCase = min(a__ , a__ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=1_0, r=5))
| 369
|
'''simple docstring'''
import sys
def _lowerCAmelCase ( lowercase ) -> List[str]:
__lowerCAmelCase = len(lowercase )
__lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )]
__lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )]
for chain_length in range(2 , lowercase ):
for a in range(1 , n - chain_length + 1 ):
__lowerCAmelCase = a + chain_length - 1
__lowerCAmelCase = sys.maxsize
for c in range(lowercase , lowercase ):
__lowerCAmelCase = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
__lowerCAmelCase = cost
__lowerCAmelCase = c
return matrix, sol
def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
if i == j:
print("""A""" + str(lowercase ) , end=""" """ )
else:
print("""(""" , end=""" """ )
print_optiomal_solution(lowercase , lowercase , optimal_solution[i][j] )
print_optiomal_solution(lowercase , optimal_solution[i][j] + 1 , lowercase )
print(""")""" , end=""" """ )
def _lowerCAmelCase ( ) -> Dict:
__lowerCAmelCase = [30, 35, 15, 5, 10, 20, 25]
__lowerCAmelCase = len(lowercase )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
__lowerCAmelCase , __lowerCAmelCase = matrix_chain_order(lowercase )
print("""No. of Operation required: """ + str(matrix[1][n - 1] ) )
print_optiomal_solution(lowercase , 1 , n - 1 )
if __name__ == "__main__":
main()
| 46
| 0
|
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
__lowercase : Optional[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
__lowercase : Any = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__)
return generator, ["Something to write", "Something else"]
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = generator("""Something there""")
self.assertEqual(lowerCAmelCase__ , [{"""generated_text""": ANY(lowerCAmelCase__)}])
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there"""))
__SCREAMING_SNAKE_CASE = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=lowerCAmelCase__)
self.assertEqual(
lowerCAmelCase__ , [
[{"""generated_text""": ANY(lowerCAmelCase__)}, {"""generated_text""": ANY(lowerCAmelCase__)}],
[{"""generated_text""": ANY(lowerCAmelCase__)}, {"""generated_text""": ANY(lowerCAmelCase__)}],
] , )
__SCREAMING_SNAKE_CASE = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__)
self.assertEqual(
lowerCAmelCase__ , [
[{"""generated_text""": ANY(lowerCAmelCase__)}, {"""generated_text""": ANY(lowerCAmelCase__)}],
[{"""generated_text""": ANY(lowerCAmelCase__)}, {"""generated_text""": ANY(lowerCAmelCase__)}],
] , )
with self.assertRaises(lowerCAmelCase__):
generator(4)
@require_torch
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""")
# do_sample=False necessary for reproducibility
__SCREAMING_SNAKE_CASE = generator("""Something there""" , do_sample=lowerCAmelCase__)
self.assertEqual(lowerCAmelCase__ , [{"""generated_text""": """"""}])
__SCREAMING_SNAKE_CASE = 3
__SCREAMING_SNAKE_CASE = generator(
"""Something there""" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , )
__SCREAMING_SNAKE_CASE = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = generator("""This is a test""" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__)
self.assertEqual(
lowerCAmelCase__ , [
{"""generated_token_ids""": ANY(torch.Tensor)},
{"""generated_token_ids""": ANY(torch.Tensor)},
] , )
__SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id
__SCREAMING_SNAKE_CASE = """<pad>"""
__SCREAMING_SNAKE_CASE = generator(
["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , )
self.assertEqual(
lowerCAmelCase__ , [
[
{"""generated_token_ids""": ANY(torch.Tensor)},
{"""generated_token_ids""": ANY(torch.Tensor)},
],
[
{"""generated_token_ids""": ANY(torch.Tensor)},
{"""generated_token_ids""": ANY(torch.Tensor)},
],
] , )
@require_tf
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""")
# do_sample=False necessary for reproducibility
__SCREAMING_SNAKE_CASE = generator("""Something there""" , do_sample=lowerCAmelCase__)
self.assertEqual(lowerCAmelCase__ , [{"""generated_text""": """"""}])
| 100
|
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
__UpperCamelCase : Any = getLogger(__name__)
__UpperCamelCase : int = 'cuda' if torch.cuda.is_available() else 'cpu'
def A ( _lowercase , _lowercase , _lowercase , _lowercase = 8 , _lowercase = DEFAULT_DEVICE , _lowercase=False , _lowercase="summarization" , _lowercase=None , **_lowercase , ):
SCREAMING_SNAKE_CASE : List[str] = Path(_lowercase ).open('''w''' , encoding='''utf-8''' )
SCREAMING_SNAKE_CASE : int = str(_lowercase )
SCREAMING_SNAKE_CASE : Any = AutoModelForSeqaSeqLM.from_pretrained(_lowercase ).to(_lowercase )
if fpaa:
SCREAMING_SNAKE_CASE : Dict = model.half()
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(_lowercase )
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
SCREAMING_SNAKE_CASE : str = time.time()
# update config with task specific params
use_task_specific_params(_lowercase , _lowercase )
if prefix is None:
SCREAMING_SNAKE_CASE : Optional[int] = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(_lowercase , _lowercase ) ) ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prefix + text for text in examples_chunk]
SCREAMING_SNAKE_CASE : Dict = tokenizer(_lowercase , return_tensors='''pt''' , truncation=_lowercase , padding='''longest''' ).to(_lowercase )
SCREAMING_SNAKE_CASE : str = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowercase , )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
SCREAMING_SNAKE_CASE : Tuple = int(time.time() - start_time ) # seconds
SCREAMING_SNAKE_CASE : str = len(_lowercase )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def A ( ):
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def A ( _lowercase=True ):
SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=_lowercase , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=_lowercase , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=_lowercase , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=_lowercase , required=_lowercase , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=_lowercase , required=_lowercase , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=_lowercase , required=_lowercase , default=_lowercase , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=_lowercase , required=_lowercase , default=_lowercase , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=_lowercase , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=_lowercase , default=8 , required=_lowercase , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=_lowercase , default=-1 , required=_lowercase , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=_lowercase , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_known_args()
SCREAMING_SNAKE_CASE : Optional[Any] = parse_numeric_n_bool_cl_kwargs(_lowercase )
if parsed_args and verbose:
print(f"""parsed the following generate kwargs: {parsed_args}""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
SCREAMING_SNAKE_CASE : Any = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_lowercase )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
SCREAMING_SNAKE_CASE : List[str] = generate_summaries_or_translations(
_lowercase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowercase , )
if args.reference_path is None:
return {}
# Compute scores
SCREAMING_SNAKE_CASE : Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge
SCREAMING_SNAKE_CASE : Union[str, Any] = [x.rstrip() for x in open(args.save_path ).readlines()]
SCREAMING_SNAKE_CASE : Optional[int] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowercase )]
SCREAMING_SNAKE_CASE : dict = score_fn(_lowercase , _lowercase )
scores.update(_lowercase )
if args.dump_args:
scores.update(_lowercase )
if args.info:
SCREAMING_SNAKE_CASE : Tuple = args.info
if verbose:
print(_lowercase )
if args.score_path is not None:
json.dump(_lowercase , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 182
| 0
|
"""simple docstring"""
import numpy
# List of input, output pairs
lowerCAmelCase_ : List[Any] = (
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
lowerCAmelCase_ : Tuple = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
lowerCAmelCase_ : List[str] = [2, 4, 1, 5]
lowerCAmelCase_ : List[str] = len(train_data)
lowerCAmelCase_ : Dict = 0.009
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase="train" ):
'''simple docstring'''
return calculate_hypothesis_value(lowercase__ , lowercase__ ) - output(
lowercase__ , lowercase__ )
def _lowerCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase = 0
for i in range(len(lowercase__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=m ):
'''simple docstring'''
UpperCAmelCase = 0
for i in range(lowercase__ ):
if index == -1:
summation_value += _error(lowercase__ )
else:
summation_value += _error(lowercase__ ) * train_data[i][0][index]
return summation_value
def _lowerCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase = summation_of_cost_derivative(lowercase__ , lowercase__ ) / m
return cost_derivative_value
def _lowerCAmelCase ( ):
'''simple docstring'''
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase = 0.00_00_02
UpperCAmelCase = 0
UpperCAmelCase = 0
while True:
j += 1
UpperCAmelCase = [0, 0, 0, 0]
for i in range(0 , len(lowercase__ ) ):
UpperCAmelCase = get_cost_derivative(i - 1 )
UpperCAmelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
lowercase__ , lowercase__ , atol=lowercase__ , rtol=lowercase__ , ):
break
UpperCAmelCase = temp_parameter_vector
print(("""Number of iterations:""", j) )
def _lowerCAmelCase ( ):
'''simple docstring'''
for i in range(len(lowercase__ ) ):
print(("""Actual output value:""", output(lowercase__ , """test""" )) )
print(("""Hypothesis output:""", calculate_hypothesis_value(lowercase__ , """test""" )) )
if __name__ == "__main__":
run_gradient_descent()
print('''\nTesting gradient descent for a linear hypothesis function.\n''')
test_gradient_descent()
| 362
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
lowerCAmelCase_ : Any = ['''gpt2''']
lowerCAmelCase_ : Optional[int] = '''gpt2'''
if is_tf_available():
class UpperCamelCase_ ( tf.Module ):
def __init__( self , snake_case__ ) -> List[str]:
"""simple docstring"""
super().__init__()
UpperCAmelCase = tokenizer
UpperCAmelCase = AutoConfig.from_pretrained(snake_case__ )
UpperCAmelCase = TFGPTaLMHeadModel.from_config(snake_case__ )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) )
def UpperCamelCase_ ( self , snake_case__ ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = self.tokenizer(snake_case__ )
UpperCAmelCase = tokenized["""input_ids"""].to_tensor()
UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
UpperCAmelCase = self.model(input_ids=snake_case__ , attention_mask=snake_case__ )["""logits"""]
return outputs
@require_tf
@require_keras_nlp
class UpperCamelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
UpperCAmelCase = [GPTaTokenizer.from_pretrained(snake_case__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(snake_case__ ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCAmelCase = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def UpperCamelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
UpperCAmelCase = tokenizer([test_inputs] , return_tensors="""tf""" )
UpperCAmelCase = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
UpperCAmelCase = python_outputs[key].numpy()
UpperCAmelCase = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(snake_case__ , tf.intaa ) == tf_outputs_values ) )
@slow
def UpperCamelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase = tf.function(snake_case__ )
for test_inputs in self.test_sentences:
UpperCAmelCase = tf.constant(snake_case__ )
UpperCAmelCase = compiled_tokenizer(snake_case__ )
UpperCAmelCase = tf_tokenizer(snake_case__ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def UpperCamelCase_ ( self ) -> Any:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase = ModelToSave(tokenizer=snake_case__ )
UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase = model.serving(snake_case__ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCAmelCase = Path(snake_case__ ) / """saved.model"""
tf.saved_model.save(snake_case__ , snake_case__ , signatures={"""serving_default""": model.serving} )
UpperCAmelCase = tf.saved_model.load(snake_case__ )
UpperCAmelCase = loaded_model.signatures["""serving_default"""](snake_case__ )["""output_0"""]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def UpperCamelCase_ ( self ) -> Any:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase = tf_tokenizer(snake_case__ ) # Build model with some sample inputs
UpperCAmelCase = tf_tokenizer.get_config()
UpperCAmelCase = TFGPTaTokenizer.from_config(snake_case__ )
UpperCAmelCase = model_from_config(snake_case__ )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def UpperCamelCase_ ( self ) -> int:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
UpperCAmelCase = 12_31_23
for max_length in [3, 5, 10_24]:
UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase = tf_tokenizer(snake_case__ , max_length=snake_case__ )
UpperCAmelCase = out["""input_ids"""].numpy().shape[1]
assert out_length == max_length
| 248
| 0
|
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
UpperCamelCase__ = 1.054571817E-34 # unit of ℏ : J * s
UpperCamelCase__ = 3E8 # unit of c : m * s^-1
def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
if (force, area, distance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if force < 0:
raise ValueError("Magnitude of force can not be negative" )
if distance < 0:
raise ValueError("Distance can not be negative" )
if area < 0:
raise ValueError("Area can not be negative" )
if force == 0:
__lowerCAmelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_40 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__lowerCAmelCase = (2_40 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__lowerCAmelCase = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("One and only one argument must be 0" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 92
|
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class __A ( unittest.TestCase ):
def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ):
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ = (image_size // patch_size) ** 2
UpperCAmelCase_ = num_patches + 1
def _lowercase (self : Any ):
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , )
return config, pixel_values
def _lowercase (self : Dict , __a : Any , __a : List[Any] ):
UpperCAmelCase_ = FlaxViTModel(config=__a )
UpperCAmelCase_ = model(__a )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ = (self.image_size, self.image_size)
UpperCAmelCase_ = (self.patch_size, self.patch_size)
UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def _lowercase (self : Tuple , __a : str , __a : Any ):
UpperCAmelCase_ = self.type_sequence_label_size
UpperCAmelCase_ = FlaxViTForImageClassification(config=__a )
UpperCAmelCase_ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ = 1
UpperCAmelCase_ = FlaxViTForImageClassification(__a )
UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ = model(__a )
def _lowercase (self : Optional[Any] ):
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class __A ( UpperCamelCase__ , unittest.TestCase ):
a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def _lowercase (self : Any ):
UpperCAmelCase_ = FlaxViTModelTester(self )
UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 )
def _lowercase (self : Tuple ):
self.config_tester.run_common_tests()
def _lowercase (self : str ):
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def _lowercase (self : str ):
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
def _lowercase (self : Tuple ):
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(__a )
UpperCAmelCase_ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __a )
def _lowercase (self : Optional[Any] ):
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCAmelCase_ = self._prepare_for_class(__a , __a )
UpperCAmelCase_ = model_class(__a )
@jax.jit
def model_jitted(__a : Tuple , **__a : List[Any] ):
return model(pixel_values=__a , **__a )
with self.subTest("JIT Enabled" ):
UpperCAmelCase_ = model_jitted(**__a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
UpperCAmelCase_ = model_jitted(**__a ).to_tuple()
self.assertEqual(len(__a ) , len(__a ) )
for jitted_output, output in zip(__a , __a ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _lowercase (self : Tuple ):
for model_class_name in self.all_model_classes:
UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" )
UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(__a )
| 1
| 0
|
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__magic_name__ = logging.getLogger(__name__)
class lowercase ( __UpperCamelCase ):
'''simple docstring'''
def snake_case_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=None ) -> Any:
"""simple docstring"""
UpperCAmelCase = self.layer[current_layer](_snake_case , _snake_case , head_mask[current_layer] )
UpperCAmelCase = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"""The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , __UpperCamelCase , )
class lowercase ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self , _snake_case ) -> int:
"""simple docstring"""
super().__init__(_snake_case )
UpperCAmelCase = BertEncoderWithPabee(_snake_case )
self.init_weights()
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
def snake_case_ ( self , _snake_case ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = threshold
def snake_case_ ( self , _snake_case ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = patience
def snake_case_ ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = 0
UpperCAmelCase = 0
def snake_case_ ( self ) -> Dict:
"""simple docstring"""
UpperCAmelCase = self.inference_layers_num / self.inference_instances_num
UpperCAmelCase = (
f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="""
f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"""
)
print(_snake_case )
@add_start_docstrings_to_model_forward(_snake_case )
def snake_case_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=False , ) -> Union[str, Any]:
"""simple docstring"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' )
elif input_ids is not None:
UpperCAmelCase = input_ids.size()
elif inputs_embeds is not None:
UpperCAmelCase = inputs_embeds.size()[:-1]
else:
raise ValueError('''You have to specify either input_ids or inputs_embeds''' )
UpperCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
UpperCAmelCase = torch.ones(_snake_case , device=_snake_case )
if token_type_ids is None:
UpperCAmelCase = torch.zeros(_snake_case , dtype=torch.long , device=_snake_case )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
UpperCAmelCase = self.get_extended_attention_mask(_snake_case , _snake_case , _snake_case )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
UpperCAmelCase = encoder_hidden_states.size()
UpperCAmelCase = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
UpperCAmelCase = torch.ones(_snake_case , device=_snake_case )
UpperCAmelCase = self.invert_attention_mask(_snake_case )
else:
UpperCAmelCase = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
UpperCAmelCase = self.get_head_mask(_snake_case , self.config.num_hidden_layers )
UpperCAmelCase = self.embeddings(
input_ids=_snake_case , position_ids=_snake_case , token_type_ids=_snake_case , inputs_embeds=_snake_case )
UpperCAmelCase = embedding_output
if self.training:
UpperCAmelCase = []
for i in range(self.config.num_hidden_layers ):
UpperCAmelCase = self.encoder.adaptive_forward(
_snake_case , current_layer=_snake_case , attention_mask=_snake_case , head_mask=_snake_case )
UpperCAmelCase = self.pooler(_snake_case )
UpperCAmelCase = output_layers[i](output_dropout(_snake_case ) )
res.append(_snake_case )
elif self.patience == 0: # Use all layers for inference
UpperCAmelCase = self.encoder(
_snake_case , attention_mask=_snake_case , head_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )
UpperCAmelCase = self.pooler(encoder_outputs[0] )
UpperCAmelCase = [output_layers[self.config.num_hidden_layers - 1](_snake_case )]
else:
UpperCAmelCase = 0
UpperCAmelCase = None
UpperCAmelCase = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
UpperCAmelCase = self.encoder.adaptive_forward(
_snake_case , current_layer=_snake_case , attention_mask=_snake_case , head_mask=_snake_case )
UpperCAmelCase = self.pooler(_snake_case )
UpperCAmelCase = output_layers[i](_snake_case )
if regression:
UpperCAmelCase = logits.detach()
if patient_result is not None:
UpperCAmelCase = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
UpperCAmelCase = 0
else:
UpperCAmelCase = logits.detach().argmax(dim=1 )
if patient_result is not None:
UpperCAmelCase = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(_snake_case ) ):
patient_counter += 1
else:
UpperCAmelCase = 0
UpperCAmelCase = logits
if patient_counter == self.patience:
break
UpperCAmelCase = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"""Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """ , __UpperCamelCase , )
class lowercase ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self , _snake_case ) -> Dict:
"""simple docstring"""
super().__init__(_snake_case )
UpperCAmelCase = config.num_labels
UpperCAmelCase = BertModelWithPabee(_snake_case )
UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob )
UpperCAmelCase = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(_snake_case )
def snake_case_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = self.bert(
input_ids=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , position_ids=_snake_case , head_mask=_snake_case , inputs_embeds=_snake_case , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
UpperCAmelCase = (logits[-1],)
if labels is not None:
UpperCAmelCase = None
UpperCAmelCase = 0
for ix, logits_item in enumerate(_snake_case ):
if self.num_labels == 1:
# We are doing regression
UpperCAmelCase = MSELoss()
UpperCAmelCase = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
UpperCAmelCase = CrossEntropyLoss()
UpperCAmelCase = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
UpperCAmelCase = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
UpperCAmelCase = (total_loss / total_weights,) + outputs
return outputs
| 356
|
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
__magic_name__ = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
__magic_name__ = (
subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split()
)
__magic_name__ = "|".join(sys.argv[1:])
__magic_name__ = re.compile(rf'''^({joined_dirs}).*?\.py$''')
__magic_name__ = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 152
| 0
|
"""simple docstring"""
def lowerCamelCase__ ( _lowerCamelCase : int = 10 ) -> Optional[Any]:
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or n < 0:
raise ValueError('Invalid input' )
lowerCamelCase_ = 10**n
lowerCamelCase_ = 28433 * (pow(2 , 7830457 , UpperCAmelCase_ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F'''{solution(10) = }''')
| 183
|
"""simple docstring"""
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class a ( unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase ( self: str ):
"""simple docstring"""
A__ = get_activation("""swish""" )
self.assertIsInstance(UpperCamelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCamelCase ( self: Any ):
"""simple docstring"""
A__ = get_activation("""silu""" )
self.assertIsInstance(UpperCamelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCamelCase ( self: Optional[int] ):
"""simple docstring"""
A__ = get_activation("""mish""" )
self.assertIsInstance(UpperCamelCase , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCamelCase ( self: Any ):
"""simple docstring"""
A__ = get_activation("""gelu""" )
self.assertIsInstance(UpperCamelCase , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 335
| 0
|
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCamelCase__ ( A : Optional[int] , A : List[str] , A : Any ):
'''simple docstring'''
if gpta_config_file == "":
UpperCAmelCase = GPTaConfig()
else:
UpperCAmelCase = GPTaConfig.from_json_file(A )
UpperCAmelCase = GPTaModel(A )
# Load weights from numpy
load_tf_weights_in_gpta(A , A , A )
# Save pytorch-model
UpperCAmelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , A )
print(f"""Save configuration file to {pytorch_config_dump_path}""" )
with open(A , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_lowercase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--gpt2_config_file""",
default="""""",
type=str,
help=(
"""An optional config json file corresponding to the pre-trained OpenAI model. \n"""
"""This specifies the model architecture."""
),
)
_lowercase : Dict = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 91
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class UpperCamelCase__:
__magic_name__ : List[str]
__magic_name__ : Optional[str] = None
# Automatically constructed
__magic_name__ : ClassVar[str] = "dict"
__magic_name__ : ClassVar[Any] = None
__magic_name__ : str = field(default="Translation" , init=lowerCAmelCase , repr=lowerCAmelCase )
def __call__( self : Union[str, Any] )-> str:
"""simple docstring"""
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def a__( self : int )-> Union["FeatureType", Dict[str, "FeatureType"]]:
"""simple docstring"""
from .features import Value
return {k: Value('''string''' ) for k in sorted(self.languages )}
@dataclass
class UpperCamelCase__:
__magic_name__ : Optional[List] = None
__magic_name__ : Optional[int] = None
__magic_name__ : Optional[str] = None
# Automatically constructed
__magic_name__ : ClassVar[str] = "dict"
__magic_name__ : ClassVar[Any] = None
__magic_name__ : str = field(default="TranslationVariableLanguages" , init=lowerCAmelCase , repr=lowerCAmelCase )
def a__( self : Union[str, Any] )-> Optional[Any]:
"""simple docstring"""
UpperCAmelCase = sorted(set(self.languages ) ) if self.languages else None
UpperCAmelCase = len(self.languages ) if self.languages else None
def __call__( self : int )-> Optional[Any]:
"""simple docstring"""
return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} )
def a__( self : Optional[int] , lowerCAmelCase : Dict )-> Tuple:
"""simple docstring"""
UpperCAmelCase = set(self.languages )
if self.languages and set(lowerCAmelCase ) - lang_set:
raise ValueError(
F"""Some languages in example ({", ".join(sorted(set(lowerCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(lowerCAmelCase )}).""" )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
UpperCAmelCase = []
for lang, text in translation_dict.items():
if isinstance(lowerCAmelCase , lowerCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
UpperCAmelCase , UpperCAmelCase = zip(*sorted(lowerCAmelCase ) )
return {"language": languages, "translation": translations}
def a__( self : Any )-> Union["FeatureType", Dict[str, "FeatureType"]]:
"""simple docstring"""
from .features import Sequence, Value
return {
"language": Sequence(Value('''string''' ) ),
"translation": Sequence(Value('''string''' ) ),
}
| 91
| 1
|
"""simple docstring"""
def UpperCAmelCase__ (lowerCAmelCase_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 0
for ch in input_str:
__SCREAMING_SNAKE_CASE = ord(lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = pow(2 , lowerCAmelCase_ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 54
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase_ ( unittest.TestCase):
"""simple docstring"""
def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]:
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]]
__SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ )
self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase__ ) )
with self.assertRaises(UpperCAmelCase__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(UpperCAmelCase__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase_ ( self : Any ) -> int:
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(UpperCAmelCase__ ):
DisjunctiveConstraint(UpperCAmelCase__ ) # fails here
def UpperCAmelCase_ ( self : List[Any] ) -> Any:
__SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]]
__SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 )
__SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False
self.assertTrue(UpperCAmelCase__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 )
__SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False
self.assertTrue(UpperCAmelCase__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 )
__SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False
self.assertTrue(UpperCAmelCase__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase_ ( self : str ) -> List[str]:
__SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 54
| 1
|
import enum
import shutil
import sys
UpperCAmelCase, UpperCAmelCase : int = shutil.get_terminal_size()
UpperCAmelCase : List[Any] = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"}
class __lowercase ( enum.Enum ):
"""simple docstring"""
UpperCamelCase : Tuple = 0
UpperCamelCase : str = 1
def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any]="" ):
'''simple docstring'''
sys.stdout.write(str(lowerCamelCase__ ) + end )
sys.stdout.flush()
def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any]="" ):
'''simple docstring'''
forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCamelCase__ )
def __lowerCamelCase ( ):
'''simple docstring'''
forceWrite("""\r""" )
def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : str ):
'''simple docstring'''
forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def __lowerCamelCase ( ):
'''simple docstring'''
forceWrite(""" """ * TERMINAL_WIDTH )
reset_cursor()
def __lowerCamelCase ( ):
'''simple docstring'''
reset_cursor()
forceWrite("""-""" * TERMINAL_WIDTH )
| 66
|
from random import randint
from tempfile import TemporaryFile
import numpy as np
def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str ):
'''simple docstring'''
lowerCamelCase = 0
if start < end:
lowerCamelCase = randint(lowerCamelCase__ , lowerCamelCase__ )
lowerCamelCase = a[end]
lowerCamelCase = a[pivot]
lowerCamelCase = temp
lowerCamelCase , lowerCamelCase = _in_place_partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
count += _in_place_quick_sort(lowerCamelCase__ , lowerCamelCase__ , p - 1 )
count += _in_place_quick_sort(lowerCamelCase__ , p + 1 , lowerCamelCase__ )
return count
def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : str ):
'''simple docstring'''
lowerCamelCase = 0
lowerCamelCase = randint(lowerCamelCase__ , lowerCamelCase__ )
lowerCamelCase = a[end]
lowerCamelCase = a[pivot]
lowerCamelCase = temp
lowerCamelCase = start - 1
for index in range(lowerCamelCase__ , lowerCamelCase__ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowerCamelCase = new_pivot_index + 1
lowerCamelCase = a[new_pivot_index]
lowerCamelCase = a[index]
lowerCamelCase = temp
lowerCamelCase = a[new_pivot_index + 1]
lowerCamelCase = a[end]
lowerCamelCase = temp
return new_pivot_index + 1, count
UpperCAmelCase : Dict = TemporaryFile()
UpperCAmelCase : Dict = 1_00 # 1000 elements are to be sorted
UpperCAmelCase, UpperCAmelCase : Optional[int] = 0, 1 # mean and standard deviation
UpperCAmelCase : List[str] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase : List[Any] = np.load(outfile)
UpperCAmelCase : Optional[Any] = len(M) - 1
UpperCAmelCase : List[str] = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 66
| 1
|
'''simple docstring'''
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
a_ = {
# 1536-bit
5: {
'''prime''': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
+ '29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
+ 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
+ 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
+ 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
+ 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
+ '83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF',
base=1_6,
),
'''generator''': 2,
},
# 2048-bit
1_4: {
'''prime''': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
+ '29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
+ 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
+ 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
+ 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
+ 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
+ '83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'
+ 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'
+ 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510'
+ '15728E5A8AACAA68FFFFFFFFFFFFFFFF',
base=1_6,
),
'''generator''': 2,
},
# 3072-bit
1_5: {
'''prime''': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
+ '29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
+ 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
+ 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
+ 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
+ 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
+ '83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'
+ 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'
+ 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510'
+ '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'
+ 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'
+ 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'
+ 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'
+ 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'
+ '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF',
base=1_6,
),
'''generator''': 2,
},
# 4096-bit
1_6: {
'''prime''': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
+ '29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
+ 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
+ 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
+ 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
+ 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
+ '83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'
+ 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'
+ 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510'
+ '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'
+ 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'
+ 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'
+ 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'
+ 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'
+ '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'
+ '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'
+ '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'
+ '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'
+ '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'
+ '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199'
+ 'FFFFFFFFFFFFFFFF',
base=1_6,
),
'''generator''': 2,
},
# 6144-bit
1_7: {
'''prime''': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08'
+ '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B'
+ '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9'
+ 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6'
+ '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8'
+ 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C'
+ '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718'
+ '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D'
+ '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D'
+ 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226'
+ '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C'
+ 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC'
+ 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26'
+ '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB'
+ '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2'
+ '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127'
+ 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'
+ '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406'
+ 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918'
+ 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151'
+ '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03'
+ 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F'
+ 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'
+ 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B'
+ 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632'
+ '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E'
+ '6DCC4024FFFFFFFFFFFFFFFF',
base=1_6,
),
'''generator''': 2,
},
# 8192-bit
1_8: {
'''prime''': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
+ '29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
+ 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
+ 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
+ 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
+ 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
+ '83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'
+ 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'
+ 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510'
+ '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'
+ 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'
+ 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'
+ 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'
+ 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'
+ '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'
+ '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'
+ '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'
+ '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'
+ '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'
+ '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'
+ '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD'
+ 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831'
+ '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B'
+ 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF'
+ '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6'
+ 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3'
+ '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'
+ 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328'
+ '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C'
+ 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE'
+ '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4'
+ '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300'
+ '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568'
+ '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9'
+ '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B'
+ '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A'
+ '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36'
+ '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1'
+ 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92'
+ '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47'
+ '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71'
+ '60C980DD98EDD3DFFFFFFFFFFFFFFFFF',
base=1_6,
),
'''generator''': 2,
},
}
class __SCREAMING_SNAKE_CASE :
def __init__( self : Tuple , __lowercase : int = 14 ) -> int:
if group not in primes:
raise ValueError('''Unsupported Group''' )
SCREAMING_SNAKE_CASE__ : str =primes[group]["prime"]
SCREAMING_SNAKE_CASE__ : Any =primes[group]["generator"]
SCREAMING_SNAKE_CASE__ : List[str] =int(hexlify(urandom(32 ) ) , base=16 )
def __magic_name__ ( self : Any ) -> int:
return hex(self.__private_key )[2:]
def __magic_name__ ( self : Tuple ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ : Any =pow(self.generator , self.__private_key , self.prime )
return hex(__lowercase )[2:]
def __magic_name__ ( self : Optional[Any] , __lowercase : int ) -> int:
return (
2 <= key <= self.prime - 2
and pow(__lowercase , (self.prime - 1) // 2 , self.prime ) == 1
)
def __magic_name__ ( self : Dict , __lowercase : str ) -> str:
SCREAMING_SNAKE_CASE__ : List[Any] =int(__lowercase , base=16 )
if not self.is_valid_public_key(__lowercase ):
raise ValueError('''Invalid public key''' )
SCREAMING_SNAKE_CASE__ : List[str] =pow(__lowercase , self.__private_key , self.prime )
return shaaaa(str(__lowercase ).encode() ).hexdigest()
@staticmethod
def __magic_name__ ( __lowercase : int , __lowercase : int ) -> Optional[int]:
return (
2 <= remote_public_key_str <= prime - 2
and pow(__lowercase , (prime - 1) // 2 , __lowercase ) == 1
)
@staticmethod
def __magic_name__ ( __lowercase : str , __lowercase : str , __lowercase : int = 14 ) -> Tuple:
SCREAMING_SNAKE_CASE__ : Optional[int] =int(__lowercase , base=16 )
SCREAMING_SNAKE_CASE__ : str =int(__lowercase , base=16 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] =primes[group]["prime"]
if not DiffieHellman.is_valid_public_key_static(__lowercase , __lowercase ):
raise ValueError('''Invalid public key''' )
SCREAMING_SNAKE_CASE__ : Optional[Any] =pow(__lowercase , __lowercase , __lowercase )
return shaaaa(str(__lowercase ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 152
|
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('''Googling.....''')
lowerCAmelCase : str ='''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:])
lowerCAmelCase : List[str] =requests.get(url, headers={'''UserAgent''': UserAgent().random})
# res.raise_for_status()
with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class
for data in res.iter_content(10_000):
out_file.write(data)
lowerCAmelCase : List[Any] =BeautifulSoup(res.text, '''html.parser''')
lowerCAmelCase : List[Any] =list(soup.select('''.eZt8xd'''))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('''href'''))
else:
webbrowser.open(F'''https://google.com{link.get('href')}''')
| 223
| 0
|
"""simple docstring"""
from collections import defaultdict
class lowercase__ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
UpperCAmelCase_ = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE_ ) )
]
UpperCAmelCase_ = defaultdict(SCREAMING_SNAKE_CASE_ ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
UpperCAmelCase_ = (1 << len(SCREAMING_SNAKE_CASE_ )) - 1
def lowercase__ ( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> Union[str, Any]:
'''simple docstring'''
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
UpperCAmelCase_ = self.count_ways_until(SCREAMING_SNAKE_CASE_ , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
UpperCAmelCase_ = total_ways_util
return self.dp[mask][task_no]
def lowercase__ ( self : str , _UpperCAmelCase : Optional[int] ) -> str:
'''simple docstring'''
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
for j in task_performed[i]:
self.task[j].append(SCREAMING_SNAKE_CASE_ )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
lowerCamelCase = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
lowerCamelCase = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 366
|
"""simple docstring"""
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = checkpoint
UpperCAmelCase_ = {}
UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"]
UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"]
UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"]
UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"]
UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"]
UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"]
UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"]
UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"]
UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"]
UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"]
UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"]
UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"]
UpperCAmelCase_ = vae_state_dict["quant_conv.weight"]
UpperCAmelCase_ = vae_state_dict["quant_conv.bias"]
UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"]
UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} )
UpperCAmelCase_ = {
layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ )
}
# Retrieves the keys for the decoder up blocks only
UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} )
UpperCAmelCase_ = {
layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ )
}
for i in range(lowerCAmelCase__ ):
UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key]
if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict:
UpperCAmelCase_ = vae_state_dict.pop(
f"""encoder.down.{i}.downsample.conv.weight""" )
UpperCAmelCase_ = vae_state_dict.pop(
f"""encoder.down.{i}.downsample.conv.bias""" )
UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ )
UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key]
UpperCAmelCase_ = 2
for i in range(1 , num_mid_res_blocks + 1 ):
UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key]
UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ )
UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key]
UpperCAmelCase_ = renew_vae_attention_paths(lowerCAmelCase__ )
UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
conv_attn_to_linear(lowerCAmelCase__ )
for i in range(lowerCAmelCase__ ):
UpperCAmelCase_ = num_up_blocks - 1 - i
UpperCAmelCase_ = [
key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key
]
if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict:
UpperCAmelCase_ = vae_state_dict[
f"""decoder.up.{block_id}.upsample.conv.weight"""
]
UpperCAmelCase_ = vae_state_dict[
f"""decoder.up.{block_id}.upsample.conv.bias"""
]
UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ )
UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key]
UpperCAmelCase_ = 2
for i in range(1 , num_mid_res_blocks + 1 ):
UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key]
UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ )
UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key]
UpperCAmelCase_ = renew_vae_attention_paths(lowerCAmelCase__ )
UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
conv_attn_to_linear(lowerCAmelCase__ )
return new_checkpoint
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , ):
# Only support V1
UpperCAmelCase_ = requests.get(
" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" )
UpperCAmelCase_ = io.BytesIO(r.content )
UpperCAmelCase_ = OmegaConf.load(lowerCAmelCase__ )
UpperCAmelCase_ = 512
UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu"
if checkpoint_path.endswith("safetensors" ):
from safetensors import safe_open
UpperCAmelCase_ = {}
with safe_open(lowerCAmelCase__ , framework="pt" , device="cpu" ) as f:
for key in f.keys():
UpperCAmelCase_ = f.get_tensor(lowerCAmelCase__ )
else:
UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )["state_dict"]
# Convert the VAE model.
UpperCAmelCase_ = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ )
UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = AutoencoderKL(**lowerCAmelCase__ )
vae.load_state_dict(lowerCAmelCase__ )
vae.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
lowerCamelCase = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 241
| 0
|
lowercase__ :Tuple = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
lowercase = set()
# keep track of all the paths to be checked
lowercase = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
lowercase = queue.pop(0 )
# get the last node from the path
lowercase = path[-1]
if node not in explored:
lowercase = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
lowercase = list(lowerCAmelCase__ )
new_path.append(lowerCAmelCase__ )
queue.append(lowerCAmelCase__ )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(lowerCAmelCase__ )
# in case there's no path between the 2 nodes
return []
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
lowercase = [start]
lowercase = set(lowerCAmelCase__ )
# Keep tab on distances from `start` node.
lowercase = {start: 0, target: -1}
while queue:
lowercase = queue.pop(0 )
if node == target:
lowercase = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(lowerCAmelCase__ )
queue.append(lowerCAmelCase__ )
lowercase = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
| 101
|
import os
import sys
lowercase__ :Tuple = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowercase__ :List[Any] = [
"torch",
"numpy",
"tokenizers",
"filelock",
"requests",
"tqdm",
"regex",
"sentencepiece",
"sacremoses",
"importlib_metadata",
"huggingface_hub",
]
@add_start_docstrings(AutoConfig.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoConfig.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoModel.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoModel.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ):
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
| 101
| 1
|
'''simple docstring'''
import os
import sys
import unittest
lowercase : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py')
lowercase : int = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py')
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Optional[Any] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : List[str] = {'''BertModelTest''': '''BertModelTester'''}
A : List[Any] = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[Any] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : Dict = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : Any = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A : Optional[Any] = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : str = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Dict = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Optional[Any] = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A : Any = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ )
A : Any = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ )
class A ( __snake_case ):
__magic_name__ = '''sigmoid'''
__magic_name__ = '''softmax'''
__magic_name__ = '''none'''
@add_end_docstrings(
__snake_case , R'''
return_all_scores (`bool`, *optional*, defaults to `False`):
Whether to return all prediction scores or just the one of the predicted class.
function_to_apply (`str`, *optional*, defaults to `"default"`):
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
- `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model
has several labels, will apply the softmax function on the output.
- `"sigmoid"`: Applies the sigmoid function on the output.
- `"softmax"`: Applies the softmax function on the output.
- `"none"`: Does not apply any function on the output.
''' , )
class A ( __snake_case ):
__magic_name__ = False
__magic_name__ = ClassificationFunction.NONE
def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Optional[Any] = tokenizer_kwargs
A : int = {}
if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None:
A : int = self.model.config.return_all_scores
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None:
A : Union[str, Any] = top_k
A : Dict = False
elif return_all_scores is not None:
warnings.warn(
'''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of'''
''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , )
if return_all_scores:
A : Optional[int] = None
else:
A : Dict = 1
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : Dict = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
A : int = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
A : Any = '''top_k''' not in kwargs
if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]:
"""simple docstring"""
A : List[Any] = self.framework
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
'''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a'''
''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' )
return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return self.model(**SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]:
"""simple docstring"""
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
A : Optional[int] = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
A : Any = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None:
A : Optional[int] = self.model.config.function_to_apply
else:
A : Optional[int] = ClassificationFunction.NONE
A : Any = model_outputs['''logits'''][0]
A : List[Any] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
A : int = sigmoid(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.SOFTMAX:
A : Any = softmax(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.NONE:
A : int = outputs
else:
raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
A : int = [
{'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE )
]
if not _legacy:
dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE )
if top_k is not None:
A : Union[str, Any] = dict_scores[:top_k]
return dict_scores
| 311
| 1
|
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
a : Optional[int] = NewType("DataClass", Any)
a : Tuple = NewType("DataClassType", Any)
def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ):
if isinstance(_a , _a ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" )
def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ):
__UpperCAmelCase : Any = {str(_a ): choice for choice in choices}
return lambda __lowerCamelCase : str_to_choice.get(_a , _a )
def lowerCamelCase__ ( *,
__lowerCamelCase : List[str] = None , __lowerCamelCase : Dict = None , __lowerCamelCase : Union[str, Any] = dataclasses.MISSING , __lowerCamelCase : int = dataclasses.MISSING , __lowerCamelCase : List[Any] = None , **__lowerCamelCase : List[Any] , ):
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
__UpperCAmelCase : int = {}
if aliases is not None:
__UpperCAmelCase : Any = aliases
if help is not None:
__UpperCAmelCase : str = help
return dataclasses.field(metadata=_a , default=_a , default_factory=_a , **_a )
class a ( _lowercase ):
"""simple docstring"""
a : Iterable[DataClassType]
def __init__( self : List[Any] , __lowercase : Union[DataClassType, Iterable[DataClassType]] , **__lowercase : int ) -> int:
# To make the default appear when using --help
if "formatter_class" not in kwargs:
__UpperCAmelCase : Any = ArgumentDefaultsHelpFormatter
super().__init__(**_SCREAMING_SNAKE_CASE )
if dataclasses.is_dataclass(_SCREAMING_SNAKE_CASE ):
__UpperCAmelCase : Any = [dataclass_types]
__UpperCAmelCase : Dict = list(_SCREAMING_SNAKE_CASE )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(_SCREAMING_SNAKE_CASE )
@staticmethod
def UpperCAmelCase ( __lowercase : ArgumentParser , __lowercase : dataclasses.Field ) -> int:
__UpperCAmelCase : Optional[int] = f"""--{field.name}"""
__UpperCAmelCase : Optional[int] = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type , _SCREAMING_SNAKE_CASE ):
raise RuntimeError(
"""Unresolved type detected, which should have been done with the help of """
"""`typing.get_type_hints` method by default""" )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("""aliases""" , [] )
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__UpperCAmelCase : str = [aliases]
__UpperCAmelCase : Union[str, Any] = getattr(field.type , """__origin__""" , field.type )
if origin_type is Union or (hasattr(_SCREAMING_SNAKE_CASE , """UnionType""" ) and isinstance(_SCREAMING_SNAKE_CASE , types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(_SCREAMING_SNAKE_CASE ) not in field.type.__args__
):
raise ValueError(
"""Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because"""
""" the argument parser only supports one type per argument."""
f""" Problem encountered in field \'{field.name}\'.""" )
if type(_SCREAMING_SNAKE_CASE ) not in field.type.__args__:
# filter `str` in Union
__UpperCAmelCase : List[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
__UpperCAmelCase : int = getattr(field.type , """__origin__""" , field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
__UpperCAmelCase : List[str] = (
field.type.__args__[0] if isinstance(_SCREAMING_SNAKE_CASE , field.type.__args__[1] ) else field.type.__args__[1]
)
__UpperCAmelCase : Dict = getattr(field.type , """__origin__""" , field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
__UpperCAmelCase : List[Any] = {}
if origin_type is Literal or (isinstance(field.type , _SCREAMING_SNAKE_CASE ) and issubclass(field.type , _SCREAMING_SNAKE_CASE )):
if origin_type is Literal:
__UpperCAmelCase : Optional[Any] = field.type.__args__
else:
__UpperCAmelCase : Dict = [x.value for x in field.type]
__UpperCAmelCase : Optional[Any] = make_choice_type_function(kwargs["""choices"""] )
if field.default is not dataclasses.MISSING:
__UpperCAmelCase : Tuple = field.default
else:
__UpperCAmelCase : int = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
__UpperCAmelCase : int = copy(_SCREAMING_SNAKE_CASE )
# Hack because type=bool in argparse does not behave as we want.
__UpperCAmelCase : str = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
__UpperCAmelCase : Tuple = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
__UpperCAmelCase : Dict = default
# This tells argparse we accept 0 or 1 value after --field_name
__UpperCAmelCase : List[str] = '''?'''
# This is the value that will get picked if we do --field_name (without value)
__UpperCAmelCase : List[Any] = True
elif isclass(_SCREAMING_SNAKE_CASE ) and issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__UpperCAmelCase : str = field.type.__args__[0]
__UpperCAmelCase : Tuple = '''+'''
if field.default_factory is not dataclasses.MISSING:
__UpperCAmelCase : List[Any] = field.default_factory()
elif field.default is dataclasses.MISSING:
__UpperCAmelCase : Any = True
else:
__UpperCAmelCase : Tuple = field.type
if field.default is not dataclasses.MISSING:
__UpperCAmelCase : List[Any] = field.default
elif field.default_factory is not dataclasses.MISSING:
__UpperCAmelCase : Dict = field.default_factory()
else:
__UpperCAmelCase : Optional[int] = True
parser.add_argument(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
__UpperCAmelCase : Optional[int] = False
parser.add_argument(f"""--no_{field.name}""" , action="""store_false""" , dest=field.name , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self : Any , __lowercase : DataClassType ) -> Union[str, Any]:
if hasattr(_SCREAMING_SNAKE_CASE , """_argument_group_name""" ):
__UpperCAmelCase : Dict = self.add_argument_group(dtype._argument_group_name )
else:
__UpperCAmelCase : str = self
try:
__UpperCAmelCase : Dict[str, type] = get_type_hints(_SCREAMING_SNAKE_CASE )
except NameError:
raise RuntimeError(
f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """
"""removing line of `from __future__ import annotations` which opts in Postponed """
"""Evaluation of Annotations (PEP 563)""" )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_SCREAMING_SNAKE_CASE ):
__UpperCAmelCase : Tuple = '''.'''.join(map(_SCREAMING_SNAKE_CASE , sys.version_info[:3] ) )
raise RuntimeError(
f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """
"""line of `from __future__ import annotations` which opts in union types as """
"""`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """
"""support Python versions that lower than 3.10, you need to use """
"""`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """
"""`X | None`.""" ) from ex
raise
for field in dataclasses.fields(_SCREAMING_SNAKE_CASE ):
if not field.init:
continue
__UpperCAmelCase : int = type_hints[field.name]
self._parse_dataclass_field(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self : Optional[Any] , __lowercase : Any=None , __lowercase : str=False , __lowercase : Tuple=True , __lowercase : int=None , __lowercase : List[str]=None , ) -> Tuple[DataClass, ...]:
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
__UpperCAmelCase : Union[str, Any] = []
if args_filename:
args_files.append(Path(_SCREAMING_SNAKE_CASE ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
__UpperCAmelCase : List[Any] = ArgumentParser()
args_file_parser.add_argument(_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , action="""append""" )
# Use only remaining args for further parsing (remove the args_file_flag)
__UpperCAmelCase : Dict = args_file_parser.parse_known_args(args=_SCREAMING_SNAKE_CASE )
__UpperCAmelCase : List[Any] = vars(_SCREAMING_SNAKE_CASE ).get(args_file_flag.lstrip("""-""" ) , _SCREAMING_SNAKE_CASE )
if cmd_args_file_paths:
args_files.extend([Path(_SCREAMING_SNAKE_CASE ) for p in cmd_args_file_paths] )
__UpperCAmelCase : Optional[int] = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
__UpperCAmelCase : Tuple = file_args + args if args is not None else file_args + sys.argv[1:]
__UpperCAmelCase : Dict = self.parse_known_args(args=_SCREAMING_SNAKE_CASE )
__UpperCAmelCase : Any = []
for dtype in self.dataclass_types:
__UpperCAmelCase : int = {f.name for f in dataclasses.fields(_SCREAMING_SNAKE_CASE ) if f.init}
__UpperCAmelCase : List[Any] = {k: v for k, v in vars(_SCREAMING_SNAKE_CASE ).items() if k in keys}
for k in keys:
delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__UpperCAmelCase : Dict = dtype(**_SCREAMING_SNAKE_CASE )
outputs.append(_SCREAMING_SNAKE_CASE )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(_SCREAMING_SNAKE_CASE )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" )
return (*outputs,)
def UpperCAmelCase ( self : Optional[int] , __lowercase : Dict[str, Any] , __lowercase : bool = False ) -> Tuple[DataClass, ...]:
__UpperCAmelCase : Union[str, Any] = set(args.keys() )
__UpperCAmelCase : Dict = []
for dtype in self.dataclass_types:
__UpperCAmelCase : int = {f.name for f in dataclasses.fields(_SCREAMING_SNAKE_CASE ) if f.init}
__UpperCAmelCase : Optional[Any] = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
__UpperCAmelCase : Union[str, Any] = dtype(**_SCREAMING_SNAKE_CASE )
outputs.append(_SCREAMING_SNAKE_CASE )
if not allow_extra_keys and unused_keys:
raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_SCREAMING_SNAKE_CASE )}""" )
return tuple(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self : Optional[int] , __lowercase : str , __lowercase : bool = False ) -> Tuple[DataClass, ...]:
with open(Path(_SCREAMING_SNAKE_CASE ) , encoding="""utf-8""" ) as open_json_file:
__UpperCAmelCase : Tuple = json.loads(open_json_file.read() )
__UpperCAmelCase : int = self.parse_dict(_SCREAMING_SNAKE_CASE , allow_extra_keys=_SCREAMING_SNAKE_CASE )
return tuple(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self : List[str] , __lowercase : str , __lowercase : bool = False ) -> Tuple[DataClass, ...]:
__UpperCAmelCase : str = self.parse_dict(yaml.safe_load(Path(_SCREAMING_SNAKE_CASE ).read_text() ) , allow_extra_keys=_SCREAMING_SNAKE_CASE )
return tuple(_SCREAMING_SNAKE_CASE )
| 114
|
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCamelCase = logging.get_logger(__name__)
class _a ( _lowercase):
def __init__( self : Optional[int] , *_SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Optional[Any] )-> None:
warnings.warn(
'''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PoolFormerImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , )
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
| 131
| 0
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Any = {
"""microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "wavlm"
def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1E-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(512, 512, 512, 512, 512, 512, 512) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=320 , snake_case__=800 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=320 , snake_case__=2 , snake_case__=0.1 , snake_case__=100 , snake_case__=256 , snake_case__=256 , snake_case__=0.1 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=(512, 512, 512, 512, 1500) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=512 , snake_case__=80 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ )
_lowerCAmelCase : str = hidden_size
_lowerCAmelCase : List[Any] = feat_extract_norm
_lowerCAmelCase : List[Any] = feat_extract_activation
_lowerCAmelCase : Dict = list(snake_case__ )
_lowerCAmelCase : List[Any] = list(snake_case__ )
_lowerCAmelCase : Tuple = list(snake_case__ )
_lowerCAmelCase : Any = conv_bias
_lowerCAmelCase : Optional[int] = num_buckets
_lowerCAmelCase : Optional[int] = max_bucket_distance
_lowerCAmelCase : int = num_conv_pos_embeddings
_lowerCAmelCase : Optional[int] = num_conv_pos_embedding_groups
_lowerCAmelCase : str = len(self.conv_dim )
_lowerCAmelCase : Dict = num_hidden_layers
_lowerCAmelCase : List[str] = intermediate_size
_lowerCAmelCase : List[str] = hidden_act
_lowerCAmelCase : Dict = num_attention_heads
_lowerCAmelCase : int = hidden_dropout
_lowerCAmelCase : Any = attention_dropout
_lowerCAmelCase : List[str] = activation_dropout
_lowerCAmelCase : Any = feat_proj_dropout
_lowerCAmelCase : Dict = final_dropout
_lowerCAmelCase : List[Any] = layerdrop
_lowerCAmelCase : List[str] = layer_norm_eps
_lowerCAmelCase : Tuple = initializer_range
_lowerCAmelCase : Tuple = num_ctc_classes
_lowerCAmelCase : List[str] = vocab_size
_lowerCAmelCase : List[Any] = do_stable_layer_norm
_lowerCAmelCase : Optional[Any] = use_weighted_layer_sum
_lowerCAmelCase : List[str] = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCAmelCase : str = apply_spec_augment
_lowerCAmelCase : Any = mask_time_prob
_lowerCAmelCase : Optional[int] = mask_time_length
_lowerCAmelCase : Union[str, Any] = mask_time_min_masks
_lowerCAmelCase : Tuple = mask_feature_prob
_lowerCAmelCase : List[str] = mask_feature_length
# parameters for pretraining with codevector quantized representations
_lowerCAmelCase : Any = num_codevectors_per_group
_lowerCAmelCase : str = num_codevector_groups
_lowerCAmelCase : Dict = contrastive_logits_temperature
_lowerCAmelCase : List[str] = num_negatives
_lowerCAmelCase : Optional[int] = codevector_dim
_lowerCAmelCase : int = proj_codevector_dim
_lowerCAmelCase : Dict = diversity_loss_weight
# ctc loss
_lowerCAmelCase : Tuple = ctc_loss_reduction
_lowerCAmelCase : Optional[int] = ctc_zero_infinity
# adapter
_lowerCAmelCase : Tuple = add_adapter
_lowerCAmelCase : Optional[Any] = adapter_kernel_size
_lowerCAmelCase : Union[str, Any] = adapter_stride
_lowerCAmelCase : Any = num_adapter_layers
_lowerCAmelCase : List[str] = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCAmelCase : List[Any] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCAmelCase : Tuple = list(snake_case__ )
_lowerCAmelCase : List[Any] = list(snake_case__ )
_lowerCAmelCase : List[str] = list(snake_case__ )
_lowerCAmelCase : str = xvector_output_dim
@property
def a ( self ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 25
|
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = KandinskyVaaInpaintPipeline
__magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"]
__magic_name__ = [
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
__magic_name__ = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__magic_name__ = False
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def a ( self ):
'''simple docstring'''
return 100
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
_lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ )
return model
@property
def a ( self ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs )
return model
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.dummy_unet
_lowerCAmelCase : List[Any] = self.dummy_movq
_lowerCAmelCase : Union[str, Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , )
_lowerCAmelCase : Any = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def a ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
snake_case__ )
# create init_image
_lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) )
# create mask
_lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa )
_lowerCAmelCase : Dict = 0
if str(snake_case__ ).startswith('mps' ):
_lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ )
else:
_lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
_lowerCAmelCase : Optional[int] = {
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = 'cpu'
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ )
_lowerCAmelCase : Optional[int] = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) )
_lowerCAmelCase : int = output.images
_lowerCAmelCase : int = pipe(
**self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0]
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
_lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
print(F'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase : List[str] = np.array(
[0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def a ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' )
_lowerCAmelCase : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
_lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa )
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : List[str] = 'a hat'
_lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(snake_case__ )
_lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ )
pipeline.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 )
_lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior(
snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
_lowerCAmelCase : Optional[Any] = pipeline(
image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , )
_lowerCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(snake_case__ , snake_case__ )
| 25
| 1
|
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( A__ , unittest.TestCase ):
A = CodeGenTokenizer
A = CodeGenTokenizerFast
A = True
A = {'add_prefix_space': True}
A = False
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE_ : Optional[int] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
"<|endoftext|>",
]
SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
SCREAMING_SNAKE_CASE_ : List[str] = {"unk_token": "<unk>"}
SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file,"w",encoding="utf-8" ) as fp:
fp.write(json.dumps(_A ) + "\n" )
with open(self.merges_file,"w",encoding="utf-8" ) as fp:
fp.write("\n".join(_A ) )
def __UpperCamelCase ( self : Tuple,**_A : Optional[Any] ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CodeGenTokenizer.from_pretrained(self.tmpdirname,**_A )
def __UpperCamelCase ( self : Any,**_A : int ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**_A )
def __UpperCamelCase ( self : Optional[Any],_A : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = "lower newer"
SCREAMING_SNAKE_CASE_ : Dict = "lower newer"
return input_text, output_text
def __UpperCamelCase ( self : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map )
SCREAMING_SNAKE_CASE_ : int = "lower newer"
SCREAMING_SNAKE_CASE_ : List[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.tokenize(_A,add_prefix_space=_A )
self.assertListEqual(_A,_A )
SCREAMING_SNAKE_CASE_ : int = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ),_A )
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Any = self.get_rust_tokenizer(add_prefix_space=_A )
SCREAMING_SNAKE_CASE_ : List[str] = "lower newer"
# Testing tokenization
SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.tokenize(_A,add_prefix_space=_A )
SCREAMING_SNAKE_CASE_ : Any = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A,_A )
# Testing conversion to ids without special tokens
SCREAMING_SNAKE_CASE_ : int = tokenizer.encode(_A,add_special_tokens=_A,add_prefix_space=_A )
SCREAMING_SNAKE_CASE_ : Optional[Any] = rust_tokenizer.encode(_A,add_special_tokens=_A )
self.assertListEqual(_A,_A )
# Testing conversion to ids with special tokens
SCREAMING_SNAKE_CASE_ : int = self.get_rust_tokenizer(add_prefix_space=_A )
SCREAMING_SNAKE_CASE_ : int = tokenizer.encode(_A,add_prefix_space=_A )
SCREAMING_SNAKE_CASE_ : Optional[int] = rust_tokenizer.encode(_A )
self.assertListEqual(_A,_A )
# Testing the unknown token
SCREAMING_SNAKE_CASE_ : int = tokens + [rust_tokenizer.unk_token]
SCREAMING_SNAKE_CASE_ : Any = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_A ),_A )
def __UpperCamelCase ( self : Dict,*_A : Union[str, Any],**_A : Optional[int] ):
"""simple docstring"""
pass
def __UpperCamelCase ( self : Dict,_A : Any=15 ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
SCREAMING_SNAKE_CASE_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A,**_A )
# Simple input
SCREAMING_SNAKE_CASE_ : Optional[int] = "This is a simple input"
SCREAMING_SNAKE_CASE_ : Dict = ["This is a simple input 1", "This is a simple input 2"]
SCREAMING_SNAKE_CASE_ : Optional[Any] = ("This is a simple input", "This is a pair")
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding="max_length" )
# Simple input
self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding="max_length" )
# Simple input
self.assertRaises(
_A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding="max_length",)
# Pair input
self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding="max_length" )
# Pair input
self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding="max_length" )
# Pair input
self.assertRaises(
_A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding="max_length",)
def __UpperCamelCase ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" )
# Simple input
SCREAMING_SNAKE_CASE_ : Any = "This is a simple input"
SCREAMING_SNAKE_CASE_ : str = ["This is a simple input looooooooong", "This is a simple input"]
SCREAMING_SNAKE_CASE_ : int = ("This is a simple input", "This is a pair")
SCREAMING_SNAKE_CASE_ : List[str] = [
("This is a simple input loooooong", "This is a simple input"),
("This is a simple pair loooooong", "This is a simple pair"),
]
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.pad_token_id
SCREAMING_SNAKE_CASE_ : str = tokenizer(_A,padding="max_length",max_length=30,return_tensors="np" )
SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(_A,padding=_A,truncate=_A,return_tensors="np" )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(*_A,padding="max_length",max_length=60,return_tensors="np" )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(_A,padding=_A,truncate=_A,return_tensors="np" )
# s
# test single string max_length padding
self.assertEqual(out_s["input_ids"].shape[-1],30 )
self.assertTrue(pad_token_id in out_s["input_ids"] )
self.assertTrue(0 in out_s["attention_mask"] )
# s2
# test automatic padding
self.assertEqual(out_sa["input_ids"].shape[-1],33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["input_ids"][0] )
self.assertFalse(0 in out_sa["attention_mask"][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["input_ids"][1] )
self.assertTrue(0 in out_sa["attention_mask"][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["input_ids"].shape[-1],60 )
self.assertTrue(pad_token_id in out_p["input_ids"] )
self.assertTrue(0 in out_p["attention_mask"] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["input_ids"].shape[-1],52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["input_ids"][0] )
self.assertFalse(0 in out_pa["attention_mask"][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["input_ids"][1] )
self.assertTrue(0 in out_pa["attention_mask"][1] )
def __UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = "$$$"
SCREAMING_SNAKE_CASE_ : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=_A,add_bos_token=_A )
SCREAMING_SNAKE_CASE_ : str = "This is a simple input"
SCREAMING_SNAKE_CASE_ : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"]
SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.bos_token_id
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(_A )
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(_A )
self.assertEqual(out_s.input_ids[0],_A )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(out_s.input_ids )
SCREAMING_SNAKE_CASE_ : int = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0],_A )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
@slow
def __UpperCamelCase ( self : Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" )
SCREAMING_SNAKE_CASE_ : List[str] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#"
SCREAMING_SNAKE_CASE_ : int = "\nif len_a > len_b: result = a\nelse: result = b"
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(_A )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"]
SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.decode(_A,truncate_before_pattern=_A )
self.assertEqual(_A,_A )
def __UpperCamelCase ( self : Tuple ):
"""simple docstring"""
pass
| 18
|
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json",
"allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json",
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"
),
}
class lowercase ( _UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = 'longformer'
def __init__( self , lowercase = 512 , lowercase = 2 , lowercase = 1 , lowercase = 0 , lowercase = 2 , lowercase = 30_522 , lowercase = 768 , lowercase = 12 , lowercase = 12 , lowercase = 3_072 , lowercase = "gelu" , lowercase = 0.1 , lowercase = 0.1 , lowercase = 512 , lowercase = 2 , lowercase = 0.02 , lowercase = 1e-12 , lowercase = False , **lowercase , ) -> Optional[int]:
super().__init__(pad_token_id=lowercase , **lowercase )
lowerCAmelCase = attention_window
lowerCAmelCase = sep_token_id
lowerCAmelCase = bos_token_id
lowerCAmelCase = eos_token_id
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = onnx_export
class lowercase ( _UpperCAmelCase ):
def __init__( self , lowercase , lowercase = "default" , lowercase = None ) -> Tuple:
super().__init__(lowercase , lowercase , lowercase )
lowerCAmelCase = True
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowerCAmelCase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""global_attention_mask""", dynamic_axis),
] )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
lowerCAmelCase = super().outputs
if self.task == "default":
lowerCAmelCase = {0: """batch"""}
return outputs
@property
def _snake_case ( self ) -> float:
return 1e-4
@property
def _snake_case ( self ) -> int:
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 14 )
def _snake_case ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]:
lowerCAmelCase = super().generate_dummy_inputs(
preprocessor=lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
lowerCAmelCase = torch.zeros_like(inputs["""input_ids"""] )
# make every second token global
lowerCAmelCase = 1
return inputs
| 46
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : List[str] = {
"configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Any = [
"PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST",
"PegasusXForConditionalGeneration",
"PegasusXModel",
"PegasusXPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 359
|
from __future__ import annotations
def snake_case (__lowercase , __lowercase ) -> float:
'''simple docstring'''
_snake_case : Any = sorted(numsa + numsa )
_snake_case ,_snake_case : Any = divmod(len(__lowercase ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE : Union[str, Any] = [float(x) for x in input('Enter the elements of first array: ').split()]
__SCREAMING_SNAKE_CASE : List[Any] = [float(x) for x in input('Enter the elements of second array: ').split()]
print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 284
| 0
|
from datetime import datetime
import requests
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
lowercase__ : List[Any] = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url='
lowercase__ : Union[str, Any] = requests.get(base_url + url ).json()[0]['urls'][0]['src']
return requests.get(SCREAMING_SNAKE_CASE_ ).content
if __name__ == "__main__":
snake_case_ = input('''Enter Video/IGTV url: ''').strip()
snake_case_ = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, '''wb''') as fp:
fp.write(download_video(url))
print(F'''Done. Video saved to disk as {file_name}.''')
| 214
|
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class SCREAMING_SNAKE_CASE__ :
def __init__( self , a , a=13 , a=7 , a=False , a=True , a=False , a=False , a=19 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ):
lowercase__ : Optional[Any] = parent
lowercase__ : Dict = batch_size
lowercase__ : Union[str, Any] = seq_length
lowercase__ : Optional[Any] = is_training
lowercase__ : Tuple = use_input_mask
lowercase__ : List[str] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : List[str] = vocab_size
lowercase__ : Optional[int] = hidden_size
lowercase__ : List[str] = num_hidden_layers
lowercase__ : Any = num_attention_heads
lowercase__ : int = intermediate_size
lowercase__ : Any = hidden_act
lowercase__ : Any = hidden_dropout_prob
lowercase__ : str = attention_probs_dropout_prob
lowercase__ : List[Any] = max_position_embeddings
lowercase__ : int = type_vocab_size
lowercase__ : List[Any] = type_sequence_label_size
lowercase__ : str = initializer_range
lowercase__ : List[str] = num_labels
lowercase__ : Union[str, Any] = num_choices
lowercase__ : Optional[int] = scope
def snake_case_ ( self):
lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : List[Any] = None
if self.use_input_mask:
lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : int = None
lowercase__ : Optional[int] = None
lowercase__ : Optional[int] = None
if self.use_labels:
lowercase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ : str = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ : int = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case_ ( self):
lowercase__ : str = EsmConfig(
vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=a , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , )
return config
def snake_case_ ( self , a , a , a , a , a , a):
lowercase__ : Dict = EsmForProteinFolding(config=a).float()
model.to(a)
model.eval()
lowercase__ : Union[str, Any] = model(a , attention_mask=a)
lowercase__ : Dict = model(a)
lowercase__ : int = model(a)
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3))
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2))
def snake_case_ ( self):
lowercase__ : List[str] = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) : int = config_and_inputs
lowercase__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , unittest.TestCase ):
__lowerCamelCase : Dict = False
__lowerCamelCase : Dict = (EsmForProteinFolding,) if is_torch_available() else ()
__lowerCamelCase : Union[str, Any] = ()
__lowerCamelCase : List[Any] = {} if is_torch_available() else {}
__lowerCamelCase : Optional[Any] = False
def snake_case_ ( self):
lowercase__ : Tuple = EsmFoldModelTester(self)
lowercase__ : List[Any] = ConfigTester(self , config_class=a , hidden_size=37)
def snake_case_ ( self):
self.config_tester.run_common_tests()
def snake_case_ ( self):
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a)
@unittest.skip('Does not support attention outputs')
def snake_case_ ( self):
pass
@unittest.skip
def snake_case_ ( self):
pass
@unittest.skip('Esm does not support embedding resizing')
def snake_case_ ( self):
pass
@unittest.skip('Esm does not support embedding resizing')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support passing input embeds!')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support head pruning.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support head pruning.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support head pruning.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support head pruning.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support head pruning.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not output hidden states in the normal way.')
def snake_case_ ( self):
pass
@unittest.skip('ESMfold does not output hidden states in the normal way.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold only has one output format.')
def snake_case_ ( self):
pass
@unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support input chunking.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold doesn\'t support torchscript compilation.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold doesn\'t support torchscript compilation.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold doesn\'t support torchscript compilation.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold doesn\'t support data parallel.')
def snake_case_ ( self):
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.')
def snake_case_ ( self):
pass
@require_torch
class SCREAMING_SNAKE_CASE__ (__snake_case ):
@slow
def snake_case_ ( self):
lowercase__ : Dict = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1').float()
model.eval()
lowercase__ : Optional[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
lowercase__ : Optional[int] = model(a)['positions']
lowercase__ : Dict = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa)
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , a , atol=1e-4))
| 214
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 269
|
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
lowercase_ = {
# 1536-bit
5: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 2048-bit
14: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AACAA68FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 3072-bit
15: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 4096-bit
16: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"""
+ """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"""
+ """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"""
+ """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"""
+ """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"""
+ """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"""
+ """FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 6144-bit
17: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"""
+ """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"""
+ """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"""
+ """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"""
+ """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"""
+ """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"""
+ """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"""
+ """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"""
+ """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"""
+ """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"""
+ """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"""
+ """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"""
+ """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"""
+ """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"""
+ """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"""
+ """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"""
+ """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"""
+ """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"""
+ """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"""
+ """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"""
+ """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"""
+ """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"""
+ """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"""
+ """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"""
+ """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"""
+ """6DCC4024FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 8192-bit
18: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"""
+ """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"""
+ """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"""
+ """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"""
+ """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"""
+ """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"""
+ """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"""
+ """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"""
+ """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"""
+ """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"""
+ """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"""
+ """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"""
+ """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"""
+ """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"""
+ """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"""
+ """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"""
+ """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"""
+ """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"""
+ """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"""
+ """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"""
+ """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"""
+ """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"""
+ """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"""
+ """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"""
+ """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"""
+ """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"""
+ """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"""
+ """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
}
class SCREAMING_SNAKE_CASE :
def __init__( self : Optional[Any] , a : int = 14 )-> None:
"""simple docstring"""
if group not in primes:
raise ValueError('Unsupported Group' )
lowercase__ = primes[group]['prime']
lowercase__ = primes[group]['generator']
lowercase__ = int(hexlify(urandom(32 ) ) , base=16 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> str:
"""simple docstring"""
return hex(self.__private_key )[2:]
def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> str:
"""simple docstring"""
lowercase__ = pow(self.generator , self.__private_key , self.prime )
return hex(a )[2:]
def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : int )-> bool:
"""simple docstring"""
return (
2 <= key <= self.prime - 2
and pow(a , (self.prime - 1) // 2 , self.prime ) == 1
)
def SCREAMING_SNAKE_CASE_ ( self : str , a : str )-> str:
"""simple docstring"""
lowercase__ = int(a , base=16 )
if not self.is_valid_public_key(a ):
raise ValueError('Invalid public key' )
lowercase__ = pow(a , self.__private_key , self.prime )
return shaaaa(str(a ).encode() ).hexdigest()
@staticmethod
def SCREAMING_SNAKE_CASE_ ( a : int , a : int )-> bool:
"""simple docstring"""
return (
2 <= remote_public_key_str <= prime - 2
and pow(a , (prime - 1) // 2 , a ) == 1
)
@staticmethod
def SCREAMING_SNAKE_CASE_ ( a : str , a : str , a : int = 14 )-> str:
"""simple docstring"""
lowercase__ = int(a , base=16 )
lowercase__ = int(a , base=16 )
lowercase__ = primes[group]['prime']
if not DiffieHellman.is_valid_public_key_static(a , a ):
raise ValueError('Invalid public key' )
lowercase__ = pow(a , a , a )
return shaaaa(str(a ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 269
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case : Optional[Any] = {
'''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''],
'''tokenization_lxmert''': ['''LxmertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case : List[str] = ['''LxmertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case : Tuple = [
'''LxmertEncoder''',
'''LxmertForPreTraining''',
'''LxmertForQuestionAnswering''',
'''LxmertModel''',
'''LxmertPreTrainedModel''',
'''LxmertVisualFeatureEncoder''',
'''LxmertXLayer''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case : Dict = [
'''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFLxmertForPreTraining''',
'''TFLxmertMainLayer''',
'''TFLxmertModel''',
'''TFLxmertPreTrainedModel''',
'''TFLxmertVisualFeatureEncoder''',
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
snake_case : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 240
|
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __lowercase ( ):
a__ = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
a__ = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(__lowerCAmelCase )
# Let's go
a__ = parser.parse_args()
if not hasattr(__lowerCAmelCase , 'func' ):
parser.print_help()
exit(1 )
# Run
a__ = args.func(__lowerCAmelCase )
service.run()
if __name__ == "__main__":
main()
| 240
| 1
|
def lowerCamelCase ( a_ , a_ ) -> list:
lowerCAmelCase_ = len(a_ )
lowerCAmelCase_ = []
for i in range(len(a_ ) - pat_len + 1 ):
lowerCAmelCase_ = True
for j in range(a_ ):
if s[i + j] != pattern[j]:
lowerCAmelCase_ = False
break
if match_found:
position.append(a_ )
return position
if __name__ == "__main__":
assert naive_pattern_search("""ABCDEFG""", """DE""") == [3]
print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
| 14
|
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int:
if attention_mask is None:
lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class a_ :
'''simple docstring'''
__a: Tuple = OPTConfig
__a: Optional[Any] = {}
__a: Tuple = '''gelu'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = eos_token_id
lowerCAmelCase_ = pad_token_id
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = word_embed_proj_dim
lowerCAmelCase_ = False
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase_ = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , )
lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ )
return config, inputs_dict
def _lowercase ( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel(config=lowercase_ )
lowerCAmelCase_ = inputs_dict['input_ids']
lowerCAmelCase_ = input_ids[:1, :]
lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :]
lowerCAmelCase_ = 1
# first forward pass
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0]
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 )
@require_tf
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
__a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else ()
__a: Union[str, Any] = (
{'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {}
)
__a: int = False
__a: List[Any] = False
__a: Dict = False
__a: List[Any] = 1_0
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase_ , lowercase_ ):
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]:
# build the embeddings
lowerCAmelCase_ = model_class(config=lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
lowerCAmelCase_ = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase_ )
# check that weights remain the same after resizing
lowerCAmelCase_ = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase_ )
lowerCAmelCase_ = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
def lowerCamelCase ( a_ ) -> Any:
return tf.constant(a_ , dtype=tf.intaa )
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = 9_9
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2
lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
lowerCAmelCase_ = input_ids.shape[0]
lowerCAmelCase_ = OPTConfig(
vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' )
lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id )
with tf.GradientTape():
lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state
lowerCAmelCase_ = (1, 1_1, 5_1_2)
self.assertEqual(output.shape , lowercase_ )
lowerCAmelCase_ = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = 'facebook/opt-350m'
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model )
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model )
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
lowerCAmelCase_ = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-125m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
lowerCAmelCase_ = 'left'
# use different length sentences to test batching
lowerCAmelCase_ = [
'Hello, my dog is a little',
'Today, I',
]
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ )
lowerCAmelCase_ = inputs['input_ids']
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] )
lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ )
lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
| 14
| 1
|
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , )
@pytest.mark.usefixtures('''sm_env''' )
@parameterized_class(
[
{
'''framework''': '''pytorch''',
'''script''': '''run_glue.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9},
},
{
'''framework''': '''tensorflow''',
'''script''': '''run_tf.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9},
},
] )
class A_ (unittest.TestCase ):
def _lowercase ( self ):
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , )
assert hasattr(self , '''env''' )
def _lowercase ( self , _A=1 ):
'''simple docstring'''
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , )
def _lowercase ( self , _A ):
'''simple docstring'''
TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = self.create_estimator()
# run training
estimator.fit()
# result dataframe
UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCAmelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
| 273
|
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
__A : Optional[int] = logging.getLogger(__name__)
@dataclass
class A_ :
UpperCAmelCase__ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCAmelCase__ = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase__ = field(
default=a_ , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A_ :
UpperCAmelCase__ = field(default=a_ , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCAmelCase__ = field(
default=a_ , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCAmelCase__ = field(
default=a_ , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCAmelCase__ = field(
default=a_ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase__ = field(
default=a_ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowercase ( self ):
'''simple docstring'''
if self.train_file is not None:
UpperCAmelCase = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
UpperCAmelCase = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A_ :
UpperCAmelCase__ = 42
UpperCAmelCase__ = True
UpperCAmelCase__ = None
UpperCAmelCase__ = None
def __call__( self , _A ):
'''simple docstring'''
UpperCAmelCase = '''label''' if '''label''' in features[0].keys() else '''labels'''
UpperCAmelCase = [feature.pop(_A ) for feature in features]
UpperCAmelCase = len(_A )
UpperCAmelCase = len(features[0]['''input_ids'''] )
UpperCAmelCase = [
[{k: v[i] for k, v in feature.items()} for i in range(_A )] for feature in features
]
UpperCAmelCase = list(chain(*_A ) )
UpperCAmelCase = self.tokenizer.pad(
_A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
# Un-flatten
UpperCAmelCase = {k: v.view(_A , _A , -1 ) for k, v in batch.items()}
# Add back labels
UpperCAmelCase = torch.tensor(_A , dtype=torch.intaa )
return batch
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_swag''' , UpperCamelCase__ , UpperCamelCase__ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase = training_args.get_process_log_level()
logger.setLevel(UpperCamelCase__ )
datasets.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
UpperCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
UpperCAmelCase = {}
if data_args.train_file is not None:
UpperCAmelCase = data_args.train_file
if data_args.validation_file is not None:
UpperCAmelCase = data_args.validation_file
UpperCAmelCase = data_args.train_file.split('''.''' )[-1]
UpperCAmelCase = load_dataset(
UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
UpperCAmelCase = load_dataset(
'''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
UpperCAmelCase = [F"""ending{i}""" for i in range(4 )]
UpperCAmelCase = '''sent1'''
UpperCAmelCase = '''sent2'''
if data_args.max_seq_length is None:
UpperCAmelCase = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
'''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'''
''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'''
''' override this default with `--block_size xxx`.''' )
UpperCAmelCase = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(UpperCamelCase__ ):
UpperCAmelCase = [[context] * 4 for context in examples[context_name]]
UpperCAmelCase = examples[question_header_name]
UpperCAmelCase = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(UpperCamelCase__ )
]
# Flatten out
UpperCAmelCase = list(chain(*UpperCamelCase__ ) )
UpperCAmelCase = list(chain(*UpperCamelCase__ ) )
# Tokenize
UpperCAmelCase = tokenizer(
UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
UpperCAmelCase = raw_datasets['''train''']
if data_args.max_train_samples is not None:
UpperCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_train_samples )
UpperCAmelCase = train_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
UpperCAmelCase = train_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
UpperCAmelCase = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
UpperCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_eval_samples )
UpperCAmelCase = eval_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
UpperCAmelCase = eval_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
UpperCAmelCase = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(UpperCamelCase__ ):
UpperCAmelCase , UpperCAmelCase = eval_predictions
UpperCAmelCase = np.argmax(UpperCamelCase__ , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
UpperCAmelCase = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase = last_checkpoint
UpperCAmelCase = trainer.train(resume_from_checkpoint=UpperCamelCase__ )
trainer.save_model() # Saves the tokenizer too for easy upload
UpperCAmelCase = train_result.metrics
UpperCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ )
)
UpperCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics('''train''' , UpperCamelCase__ )
trainer.save_metrics('''train''' , UpperCamelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate()
UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ )
UpperCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics('''eval''' , UpperCamelCase__ )
trainer.save_metrics('''eval''' , UpperCamelCase__ )
UpperCAmelCase = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**UpperCamelCase__ )
else:
trainer.create_model_card(**UpperCamelCase__ )
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 273
| 1
|
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
lowercase__ :Optional[Any] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
lowercase__ :int = direct_transformers_import(PATH_TO_TRANSFORMERS)
lowercase__ :List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
lowercase__ :List[str] = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
lowercase = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
f'config.{attribute}' in modeling_source
or f'getattr(config, "{attribute}"' in modeling_source
or f'getattr(self.config, "{attribute}"' in modeling_source
):
lowercase = True
# Deal with multi-line cases
elif (
re.search(
Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowerCAmelCase__ , )
is not None
):
lowercase = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
lowercase = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
lowercase = [
'''bos_index''',
'''eos_index''',
'''pad_index''',
'''unk_index''',
'''mask_index''',
'''image_size''',
'''use_cache''',
'''out_features''',
'''out_indices''',
]
lowercase = ['''encoder_no_repeat_ngram_size''']
# Special cases to be allowed
lowercase = True
if not attribute_used:
lowercase = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
lowercase = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
lowercase = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
lowercase = True
elif attribute.endswith('''_token_id''' ):
lowercase = True
# configuration class specific cases
if not case_allowed:
lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
lowercase = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
lowercase = dict(inspect.signature(config_class.__init__ ).parameters )
lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']]
lowercase = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
lowercase = {}
if len(config_class.attribute_map ) > 0:
lowercase = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
lowercase = inspect.getsourcefile(lowerCAmelCase__ )
lowercase = os.path.dirname(lowerCAmelCase__ )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
lowercase = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('''modeling_''' )]
# Get the source code strings
lowercase = []
for path in modeling_paths:
if os.path.isfile(lowerCAmelCase__ ):
with open(lowerCAmelCase__ ) as fp:
modeling_sources.append(fp.read() )
lowercase = []
for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
# `attributes` here is all the variant names for `config_param`
lowercase = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
unused_attributes.append(attributes[0] )
return sorted(lowerCAmelCase__ )
def UpperCamelCase ( ):
'''simple docstring'''
lowercase = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
lowercase = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda lowerCAmelCase__ : inspect.isclass(lowerCAmelCase__ )
and issubclass(lowerCAmelCase__ , lowerCAmelCase__ )
and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
lowercase = check_config_attributes_being_used(lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
lowercase = unused_attributes
if len(lowerCAmelCase__ ) > 0:
lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n'''
for name, attributes in configs_with_unused_attributes.items():
error += f'{name}: {attributes}\n'
raise ValueError(lowerCAmelCase__ )
if __name__ == "__main__":
check_config_attributes()
| 97
|
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFXLMRobertaModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
@slow
def A__ ( self):
lowercase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''')
lowercase = {
'''input_ids''': tf.convert_to_tensor([[0, 2_6_4_6, 1_0_2_6_9, 8_3, 9_9_9_4_2, 2]] ,dtype=tf.intaa), # "My dog is cute"
'''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] ,dtype=tf.intaa),
}
lowercase = model(A__)['''last_hidden_state''']
lowercase = tf.TensorShape((1, 6, 7_6_8))
self.assertEqual(output.shape ,A__)
# compare the actual values for a slice.
lowercase = tf.convert_to_tensor(
[
[
[0.0681762, 0.10894451, 0.06772504],
[-0.06423668, 0.02366615, 0.04329344],
[-0.06057295, 0.09974135, -0.00070584],
]
] ,dtype=tf.floataa ,)
self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4))
| 97
| 1
|
"""simple docstring"""
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
__a = 1.054_571_817e-34 # unit of ℏ : J * s
__a = 3e8 # unit of c : m * s^-1
def A_ ( _lowercase, _lowercase, _lowercase ):
'''simple docstring'''
if (force, area, distance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if force < 0:
raise ValueError("""Magnitude of force can not be negative""" )
if distance < 0:
raise ValueError("""Distance can not be negative""" )
if area < 0:
raise ValueError("""Area can not be negative""" )
if force == 0:
snake_case_ :Dict = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
snake_case_ :List[Any] = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
snake_case_ :int = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("""One and only one argument must be 0""" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 66
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__a = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 66
| 1
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class lowercase__ ( __lowerCamelCase ):
'''simple docstring'''
a : int = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
a : List[str] = "CIDAS/clipseg-rd64-refined"
a : Union[str, Any] = "image_segmenter"
a : int = CLIPSegForImageSegmentation
a : Any = ["image", "text"]
a : Tuple = ["image"]
def __init__( self, *__magic_name__, **__magic_name__ ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self, ['''vision'''] )
super().__init__(*__magic_name__, **__magic_name__ )
def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> Any:
"""simple docstring"""
return self.pre_processor(text=[label], images=[image], padding=__magic_name__, return_tensors='''pt''' )
def UpperCamelCase__ ( self, __magic_name__ ) -> Tuple:
"""simple docstring"""
with torch.no_grad():
UpperCamelCase__ : Tuple = self.model(**__magic_name__ ).logits
return logits
def UpperCamelCase__ ( self, __magic_name__ ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] = outputs.cpu().detach().numpy()
UpperCamelCase__ : int = 0
UpperCamelCase__ : List[str] = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 247
|
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger()
def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: str , __UpperCAmelCase: LevitConfig , __UpperCAmelCase: Path , __UpperCAmelCase: bool = True ) -> int:
print(f"Converting {name}..." )
with torch.no_grad():
if hidden_sizes == 128:
if name[-1] == "S":
UpperCamelCase__ : List[Any] = timm.create_model('''levit_128s''' , pretrained=__UpperCAmelCase )
else:
UpperCamelCase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__UpperCAmelCase )
if hidden_sizes == 192:
UpperCamelCase__ : str = timm.create_model('''levit_192''' , pretrained=__UpperCAmelCase )
if hidden_sizes == 256:
UpperCamelCase__ : Any = timm.create_model('''levit_256''' , pretrained=__UpperCAmelCase )
if hidden_sizes == 384:
UpperCamelCase__ : int = timm.create_model('''levit_384''' , pretrained=__UpperCAmelCase )
from_model.eval()
UpperCamelCase__ : int = LevitForImageClassificationWithTeacher(__UpperCAmelCase ).eval()
UpperCamelCase__ : str = OrderedDict()
UpperCamelCase__ : Any = from_model.state_dict()
UpperCamelCase__ : Dict = list(from_model.state_dict().keys() )
UpperCamelCase__ : Tuple = list(our_model.state_dict().keys() )
print(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
for i in range(len(__UpperCAmelCase ) ):
UpperCamelCase__ : int = weights[og_keys[i]]
our_model.load_state_dict(__UpperCAmelCase )
UpperCamelCase__ : Optional[int] = torch.randn((2, 3, 224, 224) )
UpperCamelCase__ : Any = from_model(__UpperCAmelCase )
UpperCamelCase__ : Any = our_model(__UpperCAmelCase ).logits
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), "The model logits don't match the original one."
UpperCamelCase__ : List[Any] = name
print(__UpperCAmelCase )
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name )
UpperCamelCase__ : Union[str, Any] = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name )
print(f"Pushed {checkpoint_name}" )
def lowerCAmelCase_ ( __UpperCAmelCase: Path , __UpperCAmelCase: str = None , __UpperCAmelCase: bool = True ) -> List[str]:
UpperCamelCase__ : Any = '''imagenet-1k-id2label.json'''
UpperCamelCase__ : str = 1000
UpperCamelCase__ : List[str] = (1, num_labels)
UpperCamelCase__ : str = '''huggingface/label-files'''
UpperCamelCase__ : str = num_labels
UpperCamelCase__ : Dict = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCamelCase__ : Optional[Any] = {int(__UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCamelCase__ : List[Any] = idalabel
UpperCamelCase__ : Dict = {v: k for k, v in idalabel.items()}
UpperCamelCase__ : Tuple = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase )
UpperCamelCase__ : Optional[Any] = {
'''levit-128S''': 128,
'''levit-128''': 128,
'''levit-192''': 192,
'''levit-256''': 256,
'''levit-384''': 384,
}
UpperCamelCase__ : Optional[Any] = {
'''levit-128S''': ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
'''levit-128''': ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
'''levit-192''': ImageNetPreTrainedConfig(
hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
'''levit-256''': ImageNetPreTrainedConfig(
hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
'''levit-384''': ImageNetPreTrainedConfig(
hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name] , __UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name] , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, expected_shape
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='levit-dump-folder/',
type=Path,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
parser.add_argument(
'--no-push_to_hub',
dest='push_to_hub',
action='store_false',
help='Do not push model and image processor to the hub',
)
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 247
| 1
|
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
__lowerCAmelCase = '''sshleifer/mar_enro_6_3_student'''
class __magic_name__ ( _UpperCamelCase ):
def __lowercase ( self : int ):
super().setUp()
_a : Any = cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=_UpperCAmelCase ,)
_a : List[str] = F"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"""
@slow
@require_torch_gpu
def __lowercase ( self : Dict ):
MarianMTModel.from_pretrained(_UpperCAmelCase )
@slow
@require_torch_gpu
def __lowercase ( self : Any ):
_a : Any = {
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
_a : Union[str, Any] = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
_a : Union[str, Any] = bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
for k, v in env_vars_to_replace.items():
_a : int = bash_script.replace(_UpperCAmelCase ,str(_UpperCAmelCase ) )
_a : List[str] = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
_a : Any = F"""
--output_dir {output_dir}
--tokenizer_name Helsinki-NLP/opus-mt-en-ro
--sortish_sampler
--do_predict
--gpus 1
--freeze_encoder
--n_train 40000
--n_val 500
--n_test 500
--fp16_opt_level O1
--num_sanity_val_steps 0
--eval_beams 2
""".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
_a : List[str] = ['finetune.py'] + bash_script.split() + args
with patch.object(_UpperCAmelCase ,'argv' ,_UpperCAmelCase ):
_a : str = argparse.ArgumentParser()
_a : Any = pl.Trainer.add_argparse_args(_UpperCAmelCase )
_a : List[Any] = SummarizationModule.add_model_specific_args(_UpperCAmelCase ,os.getcwd() )
_a : Optional[int] = parser.parse_args()
_a : int = main(_UpperCAmelCase )
# Check metrics
_a : Any = load_json(model.metrics_save_path )
_a : int = metrics['val'][0]
_a : Tuple = metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[F"""val_avg_{model.val_metric}"""] ,_UpperCAmelCase )
self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] ,17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
_a : Optional[Any] = os.listdir(_UpperCAmelCase )
_a : Optional[Any] = [x for x in contents if x.endswith('.ckpt' )][0]
_a : List[str] = os.path.join(args.output_dir ,_UpperCAmelCase )
_a : Optional[int] = torch.load(_UpperCAmelCase ,map_location='cpu' )
_a : List[str] = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
_a : Optional[Any] = {os.path.basename(_UpperCAmelCase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class __magic_name__ ( _UpperCamelCase ):
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __lowercase ( self : Any ):
_a : Any = F"""{self.test_file_dir_str}/test_data/wmt_en_ro"""
_a : Union[str, Any] = {
'--fp16_opt_level=O1': '',
'$MAX_LEN': 128,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
_a : Any = (
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
_a : Optional[int] = bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
_a : Tuple = bash_script.replace('--fp16 ' ,' ' )
for k, v in env_vars_to_replace.items():
_a : Tuple = bash_script.replace(_UpperCAmelCase ,str(_UpperCAmelCase ) )
_a : Dict = self.get_auto_remove_tmp_dir()
_a : int = bash_script.replace('--fp16' ,'' )
_a : Any = 6
_a : int = (
['distillation.py']
+ bash_script.split()
+ [
F"""--output_dir={output_dir}""",
'--gpus=1',
'--learning_rate=1e-3',
F"""--num_train_epochs={epochs}""",
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(_UpperCAmelCase ,'argv' ,_UpperCAmelCase ):
_a : List[str] = argparse.ArgumentParser()
_a : Union[str, Any] = pl.Trainer.add_argparse_args(_UpperCAmelCase )
_a : Any = SummarizationDistiller.add_model_specific_args(_UpperCAmelCase ,os.getcwd() )
_a : Dict = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
_a : Dict = distill_main(_UpperCAmelCase )
# Check metrics
_a : Optional[Any] = load_json(model.metrics_save_path )
_a : Optional[Any] = metrics['val'][0]
_a : Union[str, Any] = metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[F"""val_avg_{model.val_metric}"""] ,_UpperCAmelCase )
# check lightning ckpt can be loaded and has a reasonable statedict
_a : Tuple = os.listdir(_UpperCAmelCase )
_a : Dict = [x for x in contents if x.endswith('.ckpt' )][0]
_a : Union[str, Any] = os.path.join(args.output_dir ,_UpperCAmelCase )
_a : str = torch.load(_UpperCAmelCase ,map_location='cpu' )
_a : Union[str, Any] = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
_a : int = {os.path.basename(_UpperCAmelCase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 89
|
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : int ):
__UpperCAmelCase : List[Any] = checkpoint
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : Dict = vae_state_dict["""encoder.conv_in.weight"""]
__UpperCAmelCase : Optional[Any] = vae_state_dict["""encoder.conv_in.bias"""]
__UpperCAmelCase : Dict = vae_state_dict["""encoder.conv_out.weight"""]
__UpperCAmelCase : Union[str, Any] = vae_state_dict["""encoder.conv_out.bias"""]
__UpperCAmelCase : List[Any] = vae_state_dict["""encoder.norm_out.weight"""]
__UpperCAmelCase : Tuple = vae_state_dict["""encoder.norm_out.bias"""]
__UpperCAmelCase : Dict = vae_state_dict["""decoder.conv_in.weight"""]
__UpperCAmelCase : Tuple = vae_state_dict["""decoder.conv_in.bias"""]
__UpperCAmelCase : Optional[int] = vae_state_dict["""decoder.conv_out.weight"""]
__UpperCAmelCase : Optional[int] = vae_state_dict["""decoder.conv_out.bias"""]
__UpperCAmelCase : Optional[Any] = vae_state_dict["""decoder.norm_out.weight"""]
__UpperCAmelCase : Union[str, Any] = vae_state_dict["""decoder.norm_out.bias"""]
__UpperCAmelCase : Optional[int] = vae_state_dict["""quant_conv.weight"""]
__UpperCAmelCase : int = vae_state_dict["""quant_conv.bias"""]
__UpperCAmelCase : Union[str, Any] = vae_state_dict["""post_quant_conv.weight"""]
__UpperCAmelCase : Any = vae_state_dict["""post_quant_conv.bias"""]
# Retrieves the keys for the encoder down blocks only
__UpperCAmelCase : int = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} )
__UpperCAmelCase : Optional[Any] = {
layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__lowerCamelCase )
}
# Retrieves the keys for the decoder up blocks only
__UpperCAmelCase : Dict = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} )
__UpperCAmelCase : Optional[int] = {
layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__lowerCamelCase )
}
for i in range(__lowerCamelCase ):
__UpperCAmelCase : List[Any] = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key]
if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict:
__UpperCAmelCase : Optional[Any] = vae_state_dict.pop(
f"""encoder.down.{i}.downsample.conv.weight""" )
__UpperCAmelCase : int = vae_state_dict.pop(
f"""encoder.down.{i}.downsample.conv.bias""" )
__UpperCAmelCase : Optional[int] = renew_vae_resnet_paths(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = {"""old""": f"""down.{i}.block""", """new""": f"""down_blocks.{i}.resnets"""}
assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase )
__UpperCAmelCase : Tuple = [key for key in vae_state_dict if """encoder.mid.block""" in key]
__UpperCAmelCase : Optional[Any] = 2
for i in range(1 , num_mid_res_blocks + 1 ):
__UpperCAmelCase : Dict = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key]
__UpperCAmelCase : Tuple = renew_vae_resnet_paths(__lowerCamelCase )
__UpperCAmelCase : Tuple = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase )
__UpperCAmelCase : List[Any] = [key for key in vae_state_dict if """encoder.mid.attn""" in key]
__UpperCAmelCase : str = renew_vae_attention_paths(__lowerCamelCase )
__UpperCAmelCase : List[str] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase )
conv_attn_to_linear(__lowerCamelCase )
for i in range(__lowerCamelCase ):
__UpperCAmelCase : Optional[Any] = num_up_blocks - 1 - i
__UpperCAmelCase : Union[str, Any] = [
key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key
]
if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict:
__UpperCAmelCase : int = vae_state_dict[
f"""decoder.up.{block_id}.upsample.conv.weight"""
]
__UpperCAmelCase : Dict = vae_state_dict[
f"""decoder.up.{block_id}.upsample.conv.bias"""
]
__UpperCAmelCase : Dict = renew_vae_resnet_paths(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = {"""old""": f"""up.{block_id}.block""", """new""": f"""up_blocks.{i}.resnets"""}
assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase )
__UpperCAmelCase : Tuple = [key for key in vae_state_dict if """decoder.mid.block""" in key]
__UpperCAmelCase : Union[str, Any] = 2
for i in range(1 , num_mid_res_blocks + 1 ):
__UpperCAmelCase : Dict = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key]
__UpperCAmelCase : List[Any] = renew_vae_resnet_paths(__lowerCamelCase )
__UpperCAmelCase : int = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase )
__UpperCAmelCase : Dict = [key for key in vae_state_dict if """decoder.mid.attn""" in key]
__UpperCAmelCase : List[Any] = renew_vae_attention_paths(__lowerCamelCase )
__UpperCAmelCase : List[str] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase )
conv_attn_to_linear(__lowerCamelCase )
return new_checkpoint
def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : str , ):
# Only support V1
__UpperCAmelCase : Optional[int] = requests.get(
""" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" )
__UpperCAmelCase : Optional[int] = io.BytesIO(r.content )
__UpperCAmelCase : Dict = OmegaConf.load(__lowerCamelCase )
__UpperCAmelCase : str = 512
__UpperCAmelCase : Any = """cuda""" if torch.cuda.is_available() else """cpu"""
if checkpoint_path.endswith("""safetensors""" ):
from safetensors import safe_open
__UpperCAmelCase : List[Any] = {}
with safe_open(__lowerCamelCase , framework="""pt""" , device="""cpu""" ) as f:
for key in f.keys():
__UpperCAmelCase : str = f.get_tensor(__lowerCamelCase )
else:
__UpperCAmelCase : Optional[int] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase )["""state_dict"""]
# Convert the VAE model.
__UpperCAmelCase : Optional[int] = create_vae_diffusers_config(__lowerCamelCase , image_size=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = custom_convert_ldm_vae_checkpoint(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = AutoencoderKL(**__lowerCamelCase )
vae.load_state_dict(__lowerCamelCase )
vae.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
a : Optional[int] = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 114
| 0
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError('Input must be an integer' )
if input_num <= 0:
raise ValueError('Input must be positive' )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
|
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ):
lowerCAmelCase = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
lowerCAmelCase = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creates a copy of the matrix with swapped positions of the elements
lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]]
lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0]
lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(_UpperCAmelCase ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
lowerCAmelCase = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creating cofactor matrix
lowerCAmelCase = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
lowerCAmelCase = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
lowerCAmelCase = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(_UpperCAmelCase )
# Calculate the inverse of the matrix
return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
| 309
| 1
|
'''simple docstring'''
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def __lowerCamelCase ( A__ , A__ , A__ , A__=None , A__=None , A__=None , A__=None , A__=None , ) -> Tuple:
"""simple docstring"""
if attention_mask is None:
UpperCamelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
UpperCamelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
UpperCamelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_A )
if decoder_head_mask is None:
UpperCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_A )
if cross_attn_head_mask is None:
UpperCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_A )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=1_3 , UpperCamelCase__ : int=7 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : List[Any]=9_9 , UpperCamelCase__ : Tuple=1_6 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : Tuple="relu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : List[str]=2_0 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Tuple=1 , UpperCamelCase__ : Optional[Any]=0 , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = seq_length
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = encoder_layerdrop
UpperCamelCase = decoder_layerdrop
UpperCamelCase = max_position_embeddings
UpperCamelCase = eos_token_id
UpperCamelCase = pad_token_id
UpperCamelCase = bos_token_id
def A ( self : Dict ):
"""simple docstring"""
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase = self.eos_token_id # Eos Token
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
UpperCamelCase = input_ids.clamp(self.pad_token_id + 1 )
UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
UpperCamelCase = self.get_config()
UpperCamelCase = prepare_mam_aaa_inputs_dict(__snake_case , __snake_case , __snake_case )
return config, inputs_dict
def A ( self : Union[str, Any] ):
"""simple docstring"""
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def A ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def A ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ):
"""simple docstring"""
UpperCamelCase = MaMaaaModel(config=__snake_case ).get_decoder().to(__snake_case ).eval()
UpperCamelCase = inputs_dict['input_ids']
UpperCamelCase = inputs_dict['attention_mask']
UpperCamelCase = inputs_dict['head_mask']
# first forward pass
UpperCamelCase = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case )
UpperCamelCase = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCamelCase = model(__snake_case , attention_mask=__snake_case )['last_hidden_state']
UpperCamelCase = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[
'last_hidden_state'
]
# select random slice
UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCamelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-2 ) )
def A ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
UpperCamelCase = MaMaaaModel(config=__snake_case ).to(__snake_case ).eval()
UpperCamelCase = model(**__snake_case )
UpperCamelCase = outputs.encoder_last_hidden_state
UpperCamelCase = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = model.get_encoder()
encoder.save_pretrained(__snake_case )
UpperCamelCase = MaMaaaEncoder.from_pretrained(__snake_case ).to(__snake_case )
UpperCamelCase = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = model.get_decoder()
decoder.save_pretrained(__snake_case )
UpperCamelCase = MaMaaaDecoder.from_pretrained(__snake_case ).to(__snake_case )
UpperCamelCase = decoder(
input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__snake_case , encoder_attention_mask=inputs_dict['attention_mask'] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 )
@require_torch
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE = (
{
"""conversational""": MaMaaaForConditionalGeneration,
"""feature-extraction""": MaMaaaModel,
"""summarization""": MaMaaaForConditionalGeneration,
"""text2text-generation""": MaMaaaForConditionalGeneration,
"""translation""": MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE = True
_SCREAMING_SNAKE_CASE = True
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = False
def A ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ):
"""simple docstring"""
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def A ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = MaMaaaModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=__snake_case )
def A ( self : Any ):
"""simple docstring"""
self.config_tester.run_common_tests()
def A ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(__snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__snake_case )
UpperCamelCase = model_class.from_pretrained(__snake_case , output_loading_info=__snake_case )
self.assertEqual(info['missing_keys'] , [] )
def A ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__snake_case )
def A ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__snake_case )
def A ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
UpperCamelCase = model_class(__snake_case )
model.to(__snake_case )
model.eval()
UpperCamelCase = copy.deepcopy(self._prepare_for_class(__snake_case , __snake_case ) )
if not self.is_encoder_decoder:
UpperCamelCase = inputs['input_ids']
del inputs["input_ids"]
else:
UpperCamelCase = inputs['input_ids']
UpperCamelCase = inputs.get('decoder_input_ids' , __snake_case )
del inputs["input_ids"]
inputs.pop('decoder_input_ids' , __snake_case )
UpperCamelCase = model.get_input_embeddings()
if not self.is_encoder_decoder:
UpperCamelCase = wte(__snake_case )
else:
UpperCamelCase = wte(__snake_case )
UpperCamelCase = wte(__snake_case )
with torch.no_grad():
model(**__snake_case )[0]
def A ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
UpperCamelCase = input_dict['input_ids']
UpperCamelCase = input_ids.ne(1 ).to(__snake_case )
UpperCamelCase = MaMaaaForConditionalGeneration(__snake_case ).eval().to(__snake_case )
if torch_device == "cuda":
model.half()
model.generate(__snake_case , attention_mask=__snake_case )
model.generate(num_beams=4 , do_sample=__snake_case , early_stopping=__snake_case , num_return_sequences=3 )
def __lowerCamelCase ( A__ ) -> List[str]:
"""simple docstring"""
return torch.tensor(_A , dtype=torch.long , device=_A )
_lowerCamelCase : Any = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def A ( self : List[Any] ):
"""simple docstring"""
return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' )
def A ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__snake_case )
UpperCamelCase = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
UpperCamelCase = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
UpperCamelCase = prepare_mam_aaa_inputs_dict(model.config , __snake_case , __snake_case )
with torch.no_grad():
UpperCamelCase = model(**__snake_case )[0]
UpperCamelCase = torch.Size((1, 1_1, 1_0_2_4) )
self.assertEqual(output.shape , __snake_case )
# change to expected output here
UpperCamelCase = torch.tensor(
[[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__snake_case )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=__snake_case ) )
def A ( self : str ):
"""simple docstring"""
UpperCamelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__snake_case )
# change to intended input
UpperCamelCase = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
UpperCamelCase = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
UpperCamelCase = prepare_mam_aaa_inputs_dict(model.config , __snake_case , __snake_case )
with torch.no_grad():
UpperCamelCase = model(**__snake_case )[0]
UpperCamelCase = torch.Size((1, 1_1, model.config.vocab_size) )
self.assertEqual(output.shape , __snake_case )
# change to expected output here
UpperCamelCase = torch.tensor(
[[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__snake_case )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=__snake_case ) )
def A ( self : int ):
"""simple docstring"""
UpperCamelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__snake_case )
UpperCamelCase = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' )
UpperCamelCase = [
'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement',
'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.',
'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent'
' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de'
' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.',
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
UpperCamelCase = tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' )
UpperCamelCase = model.generate(
input_ids=dct['input_ids'].to(__snake_case ) , attention_mask=dct['attention_mask'].to(__snake_case ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , )
UpperCamelCase = [
'The NSA case highlights the total absence of intelligence debate',
'I think there are two levels of response from the French government.',
'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.'
' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all'
' communications in France.',
]
UpperCamelCase = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=__snake_case , skip_special_tokens=__snake_case )
assert generated == expected_en
| 28
|
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
lowerCAmelCase: Union[str, Any] = logging.get_logger(__name__)
lowerCAmelCase: List[str] = {
't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json',
}
class a__( lowerCamelCase__ ):
lowercase__ = """t5"""
lowercase__ = ["""past_key_values"""]
lowercase__ = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self : Union[str, Any] , __snake_case : int=3_21_28 , __snake_case : str=5_12 , __snake_case : Dict=64 , __snake_case : Optional[int]=20_48 , __snake_case : Tuple=6 , __snake_case : Any=None , __snake_case : Optional[int]=8 , __snake_case : str=32 , __snake_case : Union[str, Any]=1_28 , __snake_case : Optional[int]=0.1 , __snake_case : Dict=1e-6 , __snake_case : int=1.0 , __snake_case : Optional[int]="relu" , __snake_case : Any=True , __snake_case : List[str]=True , __snake_case : Union[str, Any]=0 , __snake_case : Dict=1 , **__snake_case : Optional[int] , ):
a : Optional[int] = vocab_size
a : Dict = d_model
a : Union[str, Any] = d_kv
a : Dict = d_ff
a : Tuple = num_layers
a : Dict = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a : int = num_heads
a : str = relative_attention_num_buckets
a : List[Any] = relative_attention_max_distance
a : int = dropout_rate
a : Tuple = layer_norm_epsilon
a : str = initializer_factor
a : List[Any] = feed_forward_proj
a : Union[str, Any] = use_cache
a : List[str] = self.feed_forward_proj.split('-' )
a : int = act_info[-1]
a : Union[str, Any] = act_info[0] == 'gated'
if len(__snake_case ) > 1 and act_info[0] != "gated" or len(__snake_case ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a : Optional[Any] = 'gelu_new'
super().__init__(
pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , **__snake_case , )
class a__( lowerCamelCase__ ):
@property
def lowercase_ ( self : Optional[int] ):
a : Dict = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
a : Dict = 'past_encoder_sequence + sequence'
a : Dict = {0: 'batch'}
a : Any = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
a : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'}
a : List[str] = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(__snake_case , direction='inputs' )
return common_inputs
@property
def lowercase_ ( self : List[Any] ):
return 13
| 297
| 0
|
'''simple docstring'''
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
UpperCamelCase : str = {
"""susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""",
"""susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""",
}
class UpperCamelCase ( a_ ):
"""simple docstring"""
A : List[Any] = "ernie_m"
A : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__( self : str , UpperCAmelCase_ : int = 2_5_0_0_0_2 , UpperCAmelCase_ : int = 7_6_8 , UpperCAmelCase_ : int = 1_2 , UpperCAmelCase_ : int = 1_2 , UpperCAmelCase_ : int = 3_0_7_2 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 5_1_4 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 1e-05 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=0.0 , **UpperCAmelCase_ : Any , ):
"""simple docstring"""
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
a : int = vocab_size
a : Dict = hidden_size
a : Optional[int] = num_hidden_layers
a : Any = num_attention_heads
a : Tuple = intermediate_size
a : Union[str, Any] = hidden_act
a : Optional[Any] = hidden_dropout_prob
a : Dict = attention_probs_dropout_prob
a : Union[str, Any] = max_position_embeddings
a : Dict = initializer_range
a : Optional[Any] = layer_norm_eps
a : Any = classifier_dropout
a : List[str] = is_decoder
a : Dict = act_dropout
| 366
|
'''simple docstring'''
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]:
"""simple docstring"""
a : Union[str, Any] = SwinConfig()
a : Optional[int] = swin_name.split('_' )
a : Union[str, Any] = name_split[1]
a : Dict = int(name_split[4] )
a : Union[str, Any] = int(name_split[3][-1] )
if model_size == "tiny":
a : Optional[Any] = 96
a : Any = (2, 2, 6, 2)
a : List[str] = (3, 6, 12, 24)
elif model_size == "small":
a : int = 96
a : List[str] = (2, 2, 18, 2)
a : int = (3, 6, 12, 24)
elif model_size == "base":
a : Tuple = 128
a : Optional[int] = (2, 2, 18, 2)
a : List[Any] = (4, 8, 16, 32)
else:
a : Dict = 192
a : str = (2, 2, 18, 2)
a : List[Any] = (6, 12, 24, 48)
if "in22k" in swin_name:
a : Any = 21_841
else:
a : str = 1_000
a : str = 'huggingface/label-files'
a : Optional[Any] = 'imagenet-1k-id2label.json'
a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) )
a : Tuple = {int(snake_case ): v for k, v in idalabel.items()}
a : int = idalabel
a : str = {v: k for k, v in idalabel.items()}
a : Dict = img_size
a : List[Any] = num_classes
a : str = embed_dim
a : Dict = depths
a : Union[str, Any] = num_heads
a : int = window_size
return config
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
if "patch_embed.proj" in name:
a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
a : Optional[int] = 'encoder.' + name
if "attn.proj" in name:
a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
a : Tuple = name.replace('attn' , 'attention.self' )
if "norm1" in name:
a : Optional[int] = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
a : Dict = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
a : Any = name.replace('mlp.fc2' , 'output.dense' )
if name == "norm.weight":
a : Union[str, Any] = 'layernorm.weight'
if name == "norm.bias":
a : List[str] = 'layernorm.bias'
if "head" in name:
a : Union[str, Any] = name.replace('head' , 'classifier' )
else:
a : List[Any] = 'swin.' + name
return name
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
a : Any = orig_state_dict.pop(snake_case )
if "mask" in key:
continue
elif "qkv" in key:
a : Optional[Any] = key.split('.' )
a : Dict = int(key_split[1] )
a : Optional[int] = int(key_split[3] )
a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
a : Optional[Any] = val[:dim, :]
a : List[Any] = val[
dim : dim * 2, :
]
a : List[Any] = val[-dim:, :]
else:
a : Dict = val[
:dim
]
a : Union[str, Any] = val[
dim : dim * 2
]
a : Union[str, Any] = val[
-dim:
]
else:
a : Dict = val
return orig_state_dict
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]:
"""simple docstring"""
a : Any = timm.create_model(snake_case , pretrained=snake_case )
timm_model.eval()
a : str = get_swin_config(snake_case )
a : Optional[int] = SwinForImageClassification(snake_case )
model.eval()
a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case )
model.load_state_dict(snake_case )
a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) )
a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw )
a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' )
a : int = timm_model(inputs['pixel_values'] )
a : Optional[int] = model(**snake_case ).logits
assert torch.allclose(snake_case , snake_case , atol=1E-3 )
print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(snake_case )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(snake_case )
if __name__ == "__main__":
UpperCamelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swin_name""",
default="""swin_tiny_patch4_window7_224""",
type=str,
help="""Name of the Swin timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
UpperCamelCase : Optional[Any] = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 345
| 0
|
"""simple docstring"""
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 25
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase__ : str = logging.get_logger(__name__)
UpperCAmelCase__ : Optional[int] = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
__UpperCamelCase : int = '''yolos'''
def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=[5_12, 8_64] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size
SCREAMING_SNAKE_CASE__ : int = num_hidden_layers
SCREAMING_SNAKE_CASE__ : str = num_attention_heads
SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act
SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[int] = initializer_range
SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps
SCREAMING_SNAKE_CASE__ : List[str] = image_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size
SCREAMING_SNAKE_CASE__ : List[str] = num_channels
SCREAMING_SNAKE_CASE__ : List[str] = qkv_bias
SCREAMING_SNAKE_CASE__ : Optional[int] = num_detection_tokens
SCREAMING_SNAKE_CASE__ : Optional[Any] = use_mid_position_embeddings
SCREAMING_SNAKE_CASE__ : List[str] = auxiliary_loss
# Hungarian matcher
SCREAMING_SNAKE_CASE__ : Optional[Any] = class_cost
SCREAMING_SNAKE_CASE__ : List[str] = bbox_cost
SCREAMING_SNAKE_CASE__ : List[Any] = giou_cost
# Loss coefficients
SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox_loss_coefficient
SCREAMING_SNAKE_CASE__ : List[str] = giou_loss_coefficient
SCREAMING_SNAKE_CASE__ : int = eos_coefficient
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
__UpperCamelCase : Dict = version.parse('''1.11''' )
@property
def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __magic_name__ (self ) -> float:
"""simple docstring"""
return 1E-4
@property
def __magic_name__ (self ) -> int:
"""simple docstring"""
return 12
| 25
| 1
|
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=lowerCAmelCase )
class UpperCamelCase__( lowerCAmelCase ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__magic_name__ : str = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
__magic_name__ : ClassVar[Features] = Features({"text": Value("string" )} )
__magic_name__ : ClassVar[Features] = Features({"labels": ClassLabel} )
__magic_name__ : str = "text"
__magic_name__ : str = "labels"
def a__( self : Optional[int] , lowerCAmelCase : Optional[int] )-> Optional[int]:
"""simple docstring"""
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] , lowerCAmelCase ):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" )
UpperCAmelCase = copy.deepcopy(self )
UpperCAmelCase = self.label_schema.copy()
UpperCAmelCase = features[self.label_column]
UpperCAmelCase = label_schema
return task_template
@property
def a__( self : str )-> Dict[str, str]:
"""simple docstring"""
return {
self.text_column: "text",
self.label_column: "labels",
}
| 91
|
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_lowercase : Optional[Any] = logging.get_logger(__name__)
_lowercase : List[str] = {"""tokenizer_file""": """tokenizer.json"""}
_lowercase : Optional[Any] = {
"""tokenizer_file""": {
"""bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""",
"""bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""",
"""bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""",
"""bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""",
"""bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""",
"""bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""",
"""bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""",
},
}
class UpperCamelCase__( lowerCAmelCase ):
__magic_name__ : List[str] = VOCAB_FILES_NAMES
__magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ : Any = ["input_ids", "attention_mask"]
__magic_name__ : Optional[int] = None
def __init__( self : List[Any] , lowerCAmelCase : str=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : Union[str, Any]="<pad>" , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Optional[int] , )-> Union[str, Any]:
"""simple docstring"""
super().__init__(
lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , **lowerCAmelCase , )
UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space:
UpperCAmelCase = getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) )
UpperCAmelCase = add_prefix_space
UpperCAmelCase = pre_tok_class(**lowerCAmelCase )
UpperCAmelCase = add_prefix_space
def a__( self : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str] )-> BatchEncoding:
"""simple docstring"""
UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"""
''' pretokenized inputs.''' )
return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase )
def a__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any] )-> BatchEncoding:
"""simple docstring"""
UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"""
''' pretokenized inputs.''' )
return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase )
def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]:
"""simple docstring"""
UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase )
return tuple(lowerCAmelCase )
def a__( self : List[Any] , lowerCAmelCase : "Conversation" )-> List[int]:
"""simple docstring"""
UpperCAmelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] )
if len(lowerCAmelCase ) > self.model_max_length:
UpperCAmelCase = input_ids[-self.model_max_length :]
return input_ids
| 91
| 1
|
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class lowerCamelCase__ :
'''simple docstring'''
def __init__(self ,__lowerCamelCase ,__lowerCamelCase=3 ,__lowerCamelCase=32 ,__lowerCamelCase=3 ,__lowerCamelCase=10 ,__lowerCamelCase=[8, 16, 32, 64] ,__lowerCamelCase=[1, 1, 2, 1] ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase="relu" ,__lowerCamelCase=3 ,__lowerCamelCase=None ,__lowerCamelCase=["stage2", "stage3", "stage4"] ,__lowerCamelCase=[2, 3, 4] ,__lowerCamelCase=1 ,) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ : Dict = parent
lowerCAmelCase__ : int = batch_size
lowerCAmelCase__ : Tuple = image_size
lowerCAmelCase__ : str = num_channels
lowerCAmelCase__ : Any = embeddings_size
lowerCAmelCase__ : List[Any] = hidden_sizes
lowerCAmelCase__ : Any = depths
lowerCAmelCase__ : Any = is_training
lowerCAmelCase__ : int = use_labels
lowerCAmelCase__ : Tuple = hidden_act
lowerCAmelCase__ : Union[str, Any] = num_labels
lowerCAmelCase__ : int = scope
lowerCAmelCase__ : int = len(lowerCAmelCase_ )
lowerCAmelCase__ : Dict = out_features
lowerCAmelCase__ : Any = out_indices
lowerCAmelCase__ : Tuple = num_groups
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ : Tuple = None
if self.use_labels:
lowerCAmelCase__ : int = ids_tensor([self.batch_size] ,self.num_labels )
lowerCAmelCase__ : List[Any] = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
return BitConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,)
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> int:
"""simple docstring"""
lowerCAmelCase__ : Tuple = BitModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
lowerCAmelCase__ : Tuple = model(lowerCAmelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : Tuple = self.num_labels
lowerCAmelCase__ : Optional[Any] = BitForImageClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
lowerCAmelCase__ : str = model(lowerCAmelCase_ ,labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : Any = BitBackbone(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
lowerCAmelCase__ : Tuple = model(lowerCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) )
self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowerCAmelCase__ : Optional[int] = None
lowerCAmelCase__ : Dict = BitBackbone(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
lowerCAmelCase__ : Tuple = model(lowerCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,1 )
self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] )
def lowerCAmelCase__ (self ) -> str:
"""simple docstring"""
lowerCAmelCase__ : str = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = config_and_inputs
lowerCAmelCase__ : List[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase):
'''simple docstring'''
snake_case_ =(BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
snake_case_ =(
{"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification}
if is_torch_available()
else {}
)
snake_case_ =False
snake_case_ =False
snake_case_ =False
snake_case_ =False
snake_case_ =False
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ : Dict = BitModelTester(self )
lowerCAmelCase__ : List[str] = ConfigTester(self ,config_class=lowerCAmelCase_ ,has_text_modality=lowerCAmelCase_ )
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return
@unittest.skip(reason='''Bit does not output attentions''' )
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
pass
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ : Optional[int] = model_class(lowerCAmelCase_ )
lowerCAmelCase__ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ : Optional[Any] = [*signature.parameters.keys()]
lowerCAmelCase__ : Optional[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,lowerCAmelCase_ )
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_ )
def lowerCAmelCase__ (self ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCAmelCase_ )
def lowerCAmelCase__ (self ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ : str = model_class(config=lowerCAmelCase_ )
for name, module in model.named_modules():
if isinstance(lowerCAmelCase_ ,(nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,)
self.assertTrue(
torch.all(module.bias == 0 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,)
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
def check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ):
lowerCAmelCase__ : List[Any] = model_class(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
with torch.no_grad():
lowerCAmelCase__ : str = model(**self._prepare_for_class(lowerCAmelCase_ ,lowerCAmelCase_ ) )
lowerCAmelCase__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase__ : str = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase_ ) ,expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,)
lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ : int = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowerCAmelCase__ : Dict = layer_type
lowerCAmelCase__ : Optional[Any] = True
check_hidden_states_output(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase__ : Dict = True
check_hidden_states_output(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
pass
def lowerCAmelCase__ (self ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ )
@slow
def lowerCAmelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ : Union[str, Any] = BitModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
def lowerCAmelCase__ ( ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
return image
@require_torch
@require_vision
class lowerCamelCase__ ( unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def lowerCAmelCase__ (self ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : Any = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase_ )
lowerCAmelCase__ : int = self.default_image_processor
lowerCAmelCase__ : Optional[int] = prepare_img()
lowerCAmelCase__ : int = image_processor(images=lowerCAmelCase_ ,return_tensors='''pt''' ).to(lowerCAmelCase_ )
# forward pass
with torch.no_grad():
lowerCAmelCase__ : Tuple = model(**lowerCAmelCase_ )
# verify the logits
lowerCAmelCase__ : Tuple = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,lowerCAmelCase_ )
lowerCAmelCase__ : Optional[Any] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(lowerCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase_ ,atol=1e-4 ) )
@require_torch
class lowerCamelCase__ ( _UpperCamelCase , unittest.TestCase):
'''simple docstring'''
snake_case_ =(BitBackbone,) if is_torch_available() else ()
snake_case_ =BitConfig
snake_case_ =False
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ : Any = BitModelTester(self )
| 129
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_snake_case : Union[str, Any] = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Union[str, Any] = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[str] = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Optional[Any] = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Tuple = ['LayoutLMv3FeatureExtractor']
_snake_case : str = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
_snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 284
| 0
|
"""simple docstring"""
from bisect import bisect
from itertools import accumulate
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
lowercase__ : List[Any] = sorted(zip(_lowercase , _lowercase ) , key=lambda __lowerCamelCase : x[0] / x[1] , reverse=_lowercase )
lowercase__ , lowercase__ : List[Any] = [i[0] for i in r], [i[1] for i in r]
lowercase__ : List[str] = list(accumulate(_lowercase ) )
lowercase__ : List[str] = bisect(_lowercase , _lowercase )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_pix2struct': [
'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Pix2StructConfig',
'Pix2StructTextConfig',
'Pix2StructVisionConfig',
],
'processing_pix2struct': ['Pix2StructProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['Pix2StructImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Pix2StructPreTrainedModel',
'Pix2StructForConditionalGeneration',
'Pix2StructVisionModel',
'Pix2StructTextModel',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase_ : Union[str, Any] = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ : Union[str, Any] = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ : Tuple = ['LayoutLMv2FeatureExtractor']
lowerCamelCase_ : Optional[Any] = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ : List[str] = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
lowerCamelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 286
|
"""simple docstring"""
import qiskit
def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
A_ : Tuple = qiskit.Aer.get_backend('aer_simulator' )
A_ : str = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
A_ : Optional[Any] = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(_UpperCAmelCase )
if __name__ == "__main__":
lowerCamelCase_ : List[str] = half_adder(1, 1)
print(F"Half Adder Output Qubit Counts: {counts}")
| 286
| 1
|
"""simple docstring"""
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
UpperCAmelCase = {
"""<""": operator.lt,
"""<=""": operator.le,
"""==""": operator.eq,
"""!=""": operator.ne,
""">=""": operator.ge,
""">""": operator.gt,
}
def lowercase ( a__ : Union[str, Any] , a__ : int , a__ : List[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : List[Any] ) -> Optional[Any]:
if got_ver is None or want_ver is None:
raise ValueError(
F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider'''
F''' reinstalling {pkg}.''' )
if not ops[op](version.parse(a__ ) , version.parse(a__ ) ):
raise ImportError(
F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' )
def lowercase ( a__ : str , a__ : Optional[str] = None ) -> None:
_UpperCamelCase = F'''\n{hint}''' if hint is not None else ''''''
# non-versioned check
if re.match(R'''^[\w_\-\d]+$''' , a__ ):
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = requirement, None, None
else:
_UpperCamelCase = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , a__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but'''
F''' got {requirement}''' )
_UpperCamelCase , _UpperCamelCase = match[0]
_UpperCamelCase = want_full.split(''',''' ) # there could be multiple requirements
_UpperCamelCase = {}
for w in want_range:
_UpperCamelCase = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , a__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,'''
F''' but got {requirement}''' )
_UpperCamelCase , _UpperCamelCase = match[0]
_UpperCamelCase = want_ver
if op not in ops:
raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' )
# special case
if pkg == "python":
_UpperCamelCase = '''.'''.join([str(a__ ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(a__ , a__ , a__ , a__ , a__ , a__ )
return
# check if any version is installed
try:
_UpperCamelCase = importlib.metadata.version(a__ )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(a__ , a__ , a__ , a__ , a__ , a__ )
def lowercase ( a__ : Tuple ) -> Any:
_UpperCamelCase = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main'''
return require_version(a__ , a__ )
| 359
|
"""simple docstring"""
def lowercase ( a__ : Tuple , a__ : str ) -> Tuple:
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def lowercase ( a__ : Optional[int] , a__ : List[str]=0 ) -> Optional[Any]:
return sorted(a__ , key=lambda a__ : x[column] )
def lowercase ( a__ : Optional[int] , a__ : Optional[int] , a__ : Tuple=float('''inf''' ) ) -> int:
for i in range(points_counts - 1 ):
for j in range(i + 1 , a__ ):
_UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
_UpperCamelCase = current_dis
return min_dis
def lowercase ( a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Optional[Any]=float('''inf''' ) ) -> str:
for i in range(min(6 , points_counts - 1 ) , a__ ):
for j in range(max(0 , i - 6 ) , a__ ):
_UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
_UpperCamelCase = current_dis
return min_dis
def lowercase ( a__ : int , a__ : str , a__ : Any ) -> str:
# base case
if points_counts <= 3:
return dis_between_closest_pair(a__ , a__ )
# recursion
_UpperCamelCase = points_counts // 2
_UpperCamelCase = closest_pair_of_points_sqr(
a__ , points_sorted_on_y[:mid] , a__ )
_UpperCamelCase = closest_pair_of_points_sqr(
a__ , points_sorted_on_y[mid:] , points_counts - mid )
_UpperCamelCase = min(a__ , a__ )
_UpperCamelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(a__ )
_UpperCamelCase = dis_between_closest_in_strip(
a__ , len(a__ ) , a__ )
return min(a__ , a__ )
def lowercase ( a__ : Dict , a__ : List[Any] ) -> Optional[Any]:
_UpperCamelCase = column_based_sort(a__ , column=0 )
_UpperCamelCase = column_based_sort(a__ , column=1 )
return (
closest_pair_of_points_sqr(
a__ , a__ , a__ )
) ** 0.5
if __name__ == "__main__":
UpperCAmelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("""Distance:""", closest_pair_of_points(points, len(points)))
| 54
| 0
|
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list:
"""simple docstring"""
A__ = len(lowercase_ )
A__ = []
for i in range(len(lowercase_ ) - pat_len + 1 ):
A__ = True
for j in range(lowercase_ ):
if s[i + j] != pattern[j]:
A__ = False
break
if match_found:
position.append(lowercase_ )
return position
if __name__ == "__main__":
assert naive_pattern_search("""ABCDEFG""", """DE""") == [3]
print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
| 14
|
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14
| 1
|
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Namespace ):
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
_A = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n'
class UpperCAmelCase__ ( A_ ):
"""simple docstring"""
@staticmethod
def _a ( A_ ) -> Dict:
__UpperCamelCase =parser.add_parser(
'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , )
train_parser.add_argument('--model_type' , type=A_ , required=A_ , help='Model\'s type.' )
train_parser.add_argument(
'--tf_checkpoint' , type=A_ , required=A_ , help='TensorFlow checkpoint path or folder.' )
train_parser.add_argument(
'--pytorch_dump_output' , type=A_ , required=A_ , help='Path to the PyTorch saved model output.' )
train_parser.add_argument('--config' , type=A_ , default='' , help='Configuration file path or folder.' )
train_parser.add_argument(
'--finetuning_task_name' , type=A_ , default=A_ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , )
train_parser.set_defaults(func=A_ )
def __init__( self , A_ , A_ , A_ , A_ , A_ , *A_ , ) -> Tuple:
__UpperCamelCase =logging.get_logger('transformers-cli/converting' )
self._logger.info(f'Loading model {model_type}' )
__UpperCamelCase =model_type
__UpperCamelCase =tf_checkpoint
__UpperCamelCase =pytorch_dump_output
__UpperCamelCase =config
__UpperCamelCase =finetuning_task_name
def _a ( self ) -> Tuple:
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(A_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A_ )
if "ckpt" in self._tf_checkpoint.lower():
__UpperCamelCase =self._tf_checkpoint
__UpperCamelCase =''
else:
__UpperCamelCase =self._tf_checkpoint
__UpperCamelCase =''
convert_transfo_xl_checkpoint_to_pytorch(
A_ , self._config , self._pytorch_dump_output , A_ )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A_ )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A_ )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
'--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
| 117
|
from ....utils import logging
_A = logging.get_logger(__name__)
class UpperCAmelCase__ ( A_ ):
"""simple docstring"""
def __init__( self , A_ , A_=None , A_=2048 ) -> Any:
__UpperCamelCase =config.__dict__
__UpperCamelCase =modal_hidden_size
if num_labels:
__UpperCamelCase =num_labels
| 117
| 1
|
"""simple docstring"""
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class lowerCAmelCase_ :
"""simple docstring"""
def __magic_name__ (self ) -> Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Any = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : List[str] = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
"""ResnetDownsampleBlock2D""",
"""SimpleCrossAttnDownBlock2D""",
] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : List[str] = DDPMScheduler(
num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : List[str] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __magic_name__ (self ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : List[Any] = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Optional[int] = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
"""ResnetDownsampleBlock2D""",
"""SimpleCrossAttnDownBlock2D""",
] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = DDPMScheduler(
num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = DDPMScheduler(
num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : List[str] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __magic_name__ (self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_components()
SCREAMING_SNAKE_CASE__ : List[str] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = inputs["""prompt"""]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs["""generator"""]
SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs["""num_inference_steps"""]
SCREAMING_SNAKE_CASE__ : List[Any] = inputs["""output_type"""]
if "image" in inputs:
SCREAMING_SNAKE_CASE__ : Any = inputs["""image"""]
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
if "mask_image" in inputs:
SCREAMING_SNAKE_CASE__ : str = inputs["""mask_image"""]
else:
SCREAMING_SNAKE_CASE__ : str = None
if "original_image" in inputs:
SCREAMING_SNAKE_CASE__ : str = inputs["""original_image"""]
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = pipe.encode_prompt(SCREAMING_SNAKE_CASE__ )
# inputs with prompt converted to embeddings
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"""prompt_embeds""": prompt_embeds,
"""negative_prompt_embeds""": negative_prompt_embeds,
"""generator""": generator,
"""num_inference_steps""": num_inference_steps,
"""output_type""": output_type,
}
if image is not None:
SCREAMING_SNAKE_CASE__ : Optional[Any] = image
if mask_image is not None:
SCREAMING_SNAKE_CASE__ : Optional[int] = mask_image
if original_image is not None:
SCREAMING_SNAKE_CASE__ : str = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Dict = pipe(**SCREAMING_SNAKE_CASE__ )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE__ )
pipe_loaded.to(SCREAMING_SNAKE_CASE__ )
pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , )
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = inputs["""generator"""]
SCREAMING_SNAKE_CASE__ : Any = inputs["""num_inference_steps"""]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs["""output_type"""]
# inputs with prompt converted to embeddings
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""prompt_embeds""": prompt_embeds,
"""negative_prompt_embeds""": negative_prompt_embeds,
"""generator""": generator,
"""num_inference_steps""": num_inference_steps,
"""output_type""": output_type,
}
if image is not None:
SCREAMING_SNAKE_CASE__ : Any = image
if mask_image is not None:
SCREAMING_SNAKE_CASE__ : int = mask_image
if original_image is not None:
SCREAMING_SNAKE_CASE__ : str = original_image
SCREAMING_SNAKE_CASE__ : List[str] = pipe_loaded(**SCREAMING_SNAKE_CASE__ )[0]
SCREAMING_SNAKE_CASE__ : Dict = np.abs(to_np(SCREAMING_SNAKE_CASE__ ) - to_np(SCREAMING_SNAKE_CASE__ ) ).max()
self.assertLess(SCREAMING_SNAKE_CASE__ , 1E-4 )
def __magic_name__ (self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE__ : Optional[int] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Tuple = pipe(**SCREAMING_SNAKE_CASE__ )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE__ )
pipe_loaded.to(SCREAMING_SNAKE_CASE__ )
pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : str = pipe_loaded(**SCREAMING_SNAKE_CASE__ )[0]
SCREAMING_SNAKE_CASE__ : Tuple = np.abs(to_np(SCREAMING_SNAKE_CASE__ ) - to_np(SCREAMING_SNAKE_CASE__ ) ).max()
self.assertLess(SCREAMING_SNAKE_CASE__ , 1E-4 )
| 25
|
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _UpperCamelCase ( self ) -> int:
snake_case_ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' )
snake_case_ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' )
model.to(a )
from datasets import load_dataset
snake_case_ = load_dataset('nielsr/rvlcdip-demo' )
snake_case_ = dataset['train'][0]['image'].convert('RGB' )
snake_case_ = image_processor(a , return_tensors='pt' ).to(a )
# forward pass
with torch.no_grad():
snake_case_ = model(**a )
snake_case_ = outputs.logits
snake_case_ = torch.Size((1, 16) )
self.assertEqual(logits.shape , a )
snake_case_ = torch.tensor(
[-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1E-4 ) )
| 178
| 0
|
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase__ (self ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase__ (self ) -> Any:
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase__ : Tuple = UNetaDModel(
sample_size=(32, 64) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') ,up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') ,)
return model
@property
def lowerCAmelCase__ (self ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase__ : Any = UNetaDConditionModel(
sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') ,up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') ,cross_attention_dim=10 ,)
return model
@property
def lowerCAmelCase__ (self ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase__ : int = AutoencoderKL(
sample_size=(1_28, 64) ,in_channels=1 ,out_channels=1 ,latent_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') ,up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') ,)
lowerCAmelCase__ : Dict = UNetaDModel(
sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') ,up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') ,)
return vqvae, unet
@slow
def lowerCAmelCase__ (self ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ : Optional[int] = Mel(
x_res=self.dummy_unet.config.sample_size[1] ,y_res=self.dummy_unet.config.sample_size[0] ,)
lowerCAmelCase__ : Any = DDPMScheduler()
lowerCAmelCase__ : int = AudioDiffusionPipeline(vqvae=__lowerCamelCase ,unet=self.dummy_unet ,mel=__lowerCamelCase ,scheduler=__lowerCamelCase )
lowerCAmelCase__ : Tuple = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCAmelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
lowerCAmelCase__ : Tuple = pipe(generator=__lowerCamelCase ,steps=4 )
lowerCAmelCase__ : Dict = output.audios[0]
lowerCAmelCase__ : Dict = output.images[0]
lowerCAmelCase__ : str = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
lowerCAmelCase__ : Any = pipe(generator=__lowerCamelCase ,steps=4 ,return_dict=__lowerCamelCase )
lowerCAmelCase__ : int = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
lowerCAmelCase__ : Tuple = np.frombuffer(image.tobytes() ,dtype='''uint8''' )[:10]
lowerCAmelCase__ : Optional[int] = np.frombuffer(image_from_tuple.tobytes() ,dtype='''uint8''' )[:10]
lowerCAmelCase__ : str = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
lowerCAmelCase__ : int = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] ,y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] ,)
lowerCAmelCase__ : Dict = DDIMScheduler()
lowerCAmelCase__ : Optional[int] = self.dummy_vqvae_and_unet
lowerCAmelCase__ : List[Any] = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] ,unet=dummy_vqvae_and_unet[1] ,mel=__lowerCamelCase ,scheduler=__lowerCamelCase )
lowerCAmelCase__ : int = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
np.random.seed(0 )
lowerCAmelCase__ : Union[str, Any] = np.random.uniform(-1 ,1 ,((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
lowerCAmelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
lowerCAmelCase__ : Optional[Any] = pipe(raw_audio=__lowerCamelCase ,generator=__lowerCamelCase ,start_step=5 ,steps=10 )
lowerCAmelCase__ : Tuple = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
lowerCAmelCase__ : Tuple = np.frombuffer(image.tobytes() ,dtype='''uint8''' )[:10]
lowerCAmelCase__ : Union[str, Any] = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
lowerCAmelCase__ : List[Any] = self.dummy_unet_condition
lowerCAmelCase__ : Optional[Any] = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] ,unet=__lowerCamelCase ,mel=__lowerCamelCase ,scheduler=__lowerCamelCase )
lowerCAmelCase__ : Optional[Any] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
np.random.seed(0 )
lowerCAmelCase__ : str = torch.rand((1, 1, 10) )
lowerCAmelCase__ : Optional[int] = pipe(generator=__lowerCamelCase ,encoding=__lowerCamelCase )
lowerCAmelCase__ : Optional[Any] = output.images[0]
lowerCAmelCase__ : Optional[int] = np.frombuffer(image.tobytes() ,dtype='''uint8''' )[:10]
lowerCAmelCase__ : Union[str, Any] = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ (self ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : int = torch_device
lowerCAmelCase__ : List[str] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' )
lowerCAmelCase__ : Dict = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCAmelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
lowerCAmelCase__ : int = pipe(generator=__lowerCamelCase )
lowerCAmelCase__ : Any = output.audios[0]
lowerCAmelCase__ : Union[str, Any] = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
lowerCAmelCase__ : Tuple = np.frombuffer(image.tobytes() ,dtype='''uint8''' )[:10]
lowerCAmelCase__ : Tuple = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
| 94
|
import flax.linen as nn
import jax
import jax.numpy as jnp
class lowerCamelCase__ ( nn.Module):
'''simple docstring'''
snake_case_ =42
snake_case_ =jnp.floataa
def lowerCAmelCase__ (self ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : Dict = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__(self ,__lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = hidden_states.shape
lowerCAmelCase__ : Dict = jax.image.resize(
__lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method='''nearest''' ,)
lowerCAmelCase__ : Dict = self.conv(__lowerCamelCase )
return hidden_states
class lowerCamelCase__ ( nn.Module):
'''simple docstring'''
snake_case_ =42
snake_case_ =jnp.floataa
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
lowerCAmelCase__ : List[Any] = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__(self ,__lowerCamelCase ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = self.conv(__lowerCamelCase )
return hidden_states
class lowerCamelCase__ ( nn.Module):
'''simple docstring'''
snake_case_ =42
snake_case_ =None
snake_case_ =0.0
snake_case_ =None
snake_case_ =jnp.floataa
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
lowerCAmelCase__ : List[str] = self.in_channels if self.out_channels is None else self.out_channels
lowerCAmelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 )
lowerCAmelCase__ : Union[str, Any] = nn.Conv(
__lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
lowerCAmelCase__ : int = nn.Dense(__lowerCamelCase ,dtype=self.dtype )
lowerCAmelCase__ : List[Any] = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 )
lowerCAmelCase__ : Union[str, Any] = nn.Dropout(self.dropout_prob )
lowerCAmelCase__ : Optional[int] = nn.Conv(
__lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
lowerCAmelCase__ : str = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
lowerCAmelCase__ : Union[str, Any] = None
if use_nin_shortcut:
lowerCAmelCase__ : Optional[Any] = nn.Conv(
__lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding='''VALID''' ,dtype=self.dtype ,)
def __call__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase=True ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ : Tuple = hidden_states
lowerCAmelCase__ : Dict = self.norma(__lowerCamelCase )
lowerCAmelCase__ : Union[str, Any] = nn.swish(__lowerCamelCase )
lowerCAmelCase__ : List[Any] = self.conva(__lowerCamelCase )
lowerCAmelCase__ : List[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) )
lowerCAmelCase__ : Dict = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase ,1 ) ,1 )
lowerCAmelCase__ : Optional[int] = hidden_states + temb
lowerCAmelCase__ : Optional[int] = self.norma(__lowerCamelCase )
lowerCAmelCase__ : Optional[int] = nn.swish(__lowerCamelCase )
lowerCAmelCase__ : int = self.dropout(__lowerCamelCase ,__lowerCamelCase )
lowerCAmelCase__ : List[Any] = self.conva(__lowerCamelCase )
if self.conv_shortcut is not None:
lowerCAmelCase__ : Optional[int] = self.conv_shortcut(__lowerCamelCase )
return hidden_states + residual
| 94
| 1
|
from __future__ import annotations
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ):
__snake_case : List[Any] = sorted(numsa + numsa )
__snake_case , __snake_case : int = divmod(len(__lowerCamelCase ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_snake_case : str = [float(x) for x in input("Enter the elements of first array: ").split()]
_snake_case : str = [float(x) for x in input("Enter the elements of second array: ").split()]
print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 123
|
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case : int = logging.get_logger(__name__)
def lowerCAmelCase_ ( __lowerCamelCase ):
__snake_case : Any = DPTConfig(embedding_type="hybrid" )
if "large" in checkpoint_url:
__snake_case : Optional[int] = 1_0_2_4
__snake_case : List[Any] = 4_0_9_6
__snake_case : List[Any] = 2_4
__snake_case : Optional[Any] = 1_6
__snake_case : str = [5, 1_1, 1_7, 2_3]
__snake_case : List[str] = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
__snake_case : Union[str, Any] = (1, 3_8_4, 3_8_4)
if "nyu" or "midas" in checkpoint_url:
__snake_case : Tuple = 7_6_8
__snake_case : Any = [1, 1, 1, 0.5]
__snake_case : Any = [2_5_6, 5_1_2, 7_6_8, 7_6_8]
__snake_case : Any = 1_5_0
__snake_case : Optional[Any] = 1_6
__snake_case : List[str] = (1, 3_8_4, 3_8_4)
__snake_case : Tuple = False
__snake_case : Optional[Any] = "project"
if "ade" in checkpoint_url:
__snake_case : Optional[int] = True
__snake_case : List[str] = 7_6_8
__snake_case : int = [1, 1, 1, 0.5]
__snake_case : Any = 1_5_0
__snake_case : Tuple = 1_6
__snake_case : List[str] = "huggingface/label-files"
__snake_case : Union[str, Any] = "ade20k-id2label.json"
__snake_case : List[str] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) ) , "r" ) )
__snake_case : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
__snake_case : Optional[Any] = idalabel
__snake_case : str = {v: k for k, v in idalabel.items()}
__snake_case : Tuple = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def lowerCAmelCase_ ( __lowerCamelCase ):
__snake_case : Tuple = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase_ ( __lowerCamelCase ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
__snake_case : Tuple = name.replace("pretrained.model" , "dpt.encoder" )
if "pretrained.model" in name:
__snake_case : Tuple = name.replace("pretrained.model" , "dpt.embeddings" )
if "patch_embed" in name:
__snake_case : Optional[Any] = name.replace("patch_embed" , "" )
if "pos_embed" in name:
__snake_case : Optional[int] = name.replace("pos_embed" , "position_embeddings" )
if "attn.proj" in name:
__snake_case : List[str] = name.replace("attn.proj" , "attention.output.dense" )
if "proj" in name and "project" not in name:
__snake_case : Union[str, Any] = name.replace("proj" , "projection" )
if "blocks" in name:
__snake_case : int = name.replace("blocks" , "layer" )
if "mlp.fc1" in name:
__snake_case : Tuple = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
__snake_case : Any = name.replace("mlp.fc2" , "output.dense" )
if "norm1" in name and "backbone" not in name:
__snake_case : Optional[Any] = name.replace("norm1" , "layernorm_before" )
if "norm2" in name and "backbone" not in name:
__snake_case : Any = name.replace("norm2" , "layernorm_after" )
if "scratch.output_conv" in name:
__snake_case : Dict = name.replace("scratch.output_conv" , "head" )
if "scratch" in name:
__snake_case : Union[str, Any] = name.replace("scratch" , "neck" )
if "layer1_rn" in name:
__snake_case : List[Any] = name.replace("layer1_rn" , "convs.0" )
if "layer2_rn" in name:
__snake_case : str = name.replace("layer2_rn" , "convs.1" )
if "layer3_rn" in name:
__snake_case : List[str] = name.replace("layer3_rn" , "convs.2" )
if "layer4_rn" in name:
__snake_case : Optional[int] = name.replace("layer4_rn" , "convs.3" )
if "refinenet" in name:
__snake_case : Optional[int] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
__snake_case : int = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
__snake_case : Any = name.replace("out_conv" , "projection" )
if "resConfUnit1" in name:
__snake_case : List[Any] = name.replace("resConfUnit1" , "residual_layer1" )
if "resConfUnit2" in name:
__snake_case : Tuple = name.replace("resConfUnit2" , "residual_layer2" )
if "conv1" in name:
__snake_case : List[str] = name.replace("conv1" , "convolution1" )
if "conv2" in name:
__snake_case : str = name.replace("conv2" , "convolution2" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
__snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" )
if "pretrained.act_postprocess2.0.project.0" in name:
__snake_case : Optional[int] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" )
if "pretrained.act_postprocess3.0.project.0" in name:
__snake_case : List[str] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" )
if "pretrained.act_postprocess4.0.project.0" in name:
__snake_case : Dict = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
__snake_case : Tuple = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" )
if "pretrained.act_postprocess1.4" in name:
__snake_case : int = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" )
if "pretrained.act_postprocess2.3" in name:
__snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" )
if "pretrained.act_postprocess2.4" in name:
__snake_case : Optional[Any] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" )
if "pretrained.act_postprocess3.3" in name:
__snake_case : Optional[int] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" )
if "pretrained.act_postprocess4.3" in name:
__snake_case : Dict = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" )
if "pretrained.act_postprocess4.4" in name:
__snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" )
if "pretrained" in name:
__snake_case : Union[str, Any] = name.replace("pretrained" , "dpt" )
if "bn" in name:
__snake_case : Tuple = name.replace("bn" , "batch_norm" )
if "head" in name:
__snake_case : Dict = name.replace("head" , "head.head" )
if "encoder.norm" in name:
__snake_case : Optional[int] = name.replace("encoder.norm" , "layernorm" )
if "auxlayer" in name:
__snake_case : Tuple = name.replace("auxlayer" , "auxiliary_head.head" )
if "backbone" in name:
__snake_case : str = name.replace("backbone" , "backbone.bit.encoder" )
if ".." in name:
__snake_case : Tuple = name.replace(".." , "." )
if "stem.conv" in name:
__snake_case : int = name.replace("stem.conv" , "bit.embedder.convolution" )
if "blocks" in name:
__snake_case : Any = name.replace("blocks" , "layers" )
if "convolution" in name and "backbone" in name:
__snake_case : Optional[int] = name.replace("convolution" , "conv" )
if "layer" in name and "backbone" in name:
__snake_case : List[Any] = name.replace("layer" , "layers" )
if "backbone.bit.encoder.bit" in name:
__snake_case : Optional[int] = name.replace("backbone.bit.encoder.bit" , "backbone.bit" )
if "embedder.conv" in name:
__snake_case : int = name.replace("embedder.conv" , "embedder.convolution" )
if "backbone.bit.encoder.stem.norm" in name:
__snake_case : Optional[Any] = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" )
return name
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__snake_case : int = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' )
__snake_case : Any = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
__snake_case : str = in_proj_weight[: config.hidden_size, :]
__snake_case : List[Any] = in_proj_bias[: config.hidden_size]
__snake_case : str = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__snake_case : Tuple = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__snake_case : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
__snake_case : int = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( ):
__snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : int = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
__snake_case , __snake_case : Optional[int] = get_dpt_config(__lowerCamelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
__snake_case : Optional[int] = torch.load(__lowerCamelCase , map_location="cpu" )
# remove certain keys
remove_ignore_keys_(__lowerCamelCase )
# rename keys
for key in state_dict.copy().keys():
__snake_case : Optional[int] = state_dict.pop(__lowerCamelCase )
__snake_case : Optional[Any] = val
# read in qkv matrices
read_in_q_k_v(__lowerCamelCase , __lowerCamelCase )
# load HuggingFace model
__snake_case : Dict = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
model.eval()
# Check outputs on an image
__snake_case : str = 4_8_0 if "ade" in checkpoint_url else 3_8_4
__snake_case : Any = DPTImageProcessor(size=__lowerCamelCase )
__snake_case : int = prepare_img()
__snake_case : Union[str, Any] = image_processor(__lowerCamelCase , return_tensors="pt" )
# forward pass
__snake_case : Dict = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth
if show_prediction:
__snake_case : int = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=__lowerCamelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show()
if pytorch_dump_folder_path is not None:
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(F'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
model.push_to_hub("ybelkada/dpt-hybrid-midas" )
image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" )
if __name__ == "__main__":
_snake_case : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
_snake_case : str = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 123
| 1
|
import requests
from bsa import BeautifulSoup
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = "https://www.worldometers.info/coronavirus" )-> dict:
"""simple docstring"""
UpperCamelCase_ = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , "html.parser" )
UpperCamelCase_ = soup.findAll("h1" )
UpperCamelCase_ = soup.findAll("div" , {"class": "maincounter-number"} )
keys += soup.findAll("span" , {"class": "panel-title"} )
values += soup.findAll("div" , {"class": "number-table-main"} )
return {key.text.strip(): value.text.strip() for key, value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}
if __name__ == "__main__":
print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""")
for key, value in world_covidaa_stats().items():
print(F'''{key}\n{value}\n''')
| 371
|
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False )-> str:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase_ = f"Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}"
raise ValueError(SCREAMING_SNAKE_CASE_ )
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase_ = f"Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}"
raise ValueError(SCREAMING_SNAKE_CASE_ )
UpperCamelCase_ = input_str.split("_" )
UpperCamelCase_ = 0 if use_pascal else 1
UpperCamelCase_ = words[start_index:]
UpperCamelCase_ = [word[0].upper() + word[1:] for word in words_to_capitalize]
UpperCamelCase_ = "" if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 60
| 0
|
'''simple docstring'''
def _UpperCAmelCase ( _lowerCamelCase : int ) -> int:
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise ValueError("""Input must be an integer""" )
if input_num <= 0:
raise ValueError("""Input must be positive""" )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
|
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""}
UpperCamelCase_ = {
"""vocab_file""": {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""",
}
}
UpperCamelCase_ = {
"""YituTech/conv-bert-base""": 5_12,
"""YituTech/conv-bert-medium-small""": 5_12,
"""YituTech/conv-bert-small""": 5_12,
}
UpperCamelCase_ = {
"""YituTech/conv-bert-base""": {"""do_lower_case""": True},
"""YituTech/conv-bert-medium-small""": {"""do_lower_case""": True},
"""YituTech/conv-bert-small""": {"""do_lower_case""": True},
}
class a_ (_a ):
__lowerCAmelCase : Any = VOCAB_FILES_NAMES
__lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION
__lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : Optional[int] = ConvBertTokenizer
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ):
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , )
_lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars
):
_lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) )
_lowerCAmelCase : List[str] = do_lower_case
_lowerCAmelCase : str = strip_accents
_lowerCAmelCase : List[Any] = tokenize_chinese_chars
_lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ )
_lowerCAmelCase : str = do_lower_case
def __UpperCamelCase ( self , snake_case_ , snake_case_=None ):
_lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ):
_lowerCAmelCase : Optional[Any] = [self.sep_token_id]
_lowerCAmelCase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ):
_lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
| 309
| 1
|
'''simple docstring'''
from collections.abc import Sequence
def A__ ( UpperCAmelCase_ = None ):
if nums is None or not nums:
raise ValueError('Input sequence should not be empty' )
_UpperCamelCase : Union[str, Any] = nums[0]
for i in range(1 , len(UpperCAmelCase_ ) ):
_UpperCamelCase : List[Any] = nums[i]
_UpperCamelCase : List[Any] = max(UpperCAmelCase_ , ans + num , UpperCAmelCase_ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
snake_case_ : Optional[int] = int(input('Enter number of elements : ').strip())
snake_case_ : Dict = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n]
print(max_subsequence_sum(array))
| 236
|
'''simple docstring'''
from __future__ import annotations
def A__ ( UpperCAmelCase_ ):
if not nums:
return 0
_UpperCamelCase : Any = nums[0]
_UpperCamelCase : Optional[int] = 0
for num in nums[1:]:
_UpperCamelCase , _UpperCamelCase : Optional[Any] = (
max_excluding + num,
max(UpperCAmelCase_ , UpperCAmelCase_ ),
)
return max(UpperCAmelCase_ , UpperCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 236
| 1
|
"""simple docstring"""
from __future__ import annotations
def __UpperCAmelCase ( __UpperCamelCase ):
if len(SCREAMING_SNAKE_CASE__ ) == 0:
return []
__lowercase : Tuple = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ )
__lowercase : List[Any] = int(max_value - min_value ) + 1
__lowercase : list[list] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )]
for i in my_list:
buckets[int(i - min_value )].append(SCREAMING_SNAKE_CASE__ )
return [v for bucket in buckets for v in sorted(SCREAMING_SNAKE_CASE__ )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 249
|
import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'):
lowerCamelCase = True
from torch.cuda.amp import autocast
lowerCamelCase = logging.getLogger(__name__)
def a_ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None ):
'''simple docstring'''
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ )
@dataclass
class A :
UpperCamelCase__ : str =field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
UpperCamelCase__ : Optional[str] =field(
default=UpperCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
UpperCamelCase__ : Optional[bool] =field(
default=UpperCamelCase_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} )
UpperCamelCase__ : Optional[float] =field(
default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} )
UpperCamelCase__ : Optional[float] =field(
default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} )
UpperCamelCase__ : Optional[float] =field(
default=0.1 , metadata={
'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.'
} , )
UpperCamelCase__ : Optional[float] =field(
default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , )
UpperCamelCase__ : Optional[float] =field(
default=0.05 , metadata={
'help': (
'Propability of each feature vector along the time axis to be chosen as the start of the vector'
'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature'
'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.'
)
} , )
UpperCamelCase__ : Optional[float] =field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} )
@dataclass
class A :
UpperCamelCase__ : Optional[str] =field(
default=UpperCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
UpperCamelCase__ : Optional[str] =field(
default='train+validation' , metadata={
'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\''
} , )
UpperCamelCase__ : bool =field(
default=UpperCamelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
UpperCamelCase__ : Optional[int] =field(
default=UpperCamelCase_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , )
UpperCamelCase__ : Optional[int] =field(
default=UpperCamelCase_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
UpperCamelCase__ : Optional[int] =field(
default=UpperCamelCase_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of validation examples to this '
'value if set.'
)
} , )
UpperCamelCase__ : List[str] =list_field(
default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , )
@dataclass
class A :
UpperCamelCase__ : WavaVecaProcessor
UpperCamelCase__ : Union[bool, str] =True
UpperCamelCase__ : Optional[int] =None
UpperCamelCase__ : Optional[int] =None
UpperCamelCase__ : Optional[int] =None
UpperCamelCase__ : Optional[int] =None
def __call__( self : str , lowercase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]:
"""simple docstring"""
_lowerCamelCase : List[Any] =[{'input_values': feature['input_values']} for feature in features]
_lowerCamelCase : str =[{'input_ids': feature['labels']} for feature in features]
_lowerCamelCase : Union[str, Any] =self.processor.pad(
lowercase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
_lowerCamelCase : Any =self.processor.pad(
labels=lowercase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , )
# replace padding with -100 to ignore loss correctly
_lowerCamelCase : str =labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 )
_lowerCamelCase : List[Any] =labels
return batch
class A ( UpperCamelCase_ ):
def lowerCamelCase ( self : Optional[Any] , lowercase_ : nn.Module , lowercase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor:
"""simple docstring"""
model.train()
_lowerCamelCase : List[Any] =self._prepare_inputs(lowercase_ )
if self.use_amp:
with autocast():
_lowerCamelCase : List[Any] =self.compute_loss(lowercase_ , lowercase_ )
else:
_lowerCamelCase : Optional[int] =self.compute_loss(lowercase_ , lowercase_ )
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
_lowerCamelCase : Optional[Any] =loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
_lowerCamelCase : int =loss.sum() / (inputs['labels'] >= 0).sum()
else:
raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' )
if self.args.gradient_accumulation_steps > 1:
_lowerCamelCase : Dict =loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(lowercase_ ).backward()
elif self.use_apex:
with amp.scale_loss(lowercase_ , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(lowercase_ )
else:
loss.backward()
return loss.detach()
def a_ ( ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any =parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
_lowerCamelCase : Dict =None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_lowerCamelCase : List[str] =get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE__ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
_lowerCamelCase : str =datasets.load_dataset(
'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name )
_lowerCamelCase : int =datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' )
# Create and save tokenizer
_lowerCamelCase : Dict =F'''[{''.join(data_args.chars_to_ignore )}]'''
def remove_special_characters(SCREAMING_SNAKE_CASE__ : Tuple ):
_lowerCamelCase : Optional[Any] =re.sub(SCREAMING_SNAKE_CASE__ , '' , batch['sentence'] ).lower() + ' '
return batch
_lowerCamelCase : int =train_dataset.map(SCREAMING_SNAKE_CASE__ , remove_columns=['sentence'] )
_lowerCamelCase : Tuple =eval_dataset.map(SCREAMING_SNAKE_CASE__ , remove_columns=['sentence'] )
def extract_all_chars(SCREAMING_SNAKE_CASE__ : Tuple ):
_lowerCamelCase : int =' '.join(batch['text'] )
_lowerCamelCase : Union[str, Any] =list(set(SCREAMING_SNAKE_CASE__ ) )
return {"vocab": [vocab], "all_text": [all_text]}
_lowerCamelCase : Tuple =train_dataset.map(
SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , )
_lowerCamelCase : Union[str, Any] =train_dataset.map(
SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , )
_lowerCamelCase : Optional[int] =list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) )
_lowerCamelCase : Tuple ={v: k for k, v in enumerate(SCREAMING_SNAKE_CASE__ )}
_lowerCamelCase : int =vocab_dict[' ']
del vocab_dict[" "]
_lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE__ )
_lowerCamelCase : int =len(SCREAMING_SNAKE_CASE__ )
with open('vocab.json' , 'w' ) as vocab_file:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_lowerCamelCase : int =WavaVecaCTCTokenizer(
'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , )
_lowerCamelCase : Optional[int] =WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ )
_lowerCamelCase : Optional[int] =WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
_lowerCamelCase : Any =WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , )
if data_args.max_train_samples is not None:
_lowerCamelCase : List[str] =min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_train_samples )
_lowerCamelCase : Any =train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
if data_args.max_val_samples is not None:
_lowerCamelCase : Optional[int] =eval_dataset.select(range(data_args.max_val_samples ) )
_lowerCamelCase : str =torchaudio.transforms.Resample(48_000 , 16_000 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(SCREAMING_SNAKE_CASE__ : List[Any] ):
_lowerCamelCase , _lowerCamelCase : Tuple =torchaudio.load(batch['path'] )
_lowerCamelCase : Optional[int] =resampler(SCREAMING_SNAKE_CASE__ ).squeeze().numpy()
_lowerCamelCase : Optional[Any] =16_000
_lowerCamelCase : Tuple =batch['text']
return batch
_lowerCamelCase : Any =train_dataset.map(
SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
_lowerCamelCase : Optional[int] =eval_dataset.map(
SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
def prepare_dataset(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
# check that all files have the correct sampling rate
assert (
len(set(batch['sampling_rate'] ) ) == 1
), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.'''
_lowerCamelCase : int =processor(
audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] )
batch.update(SCREAMING_SNAKE_CASE__ )
return batch
_lowerCamelCase : str =train_dataset.map(
SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , )
_lowerCamelCase : Tuple =eval_dataset.map(
SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , )
# Metric
_lowerCamelCase : Union[str, Any] =datasets.load_metric('wer' )
def compute_metrics(SCREAMING_SNAKE_CASE__ : str ):
_lowerCamelCase : Union[str, Any] =pred.predictions
_lowerCamelCase : Optional[int] =np.argmax(SCREAMING_SNAKE_CASE__ , axis=-1 )
_lowerCamelCase : Any =processor.tokenizer.pad_token_id
_lowerCamelCase : Any =processor.batch_decode(SCREAMING_SNAKE_CASE__ )
# we do not want to group tokens when computing the metrics
_lowerCamelCase : List[Any] =processor.batch_decode(pred.label_ids , group_tokens=SCREAMING_SNAKE_CASE__ )
_lowerCamelCase : Any =wer_metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
_lowerCamelCase : Optional[int] =DataCollatorCTCWithPadding(processor=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ )
# Initialize our Trainer
_lowerCamelCase : Optional[Any] =CTCTrainer(
model=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
_lowerCamelCase : Optional[Any] =last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
_lowerCamelCase : Dict =model_args.model_name_or_path
else:
_lowerCamelCase : int =None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
_lowerCamelCase : Optional[int] =trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ )
trainer.save_model()
_lowerCamelCase : Any =train_result.metrics
_lowerCamelCase : Optional[int] =(
data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ )
)
_lowerCamelCase : List[Any] =min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) )
trainer.log_metrics('train' , SCREAMING_SNAKE_CASE__ )
trainer.save_metrics('train' , SCREAMING_SNAKE_CASE__ )
trainer.save_state()
# Evaluation
_lowerCamelCase : str ={}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
_lowerCamelCase : Tuple =trainer.evaluate()
_lowerCamelCase : List[Any] =data_args.max_val_samples if data_args.max_val_samples is not None else len(SCREAMING_SNAKE_CASE__ )
_lowerCamelCase : Union[str, Any] =min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) )
trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE__ )
trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE__ )
return results
if __name__ == "__main__":
main()
| 199
| 0
|
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> Dict:
for param in module.parameters():
_snake_case = False
def _UpperCAmelCase ( ) -> str:
_snake_case = '''cuda''' if torch.cuda.is_available() else '''cpu'''
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_snake_case = '''mps'''
if device == "mps":
print(
'''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'''
''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'''
''' with generations.''' )
return device
def _UpperCAmelCase ( __lowerCamelCase : List[Any] ) -> Any:
_snake_case = plt.imshow(SCREAMING_SNAKE_CASE_ )
fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE_ )
fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE_ )
plt.show()
def _UpperCAmelCase ( ) -> Any:
_snake_case = datetime.now()
_snake_case = current_time.strftime('''%H:%M:%S''' )
return timestamp
| 365
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
UpperCAmelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( A_ ):
def __init__( self : str , *_lowerCamelCase : Tuple , **_lowerCamelCase : Optional[int] ):
warnings.warn(
'''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use MobileViTImageProcessor instead.''' , _lowerCamelCase , )
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
| 40
| 0
|
'''simple docstring'''
from __future__ import annotations
def a ( lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
if partitions <= 0:
raise ValueError("""partitions must be a positive number!""" )
if partitions > number_of_bytes:
raise ValueError("""partitions can not > number_of_bytes!""" )
A_ : Optional[Any] = number_of_bytes // partitions
A_ : Union[str, Any] = []
for i in range(lowerCamelCase__ ):
A_ : Optional[int] = i * bytes_per_partition + 1
A_ : Dict = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'{start_bytes}-{end_bytes}' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 206
|
'''simple docstring'''
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class _lowerCAmelCase ( unittest.TestCase ):
def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ):
A_ : List[Any] = parent
A_ : str = batch_size
A_ : List[Any] = seq_length
A_ : Dict = is_training
A_ : List[Any] = use_attention_mask
A_ : Any = use_token_type_ids
A_ : Optional[int] = use_labels
A_ : Tuple = vocab_size
A_ : List[str] = hidden_size
A_ : List[str] = num_hidden_layers
A_ : Optional[Any] = num_attention_heads
A_ : int = intermediate_size
A_ : Optional[Any] = hidden_act
A_ : List[Any] = hidden_dropout_prob
A_ : Optional[Any] = attention_probs_dropout_prob
A_ : Any = max_position_embeddings
A_ : Union[str, Any] = type_vocab_size
A_ : int = type_sequence_label_size
A_ : Any = initializer_range
A_ : List[str] = num_choices
def _a (self ):
A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ : Any = None
if self.use_attention_mask:
A_ : Any = random_attention_mask([self.batch_size, self.seq_length] )
A_ : Union[str, Any] = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowercase , )
return config, input_ids, attention_mask
def _a (self ):
A_ : List[str] = self.prepare_config_and_inputs()
A_, A_, A_ : str = config_and_inputs
A_ : Any = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _a (self ):
A_ : Tuple = FlaxDistilBertModelTester(self )
@slow
def _a (self ):
for model_class_name in self.all_model_classes:
A_ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" )
A_ : Any = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowercase )
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
@slow
def _a (self ):
A_ : List[str] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" )
A_ : Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
A_ : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
A_ : Optional[int] = model(lowercase , attention_mask=lowercase )[0]
A_ : Optional[Any] = (1, 11, 768)
self.assertEqual(output.shape , lowercase )
A_ : Union[str, Any] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
| 206
| 1
|
'''simple docstring'''
def _lowercase ( __A ,__A ):
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
__UpperCamelCase = str(bin(__A ) )[2:] # remove the leading "0b"
__UpperCamelCase = str(bin(__A ) )[2:]
__UpperCamelCase = max(len(__A ) ,len(__A ) )
return "0b" + "".join(
str(int("""1""" in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(__A ) ,b_binary.zfill(__A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 243
|
'''simple docstring'''
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def _lowercase ( __A ,__A ,__A ,__A ,__A=True ,__A="pt" ):
'''simple docstring'''
__UpperCamelCase = {"""add_prefix_space""": True} if isinstance(__A ,__A ) and not line.startswith(""" """ ) else {}
__UpperCamelCase = padding_side
return tokenizer(
[line] ,max_length=__A ,padding="""max_length""" if pad_to_max_length else None ,truncation=__A ,return_tensors=__A ,add_special_tokens=__A ,**__A ,)
def _lowercase ( __A ,__A ,__A=None ,):
'''simple docstring'''
__UpperCamelCase = input_ids.ne(__A ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase="train" , lowercase=None , lowercase=None , lowercase=None , lowercase="" , ) -> List[Any]:
super().__init__()
__UpperCamelCase = Path(lowercase ).joinpath(type_path + """.source""" )
__UpperCamelCase = Path(lowercase ).joinpath(type_path + """.target""" )
__UpperCamelCase = self.get_char_lens(self.src_file )
__UpperCamelCase = max_source_length
__UpperCamelCase = max_target_length
assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}"
__UpperCamelCase = tokenizer
__UpperCamelCase = prefix
if n_obs is not None:
__UpperCamelCase = self.src_lens[:n_obs]
__UpperCamelCase = src_lang
__UpperCamelCase = tgt_lang
def __len__( self ) -> Union[str, Any]:
return len(self.src_lens )
def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]:
__UpperCamelCase = index + 1 # linecache starts at 1
__UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ) , lowercase ).rstrip("""\n""" )
__UpperCamelCase = linecache.getline(str(self.tgt_file ) , lowercase ).rstrip("""\n""" )
assert source_line, f"empty source line for index {index}"
assert tgt_line, f"empty tgt line for index {index}"
# Need to add eos token manually for T5
if isinstance(self.tokenizer , lowercase ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
__UpperCamelCase = (
self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase ) else self.tokenizer
)
__UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer , lowercase ) else self.tokenizer
__UpperCamelCase = encode_line(lowercase , lowercase , self.max_source_length , """right""" )
__UpperCamelCase = encode_line(lowercase , lowercase , self.max_target_length , """right""" )
__UpperCamelCase = source_inputs["""input_ids"""].squeeze()
__UpperCamelCase = target_inputs["""input_ids"""].squeeze()
__UpperCamelCase = source_inputs["""attention_mask"""].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def __lowerCamelCase ( lowercase ) -> str:
return [len(lowercase ) for x in Path(lowercase ).open().readlines()]
def __lowerCamelCase ( self , lowercase ) -> Dict[str, torch.Tensor]:
__UpperCamelCase = torch.stack([x["""input_ids"""] for x in batch] )
__UpperCamelCase = torch.stack([x["""attention_mask"""] for x in batch] )
__UpperCamelCase = torch.stack([x["""decoder_input_ids"""] for x in batch] )
__UpperCamelCase = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer , lowercase )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer , lowercase )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = trim_batch(lowercase , lowercase )
__UpperCamelCase , __UpperCamelCase = trim_batch(lowercase , lowercase , attention_mask=lowercase )
__UpperCamelCase = {
"""input_ids""": source_ids,
"""attention_mask""": source_mask,
"""decoder_input_ids""": y,
}
return batch
a__ : Optional[int] = getLogger(__name__)
def _lowercase ( __A ):
'''simple docstring'''
return list(itertools.chain.from_iterable(__A ) )
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = get_git_info()
save_json(__A ,os.path.join(__A ,"""git_log.json""" ) )
def _lowercase ( __A ,__A ,__A=4 ,**__A ):
'''simple docstring'''
with open(__A ,"""w""" ) as f:
json.dump(__A ,__A ,indent=__A ,**__A )
def _lowercase ( __A ):
'''simple docstring'''
with open(__A ) as f:
return json.load(__A )
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = git.Repo(search_parent_directories=__A )
__UpperCamelCase = {
"""repo_id""": str(__A ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
"""hostname""": str(socket.gethostname() ),
}
return repo_infos
def _lowercase ( __A ,__A ):
'''simple docstring'''
return list(map(__A ,__A ) )
def _lowercase ( __A ,__A ):
'''simple docstring'''
with open(__A ,"""wb""" ) as f:
return pickle.dump(__A ,__A )
def _lowercase ( __A ):
'''simple docstring'''
def remove_articles(__A ):
return re.sub(R"""\b(a|an|the)\b""" ,""" """ ,__A )
def white_space_fix(__A ):
return " ".join(text.split() )
def remove_punc(__A ):
__UpperCamelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__A ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) )
def _lowercase ( __A ,__A ):
'''simple docstring'''
__UpperCamelCase = normalize_answer(__A ).split()
__UpperCamelCase = normalize_answer(__A ).split()
__UpperCamelCase = Counter(__A ) & Counter(__A )
__UpperCamelCase = sum(common.values() )
if num_same == 0:
return 0
__UpperCamelCase = 1.0 * num_same / len(__A )
__UpperCamelCase = 1.0 * num_same / len(__A )
__UpperCamelCase = (2 * precision * recall) / (precision + recall)
return fa
def _lowercase ( __A ,__A ):
'''simple docstring'''
return normalize_answer(__A ) == normalize_answer(__A )
def _lowercase ( __A ,__A ):
'''simple docstring'''
assert len(__A ) == len(__A )
__UpperCamelCase = 0
for hypo, pred in zip(__A ,__A ):
em += exact_match_score(__A ,__A )
if len(__A ) > 0:
em /= len(__A )
return {"em": em}
def _lowercase ( __A ):
'''simple docstring'''
return model_prefix.startswith("""rag""" )
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
__UpperCamelCase = """dropout_rate"""
for p in extra_params:
if getattr(__A ,__A ,__A ):
if not hasattr(__A ,__A ) and not hasattr(__A ,equivalent_param[p] ):
logger.info("""config doesn't have a `{}` attribute""".format(__A ) )
delattr(__A ,__A )
continue
__UpperCamelCase = p if hasattr(__A ,__A ) else equivalent_param[p]
setattr(__A ,__A ,getattr(__A ,__A ) )
delattr(__A ,__A )
return hparams, config
| 243
| 1
|
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class A__ ( unittest.TestCase):
def __init__( self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=3_0 , __magic_name__=4_0_0 , __magic_name__=True , __magic_name__=None , __magic_name__=0.9 , __magic_name__=None , __magic_name__=True , __magic_name__=[0.5, 0.5, 0.5] , __magic_name__=[0.5, 0.5, 0.5] , ):
lowerCamelCase : Union[str, Any] = size if size is not None else {'''shortest_edge''': 3_0}
lowerCamelCase : List[Any] = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0}
lowerCamelCase : Optional[Any] = parent
lowerCamelCase : Optional[Any] = batch_size
lowerCamelCase : Union[str, Any] = num_channels
lowerCamelCase : Union[str, Any] = min_resolution
lowerCamelCase : List[Any] = max_resolution
lowerCamelCase : Dict = do_resize_and_center_crop
lowerCamelCase : List[Any] = size
lowerCamelCase : Any = crop_pct
lowerCamelCase : Optional[int] = crop_size
lowerCamelCase : Any = do_normalize
lowerCamelCase : Optional[Any] = image_mean
lowerCamelCase : Any = image_std
def UpperCamelCase__ ( self ):
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class A__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase):
_UpperCAmelCase : Dict = PoolFormerImageProcessor if is_vision_available() else None
def UpperCamelCase__ ( self ):
lowerCamelCase : Dict = PoolFormerImageProcessingTester(self )
@property
def UpperCamelCase__ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ ( self ):
lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize_and_center_crop""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """crop_pct""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""" ) )
def UpperCamelCase__ ( self ):
lowerCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 3_0} )
self.assertEqual(image_processor.crop_size , {"""height""": 3_0, """width""": 3_0} )
lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} )
self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} )
def UpperCamelCase__ ( self ):
pass
def UpperCamelCase__ ( self ):
lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , Image.Image )
# Test not batched input
lowerCamelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
lowerCamelCase : Union[str, Any] = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase__ ( self ):
lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , np.ndarray )
# Test not batched input
lowerCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
lowerCamelCase : List[Any] = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase__ ( self ):
lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , torch.Tensor )
# Test not batched input
lowerCamelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
lowerCamelCase : str = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 287
|
def lowerCamelCase__ ( a , a ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
_A: Union[str, Any] = str(bin(a ) )[2:] # remove the leading "0b"
_A: Union[str, Any] = str(bin(a ) )[2:] # remove the leading "0b"
_A: Optional[int] = max(len(a ) , len(a ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(a ) , b_binary.zfill(a ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 121
| 0
|
import math
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]:
return math.pow(UpperCamelCase_ , 2 ) - a
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int:
return 2 * x
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int:
UpperCamelCase_ = 2.0
while start <= a:
UpperCamelCase_ = math.pow(UpperCamelCase_ , 2 )
return start
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 9999 , UpperCamelCase_ = 0.00_00_00_00_00_00_01 ) -> List[Any]:
if a < 0:
raise ValueError("math domain error" )
UpperCamelCase_ = get_initial_point(UpperCamelCase_ )
for _ in range(UpperCamelCase_ ):
UpperCamelCase_ = value
UpperCamelCase_ = value - fx(UpperCamelCase_ , UpperCamelCase_ ) / fx_derivative(UpperCamelCase_ )
if abs(prev_value - value ) < tolerance:
return value
return value
if __name__ == "__main__":
from doctest import testmod
testmod()
| 361
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_UpperCAmelCase = {
'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'],
'tokenization_tapas': ['TapasTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase = [
'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST',
'TapasForMaskedLM',
'TapasForQuestionAnswering',
'TapasForSequenceClassification',
'TapasModel',
'TapasPreTrainedModel',
'load_tf_weights_in_tapas',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase = [
'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFTapasForMaskedLM',
'TFTapasForQuestionAnswering',
'TFTapasForSequenceClassification',
'TFTapasModel',
'TFTapasPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from .tokenization_tapas import TapasTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tapas import (
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasPreTrainedModel,
load_tf_weights_in_tapas,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
else:
import sys
_UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 328
| 0
|
import warnings
warnings.warn(
'''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: '''
'''`from accelerate import find_executable_batch_size` to avoid this warning.''',
FutureWarning,
)
| 283
|
"""simple docstring"""
import math
import random
def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = False ):
'''simple docstring'''
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
a__ : Tuple = 0.02
def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = float(2 * (random.randint(1 , 100 )) - 1 )
for _ in range(lowerCAmelCase_ ):
# Forward propagation
__SCREAMING_SNAKE_CASE = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
__SCREAMING_SNAKE_CASE = (expected / 100) - layer_a
# Error delta
__SCREAMING_SNAKE_CASE = layer_1_error * sigmoid_function(lowerCAmelCase_ , lowerCAmelCase_ )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
a__ : List[str] = int(input('''Expected value: '''))
a__ : str = int(input('''Number of propagations: '''))
print(forward_propagation(expected, number_propagations))
| 54
| 0
|
def _A ( lowerCAmelCase_ : int ) -> List[Any]:
"""simple docstring"""
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
lowerCAmelCase__ = gray_code_sequence_string(lowerCAmelCase_ )
#
# convert them to integers
for i in range(len(lowerCAmelCase_ ) ):
lowerCAmelCase__ = int(sequence[i] , 2 )
return sequence
def _A ( lowerCAmelCase_ : int ) -> str:
"""simple docstring"""
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
lowerCAmelCase__ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
lowerCAmelCase__ = gray_code_sequence_string(bit_count - 1 )
lowerCAmelCase__ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
lowerCAmelCase__ = "0" + smaller_sequence[i]
sequence.append(lowerCAmelCase_ )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
lowerCAmelCase__ = "1" + smaller_sequence[i]
sequence.append(lowerCAmelCase_ )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361
|
def _A ( lowerCAmelCase_ : int = 1000 ):
"""simple docstring"""
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 221
| 0
|
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def _a ( lowerCamelCase: Dict ) -> Any:
'''simple docstring'''
return EnvironmentCommand()
class A_ ( _lowerCamelCase ):
@staticmethod
def _lowerCAmelCase (_UpperCamelCase :ArgumentParser )-> Optional[Any]:
__A = parser.add_parser('''env''' )
download_parser.set_defaults(func=_UpperCamelCase )
def _lowerCAmelCase (self :List[Any] )-> Any:
__A = huggingface_hub.__version__
__A = '''not installed'''
__A = '''NA'''
if is_torch_available():
import torch
__A = torch.__version__
__A = torch.cuda.is_available()
__A = '''not installed'''
if is_transformers_available():
import transformers
__A = transformers.__version__
__A = '''not installed'''
if is_accelerate_available():
import accelerate
__A = accelerate.__version__
__A = '''not installed'''
if is_xformers_available():
import xformers
__A = xformers.__version__
__A = {
'''`diffusers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""",
'''Huggingface_hub version''': hub_version,
'''Transformers version''': transformers_version,
'''Accelerate version''': accelerate_version,
'''xFormers version''': xformers_version,
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(_UpperCamelCase ) )
return info
@staticmethod
def _lowerCAmelCase (_UpperCamelCase :int )-> int:
return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
| 117
|
import requests
snake_case__ : int = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey='
def _a ( lowerCamelCase: str ) -> None:
'''simple docstring'''
__A = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page['''articles'''] , 1 ):
print(F"""{i}.) {article['title']}""" )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
| 117
| 1
|
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __A( __lowerCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''image_processor''', '''tokenizer''']
SCREAMING_SNAKE_CASE__ = '''BlipImageProcessor'''
SCREAMING_SNAKE_CASE__ = '''AutoTokenizer'''
def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = False
super().__init__(_snake_case , _snake_case )
UpperCamelCase__ = self.image_processor
def __call__(self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
UpperCamelCase__ = self.tokenizer
UpperCamelCase__ = self.tokenizer(
text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , )
return text_encoding
# add pixel_values
UpperCamelCase__ = self.image_processor(_snake_case , return_tensors=_snake_case )
if text is not None:
UpperCamelCase__ = self.tokenizer(
text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , )
else:
UpperCamelCase__ = None
if text_encoding is not None:
encoding_image_processor.update(_snake_case )
return encoding_image_processor
def UpperCAmelCase_ (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.batch_decode(*_snake_case , **_snake_case )
def UpperCAmelCase_ (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return self.tokenizer.decode(*_snake_case , **_snake_case )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def UpperCAmelCase_ (self ):
UpperCamelCase__ = self.tokenizer.model_input_names
UpperCamelCase__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 357
|
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def __magic_name__ ( __a : Any ): # picklable for multiprocessing
'''simple docstring'''
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def __magic_name__ ( ):
'''simple docstring'''
with parallel_backend("""spark""" ):
assert ParallelBackendConfig.backend_name == "spark"
UpperCamelCase__ = [1, 2, 3]
with pytest.raises(__a ):
with parallel_backend("""unsupported backend""" ):
map_nested(__a , __a , num_proc=2 )
with pytest.raises(__a ):
with parallel_backend("""unsupported backend""" ):
map_nested(__a , __a , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("""num_proc""" , [2, -1] )
def __magic_name__ ( __a : Optional[int] ):
'''simple docstring'''
UpperCamelCase__ = [1, 2]
UpperCamelCase__ = {"""a""": 1, """b""": 2}
UpperCamelCase__ = {"""a""": [1, 2], """b""": [3, 4]}
UpperCamelCase__ = {"""a""": {"""1""": 1}, """b""": 2}
UpperCamelCase__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
UpperCamelCase__ = [2, 3]
UpperCamelCase__ = {"""a""": 2, """b""": 3}
UpperCamelCase__ = {"""a""": [2, 3], """b""": [4, 5]}
UpperCamelCase__ = {"""a""": {"""1""": 2}, """b""": 3}
UpperCamelCase__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
with parallel_backend("""spark""" ):
assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
| 178
| 0
|
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
UpperCamelCase__ = logging.get_logger(__name__)
UpperCamelCase__ = {
"""microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""",
"""microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""",
"""microsoft/deberta-v2-xlarge-mnli""": (
"""https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"""
),
"""microsoft/deberta-v2-xxlarge-mnli""": (
"""https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"""
),
}
class a__ ( snake_case__ ):
_a : int = """deberta-v2"""
def __init__( self , _A=1_2_8_1_0_0 , _A=1_5_3_6 , _A=2_4 , _A=2_4 , _A=6_1_4_4 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=0 , _A=0.02 , _A=1E-7 , _A=False , _A=-1 , _A=0 , _A=True , _A=None , _A=0 , _A="gelu" , **_A , ):
"""simple docstring"""
super().__init__(**_A )
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = relative_attention
__lowerCAmelCase = max_relative_positions
__lowerCAmelCase = pad_token_id
__lowerCAmelCase = position_biased_input
# Backwards compatibility
if type(_A ) == str:
__lowerCAmelCase = [x.strip() for x in pos_att_type.lower().split("|" )]
__lowerCAmelCase = pos_att_type
__lowerCAmelCase = vocab_size
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = kwargs.get("pooler_hidden_size" , _A )
__lowerCAmelCase = pooler_dropout
__lowerCAmelCase = pooler_hidden_act
class a__ ( snake_case__ ):
@property
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
if self.task == "multiple-choice":
__lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"}
else:
__lowerCAmelCase = {0: "batch", 1: "sequence"}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] )
else:
return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] )
@property
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
return 1_2
def __SCREAMING_SNAKE_CASE( self , _A , _A = -1 , _A = -1 , _A = -1 , _A = False , _A = None , _A = 3 , _A = 4_0 , _A = 4_0 , _A = None , ):
"""simple docstring"""
__lowerCAmelCase = super().generate_dummy_inputs(preprocessor=_A , framework=_A )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 92
|
"""simple docstring"""
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
_a : List[Any]= re.compile(R"\s+")
def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> int:
'''simple docstring'''
return {"hash": hashlib.mda(re.sub(UpperCAmelCase_ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()}
def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Optional[int]:
'''simple docstring'''
__snake_case : Any = [len(UpperCAmelCase_ ) for line in example['content'].splitlines()]
return {"line_mean": np.mean(UpperCAmelCase_ ), "line_max": max(UpperCAmelCase_ )}
def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] ) -> str:
'''simple docstring'''
__snake_case : Tuple = np.mean([c.isalnum() for c in example['content']] )
return {"alpha_frac": alpha_frac}
def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ) -> List[str]:
'''simple docstring'''
if example["hash"] in uniques:
uniques.remove(example['hash'] )
return True
else:
return False
def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=5 ) -> str:
'''simple docstring'''
__snake_case : Tuple = ['auto-generated', 'autogenerated', 'automatically generated']
__snake_case : Tuple = example['content'].splitlines()
for _, line in zip(range(UpperCAmelCase_ ) , UpperCAmelCase_ ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : Optional[int]=0.05 ) -> Optional[Any]:
'''simple docstring'''
__snake_case : List[Any] = ['unit tests', 'test file', 'configuration file']
__snake_case : Tuple = example['content'].splitlines()
__snake_case : Tuple = 0
__snake_case : Any = 0
# first test
for _, line in zip(range(UpperCAmelCase_ ) , UpperCAmelCase_ ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
__snake_case : int = example['content'].count('\n' )
__snake_case : str = int(coeff * nlines )
for line in lines:
count_config += line.lower().count('config' )
count_test += line.lower().count('test' )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Any:
'''simple docstring'''
__snake_case : Any = ['def ', 'class ', 'for ', 'while ']
__snake_case : Optional[int] = example['content'].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=4 ) -> Dict:
'''simple docstring'''
__snake_case : Optional[Any] = example['content'].splitlines()
__snake_case : Tuple = 0
for line in lines:
counter += line.lower().count('=' )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] ) -> Any:
'''simple docstring'''
__snake_case : List[Any] = tokenizer(example['content'] , truncation=UpperCAmelCase_ )['input_ids']
__snake_case : Union[str, Any] = len(example['content'] ) / len(UpperCAmelCase_ )
return {"ratio": ratio}
def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> str:
'''simple docstring'''
__snake_case : List[Any] = {}
results.update(get_hash(UpperCAmelCase_ ) )
results.update(line_stats(UpperCAmelCase_ ) )
results.update(alpha_stats(UpperCAmelCase_ ) )
results.update(char_token_ratio(UpperCAmelCase_ ) )
results.update(is_autogenerated(UpperCAmelCase_ ) )
results.update(is_config_or_test(UpperCAmelCase_ ) )
results.update(has_no_keywords(UpperCAmelCase_ ) )
results.update(has_few_assignments(UpperCAmelCase_ ) )
return results
def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Any:
'''simple docstring'''
if not check_uniques(UpperCAmelCase_ , UpperCAmelCase_ ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Any:
'''simple docstring'''
with open(UpperCAmelCase_ , 'rb' ) as f_in:
with gzip.open(str(UpperCAmelCase_ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out:
shutil.copyfileobj(UpperCAmelCase_ , UpperCAmelCase_ )
os.unlink(UpperCAmelCase_ )
# Settings
_a : int= HfArgumentParser(PreprocessingArguments)
_a : Union[str, Any]= parser.parse_args()
if args.num_workers is None:
_a : str= multiprocessing.cpu_count()
_a : Optional[int]= AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
_a : Tuple= time.time()
_a : Dict= load_dataset(args.dataset_name, split="train")
print(f'''Time to load dataset: {time.time()-t_start:.2f}''')
# Run preprocessing
_a : str= time.time()
_a : int= ds.map(preprocess, num_proc=args.num_workers)
print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''')
# Deduplicate hashes
_a : Tuple= set(ds.unique("hash"))
_a : Optional[int]= len(uniques) / len(ds)
print(f'''Fraction of duplicates: {1-frac:.2%}''')
# Deduplicate data and apply heuristics
_a : Union[str, Any]= time.time()
_a : List[Any]= ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args})
print(f'''Time to filter dataset: {time.time()-t_start:.2f}''')
print(f'''Size of filtered dataset: {len(ds_filter)}''')
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
_a : Tuple= time.time()
_a, _a : Tuple= deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''')
print(f'''Size of deduplicate dataset: {len(ds_filter)}''')
# Save data in batches of samples_per_file
_a : Union[str, Any]= Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / "duplicate_clusters.json", "w") as f:
json.dump(duplicate_clusters, f)
_a : List[Any]= output_dir / "data"
data_dir.mkdir(exist_ok=True)
_a : Tuple= time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
_a : List[str]= str(data_dir / f'''file-{file_number+1:012}.json''')
_a : List[str]= min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
| 172
| 0
|
"""simple docstring"""
def lowerCAmelCase__ ( _UpperCamelCase : int ) -> bool:
"""simple docstring"""
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
snake_case = f"""Input value of [number={number}] must be an integer"""
raise TypeError(_UpperCamelCase )
if number < 0:
return False
snake_case = number * number
while number > 0:
if number % 1_0 != number_square % 1_0:
return False
number //= 1_0
number_square //= 1_0
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 149
|
"""simple docstring"""
def lowerCAmelCase__ ( _UpperCamelCase : str ) -> bool:
"""simple docstring"""
if not all(x.isalpha() for x in string ):
raise ValueError('String must only contain alphabetic characters.' )
snake_case = sorted(string.lower() )
return len(_UpperCamelCase ) == len(set(_UpperCamelCase ) )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = input("Enter a string ").strip()
SCREAMING_SNAKE_CASE__ = is_isogram(input_str)
print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
| 149
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ : List[str] = {
'configuration_longformer': [
'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LongformerConfig',
'LongformerOnnxConfig',
],
'tokenization_longformer': ['LongformerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = ['LongformerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Optional[int] = [
'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongformerForMaskedLM',
'LongformerForMultipleChoice',
'LongformerForQuestionAnswering',
'LongformerForSequenceClassification',
'LongformerForTokenClassification',
'LongformerModel',
'LongformerPreTrainedModel',
'LongformerSelfAttention',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : List[Any] = [
'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLongformerForMaskedLM',
'TFLongformerForMultipleChoice',
'TFLongformerForQuestionAnswering',
'TFLongformerForSequenceClassification',
'TFLongformerForTokenClassification',
'TFLongformerModel',
'TFLongformerPreTrainedModel',
'TFLongformerSelfAttention',
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
A_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 192
|
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def UpperCamelCase (lowercase_: Optional[int] , lowercase_: Union[str, Any] , lowercase_: Optional[Any] ) -> Tuple:
# Initialise PyTorch model
A__ : str = AlbertConfig.from_json_file(lowercase_ )
print(f"""Building PyTorch model from configuration: {config}""" )
A__ : List[Any] = AlbertForPreTraining(lowercase_ )
# Load weights from tf checkpoint
load_tf_weights_in_albert(lowercase_ , lowercase_ , lowercase_ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowercase_ )
if __name__ == "__main__":
A_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--albert_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained ALBERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
A_ : int = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 192
| 1
|
"""simple docstring"""
from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , snake_case__ = 6 ):
"""simple docstring"""
lowerCAmelCase : Node | None = None
lowerCAmelCase : Node | None = None
self.create_linked_list(snake_case__ )
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : List[Any] = Node()
lowerCAmelCase : Optional[int] = current_node
lowerCAmelCase : Union[str, Any] = current_node
lowerCAmelCase : str = current_node
for _ in range(1 , snake_case__ ):
lowerCAmelCase : Any = Node()
lowerCAmelCase : Dict = current_node
lowerCAmelCase : List[Any] = previous_node
lowerCAmelCase : Optional[Any] = current_node
lowerCAmelCase : Tuple = self.front
lowerCAmelCase : int = previous_node
def lowercase__ ( self ):
"""simple docstring"""
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def lowercase__ ( self ):
"""simple docstring"""
self.check_can_perform_operation()
return self.front.data if self.front else None
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCAmelCase : Tuple = self.rear.next
if self.rear:
lowerCAmelCase : Optional[int] = data
def lowercase__ ( self ):
"""simple docstring"""
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCAmelCase : List[str] = self.front.data
lowerCAmelCase : Optional[Any] = None
return data
lowerCAmelCase : List[Any] = self.front
lowerCAmelCase : Optional[Any] = old_front.next
lowerCAmelCase : Union[str, Any] = old_front.data
lowerCAmelCase : Optional[int] = None
return data
def lowercase__ ( self ):
"""simple docstring"""
if self.is_empty():
raise Exception("Empty Queue" )
def lowercase__ ( self ):
"""simple docstring"""
if self.rear and self.rear.next == self.front:
raise Exception("Full Queue" )
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self ):
"""simple docstring"""
lowerCAmelCase : Any | None = None
lowerCAmelCase : Node | None = None
lowerCAmelCase : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 133
|
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
lowerCAmelCase__ = '''src/diffusers'''
lowerCAmelCase__ = '''.'''
# This is to make sure the diffusers module imported is the one in the repo.
lowerCAmelCase__ = importlib.util.spec_from_file_location(
'''diffusers''',
os.path.join(DIFFUSERS_PATH, '''__init__.py'''),
submodule_search_locations=[DIFFUSERS_PATH],
)
lowerCAmelCase__ = spec.loader.load_module()
def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , SCREAMING_SNAKE_CASE ) is not None
def a__ ( SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
lowerCAmelCase : Dict = object_name.split("." )
lowerCAmelCase : Optional[int] = 0
# First let's find the module where our object lives.
lowerCAmelCase : Any = parts[i]
while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ):
i += 1
if i < len(SCREAMING_SNAKE_CASE ):
lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , parts[i] )
if i >= len(SCREAMING_SNAKE_CASE ):
raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" )
with open(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase : List[Any] = f.readlines()
# Now let's find the class / func in the code!
lowerCAmelCase : List[str] = ""
lowerCAmelCase : int = 0
for name in parts[i + 1 :]:
while (
line_index < len(SCREAMING_SNAKE_CASE ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(SCREAMING_SNAKE_CASE ):
raise ValueError(f""" {object_name} does not match any function or class in {module}.""" )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
lowerCAmelCase : List[str] = line_index
while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
lowerCAmelCase : List[Any] = lines[start_index:line_index]
return "".join(SCREAMING_SNAKE_CASE )
lowerCAmelCase__ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''')
lowerCAmelCase__ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''')
lowerCAmelCase__ = re.compile(r'''<FILL\s+[^>]*>''')
def a__ ( SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
lowerCAmelCase : int = code.split("\n" )
lowerCAmelCase : List[str] = 0
while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(SCREAMING_SNAKE_CASE ):
return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0]
return ""
def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
lowerCAmelCase : List[Any] = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0
if has_indent:
lowerCAmelCase : Tuple = f"""class Bla:\n{code}"""
lowerCAmelCase : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=SCREAMING_SNAKE_CASE )
lowerCAmelCase : Dict = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase : List[Any] = style_docstrings_in_code(SCREAMING_SNAKE_CASE )
return result[len("class Bla:\n" ) :] if has_indent else result
def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int=False ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase : int = f.readlines()
lowerCAmelCase : List[str] = []
lowerCAmelCase : str = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(SCREAMING_SNAKE_CASE ):
lowerCAmelCase : List[Any] = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = search.groups()
lowerCAmelCase : List[str] = find_code_in_diffusers(SCREAMING_SNAKE_CASE )
lowerCAmelCase : Optional[Any] = get_indent(SCREAMING_SNAKE_CASE )
lowerCAmelCase : Dict = line_index + 1 if indent == theoretical_indent else line_index + 2
lowerCAmelCase : Optional[int] = theoretical_indent
lowerCAmelCase : List[str] = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
lowerCAmelCase : str = True
while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue:
line_index += 1
if line_index >= len(SCREAMING_SNAKE_CASE ):
break
lowerCAmelCase : Tuple = lines[line_index]
lowerCAmelCase : str = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , SCREAMING_SNAKE_CASE ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
lowerCAmelCase : Tuple = lines[start_index:line_index]
lowerCAmelCase : List[str] = "".join(SCREAMING_SNAKE_CASE )
# Remove any nested `Copied from` comments to avoid circular copies
lowerCAmelCase : List[str] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None]
lowerCAmelCase : Union[str, Any] = "\n".join(SCREAMING_SNAKE_CASE )
# Before comparing, use the `replace_pattern` on the original code.
if len(SCREAMING_SNAKE_CASE ) > 0:
lowerCAmelCase : str = replace_pattern.replace("with" , "" ).split("," )
lowerCAmelCase : List[str] = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = pattern.groups()
lowerCAmelCase : List[Any] = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if option.strip() == "all-casing":
lowerCAmelCase : Optional[Any] = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE )
lowerCAmelCase : Dict = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
lowerCAmelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code )
lowerCAmelCase : List[str] = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
lowerCAmelCase : Tuple = lines[:start_index] + [theoretical_code] + lines[line_index:]
lowerCAmelCase : int = start_index + 1
if overwrite and len(SCREAMING_SNAKE_CASE ) > 0:
# Warn the user a file has been modified.
print(f"""Detected changes, rewriting {filename}.""" )
with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(SCREAMING_SNAKE_CASE )
return diffs
def a__ ( SCREAMING_SNAKE_CASE : bool = False ):
'''simple docstring'''
lowerCAmelCase : List[Any] = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , "**/*.py" ) , recursive=SCREAMING_SNAKE_CASE )
lowerCAmelCase : str = []
for filename in all_files:
lowerCAmelCase : List[Any] = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs]
if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0:
lowerCAmelCase : List[Any] = "\n".join(SCREAMING_SNAKE_CASE )
raise Exception(
"Found the following copy inconsistencies:\n"
+ diff
+ "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
lowerCAmelCase__ = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 133
| 1
|
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def _a ( a :Tuple ) -> Optional[Any]:
a = 384
a = 7
if "tiny" in model_name:
a = 96
a = (2, 2, 6, 2)
a = (3, 6, 12, 24)
elif "small" in model_name:
a = 96
a = (2, 2, 18, 2)
a = (3, 6, 12, 24)
elif "base" in model_name:
a = 128
a = (2, 2, 18, 2)
a = (4, 8, 16, 32)
a = 12
a = 512
elif "large" in model_name:
a = 192
a = (2, 2, 18, 2)
a = (6, 12, 24, 48)
a = 12
a = 768
# set label information
a = 150
a = '''huggingface/label-files'''
a = '''ade20k-id2label.json'''
a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = {v: k for k, v in idalabel.items()}
a = SwinConfig(
embed_dim=a , depths=a , num_heads=a , window_size=a , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
a = UperNetConfig(
backbone_config=a , auxiliary_in_channels=a , num_labels=a , idalabel=a , labelaid=a , )
return config
def _a ( a :Dict ) -> List[str]:
a = []
# fmt: off
# stem
rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') )
rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') )
rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") )
rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") )
# decode head
rename_keys.extend(
[
('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''),
('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''),
('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''),
('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''),
] )
# fmt: on
return rename_keys
def _a ( a :Optional[int] , a :Optional[Any] , a :List[Any] ) -> Optional[int]:
a = dct.pop(a )
a = val
def _a ( a :Union[str, Any] , a :str ) -> Any:
a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
a = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
a = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" )
a = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
a = in_proj_weight[:dim, :]
a = in_proj_bias[: dim]
a = in_proj_weight[
dim : dim * 2, :
]
a = in_proj_bias[
dim : dim * 2
]
a = in_proj_weight[
-dim :, :
]
a = in_proj_bias[-dim :]
# fmt: on
def _a ( a :List[str] ) -> List[str]:
a , a = x.shape
a = x.reshape(a , 4 , in_channel // 4 )
a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(a , a )
return x
def _a ( a :Optional[Any] ) -> Any:
a , a = x.shape
a = x.reshape(a , in_channel // 4 , 4 )
a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(a , a )
return x
def _a ( a :Dict ) -> Any:
a = x.shape[0]
a = x.reshape(4 , in_channel // 4 )
a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(a )
return x
def _a ( a :Any ) -> List[str]:
a = x.shape[0]
a = x.reshape(in_channel // 4 , 4 )
a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(a )
return x
def _a ( a :Union[str, Any] , a :str , a :Optional[int] ) -> Any:
a = {
'''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''',
'''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''',
'''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''',
'''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''',
}
a = model_name_to_url[model_name]
a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , file_name=a )[
'''state_dict'''
]
for name, param in state_dict.items():
print(a , param.shape )
a = get_upernet_config(a )
a = UperNetForSemanticSegmentation(a )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
a = state_dict.pop(a )
if "bn" in key:
a = key.replace('''bn''' , '''batch_norm''' )
a = val
# rename keys
a = create_rename_keys(a )
for src, dest in rename_keys:
rename_key(a , a , a )
read_in_q_k_v(a , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
a = reverse_correct_unfold_reduction_order(a )
if "norm" in key:
a = reverse_correct_unfold_norm_order(a )
model.load_state_dict(a )
# verify on image
a = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
a = Image.open(requests.get(a , stream=a ).raw ).convert('''RGB''' )
a = SegformerImageProcessor()
a = processor(a , return_tensors='''pt''' ).pixel_values
with torch.no_grad():
a = model(a )
a = outputs.logits
print(logits.shape )
print('''First values of logits:''' , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
a = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] )
elif model_name == "upernet-swin-small":
a = torch.tensor(
[[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] )
elif model_name == "upernet-swin-base":
a = torch.tensor(
[[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] )
elif model_name == "upernet-swin-large":
a = torch.tensor(
[[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] )
print('''Logits:''' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1e-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(a )
print(F"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(a )
if push_to_hub:
print(F"""Pushing model and processor for {model_name} to hub""" )
model.push_to_hub(F"""openmmlab/{model_name}""" )
processor.push_to_hub(F"""openmmlab/{model_name}""" )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
UpperCAmelCase__ = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 0
|
'''simple docstring'''
UpperCamelCase__ : Optional[Any] = [
(10_00, '''M'''),
(9_00, '''CM'''),
(5_00, '''D'''),
(4_00, '''CD'''),
(1_00, '''C'''),
(90, '''XC'''),
(50, '''L'''),
(40, '''XL'''),
(10, '''X'''),
(9, '''IX'''),
(5, '''V'''),
(4, '''IV'''),
(1, '''I'''),
]
def lowerCAmelCase_ ( _lowerCamelCase: str ):
__SCREAMING_SNAKE_CASE : List[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00}
__SCREAMING_SNAKE_CASE : Tuple = 0
__SCREAMING_SNAKE_CASE : str = 0
while place < len(_lowerCamelCase ):
if (place + 1 < len(_lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def lowerCAmelCase_ ( _lowerCamelCase: int ):
__SCREAMING_SNAKE_CASE : Any = []
for arabic, roman in ROMAN:
((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : str = divmod(_lowerCamelCase , _lowerCamelCase )
result.append(roman * factor )
if number == 0:
break
return "".join(_lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 112
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( a_ ):
_A : Optional[int] = ['pixel_values']
def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = 1 / 2_55 , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = True , **snake_case__ , ) -> None:
"""simple docstring"""
super().__init__(**snake_case__ )
UpperCAmelCase = size if size is not None else {"""height""": 3_84, """width""": 3_84}
UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD
UpperCAmelCase = do_convert_rgb
def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' )
UpperCAmelCase = (size["""height"""], size["""width"""])
return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ )
def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> Union[str, Any]:
"""simple docstring"""
return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ )
def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray:
"""simple docstring"""
return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ )
def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ) -> PIL.Image.Image:
"""simple docstring"""
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ )
UpperCAmelCase = make_list_of_images(snake_case__ )
if not valid_images(snake_case__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
UpperCAmelCase = [convert_to_rgb(snake_case__ ) for image in images]
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(snake_case__ ) for image in images]
if do_resize:
UpperCAmelCase = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images]
UpperCAmelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=snake_case__ )
return encoded_outputs
| 248
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False ):
'''simple docstring'''
UpperCAmelCase = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') )
# embeddings
rename_keys.extend(
[
# text embeddings
("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""),
(
"""text_embeddings.position_embeddings.weight""",
"""vilt.embeddings.text_embeddings.position_embeddings.weight""",
),
("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""),
(
"""text_embeddings.token_type_embeddings.weight""",
"""vilt.embeddings.text_embeddings.token_type_embeddings.weight""",
),
("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""),
("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""),
# patch embeddings
("""transformer.cls_token""", """vilt.embeddings.cls_token"""),
("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""),
("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""),
("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""),
# token type embeddings
("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""),
] )
# final layernorm + pooler
rename_keys.extend(
[
("""transformer.norm.weight""", """vilt.layernorm.weight"""),
("""transformer.norm.bias""", """vilt.layernorm.bias"""),
("""pooler.dense.weight""", """vilt.pooler.dense.weight"""),
("""pooler.dense.bias""", """vilt.pooler.dense.bias"""),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
("""vqa_classifier.0.weight""", """classifier.0.weight"""),
("""vqa_classifier.0.bias""", """classifier.0.bias"""),
("""vqa_classifier.1.weight""", """classifier.1.weight"""),
("""vqa_classifier.1.bias""", """classifier.1.bias"""),
("""vqa_classifier.3.weight""", """classifier.3.weight"""),
("""vqa_classifier.3.bias""", """classifier.3.bias"""),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
("""nlvr2_classifier.0.weight""", """classifier.0.weight"""),
("""nlvr2_classifier.0.bias""", """classifier.0.bias"""),
("""nlvr2_classifier.1.weight""", """classifier.1.weight"""),
("""nlvr2_classifier.1.bias""", """classifier.1.bias"""),
("""nlvr2_classifier.3.weight""", """classifier.3.weight"""),
("""nlvr2_classifier.3.bias""", """classifier.3.bias"""),
] )
else:
pass
return rename_keys
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
UpperCAmelCase = """vilt."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase = in_proj_bias[: config.hidden_size]
UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase , lowerCAmelCase )
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase = dct.pop(lowerCAmelCase )
UpperCAmelCase = val
@torch.no_grad()
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowerCAmelCase )
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
if "vqa" in checkpoint_url:
UpperCAmelCase = True
UpperCAmelCase = 3129
UpperCAmelCase = """huggingface/label-files"""
UpperCAmelCase = """vqa2-id2label.json"""
UpperCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
UpperCAmelCase = ViltForQuestionAnswering(lowerCAmelCase )
elif "nlvr" in checkpoint_url:
UpperCAmelCase = True
UpperCAmelCase = 2
UpperCAmelCase = {0: """False""", 1: """True"""}
UpperCAmelCase = {v: k for k, v in config.idalabel.items()}
UpperCAmelCase = 3
UpperCAmelCase = ViltForImagesAndTextClassification(lowerCAmelCase )
elif "irtr" in checkpoint_url:
UpperCAmelCase = True
UpperCAmelCase = ViltForImageAndTextRetrieval(lowerCAmelCase )
elif "mlm_itm" in checkpoint_url:
UpperCAmelCase = True
UpperCAmelCase = ViltForMaskedLM(lowerCAmelCase )
else:
raise ValueError("""Unknown model type""" )
# load state_dict of original model, remove and rename some keys
UpperCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" )["""state_dict"""]
UpperCAmelCase = create_rename_keys(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
for src, dest in rename_keys:
rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
read_in_q_k_v(lowerCAmelCase , lowerCAmelCase )
if mlm_model or irtr_model:
UpperCAmelCase = ["""itm_score.fc.weight""", """itm_score.fc.bias"""]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase , lowerCAmelCase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
UpperCAmelCase , UpperCAmelCase = model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(lowerCAmelCase )
# Define processor
UpperCAmelCase = ViltImageProcessor(size=384 )
UpperCAmelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" )
UpperCAmelCase = ViltProcessor(lowerCAmelCase , lowerCAmelCase )
# Forward pass on example inputs (image + text)
if nlvr_model:
UpperCAmelCase = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCAmelCase ).raw )
UpperCAmelCase = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCAmelCase ).raw )
UpperCAmelCase = (
"""The left image contains twice the number of dogs as the right image, and at least two dogs in total are"""
""" standing."""
)
UpperCAmelCase = processor(lowerCAmelCase , lowerCAmelCase , return_tensors="""pt""" )
UpperCAmelCase = processor(lowerCAmelCase , lowerCAmelCase , return_tensors="""pt""" )
UpperCAmelCase = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
UpperCAmelCase = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=lowerCAmelCase ).raw )
if mlm_model:
UpperCAmelCase = """a bunch of [MASK] laying on a [MASK]."""
else:
UpperCAmelCase = """How many cats are there?"""
UpperCAmelCase = processor(lowerCAmelCase , lowerCAmelCase , return_tensors="""pt""" )
UpperCAmelCase = model(**lowerCAmelCase )
# Verify outputs
if mlm_model:
UpperCAmelCase = torch.Size([1, 11, 30522] )
UpperCAmelCase = torch.tensor([-12.50_61, -12.51_23, -12.51_74] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase , atol=1e-4 )
# verify masked token prediction equals "cats"
UpperCAmelCase = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
UpperCAmelCase = torch.Size([1, 3129] )
UpperCAmelCase = torch.tensor([-15.94_95, -18.14_72, -10.30_41] )
assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase , atol=1e-4 )
# verify vqa prediction equals "2"
UpperCAmelCase = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
UpperCAmelCase = torch.Size([1, 2] )
UpperCAmelCase = torch.tensor([-2.87_21, 2.12_91] )
assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase )
print(F'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCAmelCase )
processor.save_pretrained(lowerCAmelCase )
if __name__ == "__main__":
lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
lowerCAmelCase_ : Optional[Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 248
| 1
|
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCAmelCase :
def __init__(self : Tuple , snake_case__ : int , snake_case__ : Optional[int]=13 , snake_case__ : List[Any]=7 , snake_case__ : Tuple=True , snake_case__ : List[Any]=True , snake_case__ : Union[str, Any]=99 , snake_case__ : Any=32 , snake_case__ : Optional[Any]=5 , snake_case__ : Any=4 , snake_case__ : str=37 , snake_case__ : Optional[int]="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : int=50 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=True , snake_case__ : List[Any]=None , ) -> Tuple:
'''simple docstring'''
snake_case : Optional[Any] = parent
snake_case : Optional[int] = batch_size
snake_case : Optional[int] = seq_length
snake_case : List[Any] = is_training
snake_case : List[Any] = use_input_mask
snake_case : Optional[int] = vocab_size
snake_case : Optional[int] = hidden_size
snake_case : List[Any] = num_hidden_layers
snake_case : List[str] = num_attention_heads
snake_case : Optional[Any] = intermediate_size
snake_case : Optional[Any] = hidden_act
snake_case : str = hidden_dropout_prob
snake_case : Optional[Any] = attention_probs_dropout_prob
snake_case : Union[str, Any] = max_position_embeddings
snake_case : List[str] = initializer_range
snake_case : Optional[Any] = use_labels
snake_case : Dict = scope
def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]:
'''simple docstring'''
snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case : List[Any] = None
if self.use_input_mask:
snake_case : int = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case : Optional[Any] = self.get_config()
return config, input_ids, input_mask, token_labels
def _SCREAMING_SNAKE_CASE (self : int ) -> int:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=snake_case__ , initializer_range=self.initializer_range , )
def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Dict:
'''simple docstring'''
(
(
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) ,
) : Tuple = self.prepare_config_and_inputs()
snake_case : Any = True
snake_case : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : Tuple , snake_case__ : int , **snake_case__ : int , ) -> str:
'''simple docstring'''
snake_case : int = BertGenerationEncoder(config=snake_case__ )
model.to(snake_case__ )
model.eval()
snake_case : str = model(snake_case__ , attention_mask=snake_case__ )
snake_case : List[Any] = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : int , **snake_case__ : Optional[Any] , ) -> Optional[Any]:
'''simple docstring'''
snake_case : str = True
snake_case : int = BertGenerationEncoder(config=snake_case__ )
model.to(snake_case__ )
model.eval()
snake_case : Dict = model(
snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , )
snake_case : Optional[Any] = model(
snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : str , **snake_case__ : str , ) -> Dict:
'''simple docstring'''
snake_case : Optional[int] = True
snake_case : Union[str, Any] = True
snake_case : Optional[int] = BertGenerationDecoder(config=snake_case__ ).to(snake_case__ ).eval()
# first forward pass
snake_case : Optional[Any] = model(
snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , )
snake_case : Any = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
snake_case : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
snake_case : Tuple = model(
snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0]
snake_case : Dict = model(
snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0]
# select random slice
snake_case : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) )
def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Optional[Any] , *snake_case__ : List[Any] , ) -> str:
'''simple docstring'''
snake_case : str = BertGenerationDecoder(snake_case__ )
model.to(snake_case__ )
model.eval()
snake_case : Optional[Any] = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
snake_case , snake_case , snake_case , snake_case : List[Any] = self.prepare_config_and_inputs()
snake_case : Dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ):
A__ : str = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
A__ : Any = (BertGenerationDecoder,) if is_torch_available() else ()
A__ : str = (
{"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder}
if is_torch_available()
else {}
)
def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any:
'''simple docstring'''
snake_case : Dict = BertGenerationEncoderTester(self )
snake_case : List[Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=37 )
def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any:
'''simple docstring'''
snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int:
'''simple docstring'''
snake_case , snake_case , snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
snake_case : List[Any] = "bert"
self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> int:
'''simple docstring'''
snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*snake_case__ )
def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict:
'''simple docstring'''
snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case__ )
def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any:
'''simple docstring'''
(
(
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) ,
) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
snake_case : Dict = None
self.model_tester.create_and_check_model_as_decoder(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , )
def _SCREAMING_SNAKE_CASE (self : int ) -> int:
'''simple docstring'''
snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*snake_case__ )
@slow
def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case : Optional[int] = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
self.assertIsNotNone(snake_case__ )
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Any:
'''simple docstring'''
snake_case : Tuple = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
snake_case : Dict = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] )
with torch.no_grad():
snake_case : List[str] = model(snake_case__ )[0]
snake_case : List[str] = torch.Size([1, 8, 10_24] )
self.assertEqual(output.shape , snake_case__ )
snake_case : int = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Tuple:
'''simple docstring'''
snake_case : List[Any] = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
snake_case : List[str] = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] )
with torch.no_grad():
snake_case : List[Any] = model(snake_case__ )[0]
snake_case : List[Any] = torch.Size([1, 8, 5_03_58] )
self.assertEqual(output.shape , snake_case__ )
snake_case : Union[str, Any] = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
| 59
|
"""simple docstring"""
__lowercase = {
"""Pillow""": """Pillow<10.0.0""",
"""accelerate""": """accelerate>=0.20.3""",
"""av""": """av==9.2.0""",
"""beautifulsoup4""": """beautifulsoup4""",
"""black""": """black~=23.1""",
"""codecarbon""": """codecarbon==1.2.0""",
"""cookiecutter""": """cookiecutter==1.7.3""",
"""dataclasses""": """dataclasses""",
"""datasets""": """datasets!=2.5.0""",
"""decord""": """decord==0.6.0""",
"""deepspeed""": """deepspeed>=0.9.3""",
"""diffusers""": """diffusers""",
"""dill""": """dill<0.3.5""",
"""evaluate""": """evaluate>=0.2.0""",
"""fairscale""": """fairscale>0.3""",
"""faiss-cpu""": """faiss-cpu""",
"""fastapi""": """fastapi""",
"""filelock""": """filelock""",
"""flax""": """flax>=0.4.1,<=0.7.0""",
"""ftfy""": """ftfy""",
"""fugashi""": """fugashi>=1.0""",
"""GitPython""": """GitPython<3.1.19""",
"""hf-doc-builder""": """hf-doc-builder>=0.3.0""",
"""huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""",
"""importlib_metadata""": """importlib_metadata""",
"""ipadic""": """ipadic>=1.0.0,<2.0""",
"""isort""": """isort>=5.5.4""",
"""jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""",
"""jaxlib""": """jaxlib>=0.1.65,<=0.4.13""",
"""jieba""": """jieba""",
"""kenlm""": """kenlm""",
"""keras-nlp""": """keras-nlp>=0.3.1""",
"""librosa""": """librosa""",
"""nltk""": """nltk""",
"""natten""": """natten>=0.14.6""",
"""numpy""": """numpy>=1.17""",
"""onnxconverter-common""": """onnxconverter-common""",
"""onnxruntime-tools""": """onnxruntime-tools>=1.4.2""",
"""onnxruntime""": """onnxruntime>=1.4.0""",
"""opencv-python""": """opencv-python""",
"""optuna""": """optuna""",
"""optax""": """optax>=0.0.8,<=0.1.4""",
"""packaging""": """packaging>=20.0""",
"""parameterized""": """parameterized""",
"""phonemizer""": """phonemizer""",
"""protobuf""": """protobuf""",
"""psutil""": """psutil""",
"""pyyaml""": """pyyaml>=5.1""",
"""pydantic""": """pydantic<2""",
"""pytest""": """pytest>=7.2.0""",
"""pytest-timeout""": """pytest-timeout""",
"""pytest-xdist""": """pytest-xdist""",
"""python""": """python>=3.8.0""",
"""ray[tune]""": """ray[tune]""",
"""regex""": """regex!=2019.12.17""",
"""requests""": """requests""",
"""rhoknp""": """rhoknp>=1.1.0,<1.3.1""",
"""rjieba""": """rjieba""",
"""rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""",
"""ruff""": """ruff>=0.0.241,<=0.0.259""",
"""sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""",
"""sacremoses""": """sacremoses""",
"""safetensors""": """safetensors>=0.3.1""",
"""sagemaker""": """sagemaker>=2.31.0""",
"""scikit-learn""": """scikit-learn""",
"""sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""",
"""sigopt""": """sigopt""",
"""starlette""": """starlette""",
"""sudachipy""": """sudachipy>=0.6.6""",
"""sudachidict_core""": """sudachidict_core>=20220729""",
"""tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""",
"""tensorflow""": """tensorflow>=2.6,<2.14""",
"""tensorflow-text""": """tensorflow-text<2.14""",
"""tf2onnx""": """tf2onnx""",
"""timeout-decorator""": """timeout-decorator""",
"""timm""": """timm""",
"""tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""",
"""torch""": """torch>=1.9,!=1.12.0""",
"""torchaudio""": """torchaudio""",
"""torchvision""": """torchvision""",
"""pyctcdecode""": """pyctcdecode>=0.4.0""",
"""tqdm""": """tqdm>=4.27""",
"""unidic""": """unidic>=1.0.2""",
"""unidic_lite""": """unidic_lite>=1.0.7""",
"""urllib3""": """urllib3<2.0.0""",
"""uvicorn""": """uvicorn""",
}
| 40
| 0
|
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def __lowercase ( __lowercase , __lowercase ) -> Generator[tuple[str, ...], None, None]:
'''simple docstring'''
_A = iter(__lowercase )
while True:
_A = tuple(itertools.islice(__lowercase , __lowercase ) )
if not chunk:
return
yield chunk
def __lowercase ( __lowercase ) -> str:
'''simple docstring'''
_A = "".join([c.upper() for c in dirty if c in string.ascii_letters] )
_A = ""
if len(__lowercase ) < 2:
return dirty
for i in range(len(__lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(__lowercase ) & 1:
clean += "X"
return clean
def __lowercase ( __lowercase ) -> list[str]:
'''simple docstring'''
_A = "ABCDEFGHIKLMNOPQRSTUVWXYZ"
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_A = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(__lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(__lowercase )
return table
def __lowercase ( __lowercase , __lowercase ) -> str:
'''simple docstring'''
_A = generate_table(__lowercase )
_A = prepare_input(__lowercase )
_A = ""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(__lowercase , 2 ):
_A , _A = divmod(table.index(__lowercase ) , 5 )
_A , _A = divmod(table.index(__lowercase ) , 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def __lowercase ( __lowercase , __lowercase ) -> str:
'''simple docstring'''
_A = generate_table(__lowercase )
_A = ""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(__lowercase , 2 ):
_A , _A = divmod(table.index(__lowercase ) , 5 )
_A , _A = divmod(table.index(__lowercase ) , 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 174
|
'''simple docstring'''
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def __lowercase ( __lowercase ) -> int:
'''simple docstring'''
if not is_accelerate_available():
return method
_A = version.parse(accelerate.__version__ ).base_version
if version.parse(__lowercase ) < version.parse("0.17.0" ):
return method
def wrapper(self , *__lowercase , **__lowercase ):
if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ):
self._hf_hook.pre_forward(self )
return method(self , *__lowercase , **__lowercase )
return wrapper
| 174
| 1
|
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : Dict = {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json',
'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json',
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json'
),
}
class __UpperCAmelCase ( A__ ):
'''simple docstring'''
__lowerCAmelCase = '''longformer'''
def __init__(self : Dict , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3_0522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1e-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : str , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
A = attention_window
A = sep_token_id
A = bos_token_id
A = eos_token_id
A = vocab_size
A = hidden_size
A = num_hidden_layers
A = num_attention_heads
A = hidden_act
A = intermediate_size
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = max_position_embeddings
A = type_vocab_size
A = initializer_range
A = layer_norm_eps
A = onnx_export
class __UpperCAmelCase ( A__ ):
'''simple docstring'''
def __init__(self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
A = True
@property
def A (self : Any ):
if self.task == "multiple-choice":
A = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
A = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""global_attention_mask""", dynamic_axis),
] )
@property
def A (self : Optional[Any] ):
A = super().outputs
if self.task == "default":
A = {0: """batch"""}
return outputs
@property
def A (self : str ):
return 1e-4
@property
def A (self : Tuple ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 14 )
def A (self : Union[str, Any] , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ):
A = super().generate_dummy_inputs(
preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
A = torch.zeros_like(inputs["""input_ids"""] )
# make every second token global
A = 1
return inputs
| 258
|
'''simple docstring'''
import datasets
from .evaluate import evaluate
_lowerCamelCase : List[str] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n'
_lowerCamelCase : List[Any] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n'
_lowerCamelCase : Dict = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def A (self : int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": {
"""id""": datasets.Value("""string""" ),
"""prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ),
},
"""references""": {
"""id""": datasets.Value("""string""" ),
"""answers""": datasets.features.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
},
} ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , )
def A (self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ):
A = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions}
A = [
{
"""paragraphs""": [
{
"""qas""": [
{
"""answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]],
"""id""": ref["""id"""],
}
for ref in references
]
}
]
}
]
A = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase )
return score
| 258
| 1
|
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
def UpperCamelCase_( snake_case__: Dict , snake_case__: Tuple , snake_case__: List[Any] , snake_case__: Optional[int] , snake_case__: Union[str, Any] ) -> Tuple:
for attribute in key.split('.' ):
UpperCAmelCase__ = getattr(_A , _A )
if weight_type is not None:
UpperCAmelCase__ = getattr(_A , _A ).shape
else:
UpperCAmelCase__ = hf_pointer.shape
assert hf_shape == value.shape, (
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}"
)
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def UpperCamelCase_( snake_case__: int , snake_case__: str , snake_case__: Optional[int] ) -> List[str]:
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
_A , _A , _A , _A , hf_model.config.feat_extract_norm == 'group' , )
UpperCAmelCase__ = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase__ = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key
if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned):
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(_A )[0].split('.' )[-2]
UpperCAmelCase__ = mapped_key.replace('*' , _A )
if "weight_g" in name:
UpperCAmelCase__ = 'weight_g'
elif "weight_v" in name:
UpperCAmelCase__ = 'weight_v'
elif "weight" in name:
UpperCAmelCase__ = 'weight'
elif "bias" in name:
UpperCAmelCase__ = 'bias'
else:
UpperCAmelCase__ = None
set_recursively(_A , _A , _A , _A , _A )
continue
if not is_used:
unused_weights.append(_A )
logger.warning(f"Unused weights: {unused_weights}" )
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: str , snake_case__: Optional[int] , snake_case__: Dict , snake_case__: Tuple ) -> Optional[Any]:
UpperCAmelCase__ = full_name.split('conv_layers.' )[-1]
UpperCAmelCase__ = name.split('.' )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(_A )
@torch.no_grad()
def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Dict , snake_case__: str=None , snake_case__: Tuple=None , snake_case__: Tuple=True ) -> List[str]:
if config_path is not None:
UpperCAmelCase__ = HubertConfig.from_pretrained(_A )
else:
UpperCAmelCase__ = HubertConfig()
if is_finetuned:
if dict_path:
UpperCAmelCase__ = Dictionary.load(_A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase__ = target_dict.pad_index
UpperCAmelCase__ = target_dict.bos_index
UpperCAmelCase__ = target_dict.eos_index
UpperCAmelCase__ = len(target_dict.symbols )
UpperCAmelCase__ = os.path.join(_A , 'vocab.json' )
if not os.path.isdir(_A ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_A ) )
return
os.makedirs(_A , exist_ok=_A )
with open(_A , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(target_dict.indices , _A )
UpperCAmelCase__ = WavaVecaCTCTokenizer(
_A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_A , )
UpperCAmelCase__ = True if config.feat_extract_norm == 'layer' else False
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , )
UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A )
processor.save_pretrained(_A )
UpperCAmelCase__ = HubertForCTC(_A )
else:
UpperCAmelCase__ = HubertModel(_A )
if is_finetuned:
UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
UpperCAmelCase__ = model[0].eval()
recursively_load_weights(_A , _A , _A )
hf_wavavec.save_pretrained(_A )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
_UpperCamelCase = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 358
|
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple:
UpperCAmelCase__ = OmegaConf.load(snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'first_stage_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'model.diffusion_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
UpperCAmelCase__ = config.model.params.first_stage_config.params
UpperCAmelCase__ = config.model.params.unet_config.params
UpperCAmelCase__ = VQModel(**snake_case__ ).eval()
vqvae.load_state_dict(snake_case__ )
UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval()
unet.load_state_dict(snake_case__ )
UpperCAmelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , )
UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ )
pipeline.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
_UpperCamelCase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 335
| 0
|
lowercase__ : Optional[int] = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 328
|
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]:
'''simple docstring'''
super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = Sql(
cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
self.builder.download_and_prepare(
download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , )
# Build dataset for splits
__UpperCamelCase = self.builder.as_dataset(
split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory )
return dataset
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]:
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(F"num_proc {num_proc} must be an integer > 0." )
__UpperCamelCase = dataset
__UpperCamelCase = name
__UpperCamelCase = con
__UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__UpperCamelCase = num_proc
__UpperCamelCase = to_sql_kwargs
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs )
return written
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args
__UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs
__UpperCamelCase = query_table(
table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__UpperCamelCase = batch.to_pandas()
__UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
return num_rows or len(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
__UpperCamelCase = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += num_rows
return written
| 328
| 1
|
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
SCREAMING_SNAKE_CASE_ = 16
SCREAMING_SNAKE_CASE_ = 32
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> str:
return int(x / 2**20 )
class a :
def __enter__( self ):
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
_UpperCAmelCase : Union[str, Any] = torch.cuda.memory_allocated()
return self
def __exit__( self , *A_ ):
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
_UpperCAmelCase : List[str] = torch.cuda.memory_allocated()
_UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated()
_UpperCAmelCase : Optional[int] = bamb(self.end - self.begin )
_UpperCAmelCase : str = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Accelerator , lowerCAmelCase: int = 16 , lowerCAmelCase: str = "bert-base-cased" , lowerCAmelCase: int = 320 , lowerCAmelCase: int = 160 , ) -> Any:
_UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase )
_UpperCAmelCase : List[Any] = load_dataset(
"glue" , "mrpc" , split={"train": F'train[:{n_train}]', "validation": F'validation[:{n_val}]'} )
def tokenize_function(lowerCAmelCase: Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
_UpperCAmelCase : Tuple = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase , max_length=lowerCAmelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
_UpperCAmelCase : int = datasets.map(
lowerCAmelCase , batched=lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=lowerCAmelCase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(lowerCAmelCase: Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" )
return tokenizer.pad(lowerCAmelCase , padding="longest" , return_tensors="pt" )
# Instantiate dataloaders.
_UpperCAmelCase : Dict = DataLoader(
tokenized_datasets["train"] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase )
_UpperCAmelCase : Union[str, Any] = DataLoader(
tokenized_datasets["validation"] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase )
return train_dataloader, eval_dataloader
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Optional[int] ) -> str:
# Initialize accelerator
_UpperCAmelCase : List[str] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_UpperCAmelCase : str = config["lr"]
_UpperCAmelCase : int = int(config["num_epochs"] )
_UpperCAmelCase : Dict = int(config["seed"] )
_UpperCAmelCase : Optional[Any] = int(config["batch_size"] )
_UpperCAmelCase : Dict = args.model_name_or_path
set_seed(lowerCAmelCase )
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_dataloaders(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_UpperCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase , return_dict=lowerCAmelCase )
# Instantiate optimizer
_UpperCAmelCase : Tuple = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
_UpperCAmelCase : Tuple = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase )
if accelerator.state.deepspeed_plugin is not None:
_UpperCAmelCase : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
_UpperCAmelCase : List[str] = 1
_UpperCAmelCase : Optional[Any] = (len(lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
_UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase , num_warmup_steps=0 , num_training_steps=lowerCAmelCase , )
else:
_UpperCAmelCase : int = DummyScheduler(lowerCAmelCase , total_num_steps=lowerCAmelCase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = accelerator.prepare(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
# We need to keep track of how many total steps we have iterated over
_UpperCAmelCase : Any = 0
# We also need to keep track of the stating epoch so files are named properly
_UpperCAmelCase : List[str] = 0
# Now we train the model
_UpperCAmelCase : int = {}
for epoch in range(lowerCAmelCase , lowerCAmelCase ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(lowerCAmelCase ):
_UpperCAmelCase : List[Any] = model(**lowerCAmelCase )
_UpperCAmelCase : Optional[Any] = outputs.loss
_UpperCAmelCase : Union[str, Any] = loss / gradient_accumulation_steps
accelerator.backward(lowerCAmelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) )
accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) )
accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) )
accelerator.print(
"Total Peak Memory consumed during the train (max): {}".format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
_UpperCAmelCase : Tuple = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[F'epoch-{epoch}'] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f:
json.dump(lowerCAmelCase , lowerCAmelCase )
def __SCREAMING_SNAKE_CASE ( ) -> int:
_UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." )
parser.add_argument(
"--model_name_or_path" , type=lowerCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowerCAmelCase , )
parser.add_argument(
"--output_dir" , type=lowerCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--peak_memory_upper_bound" , type=lowerCAmelCase , default=lowerCAmelCase , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , )
parser.add_argument(
"--n_train" , type=lowerCAmelCase , default=320 , help="Number of training examples to use." , )
parser.add_argument(
"--n_val" , type=lowerCAmelCase , default=160 , help="Number of validation examples to use." , )
parser.add_argument(
"--num_epochs" , type=lowerCAmelCase , default=1 , help="Number of train epochs." , )
_UpperCAmelCase : List[Any] = parser.parse_args()
_UpperCAmelCase : Optional[int] = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(lowerCAmelCase , lowerCAmelCase )
if __name__ == "__main__":
main()
| 189
|
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str ) -> bool:
_UpperCAmelCase : Optional[Any] = len(lowerCAmelCase ) + 1
_UpperCAmelCase : Optional[int] = len(lowerCAmelCase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
_UpperCAmelCase : List[str] = [[0 for i in range(lowerCAmelCase )] for j in range(lowerCAmelCase )]
# since string of zero length match pattern of zero length
_UpperCAmelCase : List[Any] = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , lowerCAmelCase ):
_UpperCAmelCase : Dict = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , lowerCAmelCase ):
_UpperCAmelCase : Tuple = dp[0][j - 2] if pattern[j - 1] == "*" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , lowerCAmelCase ):
for j in range(1 , lowerCAmelCase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
_UpperCAmelCase : Optional[Any] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
_UpperCAmelCase : List[str] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
_UpperCAmelCase : str = dp[i - 1][j]
else:
_UpperCAmelCase : int = 0
else:
_UpperCAmelCase : List[Any] = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
SCREAMING_SNAKE_CASE_ = 'aab'
SCREAMING_SNAKE_CASE_ = 'c*a*b'
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'''{input_string} matches the given pattern {pattern}''')
else:
print(F'''{input_string} does not match with the given pattern {pattern}''')
| 189
| 1
|
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
a__ : Union[str, Any] =logging.get_logger(__name__)
class snake_case ( __lowerCamelCase ):
"""simple docstring"""
def __init__( self : List[Any] , *__A : str , **__A : Optional[Any] ):
warnings.warn(
'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use GLPNImageProcessor instead.' , __A , )
super().__init__(*__A , **__A )
| 53
|
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def UpperCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None ):
"""simple docstring"""
if attention_mask is None:
__lowercase = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class _UpperCamelCase :
"""simple docstring"""
__a : Tuple = OPTConfig
__a : int = {}
__a : Dict = '''gelu'''
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=20 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=16 , lowerCAmelCase__=16 , ) -> Tuple:
'''simple docstring'''
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = eos_token_id
__lowercase = pad_token_id
__lowercase = bos_token_id
__lowercase = embed_dim
__lowercase = word_embed_proj_dim
__lowercase = False
def _SCREAMING_SNAKE_CASE ( self ) -> Dict:
'''simple docstring'''
__lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__lowercase = tf.concat([input_ids, eos_tensor] , axis=1 )
__lowercase = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase__ , **self.config_updates , )
__lowercase = prepare_opt_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ )
return config, inputs_dict
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int:
'''simple docstring'''
__lowercase = TFOPTModel(config=lowerCAmelCase__ )
__lowercase = inputs_dict['''input_ids''']
__lowercase = input_ids[:1, :]
__lowercase = inputs_dict['''attention_mask'''][:1, :]
__lowercase = 1
# first forward pass
__lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ )
__lowercase , __lowercase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__lowercase = tf.concat([input_ids, next_tokens] , axis=-1 )
__lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
__lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__lowercase = output_from_no_past[:, -3:, random_slice_idx]
__lowercase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 )
@require_tf
class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ):
"""simple docstring"""
__a : int = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
__a : Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else ()
__a : Dict = (
{'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {}
)
__a : List[str] = False
__a : Optional[Any] = False
__a : Union[str, Any] = False
__a : List[Any] = 10
def _SCREAMING_SNAKE_CASE ( self ) -> Tuple:
'''simple docstring'''
__lowercase = TFOPTModelTester(self )
__lowercase = ConfigTester(self , config_class=lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self ) -> Tuple:
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowerCAmelCase__ , lowerCAmelCase__ ):
if hasattr(lowerCAmelCase__ , '''weight''' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowerCAmelCase__ , '''weight''' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
__lowercase = model_class(config=lowerCAmelCase__ )
__lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() )
__lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowerCAmelCase__ )
__lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() )
__lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
__lowercase = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase__ )
# check that weights remain the same after resizing
__lowercase = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
__lowercase = False
self.assertTrue(lowerCAmelCase__ )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase__ )
__lowercase = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
__lowercase = False
self.assertTrue(lowerCAmelCase__ )
def UpperCAmelCase ( lowercase ):
"""simple docstring"""
return tf.constant(lowercase , dtype=tf.intaa )
@require_tf
class _UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
__a : List[str] = 99
def _SCREAMING_SNAKE_CASE ( self ) -> Dict:
'''simple docstring'''
__lowercase = tf.ones((4, 1) , dtype=tf.intaa ) * 2
__lowercase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
__lowercase = input_ids.shape[0]
__lowercase = OPTConfig(
vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class _UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _SCREAMING_SNAKE_CASE ( self ) -> Dict:
'''simple docstring'''
__lowercase = TFOPTModel.from_pretrained('''facebook/opt-350m''' )
__lowercase = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] )
__lowercase = tf.not_equal(lowerCAmelCase__ , model.config.pad_token_id )
with tf.GradientTape():
__lowercase = model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).last_hidden_state
__lowercase = (1, 11, 5_12)
self.assertEqual(output.shape , lowerCAmelCase__ )
__lowercase = tf.constant(
[[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-3 ) )
__lowercase = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ )
__lowercase = xla_generate(lowerCAmelCase__ , lowerCAmelCase__ )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-2 ) )
@require_tf
@slow
class _UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
def _SCREAMING_SNAKE_CASE ( self ) -> str:
'''simple docstring'''
super().setUp()
__lowercase = '''facebook/opt-350m'''
def _SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
__lowercase = TFOPTForCausalLM.from_pretrained(self.path_model )
__lowercase = GPTaTokenizer.from_pretrained(self.path_model )
__lowercase = [
'''Today is a beautiful day and I want to''',
'''In the city of''',
'''Paris is the capital of France and''',
'''Computers and mobile phones have taken''',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
__lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
__lowercase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
__lowercase = tf.constant(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
] )
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) )
__lowercase = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ )
__lowercase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) )
@require_tf
@slow
class _UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _SCREAMING_SNAKE_CASE ( self ) -> Dict:
'''simple docstring'''
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
'''simple docstring'''
__lowercase = '''facebook/opt-125m'''
__lowercase = [
'''Today is a beautiful day and I want to''',
'''In the city of New York, the city''',
'''Paris is the capital of France and the capital''',
'''Computers and mobile phones have taken over the''',
]
__lowercase = []
__lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ )
__lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ )
for prompt in self.prompts:
__lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids
__lowercase = model.generate(lowerCAmelCase__ , max_length=10 )
__lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
predicted_outputs += generated_string
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self ) -> int:
'''simple docstring'''
__lowercase = '''facebook/opt-350m'''
__lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ )
__lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ )
__lowercase = '''left'''
# use different length sentences to test batching
__lowercase = [
'''Hello, my dog is a little''',
'''Today, I''',
]
__lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ )
__lowercase = inputs['''input_ids''']
__lowercase = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs['''attention_mask'''] )
__lowercase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids
__lowercase = model.generate(input_ids=lowerCAmelCase__ )
__lowercase = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) )
__lowercase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids
__lowercase = model.generate(input_ids=lowerCAmelCase__ , max_length=model.config.max_length - num_paddings )
__lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
__lowercase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
__lowercase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
__lowercase = [
'''Hello, my dog is a little bit of a dork.\nI\'m a little bit''',
'''Today, I was in the middle of a conversation with a friend about the''',
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
def _SCREAMING_SNAKE_CASE ( self ) -> List[str]:
'''simple docstring'''
__lowercase = '''facebook/opt-350m'''
__lowercase = [
'''Today is a beautiful day and I want to''',
'''In the city of San Francisco, the city''',
'''Paris is the capital of France and the capital''',
'''Computers and mobile phones have taken over the''',
]
__lowercase = []
__lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ )
__lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ )
for prompt in self.prompts:
__lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids
__lowercase = model.generate(lowerCAmelCase__ , max_length=10 )
__lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
predicted_outputs += generated_string
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
| 210
| 0
|
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def _SCREAMING_SNAKE_CASE ( self : int):
SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: str = -1
SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Any = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[str] = tokenizer.decode(greedy_ids[0])
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE_: int = TextStreamer(lowerCAmelCase__)
model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__)
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE_: Union[str, Any] = cs.out[:-1]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : int):
SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = -1
SCREAMING_SNAKE_CASE_: int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Tuple = tokenizer.decode(greedy_ids[0])
SCREAMING_SNAKE_CASE_: int = TextIteratorStreamer(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE_: Tuple = Thread(target=model.generate , kwargs=lowerCAmelCase__)
thread.start()
SCREAMING_SNAKE_CASE_: Optional[Any] = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = -1
SCREAMING_SNAKE_CASE_: Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Tuple = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.decode(new_greedy_ids[0])
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE_: Dict = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__)
model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__)
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE_: Any = cs.out[:-1]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("distilgpt2")
SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[Any] = -1
SCREAMING_SNAKE_CASE_: List[str] = torch.ones((1, 5) , device=lowerCAmelCase__).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE_: Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__)
model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__)
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE_: str = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__ , return_tensors="pt")
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1))
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Dict = -1
SCREAMING_SNAKE_CASE_: List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Any = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001)
SCREAMING_SNAKE_CASE_: Any = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE_: Optional[Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__)
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(lowerCAmelCase__):
SCREAMING_SNAKE_CASE_: Tuple = ""
for new_text in streamer:
streamer_text += new_text
| 127
|
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def _SCREAMING_SNAKE_CASE ( self : int):
SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: str = -1
SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Any = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[str] = tokenizer.decode(greedy_ids[0])
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE_: int = TextStreamer(lowerCAmelCase__)
model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__)
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE_: Union[str, Any] = cs.out[:-1]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : int):
SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = -1
SCREAMING_SNAKE_CASE_: int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Tuple = tokenizer.decode(greedy_ids[0])
SCREAMING_SNAKE_CASE_: int = TextIteratorStreamer(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE_: Tuple = Thread(target=model.generate , kwargs=lowerCAmelCase__)
thread.start()
SCREAMING_SNAKE_CASE_: Optional[Any] = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = -1
SCREAMING_SNAKE_CASE_: Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Tuple = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.decode(new_greedy_ids[0])
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE_: Dict = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__)
model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__)
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE_: Any = cs.out[:-1]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("distilgpt2")
SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[Any] = -1
SCREAMING_SNAKE_CASE_: List[str] = torch.ones((1, 5) , device=lowerCAmelCase__).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE_: Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__)
model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__)
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE_: str = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__ , return_tensors="pt")
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1))
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Dict = -1
SCREAMING_SNAKE_CASE_: List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Any = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001)
SCREAMING_SNAKE_CASE_: Any = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE_: Optional[Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__)
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(lowerCAmelCase__):
SCREAMING_SNAKE_CASE_: Tuple = ""
for new_text in streamer:
streamer_text += new_text
| 127
| 1
|
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
__magic_name__: Dict = logging.getLogger(__name__)
__magic_name__: Dict = "Hello world! cécé herlolip"
__magic_name__: int = namedtuple(
"BertAbsConfig",
[
"temp_dir",
"large",
"use_bert_emb",
"finetune_bert",
"encoder",
"share_emb",
"max_pos",
"enc_layers",
"enc_hidden_size",
"enc_heads",
"enc_ff_size",
"enc_dropout",
"dec_layers",
"dec_hidden_size",
"dec_heads",
"dec_ff_size",
"dec_dropout",
],
)
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : Any = BertAbsConfig(
temp_dir=""".""", finetune_bert=_A, large=_A, share_emb=_A, use_bert_emb=_A, encoder="""bert""", max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2048, dec_dropout=0.2, )
__magic_name__ : int = torch.load(_A, lambda _A, _A : storage )
__magic_name__ : str = AbsSummarizer(_A, torch.device("""cpu""" ), _A )
original.eval()
__magic_name__ : Optional[int] = BertAbsSummarizer(_A, torch.device("""cpu""" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("""convert the model""" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("""Make sure that the models' outputs are identical""" )
__magic_name__ : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" )
# prepare the model inputs
__magic_name__ : Tuple = tokenizer.encode("""This is sample éàalj'-.""" )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) )
__magic_name__ : str = torch.tensor(_A ).unsqueeze(0 )
__magic_name__ : Tuple = tokenizer.encode("""This is sample 3 éàalj'-.""" )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) )
__magic_name__ : str = torch.tensor(_A ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
__magic_name__ : str = encoder_input_ids
__magic_name__ : Dict = decoder_input_ids
__magic_name__ : Union[str, Any] = None
__magic_name__ : Union[str, Any] = None
__magic_name__ : Any = None
__magic_name__ : Dict = None
__magic_name__ : Any = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
__magic_name__ : Any = original(_A, _A, _A, _A, _A, _A, _A )[0]
__magic_name__ : str = original.generator(_A )
__magic_name__ : str = new_model(
_A, _A, _A, _A, _A )[0]
__magic_name__ : List[str] = new_model.generator(_A )
__magic_name__ : str = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) )
__magic_name__ : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) )
__magic_name__ : str = torch.allclose(_A, _A, atol=1e-3 )
if are_identical:
logging.info("""all weights are equal up to 1e-3""" )
else:
raise ValueError("""the weights are different. The new model is likely different from the original one.""" )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("""saving the model's state dictionary""" )
torch.save(
new_model.state_dict(), """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" )
if __name__ == "__main__":
__magic_name__: Dict = argparse.ArgumentParser()
parser.add_argument(
"--bertabs_checkpoint_path",
default=None,
type=str,
required=True,
help="Path the official PyTorch dump.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the output PyTorch model.",
)
__magic_name__: List[Any] = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 342
|
import doctest
from collections import deque
import numpy as np
class snake_case__ :
def __init__( self ) -> None:
__magic_name__ : Any = [2, 1, 2, -1]
__magic_name__ : Tuple = [1, 2, 3, 4]
def __magic_name__ ( self ) -> list[float]:
__magic_name__ : Optional[Any] = len(self.first_signal )
__magic_name__ : Dict = len(self.second_signal )
__magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ )
# create a zero matrix of max_length x max_length
__magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowerCAmelCase__ ):
__magic_name__ : List[str] = deque(self.second_signal )
rotated_signal.rotate(lowerCAmelCase__ )
for j, item in enumerate(lowerCAmelCase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowerCAmelCase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 342
| 1
|
"""simple docstring"""
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class __UpperCamelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE = BertJapaneseTokenizer
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
def SCREAMING_SNAKE_CASE__ (self : List[str]):
super().setUp()
A = [
'[UNK]',
'[CLS]',
'[SEP]',
'こんにちは',
'こん',
'にちは',
'ばんは',
'##こん',
'##にちは',
'##ばんは',
'世界',
'##世界',
'、',
'##、',
'。',
'##。',
]
A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def SCREAMING_SNAKE_CASE__ (self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]):
A = 'こんにちは、世界。 \nこんばんは、世界。'
A = 'こんにちは 、 世界 。 こんばんは 、 世界 。'
return input_text, output_text
def SCREAMING_SNAKE_CASE__ (self : List[str] , __SCREAMING_SNAKE_CASE : List[Any]):
A = self.get_input_output_texts(__a)
A = tokenizer.encode(__a , add_special_tokens=__a)
A = tokenizer.decode(__a , clean_up_tokenization_spaces=__a)
return text, ids
def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ (self : str):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ (self : Optional[Any]):
A = self.tokenizer_class(self.vocab_file)
A = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。")
self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4])
def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]):
A = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab")
self.assertIsNotNone(__a)
A = 'こんにちは、世界。\nこんばんは、世界。'
A = tokenizer.tokenize(__a)
self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4])
A = os.path.join(self.tmpdirname , "tokenizer.bin")
with open(__a , "wb") as handle:
pickle.dump(__a , __a)
with open(__a , "rb") as handle:
A = pickle.load(__a)
A = tokenizer_new.tokenize(__a)
self.assertListEqual(__a , __a)
def SCREAMING_SNAKE_CASE__ (self : Optional[int]):
A = MecabTokenizer(mecab_dic="ipadic")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , )
def SCREAMING_SNAKE_CASE__ (self : Optional[Any]):
try:
A = MecabTokenizer(mecab_dic="unidic_lite")
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , )
def SCREAMING_SNAKE_CASE__ (self : List[Any]):
try:
A = MecabTokenizer(mecab_dic="unidic")
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , )
def SCREAMING_SNAKE_CASE__ (self : int):
A = MecabTokenizer(do_lower_case=__a , mecab_dic="ipadic")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , )
def SCREAMING_SNAKE_CASE__ (self : Tuple):
try:
A = MecabTokenizer(
do_lower_case=__a , normalize_text=__a , mecab_option="-d /usr/local/lib/mecab/dic/jumandic")
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , )
def SCREAMING_SNAKE_CASE__ (self : Dict):
A = MecabTokenizer(normalize_text=__a , mecab_dic="ipadic")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , )
@require_sudachi
def SCREAMING_SNAKE_CASE__ (self : List[str]):
A = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi")
self.assertIsNotNone(__a)
A = 'こんにちは、世界。\nこんばんは、世界。'
A = tokenizer.tokenize(__a)
self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4])
A = os.path.join(self.tmpdirname , "tokenizer.bin")
with open(__a , "wb") as handle:
pickle.dump(__a , __a)
with open(__a , "rb") as handle:
A = pickle.load(__a)
A = tokenizer_new.tokenize(__a)
self.assertListEqual(__a , __a)
@require_sudachi
def SCREAMING_SNAKE_CASE__ (self : List[Any]):
A = SudachiTokenizer(sudachi_dict_type="core")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , )
@require_sudachi
def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]):
A = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A")
self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国", "人", "参政", "権"])
@require_sudachi
def SCREAMING_SNAKE_CASE__ (self : List[str]):
A = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B")
self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国人", "参政権"])
@require_sudachi
def SCREAMING_SNAKE_CASE__ (self : str):
A = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C")
self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国人参政権"])
@require_sudachi
def SCREAMING_SNAKE_CASE__ (self : Tuple):
A = SudachiTokenizer(do_lower_case=__a , sudachi_dict_type="core")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , )
@require_sudachi
def SCREAMING_SNAKE_CASE__ (self : Optional[int]):
A = SudachiTokenizer(normalize_text=__a , sudachi_dict_type="core")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , )
@require_sudachi
def SCREAMING_SNAKE_CASE__ (self : List[str]):
A = SudachiTokenizer(trim_whitespace=__a , sudachi_dict_type="core")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ (self : Dict):
A = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp")
self.assertIsNotNone(__a)
A = 'こんにちは、世界。\nこんばんは、世界。'
A = tokenizer.tokenize(__a)
self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4])
A = os.path.join(self.tmpdirname , "tokenizer.bin")
with open(__a , "wb") as handle:
pickle.dump(__a , __a)
with open(__a , "rb") as handle:
A = pickle.load(__a)
A = tokenizer_new.tokenize(__a)
self.assertListEqual(__a , __a)
@require_jumanpp
def SCREAMING_SNAKE_CASE__ (self : List[Any]):
A = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ (self : Optional[int]):
A = JumanppTokenizer(do_lower_case=__a)
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ (self : str):
A = JumanppTokenizer(normalize_text=__a)
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ (self : Optional[Any]):
A = JumanppTokenizer(trim_whitespace=__a)
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , )
@require_jumanpp
def SCREAMING_SNAKE_CASE__ (self : str):
A = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。") , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , )
def SCREAMING_SNAKE_CASE__ (self : List[Any]):
A = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは']
A = {}
for i, token in enumerate(__a):
A = i
A = WordpieceTokenizer(vocab=__a , unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize("") , [])
self.assertListEqual(tokenizer.tokenize("こんにちは") , ["こんにちは"])
self.assertListEqual(tokenizer.tokenize("こんばんは") , ["こん", "##ばんは"])
self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは") , ["こん", "##ばんは", "[UNK]", "こんにちは"])
def SCREAMING_SNAKE_CASE__ (self : List[str]):
A = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp")
A = tokenizer.subword_tokenizer
A = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。")
self.assertListEqual(__a , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"])
A = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは")
self.assertListEqual(__a , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"])
def SCREAMING_SNAKE_CASE__ (self : Optional[Any]):
A = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese")
A = tokenizer.encode("ありがとう。" , add_special_tokens=__a)
A = tokenizer.encode("どういたしまして。" , add_special_tokens=__a)
A = tokenizer.build_inputs_with_special_tokens(__a)
A = tokenizer.build_inputs_with_special_tokens(__a , __a)
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class __UpperCamelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE = BertJapaneseTokenizer
SCREAMING_SNAKE_CASE = False
def SCREAMING_SNAKE_CASE__ (self : Optional[Any]):
super().setUp()
A = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。']
A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def SCREAMING_SNAKE_CASE__ (self : Tuple , **__SCREAMING_SNAKE_CASE : Dict):
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **__a)
def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]):
A = 'こんにちは、世界。 \nこんばんは、世界。'
A = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。'
return input_text, output_text
def SCREAMING_SNAKE_CASE__ (self : Any):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ (self : int):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ (self : List[Any]):
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE__ (self : List[Any]):
A = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character")
A = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。")
self.assertListEqual(
__a , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__a) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2])
def SCREAMING_SNAKE_CASE__ (self : Tuple):
A = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。']
A = {}
for i, token in enumerate(__a):
A = i
A = CharacterTokenizer(vocab=__a , unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize("") , [])
self.assertListEqual(tokenizer.tokenize("こんにちは") , ["こ", "ん", "に", "ち", "は"])
self.assertListEqual(tokenizer.tokenize("こんにちほ") , ["こ", "ん", "に", "ち", "[UNK]"])
def SCREAMING_SNAKE_CASE__ (self : List[Any]):
A = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char")
A = tokenizer.encode("ありがとう。" , add_special_tokens=__a)
A = tokenizer.encode("どういたしまして。" , add_special_tokens=__a)
A = tokenizer.build_inputs_with_special_tokens(__a)
A = tokenizer.build_inputs_with_special_tokens(__a , __a)
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class __UpperCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ (self : Optional[int]):
A = 'cl-tohoku/bert-base-japanese'
A = AutoTokenizer.from_pretrained(__a)
self.assertIsInstance(__a , __a)
class __UpperCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]):
A = 'cl-tohoku/bert-base-japanese'
with self.assertLogs("transformers" , level="WARNING") as cm:
BertTokenizer.from_pretrained(__a)
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function"
" is called from."))
A = 'bert-base-cased'
with self.assertLogs("transformers" , level="WARNING") as cm:
BertJapaneseTokenizer.from_pretrained(__a)
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function"
" is called from."))
| 350
|
"""simple docstring"""
__A : Dict = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
__A : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}]
__A : List[Any] = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 57
| 0
|
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __A( __lowerCamelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"""
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase__ = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase__ = np.random.RandomState(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 3,
"""strength""": 0.75,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def UpperCAmelCase_ (self ):
UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = self.get_dummy_inputs()
UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images
UpperCamelCase__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 1_28, 1_28, 3)
UpperCamelCase__ = np.array([0.6_9643, 0.5_8484, 0.5_0314, 0.5_8760, 0.5_5368, 0.5_9643, 0.5_1529, 0.4_1217, 0.4_9087] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def UpperCAmelCase_ (self ):
UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
UpperCamelCase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = self.get_dummy_inputs()
UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images
UpperCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
UpperCamelCase__ = np.array([0.6_1737, 0.5_4642, 0.5_3183, 0.5_4465, 0.5_2742, 0.6_0525, 0.4_9969, 0.4_0655, 0.4_8154] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase_ (self ):
UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
UpperCamelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
# warmup pass to apply optimizations
UpperCamelCase__ = pipe(**self.get_dummy_inputs() )
UpperCamelCase__ = self.get_dummy_inputs()
UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images
UpperCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
UpperCamelCase__ = np.array([0.5_2761, 0.5_9977, 0.4_9033, 0.4_9619, 0.5_4282, 0.5_0311, 0.4_7600, 0.4_0918, 0.4_5203] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase_ (self ):
UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
UpperCamelCase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = self.get_dummy_inputs()
UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images
UpperCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
UpperCamelCase__ = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase_ (self ):
UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
UpperCamelCase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = self.get_dummy_inputs()
UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images
UpperCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
UpperCamelCase__ = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase_ (self ):
UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
UpperCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = self.get_dummy_inputs()
UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images
UpperCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
UpperCamelCase__ = np.array([0.6_5331, 0.5_8277, 0.4_8204, 0.5_6059, 0.5_3665, 0.5_6235, 0.5_0969, 0.4_0009, 0.4_6552] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __A( unittest.TestCase ):
"""simple docstring"""
@property
def UpperCAmelCase_ (self ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase_ (self ):
UpperCamelCase__ = ort.SessionOptions()
UpperCamelCase__ = False
return options
def UpperCAmelCase_ (self ):
UpperCamelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
UpperCamelCase__ = init_image.resize((7_68, 5_12) )
# using the PNDM scheduler by default
UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = """A fantasy landscape, trending on artstation"""
UpperCamelCase__ = np.random.RandomState(0 )
UpperCamelCase__ = pipe(
prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , )
UpperCamelCase__ = output.images
UpperCamelCase__ = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 7_68, 3)
UpperCamelCase__ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def UpperCAmelCase_ (self ):
UpperCamelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
UpperCamelCase__ = init_image.resize((7_68, 5_12) )
UpperCamelCase__ = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" )
UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = """A fantasy landscape, trending on artstation"""
UpperCamelCase__ = np.random.RandomState(0 )
UpperCamelCase__ = pipe(
prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , )
UpperCamelCase__ = output.images
UpperCamelCase__ = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 7_68, 3)
UpperCamelCase__ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 244
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMSNModel''',
'''ViTMSNForImageClassification''',
'''ViTMSNPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 244
| 1
|
'''simple docstring'''
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class a__( unittest.TestCase ):
def __init__( self : Optional[int] , __snake_case : List[Any] , __snake_case : Optional[int]=13 , __snake_case : Optional[int]=7 , __snake_case : Tuple=True , __snake_case : Optional[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : List[Any]=99 , __snake_case : Optional[int]=32 , __snake_case : str=5 , __snake_case : Optional[int]=4 , __snake_case : List[Any]=37 , __snake_case : Tuple="gelu" , __snake_case : Dict=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[Any]=5_12 , __snake_case : Union[str, Any]=16 , __snake_case : str=2 , __snake_case : List[Any]=0.02 , __snake_case : Optional[int]=4 , ):
a : Any = parent
a : int = batch_size
a : Optional[Any] = seq_length
a : Union[str, Any] = is_training
a : str = use_attention_mask
a : int = use_token_type_ids
a : Tuple = use_labels
a : Optional[int] = vocab_size
a : str = hidden_size
a : Optional[Any] = num_hidden_layers
a : Optional[int] = num_attention_heads
a : Tuple = intermediate_size
a : str = hidden_act
a : List[str] = hidden_dropout_prob
a : List[Any] = attention_probs_dropout_prob
a : List[Any] = max_position_embeddings
a : List[Any] = type_vocab_size
a : Dict = type_sequence_label_size
a : List[str] = initializer_range
a : str = num_choices
def lowercase_ ( self : int ):
a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a : Tuple = None
if self.use_attention_mask:
a : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
a : int = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase__ , )
return config, input_ids, attention_mask
def lowercase_ ( self : int ):
a : Optional[int] = self.prepare_config_and_inputs()
a , a , a : Any = config_and_inputs
a : Optional[int] = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class a__( A__ , unittest.TestCase ):
lowercase__ = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase_ ( self : List[Any] ):
a : Dict = FlaxDistilBertModelTester(self )
@slow
def lowercase_ ( self : Optional[Any] ):
for model_class_name in self.all_model_classes:
a : Optional[int] = model_class_name.from_pretrained('distilbert-base-uncased' )
a : Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
@require_flax
class a__( unittest.TestCase ):
@slow
def lowercase_ ( self : Any ):
a : Optional[Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' )
a : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
a : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
a : List[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0]
a : List[Any] = (1, 11, 7_68)
self.assertEqual(output.shape , lowerCamelCase__ )
a : List[str] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1e-4 ) )
| 357
|
'''simple docstring'''
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a__:
def __init__( self : Optional[int] ):
a : int = ''
a : List[str] = ''
a : int = []
a : Optional[Any] = 0
a : Optional[Any] = 2_56
a : int = 0
a : Optional[int] = 0
a : str = 0
a : int = 0
def lowercase_ ( self : List[str] , __snake_case : int ):
a : Optional[Any] = cva.imread(__snake_case , 0 )
a : int = copy.deepcopy(self.img )
a , a , a : Optional[int] = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' )
a : str = np.sum(__snake_case )
for i in range(len(__snake_case ) ):
a : List[str] = x[i] / self.k
self.sk += prk
a : List[Any] = (self.L - 1) * self.sk
if self.rem != 0:
a : Union[str, Any] = int(last % last )
a : int = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__snake_case )
a : int = int(np.ma.count(self.img ) / self.img[1].size )
a : Dict = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
a : Tuple = self.img[j][i]
if num != self.last_list[num]:
a : Union[str, Any] = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def lowercase_ ( self : Union[str, Any] ):
plt.hist(self.img.ravel() , 2_56 , [0, 2_56] )
def lowercase_ ( self : Any ):
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase: Dict = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
lowerCAmelCase: Optional[Any] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 96
| 0
|
'''simple docstring'''
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase_ ( self ) -> Optional[Any]:
debug_launcher(test_script.main )
def UpperCAmelCase_ ( self ) -> Dict:
debug_launcher(test_ops.main )
| 344
|
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]:
A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20}
A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
A_ : Optional[Any] = parent
A_ : Optional[int] = batch_size
A_ : Union[str, Any] = num_channels
A_ : str = image_size
A_ : Tuple = min_resolution
A_ : Dict = max_resolution
A_ : str = do_resize
A_ : Tuple = size
A_ : int = do_center_crop
A_ : Dict = crop_size
A_ : Tuple = do_normalize
A_ : List[str] = image_mean
A_ : Optional[Any] = image_std
A_ : Any = do_reduce_labels
def UpperCAmelCase_ ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
A_ : Tuple = Image.open(dataset[0]["""file"""] )
A_ : Dict = Image.open(dataset[1]["""file"""] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
A_ : Tuple = Image.open(ds[0]["""file"""] )
A_ : List[Any] = Image.open(ds[1]["""file"""] )
A_ : Any = Image.open(ds[2]["""file"""] )
A_ : str = Image.open(ds[3]["""file"""] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class _lowerCAmelCase ( __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = BeitImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self ) -> Dict:
A_ : List[Any] = BeitImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self ) -> Optional[int]:
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self ) -> Optional[int]:
A_ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """size""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase )
A_ : int = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
pass
def UpperCAmelCase_ ( self ) -> Dict:
# Initialize image_processing
A_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , Image.Image )
# Test not batched input
A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase_ ( self ) -> List[str]:
# Initialize image_processing
A_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , np.ndarray )
# Test not batched input
A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase_ ( self ) -> str:
# Initialize image_processing
A_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
# Test not batched input
A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase_ ( self ) -> Optional[int]:
# Initialize image_processing
A_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
A_ : Optional[int] = []
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched
A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test not batched input (PIL images)
A_ , A_ : List[Any] = prepare_semantic_single_inputs()
A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched input (PIL images)
A_ , A_ : str = prepare_semantic_batch_inputs()
A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
2,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
def UpperCAmelCase_ ( self ) -> Tuple:
# Initialize image_processing
A_ : Any = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
A_ , A_ : Tuple = prepare_semantic_single_inputs()
A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 150 )
A_ : str = True
A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
| 344
| 1
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowerCamelCase : Optional[int] = {
'''configuration_mobilenet_v2''': [
'''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''MobileNetV2Config''',
'''MobileNetV2OnnxConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Union[str, Any] = ['''MobileNetV2FeatureExtractor''']
_lowerCamelCase : List[Any] = ['''MobileNetV2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[int] = [
'''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileNetV2ForImageClassification''',
'''MobileNetV2ForSemanticSegmentation''',
'''MobileNetV2Model''',
'''MobileNetV2PreTrainedModel''',
'''load_tf_weights_in_mobilenet_v2''',
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
_lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 206
|
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
_lowerCamelCase : Union[str, Any] = TypeVar('''T''')
class lowercase ( Generic[T] ):
def __init__( self : int , _UpperCamelCase : bool = True ) -> None:
'''simple docstring'''
SCREAMING_SNAKE_CASE = {} # dictionary of lists
SCREAMING_SNAKE_CASE = directed
def __snake_case( self : int , _UpperCamelCase : T , _UpperCamelCase : T ) -> GraphAdjacencyList[T]:
'''simple docstring'''
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(_UpperCamelCase )
self.adj_list[destination_vertex].append(_UpperCamelCase )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(_UpperCamelCase )
SCREAMING_SNAKE_CASE = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(_UpperCamelCase )
SCREAMING_SNAKE_CASE = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
SCREAMING_SNAKE_CASE = [destination_vertex]
SCREAMING_SNAKE_CASE = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(_UpperCamelCase )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(_UpperCamelCase )
SCREAMING_SNAKE_CASE = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
SCREAMING_SNAKE_CASE = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
SCREAMING_SNAKE_CASE = [destination_vertex]
SCREAMING_SNAKE_CASE = []
return self
def __repr__( self : Union[str, Any] ) -> str:
'''simple docstring'''
return pformat(self.adj_list )
| 206
| 1
|
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class A__(unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self ) -> Any:
a_ : Any = inspect.getfile(accelerate.test_utils )
a_ : str = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] )
a_ : Optional[Any] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] )
a_ : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] )
@require_multi_gpu
def UpperCamelCase__ ( self ) -> Tuple:
print(F'''Found {torch.cuda.device_count()} devices.''' )
a_ : Dict = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_lowercase , env=os.environ.copy() )
@require_multi_gpu
def UpperCamelCase__ ( self ) -> Any:
print(F'''Found {torch.cuda.device_count()} devices.''' )
a_ : Any = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path]
print(F'''Command: {cmd}''' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_lowercase , env=os.environ.copy() )
@require_multi_gpu
def UpperCamelCase__ ( self ) -> Optional[Any]:
a_ : str = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_lowercase , env=os.environ.copy() )
@require_multi_gpu
def UpperCamelCase__ ( self ) -> List[str]:
print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' )
a_ : Any = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ):
execute_subprocess_async(_lowercase , env=os.environ.copy() )
if __name__ == "__main__":
__snake_case : Dict = Accelerator()
__snake_case : Tuple = (accelerator.state.process_index + 2, 10)
__snake_case : List[Any] = torch.randint(0, 10, shape).to(accelerator.device)
__snake_case : List[Any] = """"""
__snake_case : List[str] = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
__snake_case : Tuple = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
__snake_case : Dict = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 248
|
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
PNDMScheduler,
StableDiffusionLDMaDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import nightly, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
enable_full_determinism()
class A__(unittest.TestCase ):
"""simple docstring"""
_A : List[str] = StableDiffusionLDMaDPipeline
_A : int = TEXT_TO_IMAGE_PARAMS
_A : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_A : str = TEXT_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase__ ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
a_ : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
a_ : List[Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , )
torch.manual_seed(0 )
a_ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
a_ : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
a_ : Tuple = CLIPTextModel(_lowercase )
a_ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
a_ : Any = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def UpperCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Any:
if str(_lowercase ).startswith("""mps""" ):
a_ : Optional[Any] = torch.manual_seed(_lowercase )
else:
a_ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
a_ : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def UpperCamelCase__ ( self ) -> List[Any]:
a_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
a_ : Any = self.get_dummy_components()
a_ : List[str] = StableDiffusionLDMaDPipeline(**_lowercase )
a_ : Union[str, Any] = ldmad_pipe.to(_lowercase )
ldmad_pipe.set_progress_bar_config(disable=_lowercase )
a_ : int = self.get_dummy_inputs(_lowercase )
a_ : List[Any] = ldmad_pipe(**_lowercase )
a_ , a_ : Tuple = output.rgb, output.depth
a_ : Union[str, Any] = rgb[0, -3:, -3:, -1]
a_ : Any = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
a_ : Optional[Any] = np.array(
[0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] )
a_ : int = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] )
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2
assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2
def UpperCamelCase__ ( self ) -> Optional[Any]:
a_ : Tuple = self.get_dummy_components()
a_ : Optional[int] = StableDiffusionLDMaDPipeline(**_lowercase )
a_ : Optional[Any] = ldmad_pipe.to(_lowercase )
ldmad_pipe.set_progress_bar_config(disable=_lowercase )
a_ : Dict = self.get_dummy_inputs(_lowercase )
a_ : List[str] = 3 * [inputs["""prompt"""]]
# forward
a_ : Optional[int] = ldmad_pipe(**_lowercase )
a_ , a_ : Any = output.rgb, output.depth
a_ : Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1]
a_ : Union[str, Any] = depth_slice_a[0, -3:, -1]
a_ : Dict = self.get_dummy_inputs(_lowercase )
a_ : List[str] = 3 * [inputs.pop("""prompt""" )]
a_ : List[Any] = ldmad_pipe.tokenizer(
_lowercase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_lowercase , return_tensors="""pt""" , )
a_ : int = text_inputs["""input_ids"""].to(_lowercase )
a_ : Any = ldmad_pipe.text_encoder(_lowercase )[0]
a_ : Dict = prompt_embeds
# forward
a_ : int = ldmad_pipe(**_lowercase )
a_ , a_ : Optional[int] = output.rgb, output.depth
a_ : List[str] = rgb_slice_a[0, -3:, -3:, -1]
a_ : Tuple = depth_slice_a[0, -3:, -1]
assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4
assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4
def UpperCamelCase__ ( self ) -> Dict:
a_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator
a_ : Dict = self.get_dummy_components()
a_ : Any = PNDMScheduler(skip_prk_steps=_lowercase )
a_ : List[str] = StableDiffusionLDMaDPipeline(**_lowercase )
a_ : str = ldmad_pipe.to(_lowercase )
ldmad_pipe.set_progress_bar_config(disable=_lowercase )
a_ : List[Any] = self.get_dummy_inputs(_lowercase )
a_ : int = """french fries"""
a_ : Any = ldmad_pipe(**_lowercase , negative_prompt=_lowercase )
a_ , a_ : Optional[Any] = output.rgb, output.depth
a_ : Tuple = rgb[0, -3:, -3:, -1]
a_ : Union[str, Any] = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
a_ : Optional[int] = np.array(
[0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] )
a_ : Union[str, Any] = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] )
assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2
assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2
@slow
@require_torch_gpu
class A__(unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self ) -> str:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ) -> List[str]:
a_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
a_ : Dict = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) )
a_ : Tuple = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase )
a_ : Any = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def UpperCamelCase__ ( self ) -> Any:
a_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" )
a_ : str = ldmad_pipe.to(_lowercase )
ldmad_pipe.set_progress_bar_config(disable=_lowercase )
a_ : Dict = self.get_inputs(_lowercase )
a_ : Optional[Any] = ldmad_pipe(**_lowercase )
a_ , a_ : int = output.rgb, output.depth
a_ : str = rgb[0, -3:, -3:, -1].flatten()
a_ : Tuple = rgb[0, -3:, -1].flatten()
assert rgb.shape == (1, 512, 512, 3)
assert depth.shape == (1, 512, 512)
a_ : Optional[int] = np.array(
[0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] )
a_ : Optional[int] = np.array(
[0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] )
assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3
assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3
@nightly
@require_torch_gpu
class A__(unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ) -> str:
a_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
a_ : Tuple = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) )
a_ : Any = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase )
a_ : Dict = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def UpperCamelCase__ ( self ) -> Optional[Any]:
a_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(_lowercase )
ldmad_pipe.set_progress_bar_config(disable=_lowercase )
a_ : List[str] = self.get_inputs(_lowercase )
a_ : Union[str, Any] = ldmad_pipe(**_lowercase )
a_ , a_ : str = output.rgb, output.depth
a_ : List[str] = 0.4_9_5_5_8_6
a_ : int = 0.3_3_7_9_5_5_1_5
a_ : int = 1_1_2.4_8_5_1_8
a_ : Optional[int] = 9_8.4_8_9_7_4_6
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3
assert np.abs(expected_depth_std - depth.std() ) < 1e-3
def UpperCamelCase__ ( self ) -> Optional[int]:
a_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(_lowercase )
ldmad_pipe.set_progress_bar_config(disable=_lowercase )
a_ : List[str] = self.get_inputs(_lowercase )
a_ : List[Any] = ldmad_pipe(**_lowercase )
a_ , a_ : List[Any] = output.rgb, output.depth
a_ : int = 0.4_1_9_4_1_2_7
a_ : List[str] = 0.3_5_3_7_5_5_8_6
a_ : Optional[int] = 0.5_6_3_8_5_0_2
a_ : str = 0.3_4_6_8_6_1_0_3
assert rgb.shape == (1, 512, 512, 3)
assert depth.shape == (1, 512, 512, 1)
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3
assert np.abs(expected_depth_std - depth.std() ) < 1e-3
| 248
| 1
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int = 1_0_0_0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = 3
__UpperCAmelCase : Optional[int] = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 1_5 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(F"{solution() = }")
| 368
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
UpperCAmelCase : str = logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ):
'''simple docstring'''
warnings.warn(
"""The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , )
super().__init__(*UpperCamelCase , **UpperCamelCase )
| 320
| 0
|
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ):
monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() )
@pytest.fixture
def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ):
class a__ :
def __init__( self , _A ):
"""simple docstring"""
__lowerCAmelCase = metric_id
class a__ :
_a : Optional[int] = [MetricMock(snake_case__ ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]]
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
return self._metrics
monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() )
@pytest.mark.parametrize(
"func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] )
def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ):
if "tmp_path" in args:
__lowerCAmelCase = tuple(arg if arg != "tmp_path" else tmp_path for arg in args )
with pytest.warns(SCREAMING_SNAKE_CASE_ , match="https://huggingface.co/docs/evaluate" ):
func(*SCREAMING_SNAKE_CASE_ )
| 92
|
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
UpperCamelCase__ = logging.get_logger(__name__)
@dataclass
class a__ ( snake_case__ ):
_a : List[str] = [
"""no_inference""",
"""no_cuda""",
"""no_tpu""",
"""no_speed""",
"""no_memory""",
"""no_env_print""",
"""no_multi_process""",
]
def __init__( self , **_A ):
"""simple docstring"""
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
__lowerCAmelCase = deprecated_arg[3:]
__lowerCAmelCase = not kwargs.pop(_A )
logger.warning(
f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or"""
f""" {positive_arg}={kwargs[positive_arg]}""" )
__lowerCAmelCase = kwargs.pop("tpu_name" , self.tpu_name )
__lowerCAmelCase = kwargs.pop("device_idx" , self.device_idx )
__lowerCAmelCase = kwargs.pop("eager_mode" , self.eager_mode )
__lowerCAmelCase = kwargs.pop("use_xla" , self.use_xla )
super().__init__(**_A )
_a : str = field(
default=snake_case__ , metadata={"""help""": """Name of TPU"""} , )
_a : int = field(
default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , )
_a : bool = field(default=snake_case__ , metadata={"""help""": """Benchmark models in eager model."""} )
_a : bool = field(
default=snake_case__ , metadata={
"""help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."""
} , )
@cached_property
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
requires_backends(self , ["tf"] )
__lowerCAmelCase = None
if self.tpu:
try:
if self.tpu_name:
__lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name )
else:
__lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
__lowerCAmelCase = None
return tpu
@cached_property
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
requires_backends(self , ["tf"] )
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu )
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu )
__lowerCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu )
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" )
__lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" )
else:
tf.config.set_visible_devices([] , "GPU" ) # disable GPU
__lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" )
return strategy
@property
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
requires_backends(self , ["tf"] )
return self._setup_tpu is not None
@property
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
requires_backends(self , ["tf"] )
return self._setup_strategy
@property
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
requires_backends(self , ["tf"] )
return tf.config.list_physical_devices("GPU" )
@property
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
requires_backends(self , ["tf"] )
if self.cuda:
return len(self.gpu_list )
return 0
@property
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
return self.n_gpu > 0
| 92
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
__lowercase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase = ['''GPTNeoXTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase = [
'''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXForCausalLM''',
'''GPTNeoXForQuestionAnswering''',
'''GPTNeoXForSequenceClassification''',
'''GPTNeoXForTokenClassification''',
'''GPTNeoXLayer''',
'''GPTNeoXModel''',
'''GPTNeoXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
__lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 85
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
__lowercase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase = ['''GPTNeoXTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase = [
'''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXForCausalLM''',
'''GPTNeoXForQuestionAnswering''',
'''GPTNeoXForSequenceClassification''',
'''GPTNeoXForTokenClassification''',
'''GPTNeoXLayer''',
'''GPTNeoXModel''',
'''GPTNeoXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
__lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 85
| 1
|
"""simple docstring"""
from __future__ import annotations
import time
import numpy as np
A : Union[str, Any] = [8, 5, 9, 7]
A : Dict = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Optional[Any] = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _UpperCamelCase :
'''simple docstring'''
def __init__( self , __a , __a , __a , ):
__lowerCAmelCase = claim_vector
__lowerCAmelCase = allocated_resources_table
__lowerCAmelCase = maximum_claim_table
def snake_case ( self ):
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def snake_case ( self ):
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def snake_case ( self ):
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def snake_case ( self ):
return {self.__need().index(__a ): i for i in self.__need()}
def snake_case ( self , **__a ):
__lowerCAmelCase = self.__need()
__lowerCAmelCase = self.__allocated_resources_table
__lowerCAmelCase = self.__available_resources()
__lowerCAmelCase = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
__lowerCAmelCase = False
for each_need in need_list:
__lowerCAmelCase = True
for index, need in enumerate(__a ):
if need > available_resources[index]:
__lowerCAmelCase = False
break
if execution:
__lowerCAmelCase = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
__lowerCAmelCase = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__a )
# update available/freed resources stack
__lowerCAmelCase = np.array(__a ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__a ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def snake_case ( self ):
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__a ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__a ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__a ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__a ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 57
|
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
_snake_case = logging.get_logger(__name__)
class _snake_case ( _lowercase ):
lowerCamelCase__: Tuple = ["input_features"]
def __init__( self: Tuple , __lowerCamelCase: Union[str, Any]=80 , __lowerCamelCase: Optional[Any]=1_60_00 , __lowerCamelCase: Any=1_60 , __lowerCamelCase: Optional[int]=30 , __lowerCamelCase: List[str]=4_00 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Union[str, Any]=False , **__lowerCamelCase: Dict , ) -> Any:
super().__init__(
feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : int = n_fft
__UpperCAmelCase : List[str] = hop_length
__UpperCAmelCase : Optional[Any] = chunk_length
__UpperCAmelCase : Union[str, Any] = chunk_length * sampling_rate
__UpperCAmelCase : Any = self.n_samples // hop_length
__UpperCAmelCase : Tuple = sampling_rate
__UpperCAmelCase : List[Any] = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCamelCase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__lowerCamelCase , norm="slaney" , mel_scale="slaney" , )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: np.array ) -> np.ndarray:
__UpperCAmelCase : List[Any] = spectrogram(
__lowerCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , )
__UpperCAmelCase : Union[str, Any] = log_spec[:, :-1]
__UpperCAmelCase : List[Any] = np.maximum(__lowerCamelCase , log_spec.max() - 8.0 )
__UpperCAmelCase : str = (log_spec + 4.0) / 4.0
return log_spec
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def _lowerCamelCase ( __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: float = 0.0 ) -> List[np.ndarray]:
if attention_mask is not None:
__UpperCAmelCase : Tuple = np.array(__lowerCamelCase , np.intaa )
__UpperCAmelCase : Dict = []
for vector, length in zip(__lowerCamelCase , attention_mask.sum(-1 ) ):
__UpperCAmelCase : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 )
if length < normed_slice.shape[0]:
__UpperCAmelCase : Dict = padding_value
normed_input_values.append(__lowerCamelCase )
else:
__UpperCAmelCase : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values]
return normed_input_values
def __call__( self: Dict , __lowerCamelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[str] = "max_length" , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , **__lowerCamelCase: Dict , ) -> BatchFeature:
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
__UpperCAmelCase : List[Any] = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
__UpperCAmelCase : Optional[int] = is_batched_numpy or (
isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__UpperCAmelCase : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ):
__UpperCAmelCase : str = np.asarray(__lowerCamelCase , dtype=np.floataa )
elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__UpperCAmelCase : List[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__UpperCAmelCase : Optional[Any] = [np.asarray([raw_speech] ).T]
__UpperCAmelCase : List[Any] = BatchFeature({"input_features": raw_speech} )
# convert into correct format for padding
__UpperCAmelCase : List[str] = self.pad(
__lowerCamelCase , padding=__lowerCamelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=return_attention_mask or do_normalize , )
# zero-mean and unit-variance normalization
if do_normalize:
__UpperCAmelCase : List[Any] = self.zero_mean_unit_var_norm(
padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , )
__UpperCAmelCase : str = np.stack(padded_inputs["input_features"] , axis=0 )
# make sure list is in array format
__UpperCAmelCase : Any = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 )
__UpperCAmelCase : Dict = [self._np_extract_fbank_features(__lowerCamelCase ) for waveform in input_features[0]]
if isinstance(input_features[0] , __lowerCamelCase ):
__UpperCAmelCase : str = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features]
else:
__UpperCAmelCase : List[str] = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
__UpperCAmelCase : int = padded_inputs["attention_mask"][:, :: self.hop_length]
if return_tensors is not None:
__UpperCAmelCase : List[str] = padded_inputs.convert_to_tensors(__lowerCamelCase )
return padded_inputs
def _lowerCamelCase ( self: str ) -> Dict[str, Any]:
__UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ )
__UpperCAmelCase : Optional[Any] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output
| 157
| 0
|
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
__lowerCamelCase : int = ["note_seq"]
def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ):
requires_backends(self, ["""note_seq"""] )
@classmethod
def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ):
requires_backends(cls, ["""note_seq"""] )
@classmethod
def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ):
requires_backends(cls, ["""note_seq"""] )
| 357
|
import os
from pathlib import Path
def __UpperCamelCase ( ) -> Any:
"""simple docstring"""
from torch.utils.cpp_extension import load
A : Any = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
A : int = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 115
| 0
|
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=lowerCAmelCase)
class __lowerCAmelCase ( lowerCAmelCase):
_a = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True})
_a = Features({'''text''': Value('''string''')})
_a = Features({})
_a = "text"
@property
def SCREAMING_SNAKE_CASE ( self: Dict ):
return {self.text_column: "text"}
| 236
|
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig):
_a = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder):
_a = PandasConfig
def SCREAMING_SNAKE_CASE ( self: Any ):
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: List[str] ):
if not self.config.data_files:
raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" )
lowercase :int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCAmelCase , (str, list, tuple) ):
lowercase :Union[str, Any] = data_files
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
lowercase :str = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowercase :Optional[int] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
lowercase :List[Any] = []
for split_name, files in data_files.items():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
lowercase :Optional[Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowercase :Optional[Any] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"files": files} ) )
return splits
def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: pa.Table ):
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
lowercase :Any = table_cast(_lowerCAmelCase , self.config.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Union[str, Any] ):
for i, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ):
with open(_lowerCAmelCase , "rb" ) as f:
lowercase :int = pa.Table.from_pandas(pd.read_pickle(_lowerCAmelCase ) )
yield i, self._cast_table(_lowerCAmelCase )
| 236
| 1
|
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : List[str] = logging.get_logger(__name__)
_lowerCamelCase : Dict = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
_lowerCamelCase : Union[str, Any] = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''',
'''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''',
},
}
_lowerCamelCase : List[str] = {
'''facebook/mbart-large-en-ro''': 1_024,
'''facebook/mbart-large-cc25''': 1_024,
}
# fmt: off
_lowerCamelCase : Tuple = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_UpperCAmelCase : Tuple = VOCAB_FILES_NAMES
_UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase : Tuple = ['input_ids', 'attention_mask']
_UpperCAmelCase : Optional[Any] = MBartTokenizer
_UpperCAmelCase : List[int] = []
_UpperCAmelCase : List[int] = []
def __init__( self : Any , lowercase : Any=None , lowercase : Any=None , lowercase : List[Any]="<s>" , lowercase : Optional[Any]="</s>" , lowercase : Union[str, Any]="</s>" , lowercase : Optional[Any]="<s>" , lowercase : int="<unk>" , lowercase : str="<pad>" , lowercase : int="<mask>" , lowercase : Any=None , lowercase : Optional[int]=None , lowercase : Tuple=None , **lowercase : Dict , ):
'''simple docstring'''
_snake_case = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , )
_snake_case = vocab_file
_snake_case = False if not self.vocab_file else True
_snake_case = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
_snake_case = {
lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_snake_case = src_lang if src_lang is not None else 'en_XX'
_snake_case = self.convert_tokens_to_ids(self._src_lang )
_snake_case = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def A ( self : Any ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def A ( self : List[str] , lowercase : int ):
'''simple docstring'''
_snake_case = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def A ( self : str , lowercase : str , lowercase : List[Any] = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def A ( self : Optional[int] , lowercase : str , lowercase : Optional[Any] = None ):
'''simple docstring'''
_snake_case = [self.sep_token_id]
_snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A ( self : List[str] , lowercase : int , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Dict , **lowercase : int ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_snake_case = src_lang
_snake_case = self(_a , add_special_tokens=_a , return_tensors=_a , **_a )
_snake_case = self.convert_tokens_to_ids(_a )
_snake_case = tgt_lang_id
return inputs
def A ( self : int , lowercase : Any , lowercase : List[str] = "en_XX" , lowercase : str = None , lowercase : Tuple = "ro_RO" , **lowercase : Optional[Any] , ):
'''simple docstring'''
_snake_case = src_lang
_snake_case = tgt_lang
return super().prepare_seqaseq_batch(_a , _a , **_a )
def A ( self : Union[str, Any] ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def A ( self : int ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def A ( self : Optional[Any] , lowercase : Optional[int] ):
'''simple docstring'''
_snake_case = self.convert_tokens_to_ids(_a )
_snake_case = []
_snake_case = [self.eos_token_id, self.cur_lang_code]
_snake_case = self.convert_ids_to_tokens(self.prefix_tokens )
_snake_case = self.convert_ids_to_tokens(self.suffix_tokens )
_snake_case = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def A ( self : Dict , lowercase : Any ):
'''simple docstring'''
_snake_case = self.convert_tokens_to_ids(_a )
_snake_case = []
_snake_case = [self.eos_token_id, self.cur_lang_code]
_snake_case = self.convert_ids_to_tokens(self.prefix_tokens )
_snake_case = self.convert_ids_to_tokens(self.suffix_tokens )
_snake_case = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def A ( self : Optional[Any] , lowercase : Optional[int] , lowercase : Optional[Any] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
_snake_case = os.path.join(
_a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 361
|
def a_ ( __lowercase : int = 50_000_000 ) -> int:
_snake_case = set()
_snake_case = int((limit - 24) ** (1 / 2) )
_snake_case = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , __lowercase ) ) )
for primea in primes:
_snake_case = primea * primea
for primea in primes:
_snake_case = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
_snake_case = primea * primea * primea * primea
_snake_case = square + cube + tetr
if total >= limit:
break
ret.add(__lowercase )
return len(__lowercase )
if __name__ == "__main__":
print(F'{solution() = }')
| 130
| 0
|
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
snake_case : Dict = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def __lowercase ( __lowerCAmelCase : List[Any] ):
for pegasus_name, hf_name in PATTERNS:
a__ = k.replace(_UpperCamelCase , _UpperCamelCase )
return k
def __lowercase ( __lowerCAmelCase : dict , __lowerCAmelCase : dict ):
a__ = DEFAULTS.copy()
cfg_kwargs.update(_UpperCamelCase )
a__ = PegasusConfig(**_UpperCamelCase )
a__ = PegasusForConditionalGeneration(_UpperCamelCase )
a__ = torch_model.model.state_dict()
a__ = {}
for k, v in tf_weights.items():
a__ = rename_state_dict_key(_UpperCamelCase )
if new_k not in sd:
raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' )
if "dense" in k or "proj" in new_k:
a__ = v.T
a__ = torch.tensor(_UpperCamelCase , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F'{new_k}, {k}, {v.shape}, {sd[new_k].shape}'
# make sure embedding.padding_idx is respected
a__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
a__ = mapping['shared.weight']
a__ = mapping['shared.weight']
a__ = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**_UpperCamelCase )
a__ , a__ = torch_model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase )
a__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}'
assert extra == [], F'no matches found for the following tf keys {extra}'
return torch_model
def __lowercase ( __lowerCAmelCase : List[Any]="./ckpt/aeslc/model.ckpt-32000" ):
a__ = tf.train.list_variables(_UpperCamelCase )
a__ = {}
a__ = ['Adafactor', 'global_step']
for name, shape in tqdm(_UpperCamelCase , desc='converting tf checkpoint to dict' ):
a__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
a__ = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase )
a__ = array
return tf_weights
def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ):
a__ = Path(_UpperCamelCase ).parent.name
a__ = task_specific_params[F'summarization_{dataset}']['max_position_embeddings']
a__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=_UpperCamelCase )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(_UpperCamelCase )
# convert model
a__ = get_tf_weights_as_numpy(_UpperCamelCase )
a__ = task_specific_params[F'summarization_{dataset}']
if dataset == "large":
a__ = task_specific_params
a__ = convert_pegasus(_UpperCamelCase , _UpperCamelCase )
torch_model.save_pretrained(_UpperCamelCase )
a__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(_UpperCamelCase , Path(_UpperCamelCase ) / 'pytorch_model.bin' )
if __name__ == "__main__":
snake_case : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
snake_case : List[str] = parser.parse_args()
if args.save_dir is None:
snake_case : int = Path(args.tf_ckpt_path).parent.name
snake_case : Optional[int] = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 240
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class lowerCAmelCase_ :
"""simple docstring"""
# setable values
_lowerCAmelCase : Optional[int] = None
_lowerCAmelCase : Optional[jnp.ndarray] = None
_lowerCAmelCase : Optional[jnp.ndarray] = None # sigma(t_i)
@classmethod
def snake_case ( cls ):
"""simple docstring"""
return cls()
@dataclass
class lowerCAmelCase_ ( lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase : jnp.ndarray
_lowerCAmelCase : jnp.ndarray
_lowerCAmelCase : KarrasVeSchedulerState
class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
@property
def snake_case ( self ):
"""simple docstring"""
return True
@register_to_config
def __init__( self , lowerCAmelCase = 0.02 , lowerCAmelCase = 1_00 , lowerCAmelCase = 1.0_07 , lowerCAmelCase = 80 , lowerCAmelCase = 0.05 , lowerCAmelCase = 50 , ):
"""simple docstring"""
pass
def snake_case ( self ):
"""simple docstring"""
return KarrasVeSchedulerState.create()
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = () ):
"""simple docstring"""
snake_case = jnp.arange(0 , lowerCAmelCase )[::-1].copy()
snake_case = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=lowerCAmelCase , schedule=jnp.array(lowerCAmelCase , dtype=jnp.floataa ) , timesteps=lowerCAmelCase , )
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ):
"""simple docstring"""
if self.config.s_min <= sigma <= self.config.s_max:
snake_case = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 )
else:
snake_case = 0
# sample eps ~ N(0, S_noise^2 * I)
snake_case = random.split(lowerCAmelCase , num=1 )
snake_case = self.config.s_noise * random.normal(key=lowerCAmelCase , shape=sample.shape )
snake_case = sigma + gamma * sigma
snake_case = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , ):
"""simple docstring"""
snake_case = sample_hat + sigma_hat * model_output
snake_case = (sample_hat - pred_original_sample) / sigma_hat
snake_case = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase , derivative=lowerCAmelCase , state=lowerCAmelCase )
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , ):
"""simple docstring"""
snake_case = sample_prev + sigma_prev * model_output
snake_case = (sample_prev - pred_original_sample) / sigma_prev
snake_case = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase , derivative=lowerCAmelCase , state=lowerCAmelCase )
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
raise NotImplementedError()
| 150
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case : Optional[int] = logging.get_logger(__name__)
snake_case : Dict = {
'''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''',
'''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''',
'''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''',
'''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''',
'''funnel-transformer/intermediate''': (
'''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json'''
),
'''funnel-transformer/intermediate-base''': (
'''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json'''
),
'''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''',
'''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''',
'''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''',
'''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''',
}
class _snake_case ( _snake_case ):
SCREAMING_SNAKE_CASE__ = 'funnel'
SCREAMING_SNAKE_CASE__ = {
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
}
def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=[4, 4, 4] , _lowerCamelCase=None , _lowerCamelCase=2 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=64 , _lowerCamelCase=3072 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=None , _lowerCamelCase=1e-9 , _lowerCamelCase="mean" , _lowerCamelCase="relative_shift" , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , **_lowerCamelCase , ):
a :Union[str, Any] = vocab_size
a :Any = block_sizes
a :List[Any] = [1] * len(_lowerCamelCase ) if block_repeats is None else block_repeats
assert len(_lowerCamelCase ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
a :Optional[int] = num_decoder_layers
a :List[Any] = d_model
a :Dict = n_head
a :Tuple = d_head
a :List[str] = d_inner
a :List[Any] = hidden_act
a :List[str] = hidden_dropout
a :List[Any] = attention_dropout
a :Optional[int] = activation_dropout
a :List[Any] = initializer_range
a :Optional[Any] = initializer_std
a :Optional[int] = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
a :List[str] = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
a :List[str] = attention_type
a :Union[str, Any] = separate_cls
a :Any = truncate_seq
a :Optional[int] = pool_q_only
super().__init__(**_lowerCamelCase )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
raise NotImplementedError(
'''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return len(self.block_sizes )
@num_blocks.setter
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
| 281
|
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
snake_case : List[Any] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
class _snake_case ( _snake_case , unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = BartphoTokenizer
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = True
def SCREAMING_SNAKE_CASE__ ( self ):
super().setUp()
a :Dict = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']
a :Optional[Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) )
a :Tuple = {'''unk_token''': '''<unk>'''}
a :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] )
with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
for token in vocab_tokens:
fp.write(F'''{token} {vocab_tokens[token]}\n''' )
a :Any = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ):
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
a :int = '''This is a là test'''
a :str = '''This is a<unk><unk> test'''
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self ):
a :List[str] = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map )
a :Optional[Any] = '''This is a là test'''
a :Tuple = '''▁This ▁is ▁a ▁l à ▁t est'''.split()
a :int = tokenizer.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
a :Union[str, Any] = tokens + [tokenizer.unk_token]
a :str = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
| 281
| 1
|
"""simple docstring"""
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO
)
__lowerCAmelCase : List[Any] =logging.getLogger(__name__)
if __name__ == "__main__":
__lowerCAmelCase : Optional[int] =argparse.ArgumentParser(
description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)"""
)
parser.add_argument(
"""--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset."""
)
parser.add_argument(
"""--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file."""
)
parser.add_argument("""--vocab_size""", default=3_0_5_2_2, type=int)
__lowerCAmelCase : Optional[int] =parser.parse_args()
logger.info(F"""Loading data from {args.data_file}""")
with open(args.data_file, """rb""") as fp:
__lowerCAmelCase : str =pickle.load(fp)
logger.info("""Counting occurrences for MLM.""")
__lowerCAmelCase : Tuple =Counter()
for tk_ids in data:
counter.update(tk_ids)
__lowerCAmelCase : Any =[0] * args.vocab_size
for k, v in counter.items():
__lowerCAmelCase : Any =v
logger.info(F"""Dump to {args.token_counts_dump}""")
with open(args.token_counts_dump, """wb""") as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
| 197
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _A ( metaclass=lowerCAmelCase ):
snake_case__ : List[str] = ['onnx']
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(self , ["""onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""onnx"""] )
| 197
| 1
|
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> int:
'''simple docstring'''
while a != 0:
UpperCAmelCase : List[Any] =b % a, a
return b
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> int:
'''simple docstring'''
if gcd(__lowerCAmelCase , __lowerCAmelCase ) != 1:
UpperCAmelCase : List[str] =f'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(__lowerCAmelCase )
UpperCAmelCase : Optional[int] =1, 0, a
UpperCAmelCase : Union[str, Any] =0, 1, m
while va != 0:
UpperCAmelCase : Optional[Any] =ua // va
UpperCAmelCase : Optional[int] =(ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 361
|
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class __snake_case ( lowerCamelCase__ ):
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : List[Any] =tempfile.mkdtemp()
UpperCAmelCase : Any =8
# DPR tok
UpperCAmelCase : List[Any] =[
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase : Optional[Any] =os.path.join(self.tmpdirname , '''dpr_tokenizer''' )
os.makedirs(snake_case__ , exist_ok=snake_case__ )
UpperCAmelCase : Union[str, Any] =os.path.join(snake_case__ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
# BART tok
UpperCAmelCase : int =[
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
UpperCAmelCase : List[str] =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase : Optional[int] =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCAmelCase : str ={'''unk_token''': '''<unk>'''}
UpperCAmelCase : Optional[int] =os.path.join(self.tmpdirname , '''bart_tokenizer''' )
os.makedirs(snake_case__ , exist_ok=snake_case__ )
UpperCAmelCase : int =os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase : int =os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(snake_case__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(snake_case__ ) )
def UpperCAmelCase__ ( self ) -> DPRQuestionEncoderTokenizer:
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def UpperCAmelCase__ ( self ) -> DPRContextEncoderTokenizer:
'''simple docstring'''
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def UpperCAmelCase__ ( self ) -> BartTokenizer:
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Tuple =Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Optional[int] =self.get_dummy_dataset()
UpperCAmelCase : int =RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
UpperCAmelCase : Union[str, Any] =dataset
UpperCAmelCase : Any =RagRetriever(
snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def UpperCAmelCase__ ( self , snake_case__ ) -> str:
'''simple docstring'''
UpperCAmelCase : List[str] =self.get_dummy_dataset()
UpperCAmelCase : Union[str, Any] =RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , )
if from_disk:
UpperCAmelCase : List[Any] =os.path.join(self.tmpdirname , '''dataset''' )
UpperCAmelCase : str =os.path.join(self.tmpdirname , '''index.faiss''' )
dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) )
dataset.drop_index('''embeddings''' )
dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) )
del dataset
UpperCAmelCase : Union[str, Any] =RagRetriever(
snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
UpperCAmelCase : List[str] =RagRetriever(
snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , snake_case__ ) , )
return retriever
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : int =Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
UpperCAmelCase : int =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' )
dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' )
pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) )
UpperCAmelCase : Dict =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' )
UpperCAmelCase : List[Any] ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset}
pickle.dump(snake_case__ , open(snake_case__ , '''wb''' ) )
UpperCAmelCase : Tuple =RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , )
UpperCAmelCase : Union[str, Any] =RagRetriever(
snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Any =1
UpperCAmelCase : Tuple =self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase : Union[str, Any] =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str =retriever.retrieve(snake_case__ , n_docs=snake_case__ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(snake_case__ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Tuple =self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
UpperCAmelCase : Optional[int] =self.get_dummy_dataset()
retriever.save_pretrained(snake_case__ )
UpperCAmelCase : List[str] =RagRetriever.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Dict =retriever.retrieve(snake_case__ , n_docs=1 )
self.assertTrue(out is not None )
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : List[str] =1
UpperCAmelCase : Any =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ )
UpperCAmelCase : Tuple =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =retriever.retrieve(snake_case__ , n_docs=snake_case__ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(snake_case__ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
UpperCAmelCase : Tuple =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(snake_case__ )
UpperCAmelCase : List[Any] =RagRetriever.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Dict =retriever.retrieve(snake_case__ , n_docs=1 )
self.assertTrue(out is not None )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : int =1
UpperCAmelCase : List[str] =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ )
UpperCAmelCase : str =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any =retriever.retrieve(snake_case__ , n_docs=snake_case__ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(snake_case__ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Optional[int] =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(snake_case__ )
UpperCAmelCase : Dict =RagRetriever.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
UpperCAmelCase : str =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : List[Any] =retriever.retrieve(snake_case__ , n_docs=1 )
self.assertTrue(out is not None )
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Optional[int] =1
UpperCAmelCase : List[str] =self.get_dummy_legacy_index_retriever()
UpperCAmelCase : Union[str, Any] =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] =retriever.retrieve(snake_case__ , n_docs=snake_case__ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(snake_case__ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''text'''] ) , snake_case__ )
self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : str =self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(snake_case__ )
UpperCAmelCase : Any =RagRetriever.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
UpperCAmelCase : str =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Union[str, Any] =retriever.retrieve(snake_case__ , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
import torch
UpperCAmelCase : Union[str, Any] =1
UpperCAmelCase : Optional[Any] =self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase : Any =[[5, 7], [10, 11]]
UpperCAmelCase : int =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : int =retriever(snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =(
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(snake_case__ , snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
self.assertIsInstance(snake_case__ , np.ndarray )
UpperCAmelCase : Optional[int] =retriever(
snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ , return_tensors='''pt''' , )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =( # noqa: F841
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
out['''doc_ids'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(snake_case__ , torch.Tensor )
self.assertIsInstance(snake_case__ , torch.Tensor )
self.assertIsInstance(snake_case__ , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =self.get_dpr_ctx_encoder_tokenizer()
UpperCAmelCase : str =1
UpperCAmelCase : Any =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ )
retriever.set_ctx_encoder_tokenizer(snake_case__ )
UpperCAmelCase : Tuple =[[5, 7], [10, 11]]
UpperCAmelCase : Dict =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Any =retriever(snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ )
self.assertEqual(
len(snake_case__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , snake_case__ ) # check for doc token related keys in dictionary.
| 78
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.