code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: Tuple=None ) -> Tuple: '''simple docstring''' __lowerCamelCase : Optional[Any] = None if token is not None: __lowerCamelCase : List[str] = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""} __lowerCamelCase : Tuple = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __lowerCamelCase : List[Any] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() __lowerCamelCase : str = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) __lowerCamelCase : Any = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCamelCase ): __lowerCamelCase : List[Any] = requests.get(url + F"""&page={i + 2}""" , headers=_lowerCamelCase ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: Tuple=None ) -> List[Any]: '''simple docstring''' __lowerCamelCase : int = None if token is not None: __lowerCamelCase : int = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""} __lowerCamelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" __lowerCamelCase : Any = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() __lowerCamelCase : int = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) __lowerCamelCase : Optional[Any] = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCamelCase ): __lowerCamelCase : str = requests.get(url + F"""&page={i + 2}""" , headers=_lowerCamelCase ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Any ) -> int: '''simple docstring''' __lowerCamelCase : Optional[Any] = None if token is not None: __lowerCamelCase : Optional[int] = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""} __lowerCamelCase : Dict = requests.get(_lowerCamelCase , headers=_lowerCamelCase , allow_redirects=_lowerCamelCase ) __lowerCamelCase : Tuple = result.headers["Location"] __lowerCamelCase : Any = requests.get(_lowerCamelCase , allow_redirects=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = os.path.join(_lowerCamelCase , F"""{artifact_name}.zip""" ) with open(_lowerCamelCase , "wb" ) as fp: fp.write(response.content ) def lowercase_ ( _lowerCamelCase: Any , _lowerCamelCase: str=None ) -> str: '''simple docstring''' __lowerCamelCase : str = [] __lowerCamelCase : List[str] = [] __lowerCamelCase : Any = None with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_lowerCamelCase ) as f: for line in f: __lowerCamelCase : Dict = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __lowerCamelCase : Optional[int] = line[: line.index(": " )] __lowerCamelCase : str = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed __lowerCamelCase : Optional[Any] = line[len("FAILED " ) :] failed_tests.append(_lowerCamelCase ) elif filename == "job_name.txt": __lowerCamelCase : Tuple = line if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_lowerCamelCase )} for `errors` """ F"""and {len(_lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" " problem." ) __lowerCamelCase : Union[str, Any] = None if job_name and job_links: __lowerCamelCase : Optional[Any] = job_links.get(_lowerCamelCase , _lowerCamelCase ) # A list with elements of the form (line of error, error, failed test) __lowerCamelCase : Dict = [x + [y] + [job_link] for x, y in zip(_lowerCamelCase , _lowerCamelCase )] return result def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Any=None ) -> Dict: '''simple docstring''' __lowerCamelCase : Tuple = [] __lowerCamelCase : List[Any] = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for p in os.listdir(_lowerCamelCase ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(_lowerCamelCase , job_links=_lowerCamelCase ) ) return errors def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Any=None ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : int = Counter() counter.update([x[1] for x in logs] ) __lowerCamelCase : Any = counter.most_common() __lowerCamelCase : List[str] = {} for error, count in counts: if error_filter is None or error not in error_filter: __lowerCamelCase : List[Any] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} __lowerCamelCase : int = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) ) return r def lowercase_ ( _lowerCamelCase: List[Any] ) -> int: '''simple docstring''' __lowerCamelCase : str = test.split("::" )[0] if test.startswith("tests/models/" ): __lowerCamelCase : Optional[int] = test.split("/" )[2] else: __lowerCamelCase : Any = None return test def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Union[str, Any]=None ) -> Dict: '''simple docstring''' __lowerCamelCase : Union[str, Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] __lowerCamelCase : Dict = [x for x in logs if x[2] is not None] __lowerCamelCase : str = {x[2] for x in logs} __lowerCamelCase : Any = {} for test in tests: __lowerCamelCase : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __lowerCamelCase : Dict = counter.most_common() __lowerCamelCase : str = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __lowerCamelCase : List[str] = sum(error_counts.values() ) if n_errors > 0: __lowerCamelCase : Union[str, Any] = {"count": n_errors, "errors": error_counts} __lowerCamelCase : Optional[Any] = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) ) return r def lowercase_ ( _lowerCamelCase: List[str] ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : Tuple = "| no. | error | status |" __lowerCamelCase : Union[str, Any] = "|-:|:-|:-|" __lowerCamelCase : int = [header, sep] for error in reduced_by_error: __lowerCamelCase : int = reduced_by_error[error]["count"] __lowerCamelCase : Union[str, Any] = F"""| {count} | {error[:100]} | |""" lines.append(_lowerCamelCase ) return "\n".join(_lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Tuple ) -> Dict: '''simple docstring''' __lowerCamelCase : Dict = "| model | no. of errors | major error | count |" __lowerCamelCase : Optional[int] = "|-:|-:|-:|-:|" __lowerCamelCase : Tuple = [header, sep] for model in reduced_by_model: __lowerCamelCase : int = reduced_by_model[model]["count"] __lowerCamelCase , __lowerCamelCase : str = list(reduced_by_model[model]["errors"].items() )[0] __lowerCamelCase : Dict = F"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(_lowerCamelCase ) return "\n".join(_lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') __A = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __A = get_job_links(args.workflow_run_id, token=args.token) __A = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __A = k.find(''' / ''') __A = k[index + len(''' / ''') :] __A = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __A = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __A = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __A = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __A = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __A = reduce_by_error(errors) __A = reduce_by_model(errors) __A = make_github_table(reduced_by_error) __A = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
135
"""simple docstring""" def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> List[str]: '''simple docstring''' assert x is not None assert y is not None __lowerCamelCase : Optional[int] = len(_lowerCamelCase ) __lowerCamelCase : Optional[int] = len(_lowerCamelCase ) # declaring the array for storing the dp values __lowerCamelCase : Any = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowerCamelCase : Dict = 1 if x[i - 1] == y[j - 1] else 0 __lowerCamelCase : List[Any] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowerCamelCase : int = "" __lowerCamelCase , __lowerCamelCase : int = m, n while i > 0 and j > 0: __lowerCamelCase : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCamelCase : Any = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = '''AGGTAB''' __A = '''GXTXAYB''' __A = 4 __A = '''GTAB''' __A, __A = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
135
1
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _a ( _SCREAMING_SNAKE_CASE="" ) -> str: snake_case_ = tempfile.mkdtemp() return os.path.join(_SCREAMING_SNAKE_CASE , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ = AgentAudio(UpperCAmelCase_ ) snake_case_ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(UpperCAmelCase_ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(UpperCAmelCase_ ) ) # Ensure that the file contains the same value as the original tensor snake_case_ , snake_case_ = sf.read(UpperCAmelCase_ ) self.assertTrue(torch.allclose(UpperCAmelCase_ , torch.tensor(UpperCAmelCase_ ) , atol=1E-4 ) ) def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ = get_new_path(suffix=""".wav""" ) sf.write(UpperCAmelCase_ , UpperCAmelCase_ , 16_000 ) snake_case_ = AgentAudio(UpperCAmelCase_ ) self.assertTrue(torch.allclose(UpperCAmelCase_ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , UpperCAmelCase_ ) @require_vision @require_torch class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = torch.randint(0 , 256 , (64, 64, 3) ) snake_case_ = AgentImage(UpperCAmelCase_ ) snake_case_ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(UpperCAmelCase_ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCAmelCase_ ) ) def lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" snake_case_ = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" snake_case_ = Image.open(UpperCAmelCase_ ) snake_case_ = AgentImage(UpperCAmelCase_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCAmelCase_ ) ) def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" snake_case_ = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" snake_case_ = Image.open(UpperCAmelCase_ ) snake_case_ = AgentImage(UpperCAmelCase_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCAmelCase_ ) ) class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" snake_case_ = """Hey!""" snake_case_ = AgentText(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , agent_type.to_string() ) self.assertEqual(UpperCAmelCase_ , agent_type.to_raw() ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
351
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: snake_case_ , snake_case_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
233
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata _A : int = "" if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class __SCREAMING_SNAKE_CASE ( tr.AbstractTransform ): def __init__( self : Optional[Any] , A : str = " " ) ->Tuple: lowerCamelCase__ : Tuple = sentence_delimiter def __lowerCamelCase ( self : Union[str, Any] , A : str ) ->Optional[int]: return list(UpperCamelCase__ ) def __lowerCamelCase ( self : List[str] , A : List[str] ) ->str: lowerCamelCase__ : str = [] for sent_idx, sentence in enumerate(UpperCamelCase__ ): chars.extend(self.process_string(UpperCamelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars _A : Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _A : str = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _A : str = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _A : List[Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" _A : Tuple = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __lowerCamelCase ( self : Optional[Any] ) ->str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def __lowerCamelCase ( self : List[str] , A : Optional[Any] , A : List[str] , A : Union[str, Any]=False ) ->Union[str, Any]: if concatenate_texts: return jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , )["wer"] lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : str = 0 for prediction, reference in zip(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase__ : Dict = jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
142
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _lowerCamelCase : Optional[int] = logging.getLogger(__name__) def __lowerCamelCase ( A__=2 , A__=3 , A__=16 , A__ = 10 , A__ = 2 ) -> int: """simple docstring""" def get_dataset(A__ ): UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(A__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCamelCase = get_dataset(A__ ) UpperCamelCase = get_dataset(A__ ) UpperCamelCase = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) UpperCamelCase = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ , A__=None ) -> int: """simple docstring""" UpperCamelCase = [] for epoch in range(A__ ): # Train quickly model.train() for batch in dataloader: UpperCamelCase , UpperCamelCase = batch UpperCamelCase = model(A__ ) UpperCamelCase = torch.nn.functional.mse_loss(A__ , A__ ) accelerator.backward(A__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Tuple ): """simple docstring""" super().__init__() UpperCamelCase = nn.Parameter(torch.randn(1 ) ) UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A ( self : str , UpperCamelCase__ : Dict ): """simple docstring""" return x * self.a + self.b class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=UpperCamelCase__ , automatic_checkpoint_naming=UpperCamelCase__ ) # Train baseline UpperCamelCase = Accelerator(project_config=UpperCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() # Train baseline UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save initial UpperCamelCase = os.path.join(UpperCamelCase__ , 'initial' ) accelerator.save_state(UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() UpperCamelCase = train(3 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.load_state(UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = train(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save everything UpperCamelCase = os.path.join(UpperCamelCase__ , 'checkpoint' ) accelerator.save_state(UpperCamelCase__ ) # Load everything back in and make sure all states work accelerator.load_state(UpperCamelCase__ ) test_rands += train(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase__ ) # Train baseline UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save initial accelerator.save_state() ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() UpperCamelCase = train(3 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCamelCase__ ) UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.load_state(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = train(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = torch.tensor([1, 2, 3] ) UpperCamelCase = torch.tensor([2, 3, 4] ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(net.parameters() ) UpperCamelCase = Accelerator() with self.assertRaises(UpperCamelCase__ ) as ve: accelerator.register_for_checkpointing(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def A ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase = torch.optim.lr_scheduler.StepLR(UpperCamelCase__ , step_size=1 , gamma=0.9_9 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase__ ) # Train baseline UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save initial accelerator.save_state() UpperCamelCase = scheduler.state_dict() train(3 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(UpperCamelCase__ , scheduler.state_dict() ) def A ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase__ , total_limit=2 ) # Train baseline UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ ) UpperCamelCase = accelerator.prepare(UpperCamelCase__ ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def A ( self : Dict ): """simple docstring""" UpperCamelCase = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = "/tmp/accelerate/state_checkpointing" _lowerCamelCase : Union[str, Any] = DummyModel() _lowerCamelCase : Optional[Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) _lowerCamelCase : List[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) _lowerCamelCase ,_lowerCamelCase : Tuple = dummy_dataloaders() _lowerCamelCase : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _lowerCamelCase : Any = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase : Union[str, Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _lowerCamelCase ,_lowerCamelCase : Tuple = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _lowerCamelCase : Any = group["params"][0].device break assert param_device.type == accelerator.device.type _lowerCamelCase : Tuple = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: _lowerCamelCase : Optional[Any] = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: _lowerCamelCase : Dict = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
28
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"vocab_file": "spm_char.model"} __UpperCAmelCase = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } __UpperCAmelCase = { "microsoft/speecht5_asr": 10_24, "microsoft/speecht5_tts": 10_24, "microsoft/speecht5_vc": 10_24, } class _SCREAMING_SNAKE_CASE ( lowercase_ ): UpperCAmelCase_ :Any = VOCAB_FILES_NAMES UpperCAmelCase_ :Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ :List[str] = ["input_ids", "attention_mask"] def __init__( self , __A , __A="<s>" , __A="</s>" , __A="<unk>" , __A="<pad>" , __A = None , **__A , ) -> None: lowerCAmelCase_ :List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) lowerCAmelCase_ :Optional[Any] = vocab_file lowerCAmelCase_ :Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) @property def __lowerCAmelCase ( self ) -> str: return self.sp_model.get_piece_size() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: lowerCAmelCase_ :Union[str, Any] = self.__dict__.copy() lowerCAmelCase_ :str = None return state def __setstate__( self , __A ) -> Dict: lowerCAmelCase_ :List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase_ :Tuple = {} lowerCAmelCase_ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , __A ) -> List[str]: return self.sp_model.encode(a__ , out_type=a__ ) def __lowerCAmelCase ( self , __A ) -> Dict: return self.sp_model.piece_to_id(a__ ) def __lowerCAmelCase ( self , __A ) -> int: lowerCAmelCase_ :Any = self.sp_model.IdToPiece(a__ ) return token def __lowerCAmelCase ( self , __A ) -> str: lowerCAmelCase_ :int = [] lowerCAmelCase_ :Optional[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a__ ) + token lowerCAmelCase_ :Union[str, Any] = [] else: current_sub_tokens.append(a__ ) out_string += self.sp_model.decode(a__ ) return out_string.strip() def __lowerCAmelCase ( self , __A , __A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) lowerCAmelCase_ :List[str] = [1] if token_ids_a is None: return ([0] * len(a__ )) + suffix_ones return ([0] * len(a__ )) + ([0] * len(a__ )) + suffix_ones def __lowerCAmelCase ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(a__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase_ :List[str] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , """wb""" ) as fi: lowerCAmelCase_ :Tuple = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
353
"""simple docstring""" def _snake_case ( lowercase__ : list , lowercase__ : list , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: '''simple docstring''' if index == number_of_items: return 0 lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :str = 0 lowerCAmelCase_ :Dict = knapsack(lowercase__ , lowercase__ , lowercase__ , lowercase__ , index + 1 ) if weights[index] <= max_weight: lowerCAmelCase_ :str = values[index] + knapsack( lowercase__ , lowercase__ , lowercase__ , max_weight - weights[index] , index + 1 ) return max(lowercase__ , lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
1
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCamelCase__ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def a__ ( ) -> List[Any]: UpperCAmelCase__ : List[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCAmelCase__ : Any = g.get_repo('''huggingface/diffusers''' ) UpperCAmelCase__ : List[str] = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCAmelCase__ : Any = sorted(issue.get_comments() , key=lambda lowerCAmelCase__ : i.created_at , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : Dict = comments[0] if len(lowerCAmelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
181
'''simple docstring''' import re from filelock import FileLock try: import nltk UpperCamelCase__ = True except (ImportError, ModuleNotFoundError): UpperCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a__ ( lowerCAmelCase__ ) -> str: re.sub('''<n>''' , '''''' , lowerCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCAmelCase__ ) )
181
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = image.size UpperCAmelCase__ : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase__ : Optional[Any] = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) UpperCAmelCase__ : Any = np.array(snake_case__ ).astype(np.floataa ) / 2_5_5.0 UpperCAmelCase__ : List[Any] = image[None].transpose(0 , 3 , 1 , 2 ) UpperCAmelCase__ : int = torch.from_numpy(snake_case__ ) return 2.0 * image - 1.0 class lowerCamelCase_ ( a__ ): def __init__( self : Tuple , _A : Any , _A : Dict , _A : List[str] , ): '''simple docstring''' super().__init__() self.register_modules(vqvae=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self : Optional[Any] , _A : List[str] = None , _A : Optional[Any] = 1 , _A : Optional[int] = 100 , _A : Dict = 0.0 , _A : str = None , _A : Tuple = "pil" , _A : Optional[Any] = True , ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): UpperCAmelCase__ : Union[str, Any] = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): UpperCAmelCase__ : int = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE_ )}""" ) if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): UpperCAmelCase__ : Optional[int] = preprocess(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ : str = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCAmelCase__ : Any = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCAmelCase__ : Union[str, Any] = next(self.unet.parameters() ).dtype UpperCAmelCase__ : Union[str, Any] = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ : Union[str, Any] = image.to(device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=self.device ) UpperCAmelCase__ : Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase__ : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase__ : List[str] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase__ : List[str] = {} if accepts_eta: UpperCAmelCase__ : Optional[int] = eta for t in self.progress_bar(SCREAMING_SNAKE_CASE_ ): # concat latents and low resolution image in the channel dimension. UpperCAmelCase__ : int = torch.cat([latents, image] , dim=1 ) UpperCAmelCase__ : Tuple = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCAmelCase__ : Any = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ : Dict = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # decode the image latents with the VQVAE UpperCAmelCase__ : str = self.vqvae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCAmelCase__ : Optional[int] = torch.clamp(SCREAMING_SNAKE_CASE_ , -1.0 , 1.0 ) UpperCAmelCase__ : Optional[Any] = image / 2 + 0.5 UpperCAmelCase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ : Optional[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
365
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : str = DatasetDict( { '''train''': dataset['''train'''].select(lowerCAmelCase__ ), '''validation''': dataset['''train'''].select(lowerCAmelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Dict = 8 else: UpperCAmelCase__ : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # New Code # UpperCAmelCase__ : List[str] = [] # Download the dataset UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Any = config['''lr'''] UpperCAmelCase__ : Any = int(config['''num_epochs'''] ) UpperCAmelCase__ : Any = int(config['''seed'''] ) UpperCAmelCase__ : Dict = int(config['''batch_size'''] ) UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) # New Code # # Create our folds: UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase__ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = outputs.loss UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase__ : int = [] for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = outputs.logits UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 ) UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
0
'''simple docstring''' from __future__ import annotations import requests a_ : List[Any] = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def a_ ( __snake_case : str , __snake_case : int = 1 , __snake_case : str = "new" , __snake_case : list | None = None ) -> dict: """simple docstring""" lowerCamelCase_ =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): lowerCamelCase_ =F'''Invalid search term: {invalid_search_terms}''' raise ValueError(__snake_case ) lowerCamelCase_ =requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError lowerCamelCase_ =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} lowerCamelCase_ ={} for id_ in range(__snake_case ): lowerCamelCase_ ={ item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
75
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A : Union[str, Any] = imread(R"digital_image_processing/image_data/lena_small.jpg") A : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = cn.convert_to_negative(_UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): '''simple docstring''' with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCamelCase , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(_UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): '''simple docstring''' assert gg.gaussian_filter(_UpperCamelCase , 5 , sigma=0.9 ).all() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(_UpperCamelCase , _UpperCamelCase ).astype(_UpperCamelCase ) assert res.any() def _lowerCamelCase ( ): '''simple docstring''' assert med.median_filter(_UpperCamelCase , 3 ).any() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(_UpperCamelCase ) assert grad.any() and theta.any() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = sp.make_sepia(_UpperCamelCase , 20 ) assert sepia.all() def _lowerCamelCase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' __lowerCAmelCase = bs.Burkes(imread(_UpperCamelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' __lowerCAmelCase = rs.NearestNeighbour(imread(_UpperCamelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(_UpperCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert lbp_image.any()
57
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCAmelCase_ ( _lowercase): snake_case__ = '''philschmid/bart-large-cnn-samsum''' snake_case__ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case__ = '''summarizer''' snake_case__ = AutoTokenizer snake_case__ = AutoModelForSeqaSeqLM snake_case__ = ['''text'''] snake_case__ = ['''text'''] def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Dict ) -> Dict: return self.pre_processor(__UpperCamelCase , return_tensors='''pt''' , truncation=__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : List[str] ) -> int: return self.model.generate(**__UpperCamelCase )[0] def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str ) -> int: return self.pre_processor.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase )
54
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase_ ( _lowercase): snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''OwlViTImageProcessor''' snake_case__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Any , __UpperCamelCase : int=None , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : List[str] ) -> Union[str, Any]: _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCamelCase , ) _UpperCamelCase = kwargs.pop('''feature_extractor''' ) _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self : List[str] , __UpperCamelCase : Dict=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]="max_length" , __UpperCamelCase : List[Any]="np" , **__UpperCamelCase : Optional[int] ) -> Optional[int]: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ) or (isinstance(__UpperCamelCase , __UpperCamelCase ) and not isinstance(text[0] , __UpperCamelCase )): _UpperCamelCase = [self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )] elif isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(text[0] , __UpperCamelCase ): _UpperCamelCase = [] # Maximum number of queries across batch _UpperCamelCase = max([len(__UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCamelCase ) != max_num_queries: _UpperCamelCase = t + [''' '''] * (max_num_queries - len(__UpperCamelCase )) _UpperCamelCase = self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) encodings.append(__UpperCamelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": _UpperCamelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCamelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCamelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) _UpperCamelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCamelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) _UpperCamelCase = BatchEncoding() _UpperCamelCase = input_ids _UpperCamelCase = attention_mask if query_images is not None: _UpperCamelCase = BatchEncoding() _UpperCamelCase = self.image_processor( __UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ).pixel_values _UpperCamelCase = query_pixel_values if images is not None: _UpperCamelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def _UpperCamelCase ( self : str , *__UpperCamelCase : str , **__UpperCamelCase : str ) -> List[Any]: return self.image_processor.post_process(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : str , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[Any] ) -> Optional[int]: return self.image_processor.post_process_object_detection(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] , *__UpperCamelCase : List[str] , **__UpperCamelCase : Optional[Any] ) -> int: return self.image_processor.post_process_image_guided_detection(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Any ) -> str: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] , *__UpperCamelCase : Tuple , **__UpperCamelCase : List[Any] ) -> List[str]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCamelCase , ) return self.image_processor_class @property def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCamelCase , ) return self.image_processor
54
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """realm""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=128 , lowercase=12 , lowercase=12 , lowercase=8 , lowercase=3072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=256 , lowercase=10 , lowercase=1E-3 , lowercase=5 , lowercase=320 , lowercase=13353718 , lowercase=5000 , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) # Common config _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = retriever_proj_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Union[str, Any] = num_candidates _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : str = layer_norm_eps # Reader config _lowerCamelCase : List[str] = span_hidden_size _lowerCamelCase : str = max_span_width _lowerCamelCase : Any = reader_layer_norm_eps _lowerCamelCase : List[Any] = reader_beam_size _lowerCamelCase : Any = reader_seq_len # Retrieval config _lowerCamelCase : Tuple = num_block_records _lowerCamelCase : str = searcher_beam_size
96
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _lowercase : Union[str, Any] = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) _lowercase : int = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } _lowercase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Any = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } _lowercase : str = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : List[str] = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) _lowercase : Tuple = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Optional[Any] = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) _lowercase : Tuple = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Optional[int] = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." _lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Optional[Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." _lowercase : Optional[int] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" _lowercase : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." _lowercase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" _lowercase : int = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." _lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" _lowercase : int = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." _lowercase : List[str] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : str = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." _lowercase : Dict = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" _lowercase : List[str] = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." _lowercase : str = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." _lowercase : List[Any] = "" _lowercase : Optional[Any] = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." _lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Optional[Any] = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" assert ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path='''root''' ) ) ): lowercase_ : Optional[int] = ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , suppress_parsing_errors=__SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Optional[int] = Path(__SCREAMING_SNAKE_CASE ) / '''README.md''' with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file: readme_file.write(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : str = Path(__SCREAMING_SNAKE_CASE ) / '''README.md''' with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file: readme_file.write(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = expected_error.format(path=__SCREAMING_SNAKE_CASE ) with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(__SCREAMING_SNAKE_CASE ) ): lowercase_ : int = ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = Path(__SCREAMING_SNAKE_CASE ) / '''README.md''' with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file: readme_file.write(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = expected_error.format(path=__SCREAMING_SNAKE_CASE ) with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(__SCREAMING_SNAKE_CASE ) ): ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Optional[int] = Path(__SCREAMING_SNAKE_CASE ) / '''README.md''' with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file: readme_file.write(__SCREAMING_SNAKE_CASE ) ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , suppress_parsing_errors=__SCREAMING_SNAKE_CASE )
93
0
"""simple docstring""" lowerCamelCase__ = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
310
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
310
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase__ : List[str] = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def A_ ( snake_case : Optional[Any] , snake_case : Any=None ) -> Union[str, Any]: '''simple docstring''' require_version(deps[pkg] , snake_case )
328
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
1
"""simple docstring""" from __future__ import annotations def A ( snake_case :list[int] ) -> int: if not nums: return 0 __UpperCamelCase = nums[0] __UpperCamelCase = 0 for num in nums[1:]: __UpperCamelCase , __UpperCamelCase = ( max_excluding + num, max(snake_case , snake_case ), ) return max(snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" from math import isqrt def A ( snake_case :int ) -> list[int]: __UpperCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case , snake_case ): __UpperCamelCase = False return [i for i in range(2 , snake_case ) if is_prime[i]] def A ( snake_case :int = 1_0**8 ) -> int: __UpperCamelCase = calculate_prime_numbers(max_number // 2 ) __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
263
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """dpr""" def __init__( self : List[str] , a_ : str=3_05_22 , a_ : Tuple=7_68 , a_ : Optional[int]=12 , a_ : Optional[int]=12 , a_ : List[str]=30_72 , a_ : int="gelu" , a_ : Dict=0.1 , a_ : List[str]=0.1 , a_ : List[Any]=5_12 , a_ : Optional[int]=2 , a_ : Optional[Any]=0.0_2 , a_ : Optional[Any]=1e-12 , a_ : Dict=0 , a_ : List[Any]="absolute" , a_ : int = 0 , **a_ : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=a_ , **a_ ) __UpperCAmelCase : int = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : List[str] = projection_dim __UpperCAmelCase : Tuple = position_embedding_type
226
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A =logging.get_logger(__name__) __A ={ "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """deberta-v2""" def __init__( self : Optional[int] , a_ : List[str]=12_81_00 , a_ : Optional[Any]=15_36 , a_ : Optional[Any]=24 , a_ : List[Any]=24 , a_ : Optional[int]=61_44 , a_ : List[Any]="gelu" , a_ : Any=0.1 , a_ : Tuple=0.1 , a_ : Optional[Any]=5_12 , a_ : Tuple=0 , a_ : Dict=0.0_2 , a_ : Optional[Any]=1e-7 , a_ : List[str]=False , a_ : List[Any]=-1 , a_ : List[str]=0 , a_ : Optional[Any]=True , a_ : List[Any]=None , a_ : Optional[int]=0 , a_ : Tuple="gelu" , **a_ : List[str] , ): '''simple docstring''' super().__init__(**a_ ) __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : int = type_vocab_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[int] = relative_attention __UpperCAmelCase : int = max_relative_positions __UpperCAmelCase : Any = pad_token_id __UpperCAmelCase : int = position_biased_input # Backwards compatibility if type(a_ ) == str: __UpperCAmelCase : Optional[Any] = [x.strip() for x in pos_att_type.lower().split('''|''' )] __UpperCAmelCase : Tuple = pos_att_type __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : str = kwargs.get('''pooler_hidden_size''' , a_ ) __UpperCAmelCase : Union[str, Any] = pooler_dropout __UpperCAmelCase : Tuple = pooler_hidden_act class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' @property def snake_case__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : int = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return 12 def snake_case__ ( self : Any , a_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a_ : int = -1 , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional["TensorType"] = None , a_ : int = 3 , a_ : int = 40 , a_ : int = 40 , a_ : "PreTrainedTokenizerBase" = None , ): '''simple docstring''' __UpperCAmelCase : List[Any] = super().generate_dummy_inputs(preprocessor=a_ , framework=a_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
226
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : List[str] = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = ['PerceiverFeatureExtractor'] _snake_case : Optional[Any] = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _snake_case : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
_snake_case : List[str] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) _snake_case : List[Any] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : str, lowerCAmelCase_ : str ): __lowerCAmelCase = from_type.lower().strip('s' ) __lowerCAmelCase = to_type.lower().strip('s' ) __lowerCAmelCase = UNIT_SYMBOL.get(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = UNIT_SYMBOL.get(lowerCAmelCase_, lowerCAmelCase_ ) if from_sanitized not in METRIC_CONVERSION: __lowerCAmelCase = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) if to_sanitized not in METRIC_CONVERSION: __lowerCAmelCase = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) __lowerCAmelCase = METRIC_CONVERSION[from_sanitized] __lowerCAmelCase = METRIC_CONVERSION[to_sanitized] __lowerCAmelCase = 1 if from_exponent > to_exponent: __lowerCAmelCase = from_exponent - to_exponent else: __lowerCAmelCase = -(to_exponent - from_exponent) return value * pow(10, lowerCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
207
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = str(id_ ) UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Union[str, Any] = {} # {vertex:distance} def __lt__( self , lowercase_ ): """simple docstring""" return self.key < other.key def __repr__( self ): """simple docstring""" return self.id def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" self.neighbors.append(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = weight def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], __lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1], __lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = [] for u in graph: UpperCAmelCase_ : str = math.inf UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Any = graph[:] while q: UpperCAmelCase_ : List[Any] = min(__lowerCamelCase ) q.remove(__lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ : int = u UpperCAmelCase_ : int = u.edges[v.id] for i in range(1, len(__lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __a ( __lowerCamelCase, __lowerCamelCase ): for u in graph: UpperCAmelCase_ : Dict = math.inf UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Tuple = list(__lowerCamelCase ) hq.heapify(__lowerCamelCase ) while h: UpperCAmelCase_ : str = hq.heappop(__lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ : Dict = u UpperCAmelCase_ : str = u.edges[v.id] hq.heapify(__lowerCamelCase ) for i in range(1, len(__lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __a ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
61
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = (DDIMParallelScheduler,) SCREAMING_SNAKE_CASE__ : Optional[Any] = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : int = scheduler_class(**lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = 10, 0.0 UpperCAmelCase_ : Optional[int] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for t in scheduler.timesteps: UpperCAmelCase_ : Dict = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : List[str] = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowercase_ , num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase_ , eta=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.scheduler_classes[0] UpperCAmelCase_ : Optional[int] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = 10, 0.0 scheduler.set_timesteps(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_model() UpperCAmelCase_ : List[str] = self.dummy_sample_deter UpperCAmelCase_ : Any = self.dummy_sample_deter + 0.1 UpperCAmelCase_ : int = self.dummy_sample_deter - 0.1 UpperCAmelCase_ : List[Any] = samplea.shape[0] UpperCAmelCase_ : int = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase_ : int = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ ) UpperCAmelCase_ : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase_ : Optional[Any] = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase_ ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : str = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.full_loop() UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : List[str] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : List[str] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : Dict = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : int = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
61
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple: __lowerCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 __lowerCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowerCAmelCase = min(a__ , a__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
369
'''simple docstring''' import sys def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )] __lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )] for chain_length in range(2 , lowercase ): for a in range(1 , n - chain_length + 1 ): __lowerCAmelCase = a + chain_length - 1 __lowerCAmelCase = sys.maxsize for c in range(lowercase , lowercase ): __lowerCAmelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowerCAmelCase = cost __lowerCAmelCase = c return matrix, sol def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Union[str, Any]: if i == j: print("""A""" + str(lowercase ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(lowercase , lowercase , optimal_solution[i][j] ) print_optiomal_solution(lowercase , optimal_solution[i][j] + 1 , lowercase ) print(""")""" , end=""" """ ) def _lowerCAmelCase ( ) -> Dict: __lowerCAmelCase = [30, 35, 15, 5, 10, 20, 25] __lowerCAmelCase = len(lowercase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowerCAmelCase , __lowerCAmelCase = matrix_chain_order(lowercase ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase , 1 , n - 1 ) if __name__ == "__main__": main()
46
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" __lowercase : Optional[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __lowercase : Any = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = generator("""Something there""") self.assertEqual(lowerCAmelCase__ , [{"""generated_text""": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""")) __SCREAMING_SNAKE_CASE = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"""generated_text""": ANY(lowerCAmelCase__)}, {"""generated_text""": ANY(lowerCAmelCase__)}], [{"""generated_text""": ANY(lowerCAmelCase__)}, {"""generated_text""": ANY(lowerCAmelCase__)}], ] , ) __SCREAMING_SNAKE_CASE = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"""generated_text""": ANY(lowerCAmelCase__)}, {"""generated_text""": ANY(lowerCAmelCase__)}], [{"""generated_text""": ANY(lowerCAmelCase__)}, {"""generated_text""": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def snake_case_ ( self): __SCREAMING_SNAKE_CASE = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""") # do_sample=False necessary for reproducibility __SCREAMING_SNAKE_CASE = generator("""Something there""" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"""generated_text""": """"""}]) __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = generator( """Something there""" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = generator("""This is a test""" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"""generated_token_ids""": ANY(torch.Tensor)}, {"""generated_token_ids""": ANY(torch.Tensor)}, ] , ) __SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id __SCREAMING_SNAKE_CASE = """<pad>""" __SCREAMING_SNAKE_CASE = generator( ["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor)}, {"""generated_token_ids""": ANY(torch.Tensor)}, ], [ {"""generated_token_ids""": ANY(torch.Tensor)}, {"""generated_token_ids""": ANY(torch.Tensor)}, ], ] , ) @require_tf def snake_case_ ( self): __SCREAMING_SNAKE_CASE = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""") # do_sample=False necessary for reproducibility __SCREAMING_SNAKE_CASE = generator("""Something there""" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"""generated_text""": """"""}])
100
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __UpperCamelCase : Any = getLogger(__name__) __UpperCamelCase : int = 'cuda' if torch.cuda.is_available() else 'cpu' def A ( _lowercase , _lowercase , _lowercase , _lowercase = 8 , _lowercase = DEFAULT_DEVICE , _lowercase=False , _lowercase="summarization" , _lowercase=None , **_lowercase , ): SCREAMING_SNAKE_CASE : List[str] = Path(_lowercase ).open('''w''' , encoding='''utf-8''' ) SCREAMING_SNAKE_CASE : int = str(_lowercase ) SCREAMING_SNAKE_CASE : Any = AutoModelForSeqaSeqLM.from_pretrained(_lowercase ).to(_lowercase ) if fpaa: SCREAMING_SNAKE_CASE : Dict = model.half() SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(_lowercase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. SCREAMING_SNAKE_CASE : str = time.time() # update config with task specific params use_task_specific_params(_lowercase , _lowercase ) if prefix is None: SCREAMING_SNAKE_CASE : Optional[int] = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(_lowercase , _lowercase ) ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prefix + text for text in examples_chunk] SCREAMING_SNAKE_CASE : Dict = tokenizer(_lowercase , return_tensors='''pt''' , truncation=_lowercase , padding='''longest''' ).to(_lowercase ) SCREAMING_SNAKE_CASE : str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowercase , ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() SCREAMING_SNAKE_CASE : Tuple = int(time.time() - start_time ) # seconds SCREAMING_SNAKE_CASE : str = len(_lowercase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A ( ): return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A ( _lowercase=True ): SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=_lowercase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=_lowercase , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=_lowercase , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=_lowercase , required=_lowercase , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=_lowercase , required=_lowercase , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=_lowercase , required=_lowercase , default=_lowercase , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=_lowercase , required=_lowercase , default=_lowercase , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=_lowercase , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_lowercase , default=8 , required=_lowercase , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=_lowercase , default=-1 , required=_lowercase , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=_lowercase , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_known_args() SCREAMING_SNAKE_CASE : Optional[Any] = parse_numeric_n_bool_cl_kwargs(_lowercase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: SCREAMING_SNAKE_CASE : Any = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowercase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) SCREAMING_SNAKE_CASE : List[str] = generate_summaries_or_translations( _lowercase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowercase , ) if args.reference_path is None: return {} # Compute scores SCREAMING_SNAKE_CASE : Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge SCREAMING_SNAKE_CASE : Union[str, Any] = [x.rstrip() for x in open(args.save_path ).readlines()] SCREAMING_SNAKE_CASE : Optional[int] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowercase )] SCREAMING_SNAKE_CASE : dict = score_fn(_lowercase , _lowercase ) scores.update(_lowercase ) if args.dump_args: scores.update(_lowercase ) if args.info: SCREAMING_SNAKE_CASE : Tuple = args.info if verbose: print(_lowercase ) if args.score_path is not None: json.dump(_lowercase , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
182
0
"""simple docstring""" import numpy # List of input, output pairs lowerCAmelCase_ : List[Any] = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) lowerCAmelCase_ : Tuple = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) lowerCAmelCase_ : List[str] = [2, 4, 1, 5] lowerCAmelCase_ : List[str] = len(train_data) lowerCAmelCase_ : Dict = 0.009 def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase="train" ): '''simple docstring''' return calculate_hypothesis_value(lowercase__ , lowercase__ ) - output( lowercase__ , lowercase__ ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = 0 for i in range(len(lowercase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=m ): '''simple docstring''' UpperCAmelCase = 0 for i in range(lowercase__ ): if index == -1: summation_value += _error(lowercase__ ) else: summation_value += _error(lowercase__ ) * train_data[i][0][index] return summation_value def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = summation_of_cost_derivative(lowercase__ , lowercase__ ) / m return cost_derivative_value def _lowerCAmelCase ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase = 0.00_00_02 UpperCAmelCase = 0 UpperCAmelCase = 0 while True: j += 1 UpperCAmelCase = [0, 0, 0, 0] for i in range(0 , len(lowercase__ ) ): UpperCAmelCase = get_cost_derivative(i - 1 ) UpperCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowercase__ , lowercase__ , atol=lowercase__ , rtol=lowercase__ , ): break UpperCAmelCase = temp_parameter_vector print(("""Number of iterations:""", j) ) def _lowerCAmelCase ( ): '''simple docstring''' for i in range(len(lowercase__ ) ): print(("""Actual output value:""", output(lowercase__ , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(lowercase__ , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
362
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ : Any = ['''gpt2'''] lowerCAmelCase_ : Optional[int] = '''gpt2''' if is_tf_available(): class UpperCamelCase_ ( tf.Module ): def __init__( self , snake_case__ ) -> List[str]: """simple docstring""" super().__init__() UpperCAmelCase = tokenizer UpperCAmelCase = AutoConfig.from_pretrained(snake_case__ ) UpperCAmelCase = TFGPTaLMHeadModel.from_config(snake_case__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def UpperCamelCase_ ( self , snake_case__ ) -> List[str]: """simple docstring""" UpperCAmelCase = self.tokenizer(snake_case__ ) UpperCAmelCase = tokenized["""input_ids"""].to_tensor() UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase = self.model(input_ids=snake_case__ , attention_mask=snake_case__ )["""logits"""] return outputs @require_tf @require_keras_nlp class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() UpperCAmelCase = [GPTaTokenizer.from_pretrained(snake_case__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(snake_case__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase = tokenizer([test_inputs] , return_tensors="""tf""" ) UpperCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase = python_outputs[key].numpy() UpperCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(snake_case__ , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf.function(snake_case__ ) for test_inputs in self.test_sentences: UpperCAmelCase = tf.constant(snake_case__ ) UpperCAmelCase = compiled_tokenizer(snake_case__ ) UpperCAmelCase = tf_tokenizer(snake_case__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = ModelToSave(tokenizer=snake_case__ ) UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase = model.serving(snake_case__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase = Path(snake_case__ ) / """saved.model""" tf.saved_model.save(snake_case__ , snake_case__ , signatures={"""serving_default""": model.serving} ) UpperCAmelCase = tf.saved_model.load(snake_case__ ) UpperCAmelCase = loaded_model.signatures["""serving_default"""](snake_case__ )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase = tf_tokenizer(snake_case__ ) # Build model with some sample inputs UpperCAmelCase = tf_tokenizer.get_config() UpperCAmelCase = TFGPTaTokenizer.from_config(snake_case__ ) UpperCAmelCase = model_from_config(snake_case__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase = 12_31_23 for max_length in [3, 5, 10_24]: UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase = tf_tokenizer(snake_case__ , max_length=snake_case__ ) UpperCAmelCase = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
248
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCamelCase__ = 1.054571817E-34 # unit of ℏ : J * s UpperCamelCase__ = 3E8 # unit of c : m * s^-1 def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: __lowerCAmelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: __lowerCAmelCase = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __lowerCAmelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
92
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : Any ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase (self : Dict , __a : Any , __a : List[Any] ): UpperCAmelCase_ = FlaxViTModel(config=__a ) UpperCAmelCase_ = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ = (self.patch_size, self.patch_size) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase (self : Tuple , __a : str , __a : Any ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxViTForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxViTForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase (self : Any ): UpperCAmelCase_ = FlaxViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Tuple , **__a : List[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase (self : Tuple ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
1
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class lowercase ( __UpperCamelCase ): '''simple docstring''' def snake_case_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=None ) -> Any: """simple docstring""" UpperCAmelCase = self.layer[current_layer](_snake_case , _snake_case , head_mask[current_layer] ) UpperCAmelCase = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , __UpperCamelCase , ) class lowercase ( __UpperCamelCase ): '''simple docstring''' def __init__( self , _snake_case ) -> int: """simple docstring""" super().__init__(_snake_case ) UpperCAmelCase = BertEncoderWithPabee(_snake_case ) self.init_weights() UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" UpperCAmelCase = threshold def snake_case_ ( self , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = patience def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 0 def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.inference_layers_num / self.inference_instances_num UpperCAmelCase = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_snake_case ) @add_start_docstrings_to_model_forward(_snake_case ) def snake_case_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=False , ) -> Union[str, Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: UpperCAmelCase = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) UpperCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase = torch.ones(_snake_case , device=_snake_case ) if token_type_ids is None: UpperCAmelCase = torch.zeros(_snake_case , dtype=torch.long , device=_snake_case ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase = self.get_extended_attention_mask(_snake_case , _snake_case , _snake_case ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase = encoder_hidden_states.size() UpperCAmelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase = torch.ones(_snake_case , device=_snake_case ) UpperCAmelCase = self.invert_attention_mask(_snake_case ) else: UpperCAmelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase = self.get_head_mask(_snake_case , self.config.num_hidden_layers ) UpperCAmelCase = self.embeddings( input_ids=_snake_case , position_ids=_snake_case , token_type_ids=_snake_case , inputs_embeds=_snake_case ) UpperCAmelCase = embedding_output if self.training: UpperCAmelCase = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase = self.encoder.adaptive_forward( _snake_case , current_layer=_snake_case , attention_mask=_snake_case , head_mask=_snake_case ) UpperCAmelCase = self.pooler(_snake_case ) UpperCAmelCase = output_layers[i](output_dropout(_snake_case ) ) res.append(_snake_case ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase = self.encoder( _snake_case , attention_mask=_snake_case , head_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) UpperCAmelCase = self.pooler(encoder_outputs[0] ) UpperCAmelCase = [output_layers[self.config.num_hidden_layers - 1](_snake_case )] else: UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase = self.encoder.adaptive_forward( _snake_case , current_layer=_snake_case , attention_mask=_snake_case , head_mask=_snake_case ) UpperCAmelCase = self.pooler(_snake_case ) UpperCAmelCase = output_layers[i](_snake_case ) if regression: UpperCAmelCase = logits.detach() if patient_result is not None: UpperCAmelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase = 0 else: UpperCAmelCase = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_snake_case ) ): patient_counter += 1 else: UpperCAmelCase = 0 UpperCAmelCase = logits if patient_counter == self.patience: break UpperCAmelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , __UpperCamelCase , ) class lowercase ( __UpperCamelCase ): '''simple docstring''' def __init__( self , _snake_case ) -> Dict: """simple docstring""" super().__init__(_snake_case ) UpperCAmelCase = config.num_labels UpperCAmelCase = BertModelWithPabee(_snake_case ) UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_snake_case ) def snake_case_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.bert( input_ids=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , position_ids=_snake_case , head_mask=_snake_case , inputs_embeds=_snake_case , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCAmelCase = (logits[-1],) if labels is not None: UpperCAmelCase = None UpperCAmelCase = 0 for ix, logits_item in enumerate(_snake_case ): if self.num_labels == 1: # We are doing regression UpperCAmelCase = MSELoss() UpperCAmelCase = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase = CrossEntropyLoss() UpperCAmelCase = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCAmelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase = (total_loss / total_weights,) + outputs return outputs
356
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __magic_name__ = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __magic_name__ = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split() ) __magic_name__ = "|".join(sys.argv[1:]) __magic_name__ = re.compile(rf'''^({joined_dirs}).*?\.py$''') __magic_name__ = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
152
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : int = 10 ) -> Optional[Any]: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or n < 0: raise ValueError('Invalid input' ) lowerCamelCase_ = 10**n lowerCamelCase_ = 28433 * (pow(2 , 7830457 , UpperCAmelCase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
183
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: str ): """simple docstring""" A__ = get_activation("""swish""" ) self.assertIsInstance(UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = get_activation("""silu""" ) self.assertIsInstance(UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = get_activation("""mish""" ) self.assertIsInstance(UpperCamelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = get_activation("""gelu""" ) self.assertIsInstance(UpperCamelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
335
0
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( A : Optional[int] , A : List[str] , A : Any ): '''simple docstring''' if gpta_config_file == "": UpperCAmelCase = GPTaConfig() else: UpperCAmelCase = GPTaConfig.from_json_file(A ) UpperCAmelCase = GPTaModel(A ) # Load weights from numpy load_tf_weights_in_gpta(A , A , A ) # Save pytorch-model UpperCAmelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , A ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowercase : Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
91
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCamelCase__: __magic_name__ : List[str] __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = None __magic_name__ : str = field(default="Translation" , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self : Union[str, Any] )-> str: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def a__( self : int )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class UpperCamelCase__: __magic_name__ : Optional[List] = None __magic_name__ : Optional[int] = None __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = None __magic_name__ : str = field(default="TranslationVariableLanguages" , init=lowerCAmelCase , repr=lowerCAmelCase ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = sorted(set(self.languages ) ) if self.languages else None UpperCAmelCase = len(self.languages ) if self.languages else None def __call__( self : int )-> Optional[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def a__( self : Optional[int] , lowerCAmelCase : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = set(self.languages ) if self.languages and set(lowerCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(lowerCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(lowerCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. UpperCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. UpperCAmelCase , UpperCAmelCase = zip(*sorted(lowerCAmelCase ) ) return {"language": languages, "translation": translations} def a__( self : Any )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
91
1
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 for ch in input_str: __SCREAMING_SNAKE_CASE = ord(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = pow(2 , lowerCAmelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
54
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase__ ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase_ ( self : Any ) -> int: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(UpperCAmelCase__ ) # fails here def UpperCAmelCase_ ( self : List[Any] ) -> Any: __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase_ ( self : str ) -> List[str]: __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
54
1
import enum import shutil import sys UpperCAmelCase, UpperCAmelCase : int = shutil.get_terminal_size() UpperCAmelCase : List[Any] = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class __lowercase ( enum.Enum ): """simple docstring""" UpperCamelCase : Tuple = 0 UpperCamelCase : str = 1 def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any]="" ): '''simple docstring''' sys.stdout.write(str(lowerCamelCase__ ) + end ) sys.stdout.flush() def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any]="" ): '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' forceWrite("""\r""" ) def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : str ): '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __lowerCamelCase ( ): '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def __lowerCamelCase ( ): '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
66
from random import randint from tempfile import TemporaryFile import numpy as np def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 0 if start < end: lowerCamelCase = randint(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = a[end] lowerCamelCase = a[pivot] lowerCamelCase = temp lowerCamelCase , lowerCamelCase = _in_place_partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) count += _in_place_quick_sort(lowerCamelCase__ , lowerCamelCase__ , p - 1 ) count += _in_place_quick_sort(lowerCamelCase__ , p + 1 , lowerCamelCase__ ) return count def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = randint(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = a[end] lowerCamelCase = a[pivot] lowerCamelCase = temp lowerCamelCase = start - 1 for index in range(lowerCamelCase__ , lowerCamelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCamelCase = new_pivot_index + 1 lowerCamelCase = a[new_pivot_index] lowerCamelCase = a[index] lowerCamelCase = temp lowerCamelCase = a[new_pivot_index + 1] lowerCamelCase = a[end] lowerCamelCase = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_00 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : Optional[int] = 0, 1 # mean and standard deviation UpperCAmelCase : List[str] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[Any] = np.load(outfile) UpperCAmelCase : Optional[Any] = len(M) - 1 UpperCAmelCase : List[str] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
66
1
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 a_ = { # 1536-bit 5: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=1_6, ), '''generator''': 2, }, # 2048-bit 1_4: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=1_6, ), '''generator''': 2, }, # 3072-bit 1_5: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=1_6, ), '''generator''': 2, }, # 4096-bit 1_6: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=1_6, ), '''generator''': 2, }, # 6144-bit 1_7: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=1_6, ), '''generator''': 2, }, # 8192-bit 1_8: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=1_6, ), '''generator''': 2, }, } class __SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : int = 14 ) -> int: if group not in primes: raise ValueError('''Unsupported Group''' ) SCREAMING_SNAKE_CASE__ : str =primes[group]["prime"] SCREAMING_SNAKE_CASE__ : Any =primes[group]["generator"] SCREAMING_SNAKE_CASE__ : List[str] =int(hexlify(urandom(32 ) ) , base=16 ) def __magic_name__ ( self : Any ) -> int: return hex(self.__private_key )[2:] def __magic_name__ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Any =pow(self.generator , self.__private_key , self.prime ) return hex(__lowercase )[2:] def __magic_name__ ( self : Optional[Any] , __lowercase : int ) -> int: return ( 2 <= key <= self.prime - 2 and pow(__lowercase , (self.prime - 1) // 2 , self.prime ) == 1 ) def __magic_name__ ( self : Dict , __lowercase : str ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] =int(__lowercase , base=16 ) if not self.is_valid_public_key(__lowercase ): raise ValueError('''Invalid public key''' ) SCREAMING_SNAKE_CASE__ : List[str] =pow(__lowercase , self.__private_key , self.prime ) return shaaaa(str(__lowercase ).encode() ).hexdigest() @staticmethod def __magic_name__ ( __lowercase : int , __lowercase : int ) -> Optional[int]: return ( 2 <= remote_public_key_str <= prime - 2 and pow(__lowercase , (prime - 1) // 2 , __lowercase ) == 1 ) @staticmethod def __magic_name__ ( __lowercase : str , __lowercase : str , __lowercase : int = 14 ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =int(__lowercase , base=16 ) SCREAMING_SNAKE_CASE__ : str =int(__lowercase , base=16 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(__lowercase , __lowercase ): raise ValueError('''Invalid public key''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =pow(__lowercase , __lowercase , __lowercase ) return shaaaa(str(__lowercase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
152
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') lowerCAmelCase : str ='''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) lowerCAmelCase : List[str] =requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) lowerCAmelCase : List[Any] =BeautifulSoup(res.text, '''html.parser''') lowerCAmelCase : List[Any] =list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
223
0
"""simple docstring""" from collections import defaultdict class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase_ = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE_ ) ) ] UpperCAmelCase_ = defaultdict(SCREAMING_SNAKE_CASE_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase_ = (1 << len(SCREAMING_SNAKE_CASE_ )) - 1 def lowercase__ ( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase_ = self.count_ways_until(SCREAMING_SNAKE_CASE_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCAmelCase_ = total_ways_util return self.dp[mask][task_no] def lowercase__ ( self : str , _UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in task_performed[i]: self.task[j].append(SCREAMING_SNAKE_CASE_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowerCamelCase = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowerCamelCase = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
366
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) return new_checkpoint def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , ): # Only support V1 UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(lowerCAmelCase__ ) UpperCAmelCase_ = 512 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(lowerCAmelCase__ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(lowerCAmelCase__ ) else: UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = AutoencoderKL(**lowerCAmelCase__ ) vae.load_state_dict(lowerCAmelCase__ ) vae.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") lowerCamelCase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
241
0
lowercase__ :Tuple = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = set() # keep track of all the paths to be checked lowercase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase = queue.pop(0 ) # get the last node from the path lowercase = path[-1] if node not in explored: lowercase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase = list(lowerCAmelCase__ ) new_path.append(lowerCAmelCase__ ) queue.append(lowerCAmelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCAmelCase__ ) # in case there's no path between the 2 nodes return [] def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase = [start] lowercase = set(lowerCAmelCase__ ) # Keep tab on distances from `start` node. lowercase = {start: 0, target: -1} while queue: lowercase = queue.pop(0 ) if node == target: lowercase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCAmelCase__ ) queue.append(lowerCAmelCase__ ) lowercase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
101
import os import sys lowercase__ :Tuple = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase__ :List[Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoConfig.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoTokenizer.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModel.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
101
1
'''simple docstring''' import os import sys import unittest lowercase : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase : int = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[str] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Optional[Any] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : List[str] = {'''BertModelTest''': '''BertModelTester'''} A : List[Any] = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : Dict = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : Any = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A : Optional[Any] = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Dict = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Optional[Any] = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A : Any = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
311
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ ) A : Any = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ ) class A ( __snake_case ): __magic_name__ = '''sigmoid''' __magic_name__ = '''softmax''' __magic_name__ = '''none''' @add_end_docstrings( __snake_case , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class A ( __snake_case ): __magic_name__ = False __magic_name__ = ClassificationFunction.NONE def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Optional[Any] = tokenizer_kwargs A : int = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: A : int = self.model.config.return_all_scores if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None: A : Union[str, Any] = top_k A : Dict = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , ) if return_all_scores: A : Optional[int] = None else: A : Dict = 1 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: A : int = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. A : Any = '''top_k''' not in kwargs if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: """simple docstring""" A : List[Any] = self.framework if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.model(**SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: A : Optional[int] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: A : Any = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: A : Optional[int] = self.model.config.function_to_apply else: A : Optional[int] = ClassificationFunction.NONE A : Any = model_outputs['''logits'''][0] A : List[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: A : int = sigmoid(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: A : Any = softmax(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: A : int = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} A : int = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE ) if top_k is not None: A : Union[str, Any] = dict_scores[:top_k] return dict_scores
311
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a : Optional[int] = NewType("DataClass", Any) a : Tuple = NewType("DataClassType", Any) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): if isinstance(_a , _a ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): __UpperCAmelCase : Any = {str(_a ): choice for choice in choices} return lambda __lowerCamelCase : str_to_choice.get(_a , _a ) def lowerCamelCase__ ( *, __lowerCamelCase : List[str] = None , __lowerCamelCase : Dict = None , __lowerCamelCase : Union[str, Any] = dataclasses.MISSING , __lowerCamelCase : int = dataclasses.MISSING , __lowerCamelCase : List[Any] = None , **__lowerCamelCase : List[Any] , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __UpperCAmelCase : int = {} if aliases is not None: __UpperCAmelCase : Any = aliases if help is not None: __UpperCAmelCase : str = help return dataclasses.field(metadata=_a , default=_a , default_factory=_a , **_a ) class a ( _lowercase ): """simple docstring""" a : Iterable[DataClassType] def __init__( self : List[Any] , __lowercase : Union[DataClassType, Iterable[DataClassType]] , **__lowercase : int ) -> int: # To make the default appear when using --help if "formatter_class" not in kwargs: __UpperCAmelCase : Any = ArgumentDefaultsHelpFormatter super().__init__(**_SCREAMING_SNAKE_CASE ) if dataclasses.is_dataclass(_SCREAMING_SNAKE_CASE ): __UpperCAmelCase : Any = [dataclass_types] __UpperCAmelCase : Dict = list(_SCREAMING_SNAKE_CASE ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase ( __lowercase : ArgumentParser , __lowercase : dataclasses.Field ) -> int: __UpperCAmelCase : Optional[int] = f"""--{field.name}""" __UpperCAmelCase : Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _SCREAMING_SNAKE_CASE ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("""aliases""" , [] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __UpperCAmelCase : str = [aliases] __UpperCAmelCase : Union[str, Any] = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(_SCREAMING_SNAKE_CASE , """UnionType""" ) and isinstance(_SCREAMING_SNAKE_CASE , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_SCREAMING_SNAKE_CASE ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" f""" Problem encountered in field \'{field.name}\'.""" ) if type(_SCREAMING_SNAKE_CASE ) not in field.type.__args__: # filter `str` in Union __UpperCAmelCase : List[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __UpperCAmelCase : int = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __UpperCAmelCase : List[str] = ( field.type.__args__[0] if isinstance(_SCREAMING_SNAKE_CASE , field.type.__args__[1] ) else field.type.__args__[1] ) __UpperCAmelCase : Dict = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __UpperCAmelCase : List[Any] = {} if origin_type is Literal or (isinstance(field.type , _SCREAMING_SNAKE_CASE ) and issubclass(field.type , _SCREAMING_SNAKE_CASE )): if origin_type is Literal: __UpperCAmelCase : Optional[Any] = field.type.__args__ else: __UpperCAmelCase : Dict = [x.value for x in field.type] __UpperCAmelCase : Optional[Any] = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: __UpperCAmelCase : Tuple = field.default else: __UpperCAmelCase : int = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __UpperCAmelCase : int = copy(_SCREAMING_SNAKE_CASE ) # Hack because type=bool in argparse does not behave as we want. __UpperCAmelCase : str = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __UpperCAmelCase : Tuple = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __UpperCAmelCase : Dict = default # This tells argparse we accept 0 or 1 value after --field_name __UpperCAmelCase : List[str] = '''?''' # This is the value that will get picked if we do --field_name (without value) __UpperCAmelCase : List[Any] = True elif isclass(_SCREAMING_SNAKE_CASE ) and issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __UpperCAmelCase : str = field.type.__args__[0] __UpperCAmelCase : Tuple = '''+''' if field.default_factory is not dataclasses.MISSING: __UpperCAmelCase : List[Any] = field.default_factory() elif field.default is dataclasses.MISSING: __UpperCAmelCase : Any = True else: __UpperCAmelCase : Tuple = field.type if field.default is not dataclasses.MISSING: __UpperCAmelCase : List[Any] = field.default elif field.default_factory is not dataclasses.MISSING: __UpperCAmelCase : Dict = field.default_factory() else: __UpperCAmelCase : Optional[int] = True parser.add_argument(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __UpperCAmelCase : Optional[int] = False parser.add_argument(f"""--no_{field.name}""" , action="""store_false""" , dest=field.name , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Any , __lowercase : DataClassType ) -> Union[str, Any]: if hasattr(_SCREAMING_SNAKE_CASE , """_argument_group_name""" ): __UpperCAmelCase : Dict = self.add_argument_group(dtype._argument_group_name ) else: __UpperCAmelCase : str = self try: __UpperCAmelCase : Dict[str, type] = get_type_hints(_SCREAMING_SNAKE_CASE ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_SCREAMING_SNAKE_CASE ): __UpperCAmelCase : Tuple = '''.'''.join(map(_SCREAMING_SNAKE_CASE , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(_SCREAMING_SNAKE_CASE ): if not field.init: continue __UpperCAmelCase : int = type_hints[field.name] self._parse_dataclass_field(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Optional[Any] , __lowercase : Any=None , __lowercase : str=False , __lowercase : Tuple=True , __lowercase : int=None , __lowercase : List[str]=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __UpperCAmelCase : Union[str, Any] = [] if args_filename: args_files.append(Path(_SCREAMING_SNAKE_CASE ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __UpperCAmelCase : List[Any] = ArgumentParser() args_file_parser.add_argument(_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) __UpperCAmelCase : Dict = args_file_parser.parse_known_args(args=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[Any] = vars(_SCREAMING_SNAKE_CASE ).get(args_file_flag.lstrip("""-""" ) , _SCREAMING_SNAKE_CASE ) if cmd_args_file_paths: args_files.extend([Path(_SCREAMING_SNAKE_CASE ) for p in cmd_args_file_paths] ) __UpperCAmelCase : Optional[int] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __UpperCAmelCase : Tuple = file_args + args if args is not None else file_args + sys.argv[1:] __UpperCAmelCase : Dict = self.parse_known_args(args=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Any = [] for dtype in self.dataclass_types: __UpperCAmelCase : int = {f.name for f in dataclasses.fields(_SCREAMING_SNAKE_CASE ) if f.init} __UpperCAmelCase : List[Any] = {k: v for k, v in vars(_SCREAMING_SNAKE_CASE ).items() if k in keys} for k in keys: delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = dtype(**_SCREAMING_SNAKE_CASE ) outputs.append(_SCREAMING_SNAKE_CASE ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_SCREAMING_SNAKE_CASE ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def UpperCAmelCase ( self : Optional[int] , __lowercase : Dict[str, Any] , __lowercase : bool = False ) -> Tuple[DataClass, ...]: __UpperCAmelCase : Union[str, Any] = set(args.keys() ) __UpperCAmelCase : Dict = [] for dtype in self.dataclass_types: __UpperCAmelCase : int = {f.name for f in dataclasses.fields(_SCREAMING_SNAKE_CASE ) if f.init} __UpperCAmelCase : Optional[Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __UpperCAmelCase : Union[str, Any] = dtype(**_SCREAMING_SNAKE_CASE ) outputs.append(_SCREAMING_SNAKE_CASE ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_SCREAMING_SNAKE_CASE )}""" ) return tuple(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Optional[int] , __lowercase : str , __lowercase : bool = False ) -> Tuple[DataClass, ...]: with open(Path(_SCREAMING_SNAKE_CASE ) , encoding="""utf-8""" ) as open_json_file: __UpperCAmelCase : Tuple = json.loads(open_json_file.read() ) __UpperCAmelCase : int = self.parse_dict(_SCREAMING_SNAKE_CASE , allow_extra_keys=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : List[str] , __lowercase : str , __lowercase : bool = False ) -> Tuple[DataClass, ...]: __UpperCAmelCase : str = self.parse_dict(yaml.safe_load(Path(_SCREAMING_SNAKE_CASE ).read_text() ) , allow_extra_keys=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
114
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase = logging.get_logger(__name__) class _a ( _lowercase): def __init__( self : Optional[int] , *_SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Optional[Any] )-> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
131
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Any = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "wavlm" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1E-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(512, 512, 512, 512, 512, 512, 512) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=320 , snake_case__=800 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=320 , snake_case__=2 , snake_case__=0.1 , snake_case__=100 , snake_case__=256 , snake_case__=256 , snake_case__=0.1 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=(512, 512, 512, 512, 1500) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=512 , snake_case__=80 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : List[Any] = feat_extract_norm _lowerCAmelCase : List[Any] = feat_extract_activation _lowerCAmelCase : Dict = list(snake_case__ ) _lowerCAmelCase : List[Any] = list(snake_case__ ) _lowerCAmelCase : Tuple = list(snake_case__ ) _lowerCAmelCase : Any = conv_bias _lowerCAmelCase : Optional[int] = num_buckets _lowerCAmelCase : Optional[int] = max_bucket_distance _lowerCAmelCase : int = num_conv_pos_embeddings _lowerCAmelCase : Optional[int] = num_conv_pos_embedding_groups _lowerCAmelCase : str = len(self.conv_dim ) _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : int = hidden_dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Any = feat_proj_dropout _lowerCAmelCase : Dict = final_dropout _lowerCAmelCase : List[Any] = layerdrop _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Tuple = num_ctc_classes _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : List[Any] = do_stable_layer_norm _lowerCAmelCase : Optional[Any] = use_weighted_layer_sum _lowerCAmelCase : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : str = apply_spec_augment _lowerCAmelCase : Any = mask_time_prob _lowerCAmelCase : Optional[int] = mask_time_length _lowerCAmelCase : Union[str, Any] = mask_time_min_masks _lowerCAmelCase : Tuple = mask_feature_prob _lowerCAmelCase : List[str] = mask_feature_length # parameters for pretraining with codevector quantized representations _lowerCAmelCase : Any = num_codevectors_per_group _lowerCAmelCase : str = num_codevector_groups _lowerCAmelCase : Dict = contrastive_logits_temperature _lowerCAmelCase : List[str] = num_negatives _lowerCAmelCase : Optional[int] = codevector_dim _lowerCAmelCase : int = proj_codevector_dim _lowerCAmelCase : Dict = diversity_loss_weight # ctc loss _lowerCAmelCase : Tuple = ctc_loss_reduction _lowerCAmelCase : Optional[int] = ctc_zero_infinity # adapter _lowerCAmelCase : Tuple = add_adapter _lowerCAmelCase : Optional[Any] = adapter_kernel_size _lowerCAmelCase : Union[str, Any] = adapter_stride _lowerCAmelCase : Any = num_adapter_layers _lowerCAmelCase : List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : Tuple = list(snake_case__ ) _lowerCAmelCase : List[Any] = list(snake_case__ ) _lowerCAmelCase : List[str] = list(snake_case__ ) _lowerCAmelCase : str = xvector_output_dim @property def a ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
25
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( A__ , unittest.TestCase ): A = CodeGenTokenizer A = CodeGenTokenizerFast A = True A = {'add_prefix_space': True} A = False def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_ : List[str] = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(_A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(_A ) ) def __UpperCamelCase ( self : Tuple,**_A : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : Any,**_A : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : Optional[Any],_A : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "lower newer" SCREAMING_SNAKE_CASE_ : Dict = "lower newer" return input_text, output_text def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : int = "lower newer" SCREAMING_SNAKE_CASE_ : List[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.tokenize(_A,add_prefix_space=_A ) self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : int = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ),_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = self.get_rust_tokenizer(add_prefix_space=_A ) SCREAMING_SNAKE_CASE_ : List[str] = "lower newer" # Testing tokenization SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.tokenize(_A,add_prefix_space=_A ) SCREAMING_SNAKE_CASE_ : Any = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A,_A ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE_ : int = tokenizer.encode(_A,add_special_tokens=_A,add_prefix_space=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = rust_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE_ : int = self.get_rust_tokenizer(add_prefix_space=_A ) SCREAMING_SNAKE_CASE_ : int = tokenizer.encode(_A,add_prefix_space=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = rust_tokenizer.encode(_A ) self.assertListEqual(_A,_A ) # Testing the unknown token SCREAMING_SNAKE_CASE_ : int = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_A ),_A ) def __UpperCamelCase ( self : Dict,*_A : Union[str, Any],**_A : Optional[int] ): """simple docstring""" pass def __UpperCamelCase ( self : Dict,_A : Any=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A,**_A ) # Simple input SCREAMING_SNAKE_CASE_ : Optional[int] = "This is a simple input" SCREAMING_SNAKE_CASE_ : Dict = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ : Optional[Any] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding="max_length" ) # Simple input self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding="max_length" ) # Simple input self.assertRaises( _A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding="max_length",) # Pair input self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding="max_length" ) # Pair input self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding="max_length" ) # Pair input self.assertRaises( _A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding="max_length",) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input SCREAMING_SNAKE_CASE_ : Any = "This is a simple input" SCREAMING_SNAKE_CASE_ : str = ["This is a simple input looooooooong", "This is a simple input"] SCREAMING_SNAKE_CASE_ : int = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] SCREAMING_SNAKE_CASE_ : Dict = tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ : str = tokenizer(_A,padding="max_length",max_length=30,return_tensors="np" ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(_A,padding=_A,truncate=_A,return_tensors="np" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(*_A,padding="max_length",max_length=60,return_tensors="np" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(_A,padding=_A,truncate=_A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = "$$$" SCREAMING_SNAKE_CASE_ : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=_A,add_bos_token=_A ) SCREAMING_SNAKE_CASE_ : str = "This is a simple input" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.bos_token_id SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(_A ) self.assertEqual(out_s.input_ids[0],_A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE_ : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],_A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) SCREAMING_SNAKE_CASE_ : List[str] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" SCREAMING_SNAKE_CASE_ : int = "\nif len_a > len_b: result = a\nelse: result = b" SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.decode(_A,truncate_before_pattern=_A ) self.assertEqual(_A,_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" pass
18
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'longformer' def __init__( self , lowercase = 512 , lowercase = 2 , lowercase = 1 , lowercase = 0 , lowercase = 2 , lowercase = 30_522 , lowercase = 768 , lowercase = 12 , lowercase = 12 , lowercase = 3_072 , lowercase = "gelu" , lowercase = 0.1 , lowercase = 0.1 , lowercase = 512 , lowercase = 2 , lowercase = 0.02 , lowercase = 1e-12 , lowercase = False , **lowercase , ) -> Optional[int]: super().__init__(pad_token_id=lowercase , **lowercase ) lowerCAmelCase = attention_window lowerCAmelCase = sep_token_id lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = onnx_export class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase = "default" , lowercase = None ) -> Tuple: super().__init__(lowercase , lowercase , lowercase ) lowerCAmelCase = True @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase = super().outputs if self.task == "default": lowerCAmelCase = {0: """batch"""} return outputs @property def _snake_case ( self ) -> float: return 1e-4 @property def _snake_case ( self ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def _snake_case ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: lowerCAmelCase = super().generate_dummy_inputs( preprocessor=lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCAmelCase = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global lowerCAmelCase = 1 return inputs
46
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : List[str] = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Any = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
359
from __future__ import annotations def snake_case (__lowercase , __lowercase ) -> float: '''simple docstring''' _snake_case : Any = sorted(numsa + numsa ) _snake_case ,_snake_case : Any = divmod(len(__lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Union[str, Any] = [float(x) for x in input('Enter the elements of first array: ').split()] __SCREAMING_SNAKE_CASE : List[Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
284
0
from datetime import datetime import requests def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : List[Any] = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' lowercase__ : Union[str, Any] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(SCREAMING_SNAKE_CASE_ ).content if __name__ == "__main__": snake_case_ = input('''Enter Video/IGTV url: ''').strip() snake_case_ = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
214
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class SCREAMING_SNAKE_CASE__ : def __init__( self , a , a=13 , a=7 , a=False , a=True , a=False , a=False , a=19 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ): lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : Union[str, Any] = seq_length lowercase__ : Optional[Any] = is_training lowercase__ : Tuple = use_input_mask lowercase__ : List[str] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : List[str] = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : int = intermediate_size lowercase__ : Any = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[Any] = type_sequence_label_size lowercase__ : str = initializer_range lowercase__ : List[str] = num_labels lowercase__ : Union[str, Any] = num_choices lowercase__ : Optional[int] = scope def snake_case_ ( self): lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : List[Any] = None if self.use_input_mask: lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : int = None lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ : str = ids_tensor([self.batch_size] , self.num_choices) lowercase__ : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self): lowercase__ : str = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=a , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def snake_case_ ( self , a , a , a , a , a , a): lowercase__ : Dict = EsmForProteinFolding(config=a).float() model.to(a) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a) lowercase__ : Dict = model(a) lowercase__ : int = model(a) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3)) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2)) def snake_case_ ( self): lowercase__ : List[str] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : int = config_and_inputs lowercase__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , unittest.TestCase ): __lowerCamelCase : Dict = False __lowerCamelCase : Dict = (EsmForProteinFolding,) if is_torch_available() else () __lowerCamelCase : Union[str, Any] = () __lowerCamelCase : List[Any] = {} if is_torch_available() else {} __lowerCamelCase : Optional[Any] = False def snake_case_ ( self): lowercase__ : Tuple = EsmFoldModelTester(self) lowercase__ : List[Any] = ConfigTester(self , config_class=a , hidden_size=37) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) @unittest.skip('Does not support attention outputs') def snake_case_ ( self): pass @unittest.skip def snake_case_ ( self): pass @unittest.skip('Esm does not support embedding resizing') def snake_case_ ( self): pass @unittest.skip('Esm does not support embedding resizing') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support passing input embeds!') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support head pruning.') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support head pruning.') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support head pruning.') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support head pruning.') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support head pruning.') def snake_case_ ( self): pass @unittest.skip('ESMFold does not output hidden states in the normal way.') def snake_case_ ( self): pass @unittest.skip('ESMfold does not output hidden states in the normal way.') def snake_case_ ( self): pass @unittest.skip('ESMFold only has one output format.') def snake_case_ ( self): pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support input chunking.') def snake_case_ ( self): pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.') def snake_case_ ( self): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def snake_case_ ( self): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def snake_case_ ( self): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def snake_case_ ( self): pass @unittest.skip('ESMFold doesn\'t support data parallel.') def snake_case_ ( self): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def snake_case_ ( self): pass @require_torch class SCREAMING_SNAKE_CASE__ (__snake_case ): @slow def snake_case_ ( self): lowercase__ : Dict = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1').float() model.eval() lowercase__ : Optional[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) lowercase__ : Optional[int] = model(a)['positions'] lowercase__ : Dict = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , a , atol=1e-4))
214
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
269
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, } class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , a : int = 14 )-> None: """simple docstring""" if group not in primes: raise ValueError('Unsupported Group' ) lowercase__ = primes[group]['prime'] lowercase__ = primes[group]['generator'] lowercase__ = int(hexlify(urandom(32 ) ) , base=16 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> str: """simple docstring""" return hex(self.__private_key )[2:] def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> str: """simple docstring""" lowercase__ = pow(self.generator , self.__private_key , self.prime ) return hex(a )[2:] def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : int )-> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(a , (self.prime - 1) // 2 , self.prime ) == 1 ) def SCREAMING_SNAKE_CASE_ ( self : str , a : str )-> str: """simple docstring""" lowercase__ = int(a , base=16 ) if not self.is_valid_public_key(a ): raise ValueError('Invalid public key' ) lowercase__ = pow(a , self.__private_key , self.prime ) return shaaaa(str(a ).encode() ).hexdigest() @staticmethod def SCREAMING_SNAKE_CASE_ ( a : int , a : int )-> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(a , (prime - 1) // 2 , a ) == 1 ) @staticmethod def SCREAMING_SNAKE_CASE_ ( a : str , a : str , a : int = 14 )-> str: """simple docstring""" lowercase__ = int(a , base=16 ) lowercase__ = int(a , base=16 ) lowercase__ = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(a , a ): raise ValueError('Invalid public key' ) lowercase__ = pow(a , a , a ) return shaaaa(str(a ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
269
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : Optional[Any] = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys snake_case : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
240
from argparse import ArgumentParser from .env import EnvironmentCommand def __lowercase ( ): a__ = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) a__ = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__lowerCAmelCase ) # Let's go a__ = parser.parse_args() if not hasattr(__lowerCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run a__ = args.func(__lowerCAmelCase ) service.run() if __name__ == "__main__": main()
240
1
def lowerCamelCase ( a_ , a_ ) -> list: lowerCAmelCase_ = len(a_ ) lowerCAmelCase_ = [] for i in range(len(a_ ) - pat_len + 1 ): lowerCAmelCase_ = True for j in range(a_ ): if s[i + j] != pattern[j]: lowerCAmelCase_ = False break if match_found: position.append(a_ ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
14
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def _lowercase ( self , _A=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def _lowercase ( self , _A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
273
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") __A : Optional[int] = logging.getLogger(__name__) @dataclass class A_ : UpperCAmelCase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCAmelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A_ : UpperCAmelCase__ = field(default=a_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowercase ( self ): '''simple docstring''' if self.train_file is not None: UpperCAmelCase = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCAmelCase = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A_ : UpperCAmelCase__ = 42 UpperCAmelCase__ = True UpperCAmelCase__ = None UpperCAmelCase__ = None def __call__( self , _A ): '''simple docstring''' UpperCAmelCase = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase = [feature.pop(_A ) for feature in features] UpperCAmelCase = len(_A ) UpperCAmelCase = len(features[0]['''input_ids'''] ) UpperCAmelCase = [ [{k: v[i] for k, v in feature.items()} for i in range(_A )] for feature in features ] UpperCAmelCase = list(chain(*_A ) ) UpperCAmelCase = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten UpperCAmelCase = {k: v.view(_A , _A , -1 ) for k, v in batch.items()} # Add back labels UpperCAmelCase = torch.tensor(_A , dtype=torch.intaa ) return batch def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCAmelCase = {} if data_args.train_file is not None: UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase = data_args.validation_file UpperCAmelCase = data_args.train_file.split('''.''' )[-1] UpperCAmelCase = load_dataset( UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCAmelCase = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCAmelCase = [F"""ending{i}""" for i in range(4 )] UpperCAmelCase = '''sent1''' UpperCAmelCase = '''sent2''' if data_args.max_seq_length is None: UpperCAmelCase = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) UpperCAmelCase = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase__ ): UpperCAmelCase = [[context] * 4 for context in examples[context_name]] UpperCAmelCase = examples[question_header_name] UpperCAmelCase = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(UpperCamelCase__ ) ] # Flatten out UpperCAmelCase = list(chain(*UpperCamelCase__ ) ) UpperCAmelCase = list(chain(*UpperCamelCase__ ) ) # Tokenize UpperCAmelCase = tokenizer( UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) UpperCAmelCase = raw_datasets['''train'''] if data_args.max_train_samples is not None: UpperCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) UpperCAmelCase = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCAmelCase = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) UpperCAmelCase = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: UpperCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_eval_samples ) UpperCAmelCase = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCAmelCase = eval_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCAmelCase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase__ ): UpperCAmelCase , UpperCAmelCase = eval_predictions UpperCAmelCase = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCAmelCase = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase = train_result.metrics UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) UpperCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics('''train''' , UpperCamelCase__ ) trainer.save_metrics('''train''' , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) UpperCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics('''eval''' , UpperCamelCase__ ) trainer.save_metrics('''eval''' , UpperCamelCase__ ) UpperCAmelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
273
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ :Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ :int = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ :List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase__ :List[str] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): lowercase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowerCAmelCase__ , ) is not None ): lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowercase = True if not attribute_used: lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase = True elif attribute.endswith('''_token_id''' ): lowercase = True # configuration class specific cases if not case_allowed: lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase = {} if len(config_class.attribute_map ) > 0: lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase = inspect.getsourcefile(lowerCAmelCase__ ) lowercase = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('''modeling_''' )] # Get the source code strings lowercase = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) lowercase = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase__ : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = unused_attributes if len(lowerCAmelCase__ ) > 0: lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
97
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def A__ ( self): lowercase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''') lowercase = { '''input_ids''': tf.convert_to_tensor([[0, 2_6_4_6, 1_0_2_6_9, 8_3, 9_9_9_4_2, 2]] ,dtype=tf.intaa), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] ,dtype=tf.intaa), } lowercase = model(A__)['''last_hidden_state'''] lowercase = tf.TensorShape((1, 6, 7_6_8)) self.assertEqual(output.shape ,A__) # compare the actual values for a slice. lowercase = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4))
97
1
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __a = 1.054_571_817e-34 # unit of ℏ : J * s __a = 3e8 # unit of c : m * s^-1 def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: snake_case_ :Dict = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: snake_case_ :List[Any] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: snake_case_ :int = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
66
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : int = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) a : List[str] = "CIDAS/clipseg-rd64-refined" a : Union[str, Any] = "image_segmenter" a : int = CLIPSegForImageSegmentation a : Any = ["image", "text"] a : Tuple = ["image"] def __init__( self, *__magic_name__, **__magic_name__ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''vision'''] ) super().__init__(*__magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> Any: """simple docstring""" return self.pre_processor(text=[label], images=[image], padding=__magic_name__, return_tensors='''pt''' ) def UpperCamelCase__ ( self, __magic_name__ ) -> Tuple: """simple docstring""" with torch.no_grad(): UpperCamelCase__ : Tuple = self.model(**__magic_name__ ).logits return logits def UpperCamelCase__ ( self, __magic_name__ ) -> Tuple: """simple docstring""" UpperCamelCase__ : Union[str, Any] = outputs.cpu().detach().numpy() UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
247
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger() def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: str , __UpperCAmelCase: LevitConfig , __UpperCAmelCase: Path , __UpperCAmelCase: bool = True ) -> int: print(f"Converting {name}..." ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": UpperCamelCase__ : List[Any] = timm.create_model('''levit_128s''' , pretrained=__UpperCAmelCase ) else: UpperCamelCase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__UpperCAmelCase ) if hidden_sizes == 192: UpperCamelCase__ : str = timm.create_model('''levit_192''' , pretrained=__UpperCAmelCase ) if hidden_sizes == 256: UpperCamelCase__ : Any = timm.create_model('''levit_256''' , pretrained=__UpperCAmelCase ) if hidden_sizes == 384: UpperCamelCase__ : int = timm.create_model('''levit_384''' , pretrained=__UpperCAmelCase ) from_model.eval() UpperCamelCase__ : int = LevitForImageClassificationWithTeacher(__UpperCAmelCase ).eval() UpperCamelCase__ : str = OrderedDict() UpperCamelCase__ : Any = from_model.state_dict() UpperCamelCase__ : Dict = list(from_model.state_dict().keys() ) UpperCamelCase__ : Tuple = list(our_model.state_dict().keys() ) print(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for i in range(len(__UpperCAmelCase ) ): UpperCamelCase__ : int = weights[og_keys[i]] our_model.load_state_dict(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = torch.randn((2, 3, 224, 224) ) UpperCamelCase__ : Any = from_model(__UpperCAmelCase ) UpperCamelCase__ : Any = our_model(__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), "The model logits don't match the original one." UpperCamelCase__ : List[Any] = name print(__UpperCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCamelCase__ : Union[str, Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"Pushed {checkpoint_name}" ) def lowerCAmelCase_ ( __UpperCAmelCase: Path , __UpperCAmelCase: str = None , __UpperCAmelCase: bool = True ) -> List[str]: UpperCamelCase__ : Any = '''imagenet-1k-id2label.json''' UpperCamelCase__ : str = 1000 UpperCamelCase__ : List[str] = (1, num_labels) UpperCamelCase__ : str = '''huggingface/label-files''' UpperCamelCase__ : str = num_labels UpperCamelCase__ : Dict = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : Optional[Any] = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : List[Any] = idalabel UpperCamelCase__ : Dict = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Tuple = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } UpperCamelCase__ : Optional[Any] = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
247
1
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __lowerCAmelCase = '''sshleifer/mar_enro_6_3_student''' class __magic_name__ ( _UpperCamelCase ): def __lowercase ( self : int ): super().setUp() _a : Any = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=_UpperCAmelCase ,) _a : List[str] = F"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def __lowercase ( self : Dict ): MarianMTModel.from_pretrained(_UpperCAmelCase ) @slow @require_torch_gpu def __lowercase ( self : Any ): _a : Any = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _a : Union[str, Any] = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _a : Union[str, Any] = bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): _a : int = bash_script.replace(_UpperCAmelCase ,str(_UpperCAmelCase ) ) _a : List[str] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _a : Any = F""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _a : List[str] = ['finetune.py'] + bash_script.split() + args with patch.object(_UpperCAmelCase ,'argv' ,_UpperCAmelCase ): _a : str = argparse.ArgumentParser() _a : Any = pl.Trainer.add_argparse_args(_UpperCAmelCase ) _a : List[Any] = SummarizationModule.add_model_specific_args(_UpperCAmelCase ,os.getcwd() ) _a : Optional[int] = parser.parse_args() _a : int = main(_UpperCAmelCase ) # Check metrics _a : Any = load_json(model.metrics_save_path ) _a : int = metrics['val'][0] _a : Tuple = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"""val_avg_{model.val_metric}"""] ,_UpperCAmelCase ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _a : Optional[Any] = os.listdir(_UpperCAmelCase ) _a : Optional[Any] = [x for x in contents if x.endswith('.ckpt' )][0] _a : List[str] = os.path.join(args.output_dir ,_UpperCAmelCase ) _a : Optional[int] = torch.load(_UpperCAmelCase ,map_location='cpu' ) _a : List[str] = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _a : Optional[Any] = {os.path.basename(_UpperCAmelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class __magic_name__ ( _UpperCamelCase ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __lowercase ( self : Any ): _a : Any = F"""{self.test_file_dir_str}/test_data/wmt_en_ro""" _a : Union[str, Any] = { '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _a : Any = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _a : Optional[int] = bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) _a : Tuple = bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): _a : Tuple = bash_script.replace(_UpperCAmelCase ,str(_UpperCAmelCase ) ) _a : Dict = self.get_auto_remove_tmp_dir() _a : int = bash_script.replace('--fp16' ,'' ) _a : Any = 6 _a : int = ( ['distillation.py'] + bash_script.split() + [ F"""--output_dir={output_dir}""", '--gpus=1', '--learning_rate=1e-3', F"""--num_train_epochs={epochs}""", '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(_UpperCAmelCase ,'argv' ,_UpperCAmelCase ): _a : List[str] = argparse.ArgumentParser() _a : Union[str, Any] = pl.Trainer.add_argparse_args(_UpperCAmelCase ) _a : Any = SummarizationDistiller.add_model_specific_args(_UpperCAmelCase ,os.getcwd() ) _a : Dict = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _a : Dict = distill_main(_UpperCAmelCase ) # Check metrics _a : Optional[Any] = load_json(model.metrics_save_path ) _a : Optional[Any] = metrics['val'][0] _a : Union[str, Any] = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"""val_avg_{model.val_metric}"""] ,_UpperCAmelCase ) # check lightning ckpt can be loaded and has a reasonable statedict _a : Tuple = os.listdir(_UpperCAmelCase ) _a : Dict = [x for x in contents if x.endswith('.ckpt' )][0] _a : Union[str, Any] = os.path.join(args.output_dir ,_UpperCAmelCase ) _a : str = torch.load(_UpperCAmelCase ,map_location='cpu' ) _a : Union[str, Any] = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _a : int = {os.path.basename(_UpperCAmelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
89
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : int ): __UpperCAmelCase : List[Any] = checkpoint __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = vae_state_dict["""encoder.conv_in.weight"""] __UpperCAmelCase : Optional[Any] = vae_state_dict["""encoder.conv_in.bias"""] __UpperCAmelCase : Dict = vae_state_dict["""encoder.conv_out.weight"""] __UpperCAmelCase : Union[str, Any] = vae_state_dict["""encoder.conv_out.bias"""] __UpperCAmelCase : List[Any] = vae_state_dict["""encoder.norm_out.weight"""] __UpperCAmelCase : Tuple = vae_state_dict["""encoder.norm_out.bias"""] __UpperCAmelCase : Dict = vae_state_dict["""decoder.conv_in.weight"""] __UpperCAmelCase : Tuple = vae_state_dict["""decoder.conv_in.bias"""] __UpperCAmelCase : Optional[int] = vae_state_dict["""decoder.conv_out.weight"""] __UpperCAmelCase : Optional[int] = vae_state_dict["""decoder.conv_out.bias"""] __UpperCAmelCase : Optional[Any] = vae_state_dict["""decoder.norm_out.weight"""] __UpperCAmelCase : Union[str, Any] = vae_state_dict["""decoder.norm_out.bias"""] __UpperCAmelCase : Optional[int] = vae_state_dict["""quant_conv.weight"""] __UpperCAmelCase : int = vae_state_dict["""quant_conv.bias"""] __UpperCAmelCase : Union[str, Any] = vae_state_dict["""post_quant_conv.weight"""] __UpperCAmelCase : Any = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only __UpperCAmelCase : int = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) __UpperCAmelCase : Optional[Any] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only __UpperCAmelCase : Dict = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) __UpperCAmelCase : Optional[int] = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } for i in range(__lowerCamelCase ): __UpperCAmelCase : List[Any] = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: __UpperCAmelCase : Optional[Any] = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) __UpperCAmelCase : int = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) __UpperCAmelCase : Optional[int] = renew_vae_resnet_paths(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {"""old""": f"""down.{i}.block""", """new""": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) __UpperCAmelCase : Tuple = [key for key in vae_state_dict if """encoder.mid.block""" in key] __UpperCAmelCase : Optional[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): __UpperCAmelCase : Dict = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] __UpperCAmelCase : Tuple = renew_vae_resnet_paths(__lowerCamelCase ) __UpperCAmelCase : Tuple = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = [key for key in vae_state_dict if """encoder.mid.attn""" in key] __UpperCAmelCase : str = renew_vae_attention_paths(__lowerCamelCase ) __UpperCAmelCase : List[str] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) for i in range(__lowerCamelCase ): __UpperCAmelCase : Optional[Any] = num_up_blocks - 1 - i __UpperCAmelCase : Union[str, Any] = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: __UpperCAmelCase : int = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] __UpperCAmelCase : Dict = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] __UpperCAmelCase : Dict = renew_vae_resnet_paths(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {"""old""": f"""up.{block_id}.block""", """new""": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) __UpperCAmelCase : Tuple = [key for key in vae_state_dict if """decoder.mid.block""" in key] __UpperCAmelCase : Union[str, Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): __UpperCAmelCase : Dict = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] __UpperCAmelCase : List[Any] = renew_vae_resnet_paths(__lowerCamelCase ) __UpperCAmelCase : int = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) __UpperCAmelCase : Dict = [key for key in vae_state_dict if """decoder.mid.attn""" in key] __UpperCAmelCase : List[Any] = renew_vae_attention_paths(__lowerCamelCase ) __UpperCAmelCase : List[str] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) return new_checkpoint def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : str , ): # Only support V1 __UpperCAmelCase : Optional[int] = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) __UpperCAmelCase : Optional[int] = io.BytesIO(r.content ) __UpperCAmelCase : Dict = OmegaConf.load(__lowerCamelCase ) __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open __UpperCAmelCase : List[Any] = {} with safe_open(__lowerCamelCase , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): __UpperCAmelCase : str = f.get_tensor(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase )["""state_dict"""] # Convert the VAE model. __UpperCAmelCase : Optional[int] = create_vae_diffusers_config(__lowerCamelCase , image_size=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = custom_convert_ldm_vae_checkpoint(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = AutoencoderKL(**__lowerCamelCase ) vae.load_state_dict(__lowerCamelCase ) vae.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") a : Optional[int] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
114
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
309
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ): lowerCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0] lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
309
1
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __lowerCamelCase ( A__ , A__ , A__ , A__=None , A__=None , A__=None , A__=None , A__=None , ) -> Tuple: """simple docstring""" if attention_mask is None: UpperCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_A ) if decoder_head_mask is None: UpperCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_A ) if cross_attn_head_mask is None: UpperCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_A ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=1_3 , UpperCamelCase__ : int=7 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : List[Any]=9_9 , UpperCamelCase__ : Tuple=1_6 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : Tuple="relu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : List[str]=2_0 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Tuple=1 , UpperCamelCase__ : Optional[Any]=0 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def A ( self : Dict ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.eos_token_id # Eos Token UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase = self.get_config() UpperCamelCase = prepare_mam_aaa_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def A ( self : Union[str, Any] ): """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def A ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = MaMaaaModel(config=__snake_case ).get_decoder().to(__snake_case ).eval() UpperCamelCase = inputs_dict['input_ids'] UpperCamelCase = inputs_dict['attention_mask'] UpperCamelCase = inputs_dict['head_mask'] # first forward pass UpperCamelCase = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case ) UpperCamelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase = model(__snake_case , attention_mask=__snake_case )['last_hidden_state'] UpperCamelCase = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[ 'last_hidden_state' ] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-2 ) ) def A ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ): """simple docstring""" UpperCamelCase = MaMaaaModel(config=__snake_case ).to(__snake_case ).eval() UpperCamelCase = model(**__snake_case ) UpperCamelCase = outputs.encoder_last_hidden_state UpperCamelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = model.get_encoder() encoder.save_pretrained(__snake_case ) UpperCamelCase = MaMaaaEncoder.from_pretrained(__snake_case ).to(__snake_case ) UpperCamelCase = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = model.get_decoder() decoder.save_pretrained(__snake_case ) UpperCamelCase = MaMaaaDecoder.from_pretrained(__snake_case ).to(__snake_case ) UpperCamelCase = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__snake_case , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ): """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = MaMaaaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__snake_case ) def A ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase = model_class(__snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case ) UpperCamelCase = model_class.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertEqual(info['missing_keys'] , [] ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__snake_case ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__snake_case ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() UpperCamelCase = copy.deepcopy(self._prepare_for_class(__snake_case , __snake_case ) ) if not self.is_encoder_decoder: UpperCamelCase = inputs['input_ids'] del inputs["input_ids"] else: UpperCamelCase = inputs['input_ids'] UpperCamelCase = inputs.get('decoder_input_ids' , __snake_case ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , __snake_case ) UpperCamelCase = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase = wte(__snake_case ) else: UpperCamelCase = wte(__snake_case ) UpperCamelCase = wte(__snake_case ) with torch.no_grad(): model(**__snake_case )[0] def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(__snake_case ) UpperCamelCase = MaMaaaForConditionalGeneration(__snake_case ).eval().to(__snake_case ) if torch_device == "cuda": model.half() model.generate(__snake_case , attention_mask=__snake_case ) model.generate(num_beams=4 , do_sample=__snake_case , early_stopping=__snake_case , num_return_sequences=3 ) def __lowerCamelCase ( A__ ) -> List[str]: """simple docstring""" return torch.tensor(_A , dtype=torch.long , device=_A ) _lowerCamelCase : Any = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : List[Any] ): """simple docstring""" return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__snake_case ) UpperCamelCase = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) UpperCamelCase = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) UpperCamelCase = prepare_mam_aaa_inputs_dict(model.config , __snake_case , __snake_case ) with torch.no_grad(): UpperCamelCase = model(**__snake_case )[0] UpperCamelCase = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __snake_case ) # change to expected output here UpperCamelCase = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=__snake_case ) ) def A ( self : str ): """simple docstring""" UpperCamelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__snake_case ) # change to intended input UpperCamelCase = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) UpperCamelCase = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) UpperCamelCase = prepare_mam_aaa_inputs_dict(model.config , __snake_case , __snake_case ) with torch.no_grad(): UpperCamelCase = model(**__snake_case )[0] UpperCamelCase = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __snake_case ) # change to expected output here UpperCamelCase = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=__snake_case ) ) def A ( self : int ): """simple docstring""" UpperCamelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__snake_case ) UpperCamelCase = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) UpperCamelCase = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase = tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' ) UpperCamelCase = model.generate( input_ids=dct['input_ids'].to(__snake_case ) , attention_mask=dct['attention_mask'].to(__snake_case ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) UpperCamelCase = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] UpperCamelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__snake_case , skip_special_tokens=__snake_case ) assert generated == expected_en
28
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCAmelCase: Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase: List[str] = { 't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json', } class a__( lowerCamelCase__ ): lowercase__ = """t5""" lowercase__ = ["""past_key_values"""] lowercase__ = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Union[str, Any] , __snake_case : int=3_21_28 , __snake_case : str=5_12 , __snake_case : Dict=64 , __snake_case : Optional[int]=20_48 , __snake_case : Tuple=6 , __snake_case : Any=None , __snake_case : Optional[int]=8 , __snake_case : str=32 , __snake_case : Union[str, Any]=1_28 , __snake_case : Optional[int]=0.1 , __snake_case : Dict=1e-6 , __snake_case : int=1.0 , __snake_case : Optional[int]="relu" , __snake_case : Any=True , __snake_case : List[str]=True , __snake_case : Union[str, Any]=0 , __snake_case : Dict=1 , **__snake_case : Optional[int] , ): a : Optional[int] = vocab_size a : Dict = d_model a : Union[str, Any] = d_kv a : Dict = d_ff a : Tuple = num_layers a : Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a : int = num_heads a : str = relative_attention_num_buckets a : List[Any] = relative_attention_max_distance a : int = dropout_rate a : Tuple = layer_norm_epsilon a : str = initializer_factor a : List[Any] = feed_forward_proj a : Union[str, Any] = use_cache a : List[str] = self.feed_forward_proj.split('-' ) a : int = act_info[-1] a : Union[str, Any] = act_info[0] == 'gated' if len(__snake_case ) > 1 and act_info[0] != "gated" or len(__snake_case ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": a : Optional[Any] = 'gelu_new' super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , **__snake_case , ) class a__( lowerCamelCase__ ): @property def lowercase_ ( self : Optional[int] ): a : Dict = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: a : Dict = 'past_encoder_sequence + sequence' a : Dict = {0: 'batch'} a : Any = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: a : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} a : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction='inputs' ) return common_inputs @property def lowercase_ ( self : List[Any] ): return 13
297
0
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase : str = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : List[Any] = "ernie_m" A : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : str , UpperCAmelCase_ : int = 2_5_0_0_0_2 , UpperCAmelCase_ : int = 7_6_8 , UpperCAmelCase_ : int = 1_2 , UpperCAmelCase_ : int = 1_2 , UpperCAmelCase_ : int = 3_0_7_2 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 5_1_4 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 1e-05 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=0.0 , **UpperCAmelCase_ : Any , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : int = vocab_size a : Dict = hidden_size a : Optional[int] = num_hidden_layers a : Any = num_attention_heads a : Tuple = intermediate_size a : Union[str, Any] = hidden_act a : Optional[Any] = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : Union[str, Any] = max_position_embeddings a : Dict = initializer_range a : Optional[Any] = layer_norm_eps a : Any = classifier_dropout a : List[str] = is_decoder a : Dict = act_dropout
366
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : Union[str, Any] = SwinConfig() a : Optional[int] = swin_name.split('_' ) a : Union[str, Any] = name_split[1] a : Dict = int(name_split[4] ) a : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : Any = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : int = 96 a : List[str] = (2, 2, 18, 2) a : int = (3, 6, 12, 24) elif model_size == "base": a : Tuple = 128 a : Optional[int] = (2, 2, 18, 2) a : List[Any] = (4, 8, 16, 32) else: a : Dict = 192 a : str = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Any = 21_841 else: a : str = 1_000 a : str = 'huggingface/label-files' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : int = idalabel a : str = {v: k for k, v in idalabel.items()} a : Dict = img_size a : List[Any] = num_classes a : str = embed_dim a : Dict = depths a : Union[str, Any] = num_heads a : int = window_size return config def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name: a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[int] = 'encoder.' + name if "attn.proj" in name: a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a : List[str] = 'layernorm.bias' if "head" in name: a : Union[str, Any] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: a : Optional[Any] = key.split('.' ) a : Dict = int(key_split[1] ) a : Optional[int] = int(key_split[3] ) a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Optional[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : List[Any] = val[-dim:, :] else: a : Dict = val[ :dim ] a : Union[str, Any] = val[ dim : dim * 2 ] a : Union[str, Any] = val[ -dim: ] else: a : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]: """simple docstring""" a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() a : str = get_swin_config(snake_case ) a : Optional[int] = SwinForImageClassification(snake_case ) model.eval() a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' ) a : int = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
345
0
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
25
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : int = '''yolos''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=[5_12, 8_64] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : int = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[str] = image_size SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE__ : List[str] = num_channels SCREAMING_SNAKE_CASE__ : List[str] = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[int] = num_detection_tokens SCREAMING_SNAKE_CASE__ : Optional[Any] = use_mid_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = auxiliary_loss # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[Any] = class_cost SCREAMING_SNAKE_CASE__ : List[str] = bbox_cost SCREAMING_SNAKE_CASE__ : List[Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : List[str] = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : int = eos_coefficient class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-4 @property def __magic_name__ (self ) -> int: """simple docstring""" return 12
25
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __magic_name__ : str = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) __magic_name__ : ClassVar[Features] = Features({"text": Value("string" )} ) __magic_name__ : ClassVar[Features] = Features({"labels": ClassLabel} ) __magic_name__ : str = "text" __magic_name__ : str = "labels" def a__( self : Optional[int] , lowerCAmelCase : Optional[int] )-> Optional[int]: """simple docstring""" if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) UpperCAmelCase = copy.deepcopy(self ) UpperCAmelCase = self.label_schema.copy() UpperCAmelCase = features[self.label_column] UpperCAmelCase = label_schema return task_template @property def a__( self : str )-> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
91
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : List[str] = {"""tokenizer_file""": """tokenizer.json"""} _lowercase : Optional[Any] = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = VOCAB_FILES_NAMES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = ["input_ids", "attention_mask"] __magic_name__ : Optional[int] = None def __init__( self : List[Any] , lowerCAmelCase : str=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : Union[str, Any]="<pad>" , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Optional[int] , )-> Union[str, Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase = add_prefix_space def a__( self : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str] )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any] )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : "Conversation" )-> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
91
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=3 ,__lowerCamelCase=32 ,__lowerCamelCase=3 ,__lowerCamelCase=10 ,__lowerCamelCase=[8, 16, 32, 64] ,__lowerCamelCase=[1, 1, 2, 1] ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase="relu" ,__lowerCamelCase=3 ,__lowerCamelCase=None ,__lowerCamelCase=["stage2", "stage3", "stage4"] ,__lowerCamelCase=[2, 3, 4] ,__lowerCamelCase=1 ,) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : Any = embeddings_size lowerCAmelCase__ : List[Any] = hidden_sizes lowerCAmelCase__ : Any = depths lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : Union[str, Any] = num_labels lowerCAmelCase__ : int = scope lowerCAmelCase__ : int = len(lowerCAmelCase_ ) lowerCAmelCase__ : Dict = out_features lowerCAmelCase__ : Any = out_indices lowerCAmelCase__ : Tuple = num_groups def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Tuple = None if self.use_labels: lowerCAmelCase__ : int = ids_tensor([self.batch_size] ,self.num_labels ) lowerCAmelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : Tuple = BitModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() lowerCAmelCase__ : Tuple = model(lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = self.num_labels lowerCAmelCase__ : Optional[Any] = BitForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() lowerCAmelCase__ : str = model(lowerCAmelCase_ ,labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Any = BitBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() lowerCAmelCase__ : Tuple = model(lowerCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Dict = BitBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() lowerCAmelCase__ : Tuple = model(lowerCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : str = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = config_and_inputs lowerCAmelCase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase): '''simple docstring''' snake_case_ =(BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () snake_case_ =( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) snake_case_ =False snake_case_ =False snake_case_ =False snake_case_ =False snake_case_ =False def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Dict = BitModelTester(self ) lowerCAmelCase__ : List[str] = ConfigTester(self ,config_class=lowerCAmelCase_ ,has_text_modality=lowerCAmelCase_ ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[int] = model_class(lowerCAmelCase_ ) lowerCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowerCAmelCase_ ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase_ ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(config=lowerCAmelCase_ ) for name, module in model.named_modules(): if isinstance(lowerCAmelCase_ ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def lowerCAmelCase__ (self ) -> int: """simple docstring""" def check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : List[Any] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(lowerCAmelCase_ ,lowerCAmelCase_ ) ) lowerCAmelCase__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ : str = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase__ : Dict = layer_type lowerCAmelCase__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Dict = True check_hidden_states_output(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Union[str, Any] = BitModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase_ ) lowerCAmelCase__ : int = self.default_image_processor lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : int = image_processor(images=lowerCAmelCase_ ,return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Tuple = model(**lowerCAmelCase_ ) # verify the logits lowerCAmelCase__ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,lowerCAmelCase_ ) lowerCAmelCase__ : Optional[Any] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase_ ,atol=1e-4 ) ) @require_torch class lowerCamelCase__ ( _UpperCamelCase , unittest.TestCase): '''simple docstring''' snake_case_ =(BitBackbone,) if is_torch_available() else () snake_case_ =BitConfig snake_case_ =False def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Any = BitModelTester(self )
129
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : Union[str, Any] = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[Any] = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = ['LayoutLMv3FeatureExtractor'] _snake_case : str = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
0
"""simple docstring""" from bisect import bisect from itertools import accumulate def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : List[Any] = sorted(zip(_lowercase , _lowercase ) , key=lambda __lowerCamelCase : x[0] / x[1] , reverse=_lowercase ) lowercase__ , lowercase__ : List[Any] = [i[0] for i in r], [i[1] for i in r] lowercase__ : List[str] = list(accumulate(_lowercase ) ) lowercase__ : List[str] = bisect(_lowercase , _lowercase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : Union[str, Any] = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ['LayoutLMv2FeatureExtractor'] lowerCamelCase_ : Optional[Any] = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCamelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
286
"""simple docstring""" import qiskit def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Tuple = qiskit.Aer.get_backend('aer_simulator' ) A_ : str = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator A_ : Optional[Any] = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : List[str] = half_adder(1, 1) print(F"Half Adder Output Qubit Counts: {counts}")
286
1
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCAmelCase = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def lowercase ( a__ : Union[str, Any] , a__ : int , a__ : List[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : List[Any] ) -> Optional[Any]: if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(a__ ) , version.parse(a__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( a__ : str , a__ : Optional[str] = None ) -> None: _UpperCamelCase = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , a__ ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = requirement, None, None else: _UpperCamelCase = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , a__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) _UpperCamelCase , _UpperCamelCase = match[0] _UpperCamelCase = want_full.split(''',''' ) # there could be multiple requirements _UpperCamelCase = {} for w in want_range: _UpperCamelCase = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , a__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) _UpperCamelCase , _UpperCamelCase = match[0] _UpperCamelCase = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": _UpperCamelCase = '''.'''.join([str(a__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(a__ , a__ , a__ , a__ , a__ , a__ ) return # check if any version is installed try: _UpperCamelCase = importlib.metadata.version(a__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(a__ , a__ , a__ , a__ , a__ , a__ ) def lowercase ( a__ : Tuple ) -> Any: _UpperCamelCase = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(a__ , a__ )
359
"""simple docstring""" def lowercase ( a__ : Tuple , a__ : str ) -> Tuple: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowercase ( a__ : Optional[int] , a__ : List[str]=0 ) -> Optional[Any]: return sorted(a__ , key=lambda a__ : x[column] ) def lowercase ( a__ : Optional[int] , a__ : Optional[int] , a__ : Tuple=float('''inf''' ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , a__ ): _UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCamelCase = current_dis return min_dis def lowercase ( a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Optional[Any]=float('''inf''' ) ) -> str: for i in range(min(6 , points_counts - 1 ) , a__ ): for j in range(max(0 , i - 6 ) , a__ ): _UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCamelCase = current_dis return min_dis def lowercase ( a__ : int , a__ : str , a__ : Any ) -> str: # base case if points_counts <= 3: return dis_between_closest_pair(a__ , a__ ) # recursion _UpperCamelCase = points_counts // 2 _UpperCamelCase = closest_pair_of_points_sqr( a__ , points_sorted_on_y[:mid] , a__ ) _UpperCamelCase = closest_pair_of_points_sqr( a__ , points_sorted_on_y[mid:] , points_counts - mid ) _UpperCamelCase = min(a__ , a__ ) _UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a__ ) _UpperCamelCase = dis_between_closest_in_strip( a__ , len(a__ ) , a__ ) return min(a__ , a__ ) def lowercase ( a__ : Dict , a__ : List[Any] ) -> Optional[Any]: _UpperCamelCase = column_based_sort(a__ , column=0 ) _UpperCamelCase = column_based_sort(a__ , column=1 ) return ( closest_pair_of_points_sqr( a__ , a__ , a__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
54
0
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list: """simple docstring""" A__ = len(lowercase_ ) A__ = [] for i in range(len(lowercase_ ) - pat_len + 1 ): A__ = True for j in range(lowercase_ ): if s[i + j] != pattern[j]: A__ = False break if match_found: position.append(lowercase_ ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Namespace ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _A = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class UpperCAmelCase__ ( A_ ): """simple docstring""" @staticmethod def _a ( A_ ) -> Dict: __UpperCamelCase =parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=A_ , required=A_ , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=A_ , required=A_ , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=A_ , required=A_ , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=A_ , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=A_ , default=A_ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=A_ ) def __init__( self , A_ , A_ , A_ , A_ , A_ , *A_ , ) -> Tuple: __UpperCamelCase =logging.get_logger('transformers-cli/converting' ) self._logger.info(f'Loading model {model_type}' ) __UpperCamelCase =model_type __UpperCamelCase =tf_checkpoint __UpperCamelCase =pytorch_dump_output __UpperCamelCase =config __UpperCamelCase =finetuning_task_name def _a ( self ) -> Tuple: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) if "ckpt" in self._tf_checkpoint.lower(): __UpperCamelCase =self._tf_checkpoint __UpperCamelCase ='' else: __UpperCamelCase =self._tf_checkpoint __UpperCamelCase ='' convert_transfo_xl_checkpoint_to_pytorch( A_ , self._config , self._pytorch_dump_output , A_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
117
from ....utils import logging _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_=None , A_=2048 ) -> Any: __UpperCamelCase =config.__dict__ __UpperCamelCase =modal_hidden_size if num_labels: __UpperCamelCase =num_labels
117
1
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCAmelCase_ : """simple docstring""" def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __magic_name__ (self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = inputs["""prompt"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs["""generator"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs["""num_inference_steps"""] SCREAMING_SNAKE_CASE__ : List[Any] = inputs["""output_type"""] if "image" in inputs: SCREAMING_SNAKE_CASE__ : Any = inputs["""image"""] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = None if "mask_image" in inputs: SCREAMING_SNAKE_CASE__ : str = inputs["""mask_image"""] else: SCREAMING_SNAKE_CASE__ : str = None if "original_image" in inputs: SCREAMING_SNAKE_CASE__ : str = inputs["""original_image"""] else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = pipe.encode_prompt(SCREAMING_SNAKE_CASE__ ) # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE__ : Optional[Any] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = image if mask_image is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = mask_image if original_image is not None: SCREAMING_SNAKE_CASE__ : str = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = pipe(**SCREAMING_SNAKE_CASE__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) pipe_loaded.to(SCREAMING_SNAKE_CASE__ ) pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = inputs["""generator"""] SCREAMING_SNAKE_CASE__ : Any = inputs["""num_inference_steps"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs["""output_type"""] # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE__ : Optional[int] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: SCREAMING_SNAKE_CASE__ : Any = image if mask_image is not None: SCREAMING_SNAKE_CASE__ : int = mask_image if original_image is not None: SCREAMING_SNAKE_CASE__ : str = original_image SCREAMING_SNAKE_CASE__ : List[str] = pipe_loaded(**SCREAMING_SNAKE_CASE__ )[0] SCREAMING_SNAKE_CASE__ : Dict = np.abs(to_np(SCREAMING_SNAKE_CASE__ ) - to_np(SCREAMING_SNAKE_CASE__ ) ).max() self.assertLess(SCREAMING_SNAKE_CASE__ , 1E-4 ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[int] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = pipe(**SCREAMING_SNAKE_CASE__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) pipe_loaded.to(SCREAMING_SNAKE_CASE__ ) pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = pipe_loaded(**SCREAMING_SNAKE_CASE__ )[0] SCREAMING_SNAKE_CASE__ : Tuple = np.abs(to_np(SCREAMING_SNAKE_CASE__ ) - to_np(SCREAMING_SNAKE_CASE__ ) ).max() self.assertLess(SCREAMING_SNAKE_CASE__ , 1E-4 )
25
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> int: snake_case_ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) snake_case_ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset snake_case_ = load_dataset('nielsr/rvlcdip-demo' ) snake_case_ = dataset['train'][0]['image'].convert('RGB' ) snake_case_ = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): snake_case_ = model(**a ) snake_case_ = outputs.logits snake_case_ = torch.Size((1, 16) ) self.assertEqual(logits.shape , a ) snake_case_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1E-4 ) )
178
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = UNetaDModel( sample_size=(32, 64) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') ,up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') ,) return model @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDConditionModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') ,up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') ,cross_attention_dim=10 ,) return model @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : int = AutoencoderKL( sample_size=(1_28, 64) ,in_channels=1 ,out_channels=1 ,latent_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') ,up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') ,) lowerCAmelCase__ : Dict = UNetaDModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') ,up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') ,) return vqvae, unet @slow def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = Mel( x_res=self.dummy_unet.config.sample_size[1] ,y_res=self.dummy_unet.config.sample_size[0] ,) lowerCAmelCase__ : Any = DDPMScheduler() lowerCAmelCase__ : int = AudioDiffusionPipeline(vqvae=__lowerCamelCase ,unet=self.dummy_unet ,mel=__lowerCamelCase ,scheduler=__lowerCamelCase ) lowerCAmelCase__ : Tuple = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) lowerCAmelCase__ : Tuple = pipe(generator=__lowerCamelCase ,steps=4 ) lowerCAmelCase__ : Dict = output.audios[0] lowerCAmelCase__ : Dict = output.images[0] lowerCAmelCase__ : str = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) lowerCAmelCase__ : Any = pipe(generator=__lowerCamelCase ,steps=4 ,return_dict=__lowerCamelCase ) lowerCAmelCase__ : int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCAmelCase__ : Tuple = np.frombuffer(image.tobytes() ,dtype='''uint8''' )[:10] lowerCAmelCase__ : Optional[int] = np.frombuffer(image_from_tuple.tobytes() ,dtype='''uint8''' )[:10] lowerCAmelCase__ : str = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCAmelCase__ : int = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] ,y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] ,) lowerCAmelCase__ : Dict = DDIMScheduler() lowerCAmelCase__ : Optional[int] = self.dummy_vqvae_and_unet lowerCAmelCase__ : List[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=dummy_vqvae_and_unet[1] ,mel=__lowerCamelCase ,scheduler=__lowerCamelCase ) lowerCAmelCase__ : int = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) np.random.seed(0 ) lowerCAmelCase__ : Union[str, Any] = np.random.uniform(-1 ,1 ,((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCAmelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) lowerCAmelCase__ : Optional[Any] = pipe(raw_audio=__lowerCamelCase ,generator=__lowerCamelCase ,start_step=5 ,steps=10 ) lowerCAmelCase__ : Tuple = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCAmelCase__ : Tuple = np.frombuffer(image.tobytes() ,dtype='''uint8''' )[:10] lowerCAmelCase__ : Union[str, Any] = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCAmelCase__ : List[Any] = self.dummy_unet_condition lowerCAmelCase__ : Optional[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=__lowerCamelCase ,mel=__lowerCamelCase ,scheduler=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) np.random.seed(0 ) lowerCAmelCase__ : str = torch.rand((1, 1, 10) ) lowerCAmelCase__ : Optional[int] = pipe(generator=__lowerCamelCase ,encoding=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = output.images[0] lowerCAmelCase__ : Optional[int] = np.frombuffer(image.tobytes() ,dtype='''uint8''' )[:10] lowerCAmelCase__ : Union[str, Any] = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : int = torch_device lowerCAmelCase__ : List[str] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) lowerCAmelCase__ : Dict = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) lowerCAmelCase__ : int = pipe(generator=__lowerCamelCase ) lowerCAmelCase__ : Any = output.audios[0] lowerCAmelCase__ : Union[str, Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCAmelCase__ : Tuple = np.frombuffer(image.tobytes() ,dtype='''uint8''' )[:10] lowerCAmelCase__ : Tuple = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
94
import flax.linen as nn import jax import jax.numpy as jnp class lowerCamelCase__ ( nn.Module): '''simple docstring''' snake_case_ =42 snake_case_ =jnp.floataa def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Dict = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__(self ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = hidden_states.shape lowerCAmelCase__ : Dict = jax.image.resize( __lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method='''nearest''' ,) lowerCAmelCase__ : Dict = self.conv(__lowerCamelCase ) return hidden_states class lowerCamelCase__ ( nn.Module): '''simple docstring''' snake_case_ =42 snake_case_ =jnp.floataa def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : List[Any] = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__(self ,__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.conv(__lowerCamelCase ) return hidden_states class lowerCamelCase__ ( nn.Module): '''simple docstring''' snake_case_ =42 snake_case_ =None snake_case_ =0.0 snake_case_ =None snake_case_ =jnp.floataa def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : List[str] = self.in_channels if self.out_channels is None else self.out_channels lowerCAmelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 ) lowerCAmelCase__ : Union[str, Any] = nn.Conv( __lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) lowerCAmelCase__ : int = nn.Dense(__lowerCamelCase ,dtype=self.dtype ) lowerCAmelCase__ : List[Any] = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 ) lowerCAmelCase__ : Union[str, Any] = nn.Dropout(self.dropout_prob ) lowerCAmelCase__ : Optional[int] = nn.Conv( __lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) lowerCAmelCase__ : str = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCAmelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCAmelCase__ : Optional[Any] = nn.Conv( __lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding='''VALID''' ,dtype=self.dtype ,) def __call__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase=True ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Tuple = hidden_states lowerCAmelCase__ : Dict = self.norma(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = nn.swish(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = self.conva(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) lowerCAmelCase__ : Dict = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase ,1 ) ,1 ) lowerCAmelCase__ : Optional[int] = hidden_states + temb lowerCAmelCase__ : Optional[int] = self.norma(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = nn.swish(__lowerCamelCase ) lowerCAmelCase__ : int = self.dropout(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: lowerCAmelCase__ : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
94
1
from __future__ import annotations def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = sorted(numsa + numsa ) __snake_case , __snake_case : int = divmod(len(__lowerCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _snake_case : str = [float(x) for x in input("Enter the elements of first array: ").split()] _snake_case : str = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
123
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case : int = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Any = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: __snake_case : Optional[int] = 1_0_2_4 __snake_case : List[Any] = 4_0_9_6 __snake_case : List[Any] = 2_4 __snake_case : Optional[Any] = 1_6 __snake_case : str = [5, 1_1, 1_7, 2_3] __snake_case : List[str] = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] __snake_case : Union[str, Any] = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: __snake_case : Tuple = 7_6_8 __snake_case : Any = [1, 1, 1, 0.5] __snake_case : Any = [2_5_6, 5_1_2, 7_6_8, 7_6_8] __snake_case : Any = 1_5_0 __snake_case : Optional[Any] = 1_6 __snake_case : List[str] = (1, 3_8_4, 3_8_4) __snake_case : Tuple = False __snake_case : Optional[Any] = "project" if "ade" in checkpoint_url: __snake_case : Optional[int] = True __snake_case : List[str] = 7_6_8 __snake_case : int = [1, 1, 1, 0.5] __snake_case : Any = 1_5_0 __snake_case : Tuple = 1_6 __snake_case : List[str] = "huggingface/label-files" __snake_case : Union[str, Any] = "ade20k-id2label.json" __snake_case : List[str] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) __snake_case : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : str = {v: k for k, v in idalabel.items()} __snake_case : Tuple = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __snake_case : Tuple = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: __snake_case : Tuple = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: __snake_case : Optional[Any] = name.replace("patch_embed" , "" ) if "pos_embed" in name: __snake_case : Optional[int] = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: __snake_case : List[str] = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: __snake_case : Union[str, Any] = name.replace("proj" , "projection" ) if "blocks" in name: __snake_case : int = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: __snake_case : Tuple = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __snake_case : Any = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: __snake_case : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: __snake_case : Any = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: __snake_case : Dict = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: __snake_case : Union[str, Any] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: __snake_case : List[Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: __snake_case : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: __snake_case : List[str] = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: __snake_case : Optional[int] = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: __snake_case : Optional[int] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __snake_case : int = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __snake_case : Any = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: __snake_case : List[Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: __snake_case : Tuple = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: __snake_case : List[str] = name.replace("conv1" , "convolution1" ) if "conv2" in name: __snake_case : str = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: __snake_case : Optional[int] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: __snake_case : List[str] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: __snake_case : Dict = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __snake_case : Tuple = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: __snake_case : int = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: __snake_case : Optional[Any] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: __snake_case : Optional[int] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: __snake_case : Dict = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: __snake_case : Union[str, Any] = name.replace("pretrained" , "dpt" ) if "bn" in name: __snake_case : Tuple = name.replace("bn" , "batch_norm" ) if "head" in name: __snake_case : Dict = name.replace("head" , "head.head" ) if "encoder.norm" in name: __snake_case : Optional[int] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: __snake_case : Tuple = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: __snake_case : str = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: __snake_case : Tuple = name.replace(".." , "." ) if "stem.conv" in name: __snake_case : int = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: __snake_case : Any = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: __snake_case : Optional[int] = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: __snake_case : List[Any] = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: __snake_case : Optional[int] = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: __snake_case : int = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: __snake_case : Optional[Any] = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : int = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) __snake_case : Any = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : str = in_proj_weight[: config.hidden_size, :] __snake_case : List[Any] = in_proj_bias[: config.hidden_size] __snake_case : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __snake_case : int = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( ): __snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : int = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Optional[int] = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __snake_case : Optional[int] = torch.load(__lowerCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): __snake_case : Optional[int] = state_dict.pop(__lowerCamelCase ) __snake_case : Optional[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase , __lowerCamelCase ) # load HuggingFace model __snake_case : Dict = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image __snake_case : str = 4_8_0 if "ade" in checkpoint_url else 3_8_4 __snake_case : Any = DPTImageProcessor(size=__lowerCamelCase ) __snake_case : int = prepare_img() __snake_case : Union[str, Any] = image_processor(__lowerCamelCase , return_tensors="pt" ) # forward pass __snake_case : Dict = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth if show_prediction: __snake_case : int = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=__lowerCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _snake_case : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
123
1
import requests from bsa import BeautifulSoup def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = "https://www.worldometers.info/coronavirus" )-> dict: """simple docstring""" UpperCamelCase_ = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , "html.parser" ) UpperCamelCase_ = soup.findAll("h1" ) UpperCamelCase_ = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
371
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False )-> str: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = input_str.split("_" ) UpperCamelCase_ = 0 if use_pascal else 1 UpperCamelCase_ = words[start_index:] UpperCamelCase_ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase_ = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
60
0
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int ) -> int: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
309
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
1
'''simple docstring''' from collections.abc import Sequence def A__ ( UpperCAmelCase_ = None ): if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) _UpperCamelCase : Union[str, Any] = nums[0] for i in range(1 , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[Any] = nums[i] _UpperCamelCase : List[Any] = max(UpperCAmelCase_ , ans + num , UpperCAmelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user snake_case_ : Optional[int] = int(input('Enter number of elements : ').strip()) snake_case_ : Dict = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
236
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ ): if not nums: return 0 _UpperCamelCase : Any = nums[0] _UpperCamelCase : Optional[int] = 0 for num in nums[1:]: _UpperCamelCase , _UpperCamelCase : Optional[Any] = ( max_excluding + num, max(UpperCAmelCase_ , UpperCAmelCase_ ), ) return max(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
236
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __UpperCamelCase ): if len(SCREAMING_SNAKE_CASE__ ) == 0: return [] __lowercase : Tuple = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) __lowercase : List[Any] = int(max_value - min_value ) + 1 __lowercase : list[list] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] for i in my_list: buckets[int(i - min_value )].append(SCREAMING_SNAKE_CASE__ ) return [v for bucket in buckets for v in sorted(SCREAMING_SNAKE_CASE__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
249
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowerCamelCase = True from torch.cuda.amp import autocast lowerCamelCase = logging.getLogger(__name__) def a_ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class A : UpperCamelCase__ : str =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase__ : Optional[str] =field( default=UpperCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) UpperCamelCase__ : Optional[bool] =field( default=UpperCamelCase_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) UpperCamelCase__ : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) UpperCamelCase__ : Optional[float] =field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) UpperCamelCase__ : Optional[float] =field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class A : UpperCamelCase__ : Optional[str] =field( default=UpperCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCamelCase__ : Optional[str] =field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) UpperCamelCase__ : bool =field( default=UpperCamelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) UpperCamelCase__ : Optional[int] =field( default=UpperCamelCase_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) UpperCamelCase__ : Optional[int] =field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCamelCase__ : Optional[int] =field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) UpperCamelCase__ : List[str] =list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class A : UpperCamelCase__ : WavaVecaProcessor UpperCamelCase__ : Union[bool, str] =True UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[int] =None def __call__( self : str , lowercase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: """simple docstring""" _lowerCamelCase : List[Any] =[{'input_values': feature['input_values']} for feature in features] _lowerCamelCase : str =[{'input_ids': feature['labels']} for feature in features] _lowerCamelCase : Union[str, Any] =self.processor.pad( lowercase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) _lowerCamelCase : Any =self.processor.pad( labels=lowercase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly _lowerCamelCase : str =labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _lowerCamelCase : List[Any] =labels return batch class A ( UpperCamelCase_ ): def lowerCamelCase ( self : Optional[Any] , lowercase_ : nn.Module , lowercase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: """simple docstring""" model.train() _lowerCamelCase : List[Any] =self._prepare_inputs(lowercase_ ) if self.use_amp: with autocast(): _lowerCamelCase : List[Any] =self.compute_loss(lowercase_ , lowercase_ ) else: _lowerCamelCase : Optional[int] =self.compute_loss(lowercase_ , lowercase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowerCamelCase : Optional[Any] =loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCamelCase : int =loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: _lowerCamelCase : Dict =loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowercase_ ).backward() elif self.use_apex: with amp.scale_loss(lowercase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowercase_ ) else: loss.backward() return loss.detach() def a_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any =parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowerCamelCase : Dict =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : List[str] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _lowerCamelCase : str =datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) _lowerCamelCase : int =datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer _lowerCamelCase : Dict =F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(SCREAMING_SNAKE_CASE__ : Tuple ): _lowerCamelCase : Optional[Any] =re.sub(SCREAMING_SNAKE_CASE__ , '' , batch['sentence'] ).lower() + ' ' return batch _lowerCamelCase : int =train_dataset.map(SCREAMING_SNAKE_CASE__ , remove_columns=['sentence'] ) _lowerCamelCase : Tuple =eval_dataset.map(SCREAMING_SNAKE_CASE__ , remove_columns=['sentence'] ) def extract_all_chars(SCREAMING_SNAKE_CASE__ : Tuple ): _lowerCamelCase : int =' '.join(batch['text'] ) _lowerCamelCase : Union[str, Any] =list(set(SCREAMING_SNAKE_CASE__ ) ) return {"vocab": [vocab], "all_text": [all_text]} _lowerCamelCase : Tuple =train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , ) _lowerCamelCase : Union[str, Any] =train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , ) _lowerCamelCase : Optional[int] =list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) _lowerCamelCase : Tuple ={v: k for k, v in enumerate(SCREAMING_SNAKE_CASE__ )} _lowerCamelCase : int =vocab_dict[' '] del vocab_dict[" "] _lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : int =len(SCREAMING_SNAKE_CASE__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : int =WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) _lowerCamelCase : Optional[int] =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[int] =WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Any =WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _lowerCamelCase : List[str] =min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_train_samples ) _lowerCamelCase : Any =train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) if data_args.max_val_samples is not None: _lowerCamelCase : Optional[int] =eval_dataset.select(range(data_args.max_val_samples ) ) _lowerCamelCase : str =torchaudio.transforms.Resample(48_000 , 16_000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(SCREAMING_SNAKE_CASE__ : List[Any] ): _lowerCamelCase , _lowerCamelCase : Tuple =torchaudio.load(batch['path'] ) _lowerCamelCase : Optional[int] =resampler(SCREAMING_SNAKE_CASE__ ).squeeze().numpy() _lowerCamelCase : Optional[Any] =16_000 _lowerCamelCase : Tuple =batch['text'] return batch _lowerCamelCase : Any =train_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase : Optional[int] =eval_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' _lowerCamelCase : int =processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(SCREAMING_SNAKE_CASE__ ) return batch _lowerCamelCase : str =train_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase : Tuple =eval_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowerCamelCase : Union[str, Any] =datasets.load_metric('wer' ) def compute_metrics(SCREAMING_SNAKE_CASE__ : str ): _lowerCamelCase : Union[str, Any] =pred.predictions _lowerCamelCase : Optional[int] =np.argmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) _lowerCamelCase : Any =processor.tokenizer.pad_token_id _lowerCamelCase : Any =processor.batch_decode(SCREAMING_SNAKE_CASE__ ) # we do not want to group tokens when computing the metrics _lowerCamelCase : List[Any] =processor.batch_decode(pred.label_ids , group_tokens=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Any =wer_metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowerCamelCase : Optional[int] =DataCollatorCTCWithPadding(processor=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) # Initialize our Trainer _lowerCamelCase : Optional[Any] =CTCTrainer( model=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowerCamelCase : Optional[Any] =last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _lowerCamelCase : Dict =model_args.model_name_or_path else: _lowerCamelCase : int =None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _lowerCamelCase : Optional[int] =trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() _lowerCamelCase : Any =train_result.metrics _lowerCamelCase : Optional[int] =( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) _lowerCamelCase : List[Any] =min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('train' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('train' , SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation _lowerCamelCase : str ={} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCamelCase : Tuple =trainer.evaluate() _lowerCamelCase : List[Any] =data_args.max_val_samples if data_args.max_val_samples is not None else len(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Union[str, Any] =min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE__ ) return results if __name__ == "__main__": main()
199
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> Dict: for param in module.parameters(): _snake_case = False def _UpperCAmelCase ( ) -> str: _snake_case = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _snake_case = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _UpperCAmelCase ( __lowerCamelCase : List[Any] ) -> Any: _snake_case = plt.imshow(SCREAMING_SNAKE_CASE_ ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE_ ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE_ ) plt.show() def _UpperCAmelCase ( ) -> Any: _snake_case = datetime.now() _snake_case = current_time.strftime('''%H:%M:%S''' ) return timestamp
365
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( A_ ): def __init__( self : str , *_lowerCamelCase : Tuple , **_lowerCamelCase : Optional[int] ): warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
40
0
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) A_ : Optional[Any] = number_of_bytes // partitions A_ : Union[str, Any] = [] for i in range(lowerCamelCase__ ): A_ : Optional[int] = i * bytes_per_partition + 1 A_ : Dict = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
206
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _lowerCAmelCase ( unittest.TestCase ): def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ): A_ : List[Any] = parent A_ : str = batch_size A_ : List[Any] = seq_length A_ : Dict = is_training A_ : List[Any] = use_attention_mask A_ : Any = use_token_type_ids A_ : Optional[int] = use_labels A_ : Tuple = vocab_size A_ : List[str] = hidden_size A_ : List[str] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = intermediate_size A_ : Optional[Any] = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Union[str, Any] = type_vocab_size A_ : int = type_sequence_label_size A_ : Any = initializer_range A_ : List[str] = num_choices def _a (self ): A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = None if self.use_attention_mask: A_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Union[str, Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowercase , ) return config, input_ids, attention_mask def _a (self ): A_ : List[str] = self.prepare_config_and_inputs() A_, A_, A_ : str = config_and_inputs A_ : Any = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _a (self ): A_ : Tuple = FlaxDistilBertModelTester(self ) @slow def _a (self ): for model_class_name in self.all_model_classes: A_ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) A_ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : List[str] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) A_ : Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A_ : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A_ : Optional[int] = model(lowercase , attention_mask=lowercase )[0] A_ : Optional[Any] = (1, 11, 768) self.assertEqual(output.shape , lowercase ) A_ : Union[str, Any] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
206
1
'''simple docstring''' def _lowercase ( __A ,__A ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __UpperCamelCase = str(bin(__A ) )[2:] # remove the leading "0b" __UpperCamelCase = str(bin(__A ) )[2:] __UpperCamelCase = max(len(__A ) ,len(__A ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__A ) ,b_binary.zfill(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
243
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _lowercase ( __A ,__A ,__A ,__A ,__A=True ,__A="pt" ): '''simple docstring''' __UpperCamelCase = {"""add_prefix_space""": True} if isinstance(__A ,__A ) and not line.startswith(""" """ ) else {} __UpperCamelCase = padding_side return tokenizer( [line] ,max_length=__A ,padding="""max_length""" if pad_to_max_length else None ,truncation=__A ,return_tensors=__A ,add_special_tokens=__A ,**__A ,) def _lowercase ( __A ,__A ,__A=None ,): '''simple docstring''' __UpperCamelCase = input_ids.ne(__A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase="train" , lowercase=None , lowercase=None , lowercase=None , lowercase="" , ) -> List[Any]: super().__init__() __UpperCamelCase = Path(lowercase ).joinpath(type_path + """.source""" ) __UpperCamelCase = Path(lowercase ).joinpath(type_path + """.target""" ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self ) -> Union[str, Any]: return len(self.src_lens ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ) , lowercase ).rstrip("""\n""" ) __UpperCamelCase = linecache.getline(str(self.tgt_file ) , lowercase ).rstrip("""\n""" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer , lowercase ) else self.tokenizer __UpperCamelCase = encode_line(lowercase , lowercase , self.max_source_length , """right""" ) __UpperCamelCase = encode_line(lowercase , lowercase , self.max_target_length , """right""" ) __UpperCamelCase = source_inputs["""input_ids"""].squeeze() __UpperCamelCase = target_inputs["""input_ids"""].squeeze() __UpperCamelCase = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCamelCase ( lowercase ) -> str: return [len(lowercase ) for x in Path(lowercase ).open().readlines()] def __lowerCamelCase ( self , lowercase ) -> Dict[str, torch.Tensor]: __UpperCamelCase = torch.stack([x["""input_ids"""] for x in batch] ) __UpperCamelCase = torch.stack([x["""attention_mask"""] for x in batch] ) __UpperCamelCase = torch.stack([x["""decoder_input_ids"""] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(lowercase , lowercase ) __UpperCamelCase , __UpperCamelCase = trim_batch(lowercase , lowercase , attention_mask=lowercase ) __UpperCamelCase = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch a__ : Optional[int] = getLogger(__name__) def _lowercase ( __A ): '''simple docstring''' return list(itertools.chain.from_iterable(__A ) ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = get_git_info() save_json(__A ,os.path.join(__A ,"""git_log.json""" ) ) def _lowercase ( __A ,__A ,__A=4 ,**__A ): '''simple docstring''' with open(__A ,"""w""" ) as f: json.dump(__A ,__A ,indent=__A ,**__A ) def _lowercase ( __A ): '''simple docstring''' with open(__A ) as f: return json.load(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = git.Repo(search_parent_directories=__A ) __UpperCamelCase = { """repo_id""": str(__A ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def _lowercase ( __A ,__A ): '''simple docstring''' return list(map(__A ,__A ) ) def _lowercase ( __A ,__A ): '''simple docstring''' with open(__A ,"""wb""" ) as f: return pickle.dump(__A ,__A ) def _lowercase ( __A ): '''simple docstring''' def remove_articles(__A ): return re.sub(R"""\b(a|an|the)\b""" ,""" """ ,__A ) def white_space_fix(__A ): return " ".join(text.split() ) def remove_punc(__A ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = normalize_answer(__A ).split() __UpperCamelCase = normalize_answer(__A ).split() __UpperCamelCase = Counter(__A ) & Counter(__A ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(__A ) __UpperCamelCase = 1.0 * num_same / len(__A ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _lowercase ( __A ,__A ): '''simple docstring''' return normalize_answer(__A ) == normalize_answer(__A ) def _lowercase ( __A ,__A ): '''simple docstring''' assert len(__A ) == len(__A ) __UpperCamelCase = 0 for hypo, pred in zip(__A ,__A ): em += exact_match_score(__A ,__A ) if len(__A ) > 0: em /= len(__A ) return {"em": em} def _lowercase ( __A ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = """dropout_rate""" for p in extra_params: if getattr(__A ,__A ,__A ): if not hasattr(__A ,__A ) and not hasattr(__A ,equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(__A ) ) delattr(__A ,__A ) continue __UpperCamelCase = p if hasattr(__A ,__A ) else equivalent_param[p] setattr(__A ,__A ,getattr(__A ,__A ) ) delattr(__A ,__A ) return hparams, config
243
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class A__ ( unittest.TestCase): def __init__( self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=3_0 , __magic_name__=4_0_0 , __magic_name__=True , __magic_name__=None , __magic_name__=0.9 , __magic_name__=None , __magic_name__=True , __magic_name__=[0.5, 0.5, 0.5] , __magic_name__=[0.5, 0.5, 0.5] , ): lowerCamelCase : Union[str, Any] = size if size is not None else {'''shortest_edge''': 3_0} lowerCamelCase : List[Any] = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0} lowerCamelCase : Optional[Any] = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : Union[str, Any] = num_channels lowerCamelCase : Union[str, Any] = min_resolution lowerCamelCase : List[Any] = max_resolution lowerCamelCase : Dict = do_resize_and_center_crop lowerCamelCase : List[Any] = size lowerCamelCase : Any = crop_pct lowerCamelCase : Optional[int] = crop_size lowerCamelCase : Any = do_normalize lowerCamelCase : Optional[Any] = image_mean lowerCamelCase : Any = image_std def UpperCamelCase__ ( self ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _UpperCAmelCase : Dict = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): lowerCamelCase : Dict = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """crop_pct""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""" ) ) def UpperCamelCase__ ( self ): lowerCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 3_0} ) self.assertEqual(image_processor.crop_size , {"""height""": 3_0, """width""": 3_0} ) lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} ) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input lowerCamelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase : Union[str, Any] = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase__ ( self ): lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input lowerCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase : List[Any] = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input lowerCamelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase : str = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
287
def lowerCamelCase__ ( a , a ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _A: Union[str, Any] = str(bin(a ) )[2:] # remove the leading "0b" _A: Union[str, Any] = str(bin(a ) )[2:] # remove the leading "0b" _A: Optional[int] = max(len(a ) , len(a ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(a ) , b_binary.zfill(a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
121
0
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: return math.pow(UpperCamelCase_ , 2 ) - a def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return 2 * x def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = 2.0 while start <= a: UpperCamelCase_ = math.pow(UpperCamelCase_ , 2 ) return start def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 9999 , UpperCamelCase_ = 0.00_00_00_00_00_00_01 ) -> List[Any]: if a < 0: raise ValueError("math domain error" ) UpperCamelCase_ = get_initial_point(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ): UpperCamelCase_ = value UpperCamelCase_ = value - fx(UpperCamelCase_ , UpperCamelCase_ ) / fx_derivative(UpperCamelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
0
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
283
"""simple docstring""" import math import random def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value a__ : Tuple = 0.02 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(lowerCAmelCase_ ): # Forward propagation __SCREAMING_SNAKE_CASE = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE = (expected / 100) - layer_a # Error delta __SCREAMING_SNAKE_CASE = layer_1_error * sigmoid_function(lowerCAmelCase_ , lowerCAmelCase_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = int(input('''Expected value: ''')) a__ : str = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
54
0
def _A ( lowerCAmelCase_ : int ) -> List[Any]: """simple docstring""" if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence lowerCAmelCase__ = gray_code_sequence_string(lowerCAmelCase_ ) # # convert them to integers for i in range(len(lowerCAmelCase_ ) ): lowerCAmelCase__ = int(sequence[i] , 2 ) return sequence def _A ( lowerCAmelCase_ : int ) -> str: """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowerCAmelCase__ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowerCAmelCase__ = gray_code_sequence_string(bit_count - 1 ) lowerCAmelCase__ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowerCAmelCase__ = "0" + smaller_sequence[i] sequence.append(lowerCAmelCase_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowerCAmelCase__ = "1" + smaller_sequence[i] sequence.append(lowerCAmelCase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
361
def _A ( lowerCAmelCase_ : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
221
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _a ( lowerCamelCase: Dict ) -> Any: '''simple docstring''' return EnvironmentCommand() class A_ ( _lowerCamelCase ): @staticmethod def _lowerCAmelCase (_UpperCamelCase :ArgumentParser )-> Optional[Any]: __A = parser.add_parser('''env''' ) download_parser.set_defaults(func=_UpperCamelCase ) def _lowerCAmelCase (self :List[Any] )-> Any: __A = huggingface_hub.__version__ __A = '''not installed''' __A = '''NA''' if is_torch_available(): import torch __A = torch.__version__ __A = torch.cuda.is_available() __A = '''not installed''' if is_transformers_available(): import transformers __A = transformers.__version__ __A = '''not installed''' if is_accelerate_available(): import accelerate __A = accelerate.__version__ __A = '''not installed''' if is_xformers_available(): import xformers __A = xformers.__version__ __A = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_UpperCamelCase ) ) return info @staticmethod def _lowerCAmelCase (_UpperCamelCase :int )-> int: return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
117
import requests snake_case__ : int = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def _a ( lowerCamelCase: str ) -> None: '''simple docstring''' __A = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
117
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE__ = '''BlipImageProcessor''' SCREAMING_SNAKE_CASE__ = '''AutoTokenizer''' def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = False super().__init__(_snake_case , _snake_case ) UpperCamelCase__ = self.image_processor def __call__(self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: UpperCamelCase__ = self.tokenizer UpperCamelCase__ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) return text_encoding # add pixel_values UpperCamelCase__ = self.image_processor(_snake_case , return_tensors=_snake_case ) if text is not None: UpperCamelCase__ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) else: UpperCamelCase__ = None if text_encoding is not None: encoding_image_processor.update(_snake_case ) return encoding_image_processor def UpperCAmelCase_ (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def UpperCAmelCase_ (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return self.tokenizer.decode(*_snake_case , **_snake_case ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCAmelCase_ (self ): UpperCamelCase__ = self.tokenizer.model_input_names UpperCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
357
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __magic_name__ ( __a : Any ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __magic_name__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" UpperCamelCase__ = [1, 2, 3] with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=2 ) with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = [1, 2] UpperCamelCase__ = {"""a""": 1, """b""": 2} UpperCamelCase__ = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase__ = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase__ = [2, 3] UpperCamelCase__ = {"""a""": 2, """b""": 3} UpperCamelCase__ = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase__ = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
178
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class a__ ( snake_case__ ): _a : int = """deberta-v2""" def __init__( self , _A=1_2_8_1_0_0 , _A=1_5_3_6 , _A=2_4 , _A=2_4 , _A=6_1_4_4 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=0 , _A=0.02 , _A=1E-7 , _A=False , _A=-1 , _A=0 , _A=True , _A=None , _A=0 , _A="gelu" , **_A , ): """simple docstring""" super().__init__(**_A ) __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = relative_attention __lowerCAmelCase = max_relative_positions __lowerCAmelCase = pad_token_id __lowerCAmelCase = position_biased_input # Backwards compatibility if type(_A ) == str: __lowerCAmelCase = [x.strip() for x in pos_att_type.lower().split("|" )] __lowerCAmelCase = pos_att_type __lowerCAmelCase = vocab_size __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = kwargs.get("pooler_hidden_size" , _A ) __lowerCAmelCase = pooler_dropout __lowerCAmelCase = pooler_hidden_act class a__ ( snake_case__ ): @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.task == "multiple-choice": __lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 1_2 def __SCREAMING_SNAKE_CASE( self , _A , _A = -1 , _A = -1 , _A = -1 , _A = False , _A = None , _A = 3 , _A = 4_0 , _A = 4_0 , _A = None , ): """simple docstring""" __lowerCAmelCase = super().generate_dummy_inputs(preprocessor=_A , framework=_A ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
92
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _a : List[Any]= re.compile(R"\s+") def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> int: '''simple docstring''' return {"hash": hashlib.mda(re.sub(UpperCAmelCase_ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Optional[int]: '''simple docstring''' __snake_case : Any = [len(UpperCAmelCase_ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(UpperCAmelCase_ ), "line_max": max(UpperCAmelCase_ )} def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] ) -> str: '''simple docstring''' __snake_case : Tuple = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=5 ) -> str: '''simple docstring''' __snake_case : Tuple = ['auto-generated', 'autogenerated', 'automatically generated'] __snake_case : Tuple = example['content'].splitlines() for _, line in zip(range(UpperCAmelCase_ ) , UpperCAmelCase_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : Optional[int]=0.05 ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = ['unit tests', 'test file', 'configuration file'] __snake_case : Tuple = example['content'].splitlines() __snake_case : Tuple = 0 __snake_case : Any = 0 # first test for _, line in zip(range(UpperCAmelCase_ ) , UpperCAmelCase_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __snake_case : int = example['content'].count('\n' ) __snake_case : str = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Any: '''simple docstring''' __snake_case : Any = ['def ', 'class ', 'for ', 'while '] __snake_case : Optional[int] = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=4 ) -> Dict: '''simple docstring''' __snake_case : Optional[Any] = example['content'].splitlines() __snake_case : Tuple = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case : List[Any] = tokenizer(example['content'] , truncation=UpperCAmelCase_ )['input_ids'] __snake_case : Union[str, Any] = len(example['content'] ) / len(UpperCAmelCase_ ) return {"ratio": ratio} def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> str: '''simple docstring''' __snake_case : List[Any] = {} results.update(get_hash(UpperCAmelCase_ ) ) results.update(line_stats(UpperCAmelCase_ ) ) results.update(alpha_stats(UpperCAmelCase_ ) ) results.update(char_token_ratio(UpperCAmelCase_ ) ) results.update(is_autogenerated(UpperCAmelCase_ ) ) results.update(is_config_or_test(UpperCAmelCase_ ) ) results.update(has_no_keywords(UpperCAmelCase_ ) ) results.update(has_few_assignments(UpperCAmelCase_ ) ) return results def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Any: '''simple docstring''' if not check_uniques(UpperCAmelCase_ , UpperCAmelCase_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Any: '''simple docstring''' with open(UpperCAmelCase_ , 'rb' ) as f_in: with gzip.open(str(UpperCAmelCase_ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCAmelCase_ , UpperCAmelCase_ ) os.unlink(UpperCAmelCase_ ) # Settings _a : int= HfArgumentParser(PreprocessingArguments) _a : Union[str, Any]= parser.parse_args() if args.num_workers is None: _a : str= multiprocessing.cpu_count() _a : Optional[int]= AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _a : Tuple= time.time() _a : Dict= load_dataset(args.dataset_name, split="train") print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing _a : str= time.time() _a : int= ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes _a : Tuple= set(ds.unique("hash")) _a : Optional[int]= len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics _a : Union[str, Any]= time.time() _a : List[Any]= ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _a : Tuple= time.time() _a, _a : Tuple= deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file _a : Union[str, Any]= Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) _a : List[Any]= output_dir / "data" data_dir.mkdir(exist_ok=True) _a : Tuple= time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _a : List[str]= str(data_dir / f'''file-{file_number+1:012}.json''') _a : List[str]= min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
172
0
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : int ) -> bool: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case = f"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False snake_case = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
149
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : str ) -> bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) snake_case = sorted(string.lower() ) return len(_UpperCamelCase ) == len(set(_UpperCamelCase ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input("Enter a string ").strip() SCREAMING_SNAKE_CASE__ = is_isogram(input_str) print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
149
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : List[str] = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys A_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
192
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCamelCase (lowercase_: Optional[int] , lowercase_: Union[str, Any] , lowercase_: Optional[Any] ) -> Tuple: # Initialise PyTorch model A__ : str = AlbertConfig.from_json_file(lowercase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) A__ : List[Any] = AlbertForPreTraining(lowercase_ ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A_ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
192
1
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ = 6 ): """simple docstring""" lowerCAmelCase : Node | None = None lowerCAmelCase : Node | None = None self.create_linked_list(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = Node() lowerCAmelCase : Optional[int] = current_node lowerCAmelCase : Union[str, Any] = current_node lowerCAmelCase : str = current_node for _ in range(1 , snake_case__ ): lowerCAmelCase : Any = Node() lowerCAmelCase : Dict = current_node lowerCAmelCase : List[Any] = previous_node lowerCAmelCase : Optional[Any] = current_node lowerCAmelCase : Tuple = self.front lowerCAmelCase : int = previous_node def lowercase__ ( self ): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowercase__ ( self ): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase : Tuple = self.rear.next if self.rear: lowerCAmelCase : Optional[int] = data def lowercase__ ( self ): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase : List[str] = self.front.data lowerCAmelCase : Optional[Any] = None return data lowerCAmelCase : List[Any] = self.front lowerCAmelCase : Optional[Any] = old_front.next lowerCAmelCase : Union[str, Any] = old_front.data lowerCAmelCase : Optional[int] = None return data def lowercase__ ( self ): """simple docstring""" if self.is_empty(): raise Exception("Empty Queue" ) def lowercase__ ( self ): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("Full Queue" ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Any | None = None lowerCAmelCase : Node | None = None lowerCAmelCase : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
133
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase__ = '''src/diffusers''' lowerCAmelCase__ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowerCAmelCase__ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCAmelCase__ = spec.loader.load_module() def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , SCREAMING_SNAKE_CASE ) is not None def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Dict = object_name.split("." ) lowerCAmelCase : Optional[int] = 0 # First let's find the module where our object lives. lowerCAmelCase : Any = parts[i] while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : List[Any] = f.readlines() # Now let's find the class / func in the code! lowerCAmelCase : List[str] = "" lowerCAmelCase : int = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCAmelCase : List[str] = line_index while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCAmelCase : List[Any] = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowerCAmelCase__ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowerCAmelCase__ = re.compile(r'''<FILL\s+[^>]*>''') def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : int = code.split("\n" ) lowerCAmelCase : List[str] = 0 while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[Any] = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: lowerCAmelCase : Tuple = f"""class Bla:\n{code}""" lowerCAmelCase : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : List[Any] = style_docstrings_in_code(SCREAMING_SNAKE_CASE ) return result[len("class Bla:\n" ) :] if has_indent else result def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int=False ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : List[str] = [] lowerCAmelCase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = search.groups() lowerCAmelCase : List[str] = find_code_in_diffusers(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = get_indent(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCAmelCase : Optional[int] = theoretical_indent lowerCAmelCase : List[str] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCAmelCase : str = True while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): break lowerCAmelCase : Tuple = lines[line_index] lowerCAmelCase : str = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCAmelCase : Tuple = lines[start_index:line_index] lowerCAmelCase : List[str] = "".join(SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies lowerCAmelCase : List[str] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None] lowerCAmelCase : Union[str, Any] = "\n".join(SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : str = replace_pattern.replace("with" , "" ).split("," ) lowerCAmelCase : List[str] = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = pattern.groups() lowerCAmelCase : List[Any] = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": lowerCAmelCase : Optional[Any] = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCAmelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) lowerCAmelCase : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowerCAmelCase : Tuple = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCAmelCase : int = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(SCREAMING_SNAKE_CASE ) return diffs def a__ ( SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' lowerCAmelCase : List[Any] = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , "**/*.py" ) , recursive=SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = [] for filename in all_files: lowerCAmelCase : List[Any] = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : List[Any] = "\n".join(SCREAMING_SNAKE_CASE ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCAmelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
133
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _a ( a :Tuple ) -> Optional[Any]: a = 384 a = 7 if "tiny" in model_name: a = 96 a = (2, 2, 6, 2) a = (3, 6, 12, 24) elif "small" in model_name: a = 96 a = (2, 2, 18, 2) a = (3, 6, 12, 24) elif "base" in model_name: a = 128 a = (2, 2, 18, 2) a = (4, 8, 16, 32) a = 12 a = 512 elif "large" in model_name: a = 192 a = (2, 2, 18, 2) a = (6, 12, 24, 48) a = 12 a = 768 # set label information a = 150 a = '''huggingface/label-files''' a = '''ade20k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = {v: k for k, v in idalabel.items()} a = SwinConfig( embed_dim=a , depths=a , num_heads=a , window_size=a , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) a = UperNetConfig( backbone_config=a , auxiliary_in_channels=a , num_labels=a , idalabel=a , labelaid=a , ) return config def _a ( a :Dict ) -> List[str]: a = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def _a ( a :Optional[int] , a :Optional[Any] , a :List[Any] ) -> Optional[int]: a = dct.pop(a ) a = val def _a ( a :Union[str, Any] , a :str ) -> Any: a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) a = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[:dim, :] a = in_proj_bias[: dim] a = in_proj_weight[ dim : dim * 2, : ] a = in_proj_bias[ dim : dim * 2 ] a = in_proj_weight[ -dim :, : ] a = in_proj_bias[-dim :] # fmt: on def _a ( a :List[str] ) -> List[str]: a , a = x.shape a = x.reshape(a , 4 , in_channel // 4 ) a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(a , a ) return x def _a ( a :Optional[Any] ) -> Any: a , a = x.shape a = x.reshape(a , in_channel // 4 , 4 ) a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(a , a ) return x def _a ( a :Dict ) -> Any: a = x.shape[0] a = x.reshape(4 , in_channel // 4 ) a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(a ) return x def _a ( a :Any ) -> List[str]: a = x.shape[0] a = x.reshape(in_channel // 4 , 4 ) a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(a ) return x def _a ( a :Union[str, Any] , a :str , a :Optional[int] ) -> Any: a = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , file_name=a )[ '''state_dict''' ] for name, param in state_dict.items(): print(a , param.shape ) a = get_upernet_config(a ) a = UperNetForSemanticSegmentation(a ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a = state_dict.pop(a ) if "bn" in key: a = key.replace('''bn''' , '''batch_norm''' ) a = val # rename keys a = create_rename_keys(a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: a = reverse_correct_unfold_reduction_order(a ) if "norm" in key: a = reverse_correct_unfold_norm_order(a ) model.load_state_dict(a ) # verify on image a = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' a = Image.open(requests.get(a , stream=a ).raw ).convert('''RGB''' ) a = SegformerImageProcessor() a = processor(a , return_tensors='''pt''' ).pixel_values with torch.no_grad(): a = model(a ) a = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": a = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": a = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": a = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": a = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(a ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
'''simple docstring''' UpperCamelCase__ : Optional[Any] = [ (10_00, '''M'''), (9_00, '''CM'''), (5_00, '''D'''), (4_00, '''CD'''), (1_00, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : List[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : str = 0 while place < len(_lowerCamelCase ): if (place + 1 < len(_lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Any = [] for arabic, roman in ROMAN: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : str = divmod(_lowerCamelCase , _lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
112
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( a_ ): _A : Optional[int] = ['pixel_values'] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = 1 / 2_55 , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = True , **snake_case__ , ) -> None: """simple docstring""" super().__init__(**snake_case__ ) UpperCAmelCase = size if size is not None else {"""height""": 3_84, """width""": 3_84} UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase = do_convert_rgb def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) UpperCAmelCase = (size["""height"""], size["""width"""]) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> Union[str, Any]: """simple docstring""" return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ) -> PIL.Image.Image: """simple docstring""" UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase = [convert_to_rgb(snake_case__ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(snake_case__ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCAmelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=snake_case__ ) return encoded_outputs
248
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : Dict = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False ): '''simple docstring''' UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' for i in range(config.num_hidden_layers ): UpperCAmelCase = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = dct.pop(lowerCAmelCase ) UpperCAmelCase = val @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowerCAmelCase ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False if "vqa" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 3129 UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = """vqa2-id2label.json""" UpperCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = ViltForQuestionAnswering(lowerCAmelCase ) elif "nlvr" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 2 UpperCAmelCase = {0: """False""", 1: """True"""} UpperCAmelCase = {v: k for k, v in config.idalabel.items()} UpperCAmelCase = 3 UpperCAmelCase = ViltForImagesAndTextClassification(lowerCAmelCase ) elif "irtr" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = ViltForImageAndTextRetrieval(lowerCAmelCase ) elif "mlm_itm" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = ViltForMaskedLM(lowerCAmelCase ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys UpperCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" )["""state_dict"""] UpperCAmelCase = create_rename_keys(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase ) if mlm_model or irtr_model: UpperCAmelCase = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCAmelCase , UpperCAmelCase = model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCAmelCase ) # Define processor UpperCAmelCase = ViltImageProcessor(size=384 ) UpperCAmelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase = ViltProcessor(lowerCAmelCase , lowerCAmelCase ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCAmelCase = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCAmelCase ).raw ) UpperCAmelCase = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCAmelCase ).raw ) UpperCAmelCase = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) UpperCAmelCase = processor(lowerCAmelCase , lowerCAmelCase , return_tensors="""pt""" ) UpperCAmelCase = processor(lowerCAmelCase , lowerCAmelCase , return_tensors="""pt""" ) UpperCAmelCase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCAmelCase = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=lowerCAmelCase ).raw ) if mlm_model: UpperCAmelCase = """a bunch of [MASK] laying on a [MASK].""" else: UpperCAmelCase = """How many cats are there?""" UpperCAmelCase = processor(lowerCAmelCase , lowerCAmelCase , return_tensors="""pt""" ) UpperCAmelCase = model(**lowerCAmelCase ) # Verify outputs if mlm_model: UpperCAmelCase = torch.Size([1, 11, 30522] ) UpperCAmelCase = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase , atol=1e-4 ) # verify masked token prediction equals "cats" UpperCAmelCase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCAmelCase = torch.Size([1, 3129] ) UpperCAmelCase = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase , atol=1e-4 ) # verify vqa prediction equals "2" UpperCAmelCase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCAmelCase = torch.Size([1, 2] ) UpperCAmelCase = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
248
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : int , snake_case__ : Optional[int]=13 , snake_case__ : List[Any]=7 , snake_case__ : Tuple=True , snake_case__ : List[Any]=True , snake_case__ : Union[str, Any]=99 , snake_case__ : Any=32 , snake_case__ : Optional[Any]=5 , snake_case__ : Any=4 , snake_case__ : str=37 , snake_case__ : Optional[int]="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : int=50 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=True , snake_case__ : List[Any]=None , ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Optional[int] = batch_size snake_case : Optional[int] = seq_length snake_case : List[Any] = is_training snake_case : List[Any] = use_input_mask snake_case : Optional[int] = vocab_size snake_case : Optional[int] = hidden_size snake_case : List[Any] = num_hidden_layers snake_case : List[str] = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : Optional[Any] = hidden_act snake_case : str = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : List[str] = initializer_range snake_case : Optional[Any] = use_labels snake_case : Dict = scope def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : List[Any] = None if self.use_input_mask: snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Dict: '''simple docstring''' ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Tuple = self.prepare_config_and_inputs() snake_case : Any = True snake_case : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : Tuple , snake_case__ : int , **snake_case__ : int , ) -> str: '''simple docstring''' snake_case : int = BertGenerationEncoder(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : str = model(snake_case__ , attention_mask=snake_case__ ) snake_case : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : int , **snake_case__ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' snake_case : str = True snake_case : int = BertGenerationEncoder(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Dict = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) snake_case : Optional[Any] = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : str , **snake_case__ : str , ) -> Dict: '''simple docstring''' snake_case : Optional[int] = True snake_case : Union[str, Any] = True snake_case : Optional[int] = BertGenerationDecoder(config=snake_case__ ).to(snake_case__ ).eval() # first forward pass snake_case : Optional[Any] = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) snake_case : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case : Tuple = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] snake_case : Dict = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] # select random slice snake_case : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Optional[Any] , *snake_case__ : List[Any] , ) -> str: '''simple docstring''' snake_case : str = BertGenerationDecoder(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Optional[Any] = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : List[Any] = self.prepare_config_and_inputs() snake_case : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : str = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () A__ : Any = (BertGenerationDecoder,) if is_torch_available() else () A__ : str = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any: '''simple docstring''' snake_case : Dict = BertGenerationEncoderTester(self ) snake_case : List[Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' snake_case , snake_case , snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case : List[Any] = "bert" self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> int: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case : Dict = None self.model_tester.create_and_check_model_as_decoder( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Tuple: '''simple docstring''' snake_case : Optional[int] = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Any: '''simple docstring''' snake_case : Tuple = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) snake_case : Dict = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): snake_case : List[str] = model(snake_case__ )[0] snake_case : List[str] = torch.Size([1, 8, 10_24] ) self.assertEqual(output.shape , snake_case__ ) snake_case : int = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) snake_case : List[str] = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): snake_case : List[Any] = model(snake_case__ )[0] snake_case : List[Any] = torch.Size([1, 8, 5_03_58] ) self.assertEqual(output.shape , snake_case__ ) snake_case : Union[str, Any] = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
59
"""simple docstring""" __lowercase = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
40
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def __lowercase ( __lowercase , __lowercase ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' _A = iter(__lowercase ) while True: _A = tuple(itertools.islice(__lowercase , __lowercase ) ) if not chunk: return yield chunk def __lowercase ( __lowercase ) -> str: '''simple docstring''' _A = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) _A = "" if len(__lowercase ) < 2: return dirty for i in range(len(__lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowercase ) & 1: clean += "X" return clean def __lowercase ( __lowercase ) -> list[str]: '''simple docstring''' _A = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _A = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowercase ) return table def __lowercase ( __lowercase , __lowercase ) -> str: '''simple docstring''' _A = generate_table(__lowercase ) _A = prepare_input(__lowercase ) _A = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowercase , 2 ): _A , _A = divmod(table.index(__lowercase ) , 5 ) _A , _A = divmod(table.index(__lowercase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __lowercase ( __lowercase , __lowercase ) -> str: '''simple docstring''' _A = generate_table(__lowercase ) _A = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowercase , 2 ): _A , _A = divmod(table.index(__lowercase ) , 5 ) _A , _A = divmod(table.index(__lowercase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
174
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not is_accelerate_available(): return method _A = version.parse(accelerate.__version__ ).base_version if version.parse(__lowercase ) < version.parse("0.17.0" ): return method def wrapper(self , *__lowercase , **__lowercase ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *__lowercase , **__lowercase ) return wrapper
174
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''longformer''' def __init__(self : Dict , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3_0522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1e-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : str , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) A = attention_window A = sep_token_id A = bos_token_id A = eos_token_id A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = onnx_export class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = True @property def A (self : Any ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def A (self : Optional[Any] ): A = super().outputs if self.task == "default": A = {0: """batch"""} return outputs @property def A (self : str ): return 1e-4 @property def A (self : Tuple ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def A (self : Union[str, Any] , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): A = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly A = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global A = 1 return inputs
258
'''simple docstring''' import datasets from .evaluate import evaluate _lowerCamelCase : List[str] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _lowerCamelCase : List[Any] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _lowerCamelCase : Dict = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def A (self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def A (self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase ) return score
258
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def UpperCamelCase_( snake_case__: Dict , snake_case__: Tuple , snake_case__: List[Any] , snake_case__: Optional[int] , snake_case__: Union[str, Any] ) -> Tuple: for attribute in key.split('.' ): UpperCAmelCase__ = getattr(_A , _A ) if weight_type is not None: UpperCAmelCase__ = getattr(_A , _A ).shape else: UpperCAmelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCamelCase_( snake_case__: int , snake_case__: str , snake_case__: Optional[int] ) -> List[str]: UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == 'group' , ) UpperCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(_A )[0].split('.' )[-2] UpperCAmelCase__ = mapped_key.replace('*' , _A ) if "weight_g" in name: UpperCAmelCase__ = 'weight_g' elif "weight_v" in name: UpperCAmelCase__ = 'weight_v' elif "weight" in name: UpperCAmelCase__ = 'weight' elif "bias" in name: UpperCAmelCase__ = 'bias' else: UpperCAmelCase__ = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(f"Unused weights: {unused_weights}" ) def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: str , snake_case__: Optional[int] , snake_case__: Dict , snake_case__: Tuple ) -> Optional[Any]: UpperCAmelCase__ = full_name.split('conv_layers.' )[-1] UpperCAmelCase__ = name.split('.' ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCAmelCase__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_A ) @torch.no_grad() def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Dict , snake_case__: str=None , snake_case__: Tuple=None , snake_case__: Tuple=True ) -> List[str]: if config_path is not None: UpperCAmelCase__ = HubertConfig.from_pretrained(_A ) else: UpperCAmelCase__ = HubertConfig() if is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(_A , 'vocab.json' ) if not os.path.isdir(_A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_A ) ) return os.makedirs(_A , exist_ok=_A ) with open(_A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _A ) UpperCAmelCase__ = WavaVecaCTCTokenizer( _A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_A , ) UpperCAmelCase__ = True if config.feat_extract_norm == 'layer' else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) processor.save_pretrained(_A ) UpperCAmelCase__ = HubertForCTC(_A ) else: UpperCAmelCase__ = HubertModel(_A ) if is_finetuned: UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(_A , _A , _A ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
358
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple: UpperCAmelCase__ = OmegaConf.load(snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase__ = {} UpperCAmelCase__ = 'first_stage_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase__ = {} UpperCAmelCase__ = 'model.diffusion_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] UpperCAmelCase__ = config.model.params.first_stage_config.params UpperCAmelCase__ = config.model.params.unet_config.params UpperCAmelCase__ = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) UpperCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
335
0
lowercase__ : Optional[int] = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
328
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 32 def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> str: return int(x / 2**20 ) class a : def __enter__( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _UpperCAmelCase : Union[str, Any] = torch.cuda.memory_allocated() return self def __exit__( self , *A_ ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() _UpperCAmelCase : List[str] = torch.cuda.memory_allocated() _UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated() _UpperCAmelCase : Optional[int] = bamb(self.end - self.begin ) _UpperCAmelCase : str = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Accelerator , lowerCAmelCase: int = 16 , lowerCAmelCase: str = "bert-base-cased" , lowerCAmelCase: int = 320 , lowerCAmelCase: int = 160 , ) -> Any: _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) _UpperCAmelCase : List[Any] = load_dataset( "glue" , "mrpc" , split={"train": F'train[:{n_train}]', "validation": F'validation[:{n_val}]'} ) def tokenize_function(lowerCAmelCase: Optional[int] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : Tuple = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase , max_length=lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase : int = datasets.map( lowerCAmelCase , batched=lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase: Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) return train_dataloader, eval_dataloader def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Optional[int] ) -> str: # Initialize accelerator _UpperCAmelCase : List[str] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : str = config["lr"] _UpperCAmelCase : int = int(config["num_epochs"] ) _UpperCAmelCase : Dict = int(config["seed"] ) _UpperCAmelCase : Optional[Any] = int(config["batch_size"] ) _UpperCAmelCase : Dict = args.model_name_or_path set_seed(lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_dataloaders(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase , return_dict=lowerCAmelCase ) # Instantiate optimizer _UpperCAmelCase : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase : Tuple = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Optional[Any] = (len(lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase , num_warmup_steps=0 , num_training_steps=lowerCAmelCase , ) else: _UpperCAmelCase : int = DummyScheduler(lowerCAmelCase , total_num_steps=lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase : Any = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase : List[str] = 0 # Now we train the model _UpperCAmelCase : int = {} for epoch in range(lowerCAmelCase , lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCAmelCase ): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = outputs.loss _UpperCAmelCase : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _UpperCAmelCase : Tuple = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(lowerCAmelCase , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( ) -> int: _UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=lowerCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowerCAmelCase , ) parser.add_argument( "--output_dir" , type=lowerCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=lowerCAmelCase , default=lowerCAmelCase , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=lowerCAmelCase , default=320 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=lowerCAmelCase , default=160 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=lowerCAmelCase , default=1 , help="Number of train epochs." , ) _UpperCAmelCase : List[Any] = parser.parse_args() _UpperCAmelCase : Optional[int] = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": main()
189
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str ) -> bool: _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase ) + 1 _UpperCAmelCase : Optional[int] = len(lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _UpperCAmelCase : List[str] = [[0 for i in range(lowerCAmelCase )] for j in range(lowerCAmelCase )] # since string of zero length match pattern of zero length _UpperCAmelCase : List[Any] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowerCAmelCase ): _UpperCAmelCase : Dict = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowerCAmelCase ): _UpperCAmelCase : Tuple = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowerCAmelCase ): for j in range(1 , lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _UpperCAmelCase : Optional[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _UpperCAmelCase : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _UpperCAmelCase : str = dp[i - 1][j] else: _UpperCAmelCase : int = 0 else: _UpperCAmelCase : List[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") SCREAMING_SNAKE_CASE_ = 'aab' SCREAMING_SNAKE_CASE_ = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
189
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor a__ : Union[str, Any] =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : List[Any] , *__A : str , **__A : Optional[Any] ): warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , __A , ) super().__init__(*__A , **__A )
53
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None ): """simple docstring""" if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _UpperCamelCase : """simple docstring""" __a : Tuple = OPTConfig __a : int = {} __a : Dict = '''gelu''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=20 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=16 , lowerCAmelCase__=16 , ) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = embed_dim __lowercase = word_embed_proj_dim __lowercase = False def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase__ , **self.config_updates , ) __lowercase = prepare_opt_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' __lowercase = TFOPTModel(config=lowerCAmelCase__ ) __lowercase = inputs_dict['''input_ids'''] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['''attention_mask'''][:1, :] __lowercase = 1 # first forward pass __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) @require_tf class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : int = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a : Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a : Dict = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a : List[str] = False __a : Optional[Any] = False __a : Union[str, Any] = False __a : List[Any] = 10 def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = TFOPTModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase__ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowercase = model_class(config=lowerCAmelCase__ ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase__ ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowercase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase__ ) # check that weights remain the same after resizing __lowercase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowerCAmelCase__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase__ ) __lowercase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowerCAmelCase__ ) def UpperCAmelCase ( lowercase ): """simple docstring""" return tf.constant(lowercase , dtype=tf.intaa ) @require_tf class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" __a : List[str] = 99 def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowercase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowercase = input_ids.shape[0] __lowercase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __lowercase = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __lowercase = tf.not_equal(lowerCAmelCase__ , model.config.pad_token_id ) with tf.GradientTape(): __lowercase = model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).last_hidden_state __lowercase = (1, 11, 5_12) self.assertEqual(output.shape , lowerCAmelCase__ ) __lowercase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-3 ) ) __lowercase = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ ) __lowercase = xla_generate(lowerCAmelCase__ , lowerCAmelCase__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-2 ) ) @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' super().setUp() __lowercase = '''facebook/opt-350m''' def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowercase = GPTaTokenizer.from_pretrained(self.path_model ) __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __lowercase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowercase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) ) __lowercase = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ ) __lowercase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) ) @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''facebook/opt-125m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowerCAmelCase__ , max_length=10 ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = '''facebook/opt-350m''' __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) __lowercase = '''left''' # use different length sentences to test batching __lowercase = [ '''Hello, my dog is a little''', '''Today, I''', ] __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ ) __lowercase = inputs['''input_ids'''] __lowercase = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs['''attention_mask'''] ) __lowercase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowerCAmelCase__ ) __lowercase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) __lowercase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowerCAmelCase__ , max_length=model.config.max_length - num_paddings ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) __lowercase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = '''facebook/opt-350m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowerCAmelCase__ , max_length=10 ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
210
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = -1 SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: int = TextStreamer(lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Union[str, Any] = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = tokenizer.decode(greedy_ids[0]) SCREAMING_SNAKE_CASE_: int = TextIteratorStreamer(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Tuple = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() SCREAMING_SNAKE_CASE_: Optional[Any] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Dict = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Any = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("distilgpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = -1 SCREAMING_SNAKE_CASE_: List[str] = torch.ones((1, 5) , device=lowerCAmelCase__).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE_: str = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__ , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = -1 SCREAMING_SNAKE_CASE_: List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001) SCREAMING_SNAKE_CASE_: Any = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Optional[Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = "" for new_text in streamer: streamer_text += new_text
127
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = -1 SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: int = TextStreamer(lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Union[str, Any] = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = tokenizer.decode(greedy_ids[0]) SCREAMING_SNAKE_CASE_: int = TextIteratorStreamer(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Tuple = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() SCREAMING_SNAKE_CASE_: Optional[Any] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Dict = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Any = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("distilgpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = -1 SCREAMING_SNAKE_CASE_: List[str] = torch.ones((1, 5) , device=lowerCAmelCase__).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE_: str = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__ , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = -1 SCREAMING_SNAKE_CASE_: List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001) SCREAMING_SNAKE_CASE_: Any = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Optional[Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = "" for new_text in streamer: streamer_text += new_text
127
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __magic_name__: Dict = logging.getLogger(__name__) __magic_name__: Dict = "Hello world! cécé herlolip" __magic_name__: int = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Any = BertAbsConfig( temp_dir=""".""", finetune_bert=_A, large=_A, share_emb=_A, use_bert_emb=_A, encoder="""bert""", max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2048, dec_dropout=0.2, ) __magic_name__ : int = torch.load(_A, lambda _A, _A : storage ) __magic_name__ : str = AbsSummarizer(_A, torch.device("""cpu""" ), _A ) original.eval() __magic_name__ : Optional[int] = BertAbsSummarizer(_A, torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) __magic_name__ : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs __magic_name__ : Tuple = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) ) __magic_name__ : str = torch.tensor(_A ).unsqueeze(0 ) __magic_name__ : Tuple = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) ) __magic_name__ : str = torch.tensor(_A ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __magic_name__ : str = encoder_input_ids __magic_name__ : Dict = decoder_input_ids __magic_name__ : Union[str, Any] = None __magic_name__ : Union[str, Any] = None __magic_name__ : Any = None __magic_name__ : Dict = None __magic_name__ : Any = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __magic_name__ : Any = original(_A, _A, _A, _A, _A, _A, _A )[0] __magic_name__ : str = original.generator(_A ) __magic_name__ : str = new_model( _A, _A, _A, _A, _A )[0] __magic_name__ : List[str] = new_model.generator(_A ) __magic_name__ : str = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) ) __magic_name__ : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) ) __magic_name__ : str = torch.allclose(_A, _A, atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict(), """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": __magic_name__: Dict = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) __magic_name__: List[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
342
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
1
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __UpperCamelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BertJapaneseTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ (self : List[str]): super().setUp() A = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def SCREAMING_SNAKE_CASE__ (self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]): A = 'こんにちは、世界。 \nこんばんは、世界。' A = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def SCREAMING_SNAKE_CASE__ (self : List[str] , __SCREAMING_SNAKE_CASE : List[Any]): A = self.get_input_output_texts(__a) A = tokenizer.encode(__a , add_special_tokens=__a) A = tokenizer.decode(__a , clean_up_tokenization_spaces=__a) return text, ids def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ (self : str): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.tokenizer_class(self.vocab_file) A = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。") self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab") self.assertIsNotNone(__a) A = 'こんにちは、世界。\nこんばんは、世界。' A = tokenizer.tokenize(__a) self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) A = os.path.join(self.tmpdirname , "tokenizer.bin") with open(__a , "wb") as handle: pickle.dump(__a , __a) with open(__a , "rb") as handle: A = pickle.load(__a) A = tokenizer_new.tokenize(__a) self.assertListEqual(__a , __a) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = MecabTokenizer(mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): try: A = MecabTokenizer(mecab_dic="unidic_lite") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def SCREAMING_SNAKE_CASE__ (self : List[Any]): try: A = MecabTokenizer(mecab_dic="unidic") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def SCREAMING_SNAKE_CASE__ (self : int): A = MecabTokenizer(do_lower_case=__a , mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def SCREAMING_SNAKE_CASE__ (self : Tuple): try: A = MecabTokenizer( do_lower_case=__a , normalize_text=__a , mecab_option="-d /usr/local/lib/mecab/dic/jumandic") except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def SCREAMING_SNAKE_CASE__ (self : Dict): A = MecabTokenizer(normalize_text=__a , mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi") self.assertIsNotNone(__a) A = 'こんにちは、世界。\nこんばんは、世界。' A = tokenizer.tokenize(__a) self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) A = os.path.join(self.tmpdirname , "tokenizer.bin") with open(__a , "wb") as handle: pickle.dump(__a , __a) with open(__a , "rb") as handle: A = pickle.load(__a) A = tokenizer_new.tokenize(__a) self.assertListEqual(__a , __a) @require_sudachi def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = SudachiTokenizer(sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A") self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国", "人", "参政", "権"]) @require_sudachi def SCREAMING_SNAKE_CASE__ (self : List[str]): A = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B") self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国人", "参政権"]) @require_sudachi def SCREAMING_SNAKE_CASE__ (self : str): A = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C") self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国人参政権"]) @require_sudachi def SCREAMING_SNAKE_CASE__ (self : Tuple): A = SudachiTokenizer(do_lower_case=__a , sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = SudachiTokenizer(normalize_text=__a , sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ (self : List[str]): A = SudachiTokenizer(trim_whitespace=__a , sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ (self : Dict): A = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp") self.assertIsNotNone(__a) A = 'こんにちは、世界。\nこんばんは、世界。' A = tokenizer.tokenize(__a) self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) A = os.path.join(self.tmpdirname , "tokenizer.bin") with open(__a , "wb") as handle: pickle.dump(__a , __a) with open(__a , "rb") as handle: A = pickle.load(__a) A = tokenizer_new.tokenize(__a) self.assertListEqual(__a , __a) @require_jumanpp def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = JumanppTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ (self : str): A = JumanppTokenizer(normalize_text=__a) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = JumanppTokenizer(trim_whitespace=__a) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ (self : str): A = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。") , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] A = {} for i, token in enumerate(__a): A = i A = WordpieceTokenizer(vocab=__a , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("こんにちは") , ["こんにちは"]) self.assertListEqual(tokenizer.tokenize("こんばんは") , ["こん", "##ばんは"]) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは") , ["こん", "##ばんは", "[UNK]", "こんにちは"]) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp") A = tokenizer.subword_tokenizer A = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。") self.assertListEqual(__a , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"]) A = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは") self.assertListEqual(__a , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"]) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese") A = tokenizer.encode("ありがとう。" , add_special_tokens=__a) A = tokenizer.encode("どういたしまして。" , add_special_tokens=__a) A = tokenizer.build_inputs_with_special_tokens(__a) A = tokenizer.build_inputs_with_special_tokens(__a , __a) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCamelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BertJapaneseTokenizer SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): super().setUp() A = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def SCREAMING_SNAKE_CASE__ (self : Tuple , **__SCREAMING_SNAKE_CASE : Dict): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **__a) def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]): A = 'こんにちは、世界。 \nこんばんは、世界。' A = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def SCREAMING_SNAKE_CASE__ (self : Any): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ (self : int): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ (self : List[Any]): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character") A = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。") self.assertListEqual( __a , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2]) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] A = {} for i, token in enumerate(__a): A = i A = CharacterTokenizer(vocab=__a , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("こんにちは") , ["こ", "ん", "に", "ち", "は"]) self.assertListEqual(tokenizer.tokenize("こんにちほ") , ["こ", "ん", "に", "ち", "[UNK]"]) def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char") A = tokenizer.encode("ありがとう。" , add_special_tokens=__a) A = tokenizer.encode("どういたしまして。" , add_special_tokens=__a) A = tokenizer.build_inputs_with_special_tokens(__a) A = tokenizer.build_inputs_with_special_tokens(__a , __a) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = 'cl-tohoku/bert-base-japanese' A = AutoTokenizer.from_pretrained(__a) self.assertIsInstance(__a , __a) class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = 'cl-tohoku/bert-base-japanese' with self.assertLogs("transformers" , level="WARNING") as cm: BertTokenizer.from_pretrained(__a) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from.")) A = 'bert-base-cased' with self.assertLogs("transformers" , level="WARNING") as cm: BertJapaneseTokenizer.from_pretrained(__a) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from."))
350
"""simple docstring""" __A : Dict = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __A : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] __A : List[Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
57
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase__ = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = np.random.RandomState(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase_ (self ): UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_dummy_inputs() UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) UpperCamelCase__ = np.array([0.6_9643, 0.5_8484, 0.5_0314, 0.5_8760, 0.5_5368, 0.5_9643, 0.5_1529, 0.4_1217, 0.4_9087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCAmelCase_ (self ): UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCamelCase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_dummy_inputs() UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) UpperCamelCase__ = np.array([0.6_1737, 0.5_4642, 0.5_3183, 0.5_4465, 0.5_2742, 0.6_0525, 0.4_9969, 0.4_0655, 0.4_8154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase_ (self ): UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCamelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # warmup pass to apply optimizations UpperCamelCase__ = pipe(**self.get_dummy_inputs() ) UpperCamelCase__ = self.get_dummy_inputs() UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) UpperCamelCase__ = np.array([0.5_2761, 0.5_9977, 0.4_9033, 0.4_9619, 0.5_4282, 0.5_0311, 0.4_7600, 0.4_0918, 0.4_5203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase_ (self ): UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCamelCase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_dummy_inputs() UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) UpperCamelCase__ = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase_ (self ): UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCamelCase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_dummy_inputs() UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) UpperCamelCase__ = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase_ (self ): UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_dummy_inputs() UpperCamelCase__ = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) UpperCamelCase__ = np.array([0.6_5331, 0.5_8277, 0.4_8204, 0.5_6059, 0.5_3665, 0.5_6235, 0.5_0969, 0.4_0009, 0.4_6552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase_ (self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase_ (self ): UpperCamelCase__ = ort.SessionOptions() UpperCamelCase__ = False return options def UpperCAmelCase_ (self ): UpperCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCamelCase__ = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """A fantasy landscape, trending on artstation""" UpperCamelCase__ = np.random.RandomState(0 ) UpperCamelCase__ = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) UpperCamelCase__ = output.images UpperCamelCase__ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) UpperCamelCase__ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCAmelCase_ (self ): UpperCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCamelCase__ = init_image.resize((7_68, 5_12) ) UpperCamelCase__ = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) UpperCamelCase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """A fantasy landscape, trending on artstation""" UpperCamelCase__ = np.random.RandomState(0 ) UpperCamelCase__ = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) UpperCamelCase__ = output.images UpperCamelCase__ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) UpperCamelCase__ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
244
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
1
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class a__( unittest.TestCase ): def __init__( self : Optional[int] , __snake_case : List[Any] , __snake_case : Optional[int]=13 , __snake_case : Optional[int]=7 , __snake_case : Tuple=True , __snake_case : Optional[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : List[Any]=99 , __snake_case : Optional[int]=32 , __snake_case : str=5 , __snake_case : Optional[int]=4 , __snake_case : List[Any]=37 , __snake_case : Tuple="gelu" , __snake_case : Dict=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[Any]=5_12 , __snake_case : Union[str, Any]=16 , __snake_case : str=2 , __snake_case : List[Any]=0.02 , __snake_case : Optional[int]=4 , ): a : Any = parent a : int = batch_size a : Optional[Any] = seq_length a : Union[str, Any] = is_training a : str = use_attention_mask a : int = use_token_type_ids a : Tuple = use_labels a : Optional[int] = vocab_size a : str = hidden_size a : Optional[Any] = num_hidden_layers a : Optional[int] = num_attention_heads a : Tuple = intermediate_size a : str = hidden_act a : List[str] = hidden_dropout_prob a : List[Any] = attention_probs_dropout_prob a : List[Any] = max_position_embeddings a : List[Any] = type_vocab_size a : Dict = type_sequence_label_size a : List[str] = initializer_range a : str = num_choices def lowercase_ ( self : int ): a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Tuple = None if self.use_attention_mask: a : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) a : int = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase__ , ) return config, input_ids, attention_mask def lowercase_ ( self : int ): a : Optional[int] = self.prepare_config_and_inputs() a , a , a : Any = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class a__( A__ , unittest.TestCase ): lowercase__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self : List[Any] ): a : Dict = FlaxDistilBertModelTester(self ) @slow def lowercase_ ( self : Optional[Any] ): for model_class_name in self.all_model_classes: a : Optional[int] = model_class_name.from_pretrained('distilbert-base-uncased' ) a : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class a__( unittest.TestCase ): @slow def lowercase_ ( self : Any ): a : Optional[Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) a : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) a : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a : List[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] a : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) a : List[str] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1e-4 ) )
357
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a__: def __init__( self : Optional[int] ): a : int = '' a : List[str] = '' a : int = [] a : Optional[Any] = 0 a : Optional[Any] = 2_56 a : int = 0 a : Optional[int] = 0 a : str = 0 a : int = 0 def lowercase_ ( self : List[str] , __snake_case : int ): a : Optional[Any] = cva.imread(__snake_case , 0 ) a : int = copy.deepcopy(self.img ) a , a , a : Optional[int] = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) a : str = np.sum(__snake_case ) for i in range(len(__snake_case ) ): a : List[str] = x[i] / self.k self.sk += prk a : List[Any] = (self.L - 1) * self.sk if self.rem != 0: a : Union[str, Any] = int(last % last ) a : int = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__snake_case ) a : int = int(np.ma.count(self.img ) / self.img[1].size ) a : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): a : Tuple = self.img[j][i] if num != self.last_list[num]: a : Union[str, Any] = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def lowercase_ ( self : Union[str, Any] ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def lowercase_ ( self : Any ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase: Dict = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase: Optional[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
96
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Optional[Any]: debug_launcher(test_script.main ) def UpperCAmelCase_ ( self ) -> Dict: debug_launcher(test_ops.main )
344
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Optional[int] = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ['''MobileNetV2FeatureExtractor'''] _lowerCamelCase : List[Any] = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
206
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _lowerCamelCase : Union[str, Any] = TypeVar('''T''') class lowercase ( Generic[T] ): def __init__( self : int , _UpperCamelCase : bool = True ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = {} # dictionary of lists SCREAMING_SNAKE_CASE = directed def __snake_case( self : int , _UpperCamelCase : T , _UpperCamelCase : T ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCamelCase ) self.adj_list[destination_vertex].append(_UpperCamelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCamelCase ) SCREAMING_SNAKE_CASE = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_UpperCamelCase ) SCREAMING_SNAKE_CASE = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: SCREAMING_SNAKE_CASE = [destination_vertex] SCREAMING_SNAKE_CASE = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCamelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCamelCase ) SCREAMING_SNAKE_CASE = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: SCREAMING_SNAKE_CASE = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: SCREAMING_SNAKE_CASE = [destination_vertex] SCREAMING_SNAKE_CASE = [] return self def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' return pformat(self.adj_list )
206
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Any: a_ : Any = inspect.getfile(accelerate.test_utils ) a_ : str = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) a_ : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) a_ : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def UpperCamelCase__ ( self ) -> Tuple: print(F'''Found {torch.cuda.device_count()} devices.''' ) a_ : Dict = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowercase , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ) -> Any: print(F'''Found {torch.cuda.device_count()} devices.''' ) a_ : Any = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowercase , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : str = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowercase , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ) -> List[str]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) a_ : Any = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(_lowercase , env=os.environ.copy() ) if __name__ == "__main__": __snake_case : Dict = Accelerator() __snake_case : Tuple = (accelerator.state.process_index + 2, 10) __snake_case : List[Any] = torch.randint(0, 10, shape).to(accelerator.device) __snake_case : List[Any] = """""" __snake_case : List[str] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __snake_case : Tuple = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __snake_case : Dict = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
248
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A__(unittest.TestCase ): """simple docstring""" _A : List[str] = StableDiffusionLDMaDPipeline _A : int = TEXT_TO_IMAGE_PARAMS _A : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _A : str = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a_ : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) a_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ : Tuple = CLIPTextModel(_lowercase ) a_ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a_ : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Any: if str(_lowercase ).startswith("""mps""" ): a_ : Optional[Any] = torch.manual_seed(_lowercase ) else: a_ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> List[Any]: a_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator a_ : Any = self.get_dummy_components() a_ : List[str] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : Union[str, Any] = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : int = self.get_dummy_inputs(_lowercase ) a_ : List[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : Tuple = output.rgb, output.depth a_ : Union[str, Any] = rgb[0, -3:, -3:, -1] a_ : Any = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a_ : Optional[Any] = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) a_ : int = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Tuple = self.get_dummy_components() a_ : Optional[int] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : Optional[Any] = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Dict = self.get_dummy_inputs(_lowercase ) a_ : List[str] = 3 * [inputs["""prompt"""]] # forward a_ : Optional[int] = ldmad_pipe(**_lowercase ) a_ , a_ : Any = output.rgb, output.depth a_ : Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] a_ : Union[str, Any] = depth_slice_a[0, -3:, -1] a_ : Dict = self.get_dummy_inputs(_lowercase ) a_ : List[str] = 3 * [inputs.pop("""prompt""" )] a_ : List[Any] = ldmad_pipe.tokenizer( _lowercase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_lowercase , return_tensors="""pt""" , ) a_ : int = text_inputs["""input_ids"""].to(_lowercase ) a_ : Any = ldmad_pipe.text_encoder(_lowercase )[0] a_ : Dict = prompt_embeds # forward a_ : int = ldmad_pipe(**_lowercase ) a_ , a_ : Optional[int] = output.rgb, output.depth a_ : List[str] = rgb_slice_a[0, -3:, -3:, -1] a_ : Tuple = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCamelCase__ ( self ) -> Dict: a_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator a_ : Dict = self.get_dummy_components() a_ : Any = PNDMScheduler(skip_prk_steps=_lowercase ) a_ : List[str] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : str = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[Any] = self.get_dummy_inputs(_lowercase ) a_ : int = """french fries""" a_ : Any = ldmad_pipe(**_lowercase , negative_prompt=_lowercase ) a_ , a_ : Optional[Any] = output.rgb, output.depth a_ : Tuple = rgb[0, -3:, -3:, -1] a_ : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a_ : Optional[int] = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) a_ : Union[str, Any] = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ) -> List[str]: a_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Dict = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) ) a_ : Tuple = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) a_ : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Any: a_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) a_ : str = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Dict = self.get_inputs(_lowercase ) a_ : Optional[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : int = output.rgb, output.depth a_ : str = rgb[0, -3:, -3:, -1].flatten() a_ : Tuple = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) a_ : Optional[int] = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) a_ : Optional[int] = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ) -> str: a_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Tuple = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) ) a_ : Any = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) a_ : Dict = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[str] = self.get_inputs(_lowercase ) a_ : Union[str, Any] = ldmad_pipe(**_lowercase ) a_ , a_ : str = output.rgb, output.depth a_ : List[str] = 0.4_9_5_5_8_6 a_ : int = 0.3_3_7_9_5_5_1_5 a_ : int = 1_1_2.4_8_5_1_8 a_ : Optional[int] = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[str] = self.get_inputs(_lowercase ) a_ : List[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : List[Any] = output.rgb, output.depth a_ : int = 0.4_1_9_4_1_2_7 a_ : List[str] = 0.3_5_3_7_5_5_8_6 a_ : Optional[int] = 0.5_6_3_8_5_0_2 a_ : str = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
248
1
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 1_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase : int = 3 __UpperCAmelCase : Optional[int] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
368
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): class a__ : def __init__( self , _A ): """simple docstring""" __lowerCAmelCase = metric_id class a__ : _a : Optional[int] = [MetricMock(snake_case__ ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ): if "tmp_path" in args: __lowerCAmelCase = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(SCREAMING_SNAKE_CASE_ , match="https://huggingface.co/docs/evaluate" ): func(*SCREAMING_SNAKE_CASE_ )
92
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCamelCase__ = logging.get_logger(__name__) @dataclass class a__ ( snake_case__ ): _a : List[str] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **_A ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCAmelCase = deprecated_arg[3:] __lowerCAmelCase = not kwargs.pop(_A ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) __lowerCAmelCase = kwargs.pop("tpu_name" , self.tpu_name ) __lowerCAmelCase = kwargs.pop("device_idx" , self.device_idx ) __lowerCAmelCase = kwargs.pop("eager_mode" , self.eager_mode ) __lowerCAmelCase = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**_A ) _a : str = field( default=snake_case__ , metadata={"""help""": """Name of TPU"""} , ) _a : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) _a : bool = field(default=snake_case__ , metadata={"""help""": """Benchmark models in eager model."""} ) _a : bool = field( default=snake_case__ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) __lowerCAmelCase = None if self.tpu: try: if self.tpu_name: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __lowerCAmelCase = None return tpu @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __lowerCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.n_gpu > 0
92
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowercase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowercase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
1
"""simple docstring""" from __future__ import annotations import time import numpy as np A : Union[str, Any] = [8, 5, 9, 7] A : Dict = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Optional[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a , __a , ): __lowerCAmelCase = claim_vector __lowerCAmelCase = allocated_resources_table __lowerCAmelCase = maximum_claim_table def snake_case ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def snake_case ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def snake_case ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def snake_case ( self ): return {self.__need().index(__a ): i for i in self.__need()} def snake_case ( self , **__a ): __lowerCAmelCase = self.__need() __lowerCAmelCase = self.__allocated_resources_table __lowerCAmelCase = self.__available_resources() __lowerCAmelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: __lowerCAmelCase = False for each_need in need_list: __lowerCAmelCase = True for index, need in enumerate(__a ): if need > available_resources[index]: __lowerCAmelCase = False break if execution: __lowerCAmelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCAmelCase = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__a ) # update available/freed resources stack __lowerCAmelCase = np.array(__a ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__a ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def snake_case ( self ): print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__a ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__a ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__a ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
57
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class _snake_case ( _lowercase ): lowerCamelCase__: Tuple = ["input_features"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any]=80 , __lowerCamelCase: Optional[Any]=1_60_00 , __lowerCamelCase: Any=1_60 , __lowerCamelCase: Optional[int]=30 , __lowerCamelCase: List[str]=4_00 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Union[str, Any]=False , **__lowerCamelCase: Dict , ) -> Any: super().__init__( feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = n_fft __UpperCAmelCase : List[str] = hop_length __UpperCAmelCase : Optional[Any] = chunk_length __UpperCAmelCase : Union[str, Any] = chunk_length * sampling_rate __UpperCAmelCase : Any = self.n_samples // hop_length __UpperCAmelCase : Tuple = sampling_rate __UpperCAmelCase : List[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCamelCase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__lowerCamelCase , norm="slaney" , mel_scale="slaney" , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: np.array ) -> np.ndarray: __UpperCAmelCase : List[Any] = spectrogram( __lowerCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) __UpperCAmelCase : Union[str, Any] = log_spec[:, :-1] __UpperCAmelCase : List[Any] = np.maximum(__lowerCamelCase , log_spec.max() - 8.0 ) __UpperCAmelCase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowerCamelCase ( __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: __UpperCAmelCase : Tuple = np.array(__lowerCamelCase , np.intaa ) __UpperCAmelCase : Dict = [] for vector, length in zip(__lowerCamelCase , attention_mask.sum(-1 ) ): __UpperCAmelCase : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __UpperCAmelCase : Dict = padding_value normed_input_values.append(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self: Dict , __lowerCamelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[str] = "max_length" , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __UpperCAmelCase : List[Any] = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCAmelCase : Optional[int] = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): __UpperCAmelCase : str = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase : Optional[Any] = [np.asarray([raw_speech] ).T] __UpperCAmelCase : List[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding __UpperCAmelCase : List[str] = self.pad( __lowerCamelCase , padding=__lowerCamelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __UpperCAmelCase : List[Any] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) __UpperCAmelCase : str = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format __UpperCAmelCase : Any = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) __UpperCAmelCase : Dict = [self._np_extract_fbank_features(__lowerCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCamelCase ): __UpperCAmelCase : str = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features] else: __UpperCAmelCase : List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __UpperCAmelCase : int = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: __UpperCAmelCase : List[str] = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs def _lowerCamelCase ( self: str ) -> Dict[str, Any]: __UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
157
0
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : int = ["note_seq"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""note_seq"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""note_seq"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""note_seq"""] )
357
import os from pathlib import Path def __UpperCamelCase ( ) -> Any: """simple docstring""" from torch.utils.cpp_extension import load A : Any = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" A : int = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
115
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase) class __lowerCAmelCase ( lowerCAmelCase): _a = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True}) _a = Features({'''text''': Value('''string''')}) _a = Features({}) _a = "text" @property def SCREAMING_SNAKE_CASE ( self: Dict ): return {self.text_column: "text"}
236
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowerCAmelCase ( datasets.BuilderConfig): _a = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder): _a = PandasConfig def SCREAMING_SNAKE_CASE ( self: Any ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) lowercase :int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): lowercase :Union[str, Any] = data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase :Optional[int] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowercase :List[Any] = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase :Optional[Any] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"files": files} ) ) return splits def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase :Any = table_cast(_lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Union[str, Any] ): for i, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): with open(_lowerCAmelCase , "rb" ) as f: lowercase :int = pa.Table.from_pandas(pd.read_pickle(_lowerCAmelCase ) ) yield i, self._cast_table(_lowerCAmelCase )
236
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Dict = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : Union[str, Any] = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } _lowerCamelCase : List[str] = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off _lowerCamelCase : Tuple = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _UpperCAmelCase : Tuple = VOCAB_FILES_NAMES _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] _UpperCAmelCase : Optional[Any] = MBartTokenizer _UpperCAmelCase : List[int] = [] _UpperCAmelCase : List[int] = [] def __init__( self : Any , lowercase : Any=None , lowercase : Any=None , lowercase : List[Any]="<s>" , lowercase : Optional[Any]="</s>" , lowercase : Union[str, Any]="</s>" , lowercase : Optional[Any]="<s>" , lowercase : int="<unk>" , lowercase : str="<pad>" , lowercase : int="<mask>" , lowercase : Any=None , lowercase : Optional[int]=None , lowercase : Tuple=None , **lowercase : Dict , ): '''simple docstring''' _snake_case = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) _snake_case = vocab_file _snake_case = False if not self.vocab_file else True _snake_case = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _snake_case = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _snake_case = src_lang if src_lang is not None else 'en_XX' _snake_case = self.convert_tokens_to_ids(self._src_lang ) _snake_case = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A ( self : Any ): '''simple docstring''' return self._src_lang @src_lang.setter def A ( self : List[str] , lowercase : int ): '''simple docstring''' _snake_case = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A ( self : str , lowercase : str , lowercase : List[Any] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Optional[int] , lowercase : str , lowercase : Optional[Any] = None ): '''simple docstring''' _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self : List[str] , lowercase : int , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Dict , **lowercase : int ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _snake_case = src_lang _snake_case = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) _snake_case = self.convert_tokens_to_ids(_a ) _snake_case = tgt_lang_id return inputs def A ( self : int , lowercase : Any , lowercase : List[str] = "en_XX" , lowercase : str = None , lowercase : Tuple = "ro_RO" , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = src_lang _snake_case = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def A ( self : Union[str, Any] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A ( self : int ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A ( self : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' _snake_case = self.convert_tokens_to_ids(_a ) _snake_case = [] _snake_case = [self.eos_token_id, self.cur_lang_code] _snake_case = self.convert_ids_to_tokens(self.prefix_tokens ) _snake_case = self.convert_ids_to_tokens(self.suffix_tokens ) _snake_case = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A ( self : Dict , lowercase : Any ): '''simple docstring''' _snake_case = self.convert_tokens_to_ids(_a ) _snake_case = [] _snake_case = [self.eos_token_id, self.cur_lang_code] _snake_case = self.convert_ids_to_tokens(self.prefix_tokens ) _snake_case = self.convert_ids_to_tokens(self.suffix_tokens ) _snake_case = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A ( self : Optional[Any] , lowercase : Optional[int] , lowercase : Optional[Any] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return _snake_case = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
361
def a_ ( __lowercase : int = 50_000_000 ) -> int: _snake_case = set() _snake_case = int((limit - 24) ** (1 / 2) ) _snake_case = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __lowercase ) ) ) for primea in primes: _snake_case = primea * primea for primea in primes: _snake_case = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _snake_case = primea * primea * primea * primea _snake_case = square + cube + tetr if total >= limit: break ret.add(__lowercase ) return len(__lowercase ) if __name__ == "__main__": print(F'{solution() = }')
130
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params snake_case : Dict = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def __lowercase ( __lowerCAmelCase : List[Any] ): for pegasus_name, hf_name in PATTERNS: a__ = k.replace(_UpperCamelCase , _UpperCamelCase ) return k def __lowercase ( __lowerCAmelCase : dict , __lowerCAmelCase : dict ): a__ = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) a__ = PegasusConfig(**_UpperCamelCase ) a__ = PegasusForConditionalGeneration(_UpperCamelCase ) a__ = torch_model.model.state_dict() a__ = {} for k, v in tf_weights.items(): a__ = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: a__ = v.T a__ = torch.tensor(_UpperCamelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected a__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) a__ = mapping['shared.weight'] a__ = mapping['shared.weight'] a__ = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**_UpperCamelCase ) a__ , a__ = torch_model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) a__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def __lowercase ( __lowerCAmelCase : List[Any]="./ckpt/aeslc/model.ckpt-32000" ): a__ = tf.train.list_variables(_UpperCamelCase ) a__ = {} a__ = ['Adafactor', 'global_step'] for name, shape in tqdm(_UpperCamelCase , desc='converting tf checkpoint to dict' ): a__ = any(pat in name for pat in ignore_name ) if skip_key: continue a__ = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase ) a__ = array return tf_weights def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = Path(_UpperCamelCase ).parent.name a__ = task_specific_params[F'summarization_{dataset}']['max_position_embeddings'] a__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model a__ = get_tf_weights_as_numpy(_UpperCamelCase ) a__ = task_specific_params[F'summarization_{dataset}'] if dataset == "large": a__ = task_specific_params a__ = convert_pegasus(_UpperCamelCase , _UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) a__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(_UpperCamelCase , Path(_UpperCamelCase ) / 'pytorch_model.bin' ) if __name__ == "__main__": snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') snake_case : List[str] = parser.parse_args() if args.save_dir is None: snake_case : int = Path(args.tf_ckpt_path).parent.name snake_case : Optional[int] = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
240
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class lowerCAmelCase_ : """simple docstring""" # setable values _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[jnp.ndarray] = None _lowerCAmelCase : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def snake_case ( cls ): """simple docstring""" return cls() @dataclass class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : jnp.ndarray _lowerCAmelCase : jnp.ndarray _lowerCAmelCase : KarrasVeSchedulerState class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" @property def snake_case ( self ): """simple docstring""" return True @register_to_config def __init__( self , lowerCAmelCase = 0.02 , lowerCAmelCase = 1_00 , lowerCAmelCase = 1.0_07 , lowerCAmelCase = 80 , lowerCAmelCase = 0.05 , lowerCAmelCase = 50 , ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" return KarrasVeSchedulerState.create() def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = () ): """simple docstring""" snake_case = jnp.arange(0 , lowerCAmelCase )[::-1].copy() snake_case = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCAmelCase , schedule=jnp.array(lowerCAmelCase , dtype=jnp.floataa ) , timesteps=lowerCAmelCase , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: snake_case = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: snake_case = 0 # sample eps ~ N(0, S_noise^2 * I) snake_case = random.split(lowerCAmelCase , num=1 ) snake_case = self.config.s_noise * random.normal(key=lowerCAmelCase , shape=sample.shape ) snake_case = sigma + gamma * sigma snake_case = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , ): """simple docstring""" snake_case = sample_hat + sigma_hat * model_output snake_case = (sample_hat - pred_original_sample) / sigma_hat snake_case = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase , derivative=lowerCAmelCase , state=lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , ): """simple docstring""" snake_case = sample_prev + sigma_prev * model_output snake_case = (sample_prev - pred_original_sample) / sigma_prev snake_case = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase , derivative=lowerCAmelCase , state=lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" raise NotImplementedError()
150
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Dict = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'funnel' SCREAMING_SNAKE_CASE__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=[4, 4, 4] , _lowerCamelCase=None , _lowerCamelCase=2 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=64 , _lowerCamelCase=3072 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=None , _lowerCamelCase=1e-9 , _lowerCamelCase="mean" , _lowerCamelCase="relative_shift" , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , **_lowerCamelCase , ): a :Union[str, Any] = vocab_size a :Any = block_sizes a :List[Any] = [1] * len(_lowerCamelCase ) if block_repeats is None else block_repeats assert len(_lowerCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." a :Optional[int] = num_decoder_layers a :List[Any] = d_model a :Dict = n_head a :Tuple = d_head a :List[str] = d_inner a :List[Any] = hidden_act a :List[str] = hidden_dropout a :List[Any] = attention_dropout a :Optional[int] = activation_dropout a :List[Any] = initializer_range a :Optional[Any] = initializer_std a :Optional[int] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' a :List[str] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' a :List[str] = attention_type a :Union[str, Any] = separate_cls a :Any = truncate_seq a :Optional[int] = pool_q_only super().__init__(**_lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.block_sizes ) @num_blocks.setter def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
281
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case : List[Any] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = BartphoTokenizer SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() a :Dict = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] a :Optional[Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :Tuple = {'''unk_token''': '''<unk>'''} a :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) a :Any = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :int = '''This is a là test''' a :str = '''This is a<unk><unk> test''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) a :Optional[Any] = '''This is a là test''' a :Tuple = '''▁This ▁is ▁a ▁l à ▁t est'''.split() a :int = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = tokens + [tokenizer.unk_token] a :str = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
281
1
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) __lowerCAmelCase : List[Any] =logging.getLogger(__name__) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=3_0_5_2_2, type=int) __lowerCAmelCase : Optional[int] =parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: __lowerCAmelCase : str =pickle.load(fp) logger.info("""Counting occurrences for MLM.""") __lowerCAmelCase : Tuple =Counter() for tk_ids in data: counter.update(tk_ids) __lowerCAmelCase : Any =[0] * args.vocab_size for k, v in counter.items(): __lowerCAmelCase : Any =v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
197
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=lowerCAmelCase ): snake_case__ : List[str] = ['onnx'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(self , ["""onnx"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""onnx"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""onnx"""] )
197
1
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' while a != 0: UpperCAmelCase : List[Any] =b % a, a return b def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' if gcd(__lowerCAmelCase , __lowerCAmelCase ) != 1: UpperCAmelCase : List[str] =f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(__lowerCAmelCase ) UpperCAmelCase : Optional[int] =1, 0, a UpperCAmelCase : Union[str, Any] =0, 1, m while va != 0: UpperCAmelCase : Optional[Any] =ua // va UpperCAmelCase : Optional[int] =(ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
361
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __snake_case ( lowerCamelCase__ ): def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] =tempfile.mkdtemp() UpperCAmelCase : Any =8 # DPR tok UpperCAmelCase : List[Any] =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : Optional[Any] =os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) UpperCAmelCase : Union[str, Any] =os.path.join(snake_case__ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok UpperCAmelCase : int =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase : List[str] =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase : Optional[int] =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase : str ={'''unk_token''': '''<unk>'''} UpperCAmelCase : Optional[int] =os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) UpperCAmelCase : int =os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : int =os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(snake_case__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case__ ) ) def UpperCAmelCase__ ( self ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] =self.get_dummy_dataset() UpperCAmelCase : int =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : Union[str, Any] =dataset UpperCAmelCase : Any =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : List[str] =self.get_dummy_dataset() UpperCAmelCase : Union[str, Any] =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: UpperCAmelCase : List[Any] =os.path.join(self.tmpdirname , '''dataset''' ) UpperCAmelCase : str =os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset UpperCAmelCase : Union[str, Any] =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCAmelCase : List[str] =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , snake_case__ ) , ) return retriever def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : int =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase : int =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) UpperCAmelCase : Dict =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) UpperCAmelCase : List[Any] ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(snake_case__ , open(snake_case__ , '''wb''' ) ) UpperCAmelCase : Tuple =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) UpperCAmelCase : Union[str, Any] =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Any =1 UpperCAmelCase : Tuple =self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : Optional[int] =self.get_dummy_dataset() retriever.save_pretrained(snake_case__ ) UpperCAmelCase : List[str] =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Dict =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =1 UpperCAmelCase : Any =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) UpperCAmelCase : Tuple =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) UpperCAmelCase : List[Any] =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Dict =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int =1 UpperCAmelCase : List[str] =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) UpperCAmelCase : str =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) UpperCAmelCase : Dict =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : str =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[Any] =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] =1 UpperCAmelCase : List[str] =self.get_dummy_legacy_index_retriever() UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : str =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) UpperCAmelCase : Any =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : str =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Union[str, Any] =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' import torch UpperCAmelCase : Union[str, Any] =1 UpperCAmelCase : Optional[Any] =self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : Any =[[5, 7], [10, 11]] UpperCAmelCase : int =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : int =retriever(snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase : Optional[int] =retriever( snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(snake_case__ , torch.Tensor ) self.assertIsInstance(snake_case__ , torch.Tensor ) self.assertIsInstance(snake_case__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.get_dpr_ctx_encoder_tokenizer() UpperCAmelCase : str =1 UpperCAmelCase : Any =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) retriever.set_ctx_encoder_tokenizer(snake_case__ ) UpperCAmelCase : Tuple =[[5, 7], [10, 11]] UpperCAmelCase : Dict =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Any =retriever(snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ ) self.assertEqual( len(snake_case__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , snake_case__ ) # check for doc token related keys in dictionary.
78
0