code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCAmelCase__ ( __lowercase ): a__ : Any = """xlm-roberta-xl""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any]=25_08_80 , SCREAMING_SNAKE_CASE__ : Tuple=25_60 , SCREAMING_SNAKE_CASE__ : Any=36 , SCREAMING_SNAKE_CASE__ : Any=32 , SCREAMING_SNAKE_CASE__ : str=1_02_40 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=5_14 , SCREAMING_SNAKE_CASE__ : Optional[int]=1 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-05 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]="absolute" , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Tuple: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
270
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCAmelCase__ ( __lowercase ): def __init__( self : int ) -> Optional[int]: __lowerCamelCase = [] def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: self.events.append('''on_init_end''' ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: self.events.append('''on_train_begin''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ) -> Any: self.events.append('''on_train_end''' ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: self.events.append('''on_epoch_begin''' ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: self.events.append('''on_epoch_end''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: self.events.append('''on_step_begin''' ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: self.events.append('''on_step_end''' ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: self.events.append('''on_evaluate''' ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : str ) -> str: self.events.append('''on_predict''' ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: self.events.append('''on_save''' ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: self.events.append('''on_log''' ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: self.events.append('''on_prediction_step''' ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = tempfile.mkdtemp() def __A ( self : int ) -> List[str]: shutil.rmtree(self.output_dir ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : List[str]=64 , SCREAMING_SNAKE_CASE__ : Optional[int]=64 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=False , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowerCamelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = RegressionModelConfig(a=SCREAMING_SNAKE_CASE__ , b=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE__ , report_to=[] , **SCREAMING_SNAKE_CASE__ ) return Trainer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , callbacks=SCREAMING_SNAKE_CASE__ , ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) # Order doesn't matter __lowerCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : cb.__name__ if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cb.__class__.__name__ ) __lowerCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : cb.__name__ if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cb.__class__.__name__ ) for cba, cba in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(SCREAMING_SNAKE_CASE__ , cba.__class__ ) elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE__ ) else: self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: __lowerCamelCase = ['''on_init_end''', '''on_train_begin'''] __lowerCamelCase = 0 __lowerCamelCase = len(trainer.get_eval_dataloader() ) __lowerCamelCase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(SCREAMING_SNAKE_CASE__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = self.get_trainer() __lowerCamelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) # Callbacks passed at init are added to the default callbacks __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowerCamelCase = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> str: __lowerCamelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowerCamelCase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.remove(SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_trainer() __lowerCamelCase = trainer.pop_callback(SCREAMING_SNAKE_CASE__ ) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) trainer.add_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) # We can also add, pop, or remove by instance __lowerCamelCase = self.get_trainer() __lowerCamelCase = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.remove(SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_trainer() __lowerCamelCase = trainer.callback_handler.callbacks[0] __lowerCamelCase = trainer.pop_callback(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) trainer.add_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> Any: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) # Independent log/save/eval __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) # A bit of everything __lowerCamelCase = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowerCamelCase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE__ ) in warn_mock.call_args[0][0]
270
1
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 1.5 __SCREAMING_SNAKE_CASE = int(factor * num_class_images ) __SCREAMING_SNAKE_CASE = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=UpperCamelCase_ , aesthetic_weight=0.1 ) os.makedirs(f"{class_data_dir}/images" , exist_ok=UpperCamelCase_ ) if len(list(Path(f"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: __SCREAMING_SNAKE_CASE = client.query(text=UpperCamelCase_ ) if len(UpperCamelCase_ ) >= factor * num_class_images or num_images > 1e4: break else: __SCREAMING_SNAKE_CASE = int(factor * num_images ) __SCREAMING_SNAKE_CASE = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=UpperCamelCase_ , aesthetic_weight=0.1 , ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = tqdm(desc="""downloading real regularization images""" , total=UpperCamelCase_ ) with open(f"{class_data_dir}/caption.txt" , """w""" ) as fa, open(f"{class_data_dir}/urls.txt" , """w""" ) as fa, open( f"{class_data_dir}/images.txt" , """w""" ) as fa: while total < num_class_images: __SCREAMING_SNAKE_CASE = class_images[count] count += 1 try: __SCREAMING_SNAKE_CASE = requests.get(images["""url"""] ) if img.status_code == 200: __SCREAMING_SNAKE_CASE = Image.open(BytesIO(img.content ) ) with open(f"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(f"{class_data_dir}/images/{total}.jpg" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = argparse.ArgumentParser("""""" , add_help=UpperCamelCase_ ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=UpperCamelCase_ , type=UpperCamelCase_ ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=UpperCamelCase_ , type=UpperCamelCase_ ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=UpperCamelCase_ ) return parser.parse_args() if __name__ == "__main__": __magic_name__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
360
"""simple docstring""" import inspect import unittest class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): try: import diffusers # noqa: F401 except ImportError: assert False def snake_case_ ( self): import diffusers from diffusers.dependency_versions_table import deps __SCREAMING_SNAKE_CASE = inspect.getmembers(lowerCAmelCase__ , inspect.isclass) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __SCREAMING_SNAKE_CASE = """k-diffusion""" elif backend == "invisible_watermark": __SCREAMING_SNAKE_CASE = """invisible-watermark""" assert backend in deps, f"{backend} is not in the deps table!"
255
0
from math import isqrt def _A ( SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :str = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase :str = False return [i for i in range(2 , _UpperCAmelCase ) if is_prime[i]] def _A ( SCREAMING_SNAKE_CASE__ : int = 10**8 ): UpperCamelCase :Dict = calculate_prime_numbers(max_number // 2 ) UpperCamelCase :Union[str, Any] = 0 UpperCamelCase :Any = 0 UpperCamelCase :List[str] = len(_UpperCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
259
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = ["input_features", "is_longer"] def __init__( self : str , A : int=64 , A : Dict=48000 , A : str=480 , A : List[Any]=10 , A : Optional[Any]=1024 , A : Tuple=0.0 , A : List[Any]=False , A : float = 0 , A : float = 14000 , A : int = None , A : str = "fusion" , A : str = "repeatpad" , **A : Dict , ): super().__init__( feature_size=A , sampling_rate=A , padding_value=A , return_attention_mask=A , **A , ) _UpperCAmelCase : Optional[Any] = top_db _UpperCAmelCase : Dict = truncation _UpperCAmelCase : List[Any] = padding _UpperCAmelCase : Optional[Any] = fft_window_size _UpperCAmelCase : Dict = (fft_window_size >> 1) + 1 _UpperCAmelCase : Any = hop_length _UpperCAmelCase : Tuple = max_length_s _UpperCAmelCase : str = max_length_s * sampling_rate _UpperCAmelCase : Any = sampling_rate _UpperCAmelCase : Optional[int] = frequency_min _UpperCAmelCase : str = frequency_max _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm=A , mel_scale="htk" , ) _UpperCAmelCase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm="slaney" , mel_scale="slaney" , ) def _A ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _A ( self : Optional[Any] , A : np.array , A : Optional[np.array] = None ): _UpperCAmelCase : Dict = spectrogram( A , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=A , log_mel="dB" , ) return log_mel_spectrogram.T def _A ( self : str , A : str , A : List[str] , A : List[Any] ): _UpperCAmelCase : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : Optional[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : Tuple = [0] # randomly choose index for each part _UpperCAmelCase : Dict = np.random.choice(ranges[0] ) _UpperCAmelCase : str = np.random.choice(ranges[1] ) _UpperCAmelCase : Tuple = np.random.choice(ranges[2] ) _UpperCAmelCase : str = mel[idx_front : idx_front + chunk_frames, :] _UpperCAmelCase : str = mel[idx_middle : idx_middle + chunk_frames, :] _UpperCAmelCase : List[Any] = mel[idx_back : idx_back + chunk_frames, :] _UpperCAmelCase : Dict = torch.tensor(mel[None, None, :] ) _UpperCAmelCase : Optional[Any] = torch.nn.functional.interpolate( A , size=[chunk_frames, 64] , mode="bilinear" , align_corners=A ) _UpperCAmelCase : List[str] = mel_shrink[0][0].numpy() _UpperCAmelCase : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _A ( self : List[Any] , A : np.array , A : List[str] , A : Any , A : Optional[int] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _UpperCAmelCase : int = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _UpperCAmelCase : str = len(A ) - max_length _UpperCAmelCase : str = np.random.randint(0 , overflow + 1 ) _UpperCAmelCase : int = waveform[idx : idx + max_length] _UpperCAmelCase : Any = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _UpperCAmelCase : Tuple = self._np_extract_fbank_features(A , self.mel_filters ) _UpperCAmelCase : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _UpperCAmelCase : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _UpperCAmelCase : Any = np.stack([mel, mel, mel, mel] , axis=0 ) _UpperCAmelCase : int = False else: _UpperCAmelCase : Tuple = self._random_mel_fusion(A , A , A ) _UpperCAmelCase : Any = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: _UpperCAmelCase : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _UpperCAmelCase : str = int(max_length / len(A ) ) _UpperCAmelCase : Dict = np.stack(np.tile(A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _UpperCAmelCase : Dict = int(max_length / len(A ) ) _UpperCAmelCase : List[str] = np.stack(np.tile(A , A ) ) _UpperCAmelCase : Optional[Any] = np.pad(A , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": _UpperCAmelCase : str = self._np_extract_fbank_features(A , self.mel_filters ) _UpperCAmelCase : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _UpperCAmelCase : List[str] = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : str = None , A : Optional[str] = None , A : Optional[int] = None , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , **A : List[str] , ): _UpperCAmelCase : int = truncation if truncation is not None else self.truncation _UpperCAmelCase : Optional[int] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : Optional[Any] = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : int = [np.asarray(A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): _UpperCAmelCase : List[str] = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : List[str] = [np.asarray(A )] # convert to mel spectrogram, truncate and pad if needed. _UpperCAmelCase : Dict = [ self._get_input_mel(A , max_length if max_length else self.nb_max_samples , A , A ) for waveform in raw_speech ] _UpperCAmelCase : int = [] _UpperCAmelCase : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(A ) is_longer.append(A ) if truncation == "fusion" and sum(A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _UpperCAmelCase : Union[str, Any] = np.random.randint(0 , len(A ) ) _UpperCAmelCase : Optional[Any] = True if isinstance(input_mel[0] , A ): _UpperCAmelCase : List[str] = [np.asarray(A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _UpperCAmelCase : Tuple = [[longer] for longer in is_longer] _UpperCAmelCase : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} _UpperCAmelCase : Tuple = BatchFeature(A ) if return_tensors is not None: _UpperCAmelCase : List[Any] = input_features.convert_to_tensors(A ) return input_features
31
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = min(_SCREAMING_SNAKE_CASE ) # min() finds the minimum value _snake_case = max(_SCREAMING_SNAKE_CASE ) # max() finds the maximum value _snake_case = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _snake_case = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _snake_case = 0 for count in range(_SCREAMING_SNAKE_CASE ): while holes[count] > 0: holes[count] -= 1 _snake_case = count + min_val i += 1 def __SCREAMING_SNAKE_CASE ( ): _snake_case = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_SCREAMING_SNAKE_CASE ) print("""Sorted order is:""" , """ """.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
358
'''simple docstring''' import qiskit def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register _snake_case = qiskit.QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _snake_case = qiskit.execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
270
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
1
from __future__ import annotations __SCREAMING_SNAKE_CASE = 10 def UpperCAmelCase ( _lowerCamelCase ): A : Any = 1 A : Any = max(__lowerCamelCase ) while placement <= max_digit: # declare and initialize empty buckets A : list[list] = [[] for _ in range(__lowerCamelCase )] # split list_of_ints between the buckets for i in list_of_ints: A : int = int((i / placement) % RADIX ) buckets[tmp].append(__lowerCamelCase ) # put each buckets' contents into list_of_ints A : Any = 0 for b in range(__lowerCamelCase ): for i in buckets[b]: A : str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
351
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
256
0
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} __UpperCamelCase = job['started_at'] __UpperCamelCase = job['completed_at'] __UpperCamelCase = date_parser.parse(UpperCAmelCase_ ) __UpperCamelCase = date_parser.parse(UpperCAmelCase_ ) __UpperCamelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __UpperCamelCase = start __UpperCamelCase = end __UpperCamelCase = duration_in_min return job_info def _lowercase ( __A ,__A=None ): '''simple docstring''' __UpperCamelCase = None if token is not None: __UpperCamelCase = {'Accept': 'application/vnd.github+json', 'Authorization': f"Bearer {token}"} __UpperCamelCase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" __UpperCamelCase = requests.get(UpperCAmelCase_ ,headers=UpperCAmelCase_ ).json() __UpperCamelCase = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase_ ) for job in result["""jobs"""]} ) __UpperCamelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(UpperCAmelCase_ ): __UpperCamelCase = requests.get(url + f"&page={i + 2}" ,headers=UpperCAmelCase_ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase_ ) for job in result["""jobs"""]} ) return job_time except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') a__ : Dict = parser.parse_args() a__ : Union[str, Any] = get_job_time(args.workflow_run_id) a__ : Any = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
349
'''simple docstring''' A__ : Any = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
185
0
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ): snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _snake_case = logging.getLogger(__name__) _snake_case = tf.data.AUTOTUNE def A ( ): '''simple docstring''' _lowerCAmelCase : str = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=_lowerCamelCase , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=_lowerCamelCase , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=_lowerCamelCase , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=_lowerCamelCase , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=_lowerCamelCase , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=_lowerCamelCase , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=_lowerCamelCase , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=_lowerCamelCase , default=2**18 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=_lowerCamelCase , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=_lowerCamelCase , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=_lowerCamelCase , default=1e-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=_lowerCamelCase , default=1e-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=_lowerCamelCase , default=512 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=_lowerCamelCase , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=_lowerCamelCase , help="Model ID to upload to on the Hugging Face Hub." ) _lowerCAmelCase : List[Any] = parser.parse_args() return args def A ( _lowerCamelCase ): '''simple docstring''' try: if args.tpu_name: _lowerCAmelCase : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _lowerCAmelCase : Dict = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(_lowerCamelCase ) tf.tpu.experimental.initialize_tpu_system(_lowerCamelCase ) return tpu def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = 0 for file in file_list: _lowerCAmelCase : Optional[int] = file.split("/" )[-1] _lowerCAmelCase : str = re.search(r"-\d+-(\d+)\.tfrecord" , _lowerCamelCase ).group(1 ) _lowerCAmelCase : Tuple = int(_lowerCamelCase ) num_samples += sample_count return num_samples def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = count_samples(_lowerCamelCase ) _lowerCAmelCase : Tuple = tf.data.Dataset.from_tensor_slices(_lowerCamelCase ) if shuffle: _lowerCAmelCase : Union[str, Any] = dataset.shuffle(len(_lowerCamelCase ) ) _lowerCAmelCase : List[Any] = tf.data.TFRecordDataset(_lowerCamelCase , num_parallel_reads=_lowerCamelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _lowerCAmelCase : Optional[Any] = dataset.apply(tf.data.experimental.assert_cardinality(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = dataset.map(_lowerCamelCase , num_parallel_calls=_lowerCamelCase ) if shuffle: assert shuffle_buffer_size is not None _lowerCAmelCase : Any = dataset.shuffle(args.shuffle_buffer_size ) _lowerCAmelCase : Optional[Any] = dataset.batch(_lowerCamelCase , drop_remainder=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = dataset.map(_lowerCamelCase , num_parallel_calls=_lowerCamelCase ) _lowerCAmelCase : List[str] = dataset.prefetch(_lowerCamelCase ) return dataset def A ( _lowerCamelCase ): '''simple docstring''' if not args.no_tpu: _lowerCAmelCase : Optional[Any] = initialize_tpu(_lowerCamelCase ) _lowerCAmelCase : int = tf.distribute.TPUStrategy(_lowerCamelCase ) else: _lowerCAmelCase : int = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) _lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer ) _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(args.pretrained_model_config ) _lowerCAmelCase : Dict = tokenizer.vocab_size _lowerCAmelCase : Union[str, Any] = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F"No .tfrecord files found in {args.train_dataset}." ) _lowerCAmelCase : int = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F"No .tfrecord files found in {args.eval_dataset}." ) _lowerCAmelCase : Tuple = count_samples(_lowerCamelCase ) _lowerCAmelCase : List[str] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _lowerCAmelCase : Any = steps_per_epoch * args.num_epochs with strategy.scope(): _lowerCAmelCase : str = TFAutoModelForMaskedLM.from_config(_lowerCamelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _lowerCAmelCase , _lowerCAmelCase : str = create_optimizer( num_train_steps=_lowerCamelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_lowerCamelCase , metrics=["accuracy"] ) def decode_fn(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_lowerCamelCase , _lowerCamelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _lowerCAmelCase : str = DataCollatorForLanguageModeling( tokenizer=_lowerCamelCase , mlm_probability=args.mlm_probability , mlm=_lowerCamelCase , return_tensors="tf" ) def mask_with_collator(_lowerCamelCase ): # TF really needs an isin() function _lowerCAmelCase : Optional[int] = ( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) _lowerCAmelCase , _lowerCAmelCase : Dict = data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(_lowerCamelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_lowerCamelCase , ) return batch _lowerCAmelCase : Union[str, Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync _lowerCAmelCase : Optional[int] = prepare_dataset( _lowerCamelCase , decode_fn=_lowerCamelCase , mask_fn=_lowerCamelCase , batch_size=_lowerCamelCase , shuffle=_lowerCamelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) _lowerCAmelCase : Optional[Any] = prepare_dataset( _lowerCamelCase , decode_fn=_lowerCamelCase , mask_fn=_lowerCamelCase , batch_size=_lowerCamelCase , shuffle=_lowerCamelCase , ) _lowerCAmelCase : Dict = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_lowerCamelCase ) ) model.fit( _lowerCamelCase , validation_data=_lowerCamelCase , epochs=args.num_epochs , callbacks=_lowerCamelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _snake_case = parse_args() main(args)
36
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def constraint_to_multiple_of(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=None ): _lowerCAmelCase : Tuple = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCAmelCase : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: _lowerCAmelCase : List[str] = math.ceil(val / multiple ) * multiple return x _lowerCAmelCase : Union[str, Any] = (output_size, output_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) else output_size _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = get_image_size(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = output_size # determine new height and width _lowerCAmelCase : List[Any] = output_height / input_height _lowerCAmelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCAmelCase : Union[str, Any] = scale_width else: # fit height _lowerCAmelCase : Union[str, Any] = scale_height _lowerCAmelCase : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=_lowerCamelCase ) _lowerCAmelCase : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=_lowerCamelCase ) return (new_height, new_width) class UpperCAmelCase_ ( a): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = False, __a = 1, __a = True, __a = 1 / 255, __a = True, __a = None, __a = None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Any = size if size is not None else {"height": 384, "width": 384} _lowerCAmelCase : Optional[int] = get_size_dict(__a) _lowerCAmelCase : Optional[Any] = do_resize _lowerCAmelCase : Dict = size _lowerCAmelCase : Any = keep_aspect_ratio _lowerCAmelCase : str = ensure_multiple_of _lowerCAmelCase : str = resample _lowerCAmelCase : Dict = do_rescale _lowerCAmelCase : Optional[int] = rescale_factor _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, __a, __a, __a = False, __a = 1, __a = PILImageResampling.BICUBIC, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") _lowerCAmelCase : List[Any] = get_resize_output_image_size( __a, output_size=(size["height"], size["width"]), keep_aspect_ratio=__a, multiple=__a, ) return resize(__a, size=__a, resample=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' return rescale(__a, scale=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a, __a = None, **__a, ): '''simple docstring''' return normalize(__a, mean=__a, std=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : List[Any] = size if size is not None else self.size _lowerCAmelCase : str = get_size_dict(__a) _lowerCAmelCase : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCAmelCase : Any = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCAmelCase : int = resample if resample is not None else self.resample _lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[Any] = make_list_of_images(__a) if not valid_images(__a): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. _lowerCAmelCase : List[Any] = [to_numpy_array(__a) for image in images] if do_resize: _lowerCAmelCase : Any = [self.resize(image=__a, size=__a, resample=__a) for image in images] if do_rescale: _lowerCAmelCase : List[str] = [self.rescale(image=__a, scale=__a) for image in images] if do_normalize: _lowerCAmelCase : Dict = [self.normalize(image=__a, mean=__a, std=__a) for image in images] _lowerCAmelCase : List[str] = [to_channel_dimension_format(__a, __a) for image in images] _lowerCAmelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=__a, tensor_type=__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a) != len(__a): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(__a): _lowerCAmelCase : List[Any] = target_sizes.numpy() _lowerCAmelCase : Dict = [] for idx in range(len(__a)): _lowerCAmelCase : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=__a) _lowerCAmelCase : int = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__a) else: _lowerCAmelCase : Dict = logits.argmax(dim=1) _lowerCAmelCase : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
36
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __a: Tuple = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "albert" def __init__( self , __lowerCAmelCase=30000 , __lowerCAmelCase=128 , __lowerCAmelCase=4096 , __lowerCAmelCase=12 , __lowerCAmelCase=1 , __lowerCAmelCase=64 , __lowerCAmelCase=16384 , __lowerCAmelCase=1 , __lowerCAmelCase="gelu_new" , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0.1 , __lowerCAmelCase="absolute" , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , **__lowerCAmelCase , ) -> List[Any]: super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Tuple = vocab_size lowercase__ : Optional[Any] = embedding_size lowercase__ : Union[str, Any] = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : List[Any] = num_hidden_groups lowercase__ : Any = num_attention_heads lowercase__ : List[str] = inner_group_num lowercase__ : Union[str, Any] = hidden_act lowercase__ : Dict = intermediate_size lowercase__ : int = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : int = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Tuple = classifier_dropout_prob lowercase__ : int = position_embedding_type class UpperCAmelCase ( a__ ): '''simple docstring''' @property def _lowerCAmelCase( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
214
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , UpperCAmelCase ) lowercase__ : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase__ : str = dataset_size < in_memory_max_size else: lowercase__ : Optional[int] = False lowercase__ : Optional[Any] = is_small_dataset(UpperCAmelCase ) assert result == expected
214
1
def a__ ( A_, A_ ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __magic_name__ = str(bin(A_ ) )[2:] # remove the leading "0b" __magic_name__ = str(bin(A_ ) )[2:] # remove the leading "0b" __magic_name__ = max(len(A_ ), len(A_ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(A_ ), b_binary.zfill(A_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
88
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """pegasus""" a__ = ["""past_key_values"""] a__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , UpperCamelCase__ : Optional[int]=5_0265 , UpperCamelCase__ : Optional[int]=1024 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Union[str, Any]=4096 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : List[str]=4096 , UpperCamelCase__ : Tuple=16 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : List[Any]=1024 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Any=0 , UpperCamelCase__ : int=False , UpperCamelCase__ : Any=0 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : Tuple=1 , **UpperCamelCase__ : Union[str, Any] , ) -> str: """simple docstring""" __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = use_cache __magic_name__ = encoder_layers __magic_name__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) @property def _lowercase ( self : List[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self : Dict ) -> int: """simple docstring""" return self.d_model
88
1
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 10**12 ) -> int: """simple docstring""" UpperCamelCase :Tuple = 1 UpperCamelCase :str = 0 UpperCamelCase :Optional[int] = 1 UpperCamelCase :List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
62
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , __magic_name__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
62
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __lowerCAmelCase ( yaml.SafeLoader ): def UpperCamelCase ( self : Tuple , snake_case__ : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = [self.constructed_objects[key_node] for key_node, _ in node.value] _UpperCAmelCase = [tuple(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else key for key in keys] _UpperCAmelCase = Counter(snake_case__ ) _UpperCAmelCase = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def UpperCamelCase ( self : str , snake_case__ : Optional[int] , snake_case__ : Dict=False ): """simple docstring""" _UpperCAmelCase = super().construct_mapping(snake_case__ , deep=snake_case__ ) self._check_no_duplicates_on_constructed_node(snake_case__ ) return mapping def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _UpperCAmelCase = full_content[1:].index("---" ) + 1 _UpperCAmelCase = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(snake_case_ ) class __lowerCAmelCase ( UpperCAmelCase__ ): # class attributes snake_case_ : Optional[int] = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def UpperCamelCase ( cls : Optional[int] , snake_case__ : Path ): """simple docstring""" with open(snake_case__ , encoding="utf-8" ) as readme_file: _UpperCAmelCase , _UpperCAmelCase = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(snake_case__ ) else: return cls() def UpperCamelCase ( self : List[str] , snake_case__ : Path ): """simple docstring""" if path.exists(): with open(snake_case__ , encoding="utf-8" ) as readme_file: _UpperCAmelCase = readme_file.read() else: _UpperCAmelCase = None _UpperCAmelCase = self._to_readme(snake_case__ ) with open(snake_case__ , "w" , encoding="utf-8" ) as readme_file: readme_file.write(snake_case__ ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Optional[str] = None ): """simple docstring""" if readme_content is not None: _UpperCAmelCase , _UpperCAmelCase = _split_yaml_from_readme(snake_case__ ) _UpperCAmelCase = "---\n" + self.to_yaml_string() + "---\n" + content else: _UpperCAmelCase = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def UpperCamelCase ( cls : str , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = yaml.load(snake_case__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _UpperCAmelCase = { (key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=snake_case__ , allow_unicode=snake_case__ , encoding="utf-8" , ).decode("utf-8" ) lowercase_ : Tuple = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser lowercase_ : str = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') lowercase_ : Dict = ap.parse_args() lowercase_ : List[Any] = Path(args.readme_filepath) lowercase_ : Any = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
133
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase_ : Union[str, Any] = data_utils.TransfoXLTokenizer lowercase_ : int = data_utils.TransfoXLCorpus lowercase_ : Dict = data_utils lowercase_ : Dict = data_utils def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case_ , "rb" ) as fp: _UpperCAmelCase = pickle.load(snake_case_ , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _UpperCAmelCase = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) _UpperCAmelCase = corpus.vocab.__dict__ torch.save(snake_case_ , snake_case_ ) _UpperCAmelCase = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , snake_case_ ) _UpperCAmelCase = pytorch_dump_folder_path + "/" + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(snake_case_ , snake_case_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _UpperCAmelCase = os.path.abspath(snake_case_ ) _UpperCAmelCase = os.path.abspath(snake_case_ ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": _UpperCAmelCase = TransfoXLConfig() else: _UpperCAmelCase = TransfoXLConfig.from_json_file(snake_case_ ) print(f"""Building PyTorch model from configuration: {config}""" ) _UpperCAmelCase = TransfoXLLMHeadModel(snake_case_ ) _UpperCAmelCase = load_tf_weights_in_transfo_xl(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model _UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) _UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) print(f"""Save PyTorch model to {os.path.abspath(snake_case_ )}""" ) torch.save(model.state_dict() , snake_case_ ) print(f"""Save configuration file to {os.path.abspath(snake_case_ )}""" ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowercase_ : List[Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
133
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCAmelCase__ :int = HfArgumentParser(InitializationArguments) lowerCAmelCase__ :Dict = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCAmelCase__ :Any = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCAmelCase__ :int = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) lowerCAmelCase__ :Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCAmelCase__ :int = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
185
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase__ :Dict = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def lowerCAmelCase__ ( a__: Optional[Any]=None ) -> List[Any]: '''simple docstring''' if subparsers is not None: _UpperCAmelCase = subparsers.add_parser('tpu-config' , description=_description ) else: _UpperCAmelCase = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _UpperCAmelCase = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=a__ , default=a__ , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=a__ , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=a__ , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _UpperCAmelCase = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=a__ , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=a__ ) return parser def lowerCAmelCase__ ( a__: str ) -> Any: '''simple docstring''' _UpperCAmelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(a__ ): _UpperCAmelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _UpperCAmelCase = defaults.command_file if not args.command and defaults.commands is not None: _UpperCAmelCase = defaults.commands if not args.tpu_name: _UpperCAmelCase = defaults.tpu_name if not args.tpu_zone: _UpperCAmelCase = defaults.tpu_zone if args.accelerate_version == "dev": _UpperCAmelCase = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _UpperCAmelCase = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , a__ ): _UpperCAmelCase = F'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _UpperCAmelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , a__ ): _UpperCAmelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _UpperCAmelCase = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'''pip install {args.accelerate_version}'''] new_cmd += args.command _UpperCAmelCase = '; '.join(a__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _UpperCAmelCase = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'''Running {" ".join(a__ )}''' ) return subprocess.run(a__ ) print('Successfully setup pod.' ) def lowerCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = tpu_command_parser() _UpperCAmelCase = parser.parse_args() tpu_command_launcher(a__ )
185
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowercase__ :Optional[Any] = logging.get_logger(__name__) class lowercase ( __UpperCamelCase ): def __init__( self ,*A__ ,**A__): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' ,lowerCAmelCase__ ,) super().__init__(*lowerCAmelCase__ ,**lowerCAmelCase__)
101
import unittest from knapsack import knapsack as k class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: List[Any] = 0 lowercase__: List[Any] = [0] lowercase__: str = [0] lowercase__: Tuple = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) lowercase__: Optional[Any] = [60] lowercase__: Dict = [10] lowercase__: str = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = 3 lowercase__: List[str] = [1, 2, 3] lowercase__: Union[str, Any] = [3, 2, 1] lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 5 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = 50 lowercase__: str = [60, 100, 120] lowercase__: Any = [10, 20, 30] lowercase__: List[Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
196
0
"""simple docstring""" from __future__ import annotations class __a : '''simple docstring''' def __init__( self , _a , _a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = text, pattern SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = len(_a ), len(_a ) def _a ( self , _a ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _a ( self , _a ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _a ( self ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.mismatch_in_text(_a ) if mismatch_index == -1: positions.append(_a ) else: SCREAMING_SNAKE_CASE__ : List[Any] = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions a :Tuple = "ABAABA" a :List[str] = "AB" a :Dict = BoyerMooreSearch(text, pattern) a :Dict = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
56
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : int = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator SCREAMING_SNAKE_CASE__ : List[Any] = len(__lowerCAmelCase ) if (len(__lowerCAmelCase ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(__lowerCAmelCase ) , """Postfix""".center(__lowerCAmelCase ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCAmelCase ) == 0: stack.append(__lowerCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCAmelCase ) # push x to stack print( x.center(8 ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=""" | """ , ) # Output in tabular format while len(__lowerCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=""" | """ , ) # Output in tabular format return "".join(__lowerCAmelCase ) # return Postfix as str def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[str] = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCAmelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE__ : Optional[int] = """)""" # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE__ : Optional[Any] = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(__lowerCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a :Optional[int] = input("\nEnter an Infix Equation = ") # Input an Infix equation a :Dict = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
56
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __snake_case = (7_20, 12_80) # Height, Width __snake_case = (0.4, 0.6) # if height or width lower than this scale, drop it. __snake_case = 1 / 1_00 __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' __snake_case = 2_50 def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : Optional[Any] =get_dataset(__UpperCamelCase , __UpperCamelCase ) for index in range(__UpperCamelCase ): UpperCAmelCase : List[Any] =random.sample(range(len(__UpperCamelCase ) ) , 4 ) UpperCAmelCase : Union[str, Any] =update_image_and_anno( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , filter_scale=__UpperCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase : Union[str, Any] =random_chars(32 ) UpperCAmelCase : int =path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] UpperCAmelCase : Tuple =f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , __UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) UpperCAmelCase : int =[] for anno in new_annos: UpperCAmelCase : List[Any] =anno[3] - anno[1] UpperCAmelCase : Dict =anno[4] - anno[2] UpperCAmelCase : Any =anno[1] + width / 2 UpperCAmelCase : Union[str, Any] =anno[2] + height / 2 UpperCAmelCase : Any =f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(__UpperCamelCase ) with open(f'''{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[] UpperCAmelCase : Any =[] for label_file in glob.glob(os.path.join(__UpperCamelCase , '''*.txt''' ) ): UpperCAmelCase : List[Any] =label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__UpperCamelCase ) as in_file: UpperCAmelCase : Any =in_file.readlines() UpperCAmelCase : Any =os.path.join(__UpperCamelCase , f'''{label_name}.jpg''' ) UpperCAmelCase : Tuple =[] for obj_list in obj_lists: UpperCAmelCase : Union[str, Any] =obj_list.rstrip('''\n''' ).split(''' ''' ) UpperCAmelCase : int =float(obj[1] ) - float(obj[3] ) / 2 UpperCAmelCase : Optional[Any] =float(obj[2] ) - float(obj[4] ) / 2 UpperCAmelCase : Tuple =float(obj[1] ) + float(obj[3] ) / 2 UpperCAmelCase : Tuple =float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__UpperCamelCase ) labels.append(__UpperCamelCase ) return img_paths, labels def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , )-> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) UpperCAmelCase : str =scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase : int =scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase : Dict =int(scale_x * output_size[1] ) UpperCAmelCase : List[Any] =int(scale_y * output_size[0] ) UpperCAmelCase : int =[] UpperCAmelCase : List[str] =[] for i, index in enumerate(__UpperCamelCase ): UpperCAmelCase : List[Any] =all_img_list[index] path_list.append(__UpperCamelCase ) UpperCAmelCase : Optional[Any] =all_annos[index] UpperCAmelCase : Union[str, Any] =cva.imread(__UpperCamelCase ) if i == 0: # top-left UpperCAmelCase : str =cva.resize(__UpperCamelCase , (divid_point_x, divid_point_y) ) UpperCAmelCase : List[Any] =img for bbox in img_annos: UpperCAmelCase : str =bbox[1] * scale_x UpperCAmelCase : List[Any] =bbox[2] * scale_y UpperCAmelCase : List[Any] =bbox[3] * scale_x UpperCAmelCase : Optional[Any] =bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right UpperCAmelCase : Optional[int] =cva.resize(__UpperCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) UpperCAmelCase : Dict =img for bbox in img_annos: UpperCAmelCase : Optional[int] =scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase : int =bbox[2] * scale_y UpperCAmelCase : Optional[int] =scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase : Optional[int] =bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left UpperCAmelCase : Optional[Any] =cva.resize(__UpperCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase : Optional[Any] =img for bbox in img_annos: UpperCAmelCase : int =bbox[1] * scale_x UpperCAmelCase : Any =scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase : Tuple =bbox[3] * scale_x UpperCAmelCase : int =scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right UpperCAmelCase : List[str] =cva.resize( __UpperCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase : List[str] =img for bbox in img_annos: UpperCAmelCase : Tuple =scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase : Union[str, Any] =scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase : Tuple =scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase : int =scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: UpperCAmelCase : Optional[Any] =[ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[int]: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase : Tuple =ascii_lowercase + digits return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
348
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=18 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , ) -> List[Any]: __lowercase : Any = size if size is not None else {'''height''': 18, '''width''': 18} __lowercase : Dict = parent __lowercase : Dict = batch_size __lowercase : int = num_channels __lowercase : Union[str, Any] = image_size __lowercase : Optional[int] = min_resolution __lowercase : List[str] = max_resolution __lowercase : Dict = do_resize __lowercase : Any = size __lowercase : Any = do_normalize __lowercase : int = image_mean __lowercase : Tuple = image_std def _lowerCamelCase ( self ) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCAmelCase_ ( snake_case , unittest.TestCase ): UpperCamelCase =DPTImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Optional[int] = DPTImageProcessingTester(self ) @property def _lowerCamelCase ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ) -> Tuple: __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __lowercase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _lowerCamelCase ( self ) -> Optional[int]: # Initialize image_processing __lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input __lowercase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __lowercase : Optional[Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ) -> List[Any]: # Initialize image_processing __lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input __lowercase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __lowercase : Any = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ) -> Tuple: # Initialize image_processing __lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input __lowercase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __lowercase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
249
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowercase__ ( datasets.BuilderConfig): UpperCamelCase_ = None def A ( _lowercase , _lowercase , ): import pyspark def generate_fn(): SCREAMING_SNAKE_CASE : str = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: SCREAMING_SNAKE_CASE : Optional[Any] = df_with_partition_id.select('''*''' ).where(f"""part_id = {partition_id}""" ).drop('''part_id''' ) SCREAMING_SNAKE_CASE : Tuple = partition_df.collect() SCREAMING_SNAKE_CASE : str = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class lowercase__ ( _BaseExamplesIterable): def __init__( self : List[str] , UpperCamelCase__ : "pyspark.sql.DataFrame" , UpperCamelCase__ : int=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = df SCREAMING_SNAKE_CASE : int = partition_order or range(self.df.rdd.getNumPartitions() ) SCREAMING_SNAKE_CASE : int = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Union[str, Any] ): '''simple docstring''' yield from self.generate_examples_fn() def __A ( self : Dict , UpperCamelCase__ : np.random.Generator ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCamelCase__ ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase__ ) def __A ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.split_shard_indices_by_worker(UpperCamelCase__ , UpperCamelCase__ ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase__ ) @property def __A ( self : List[Any] ): '''simple docstring''' return len(self.partition_order ) class lowercase__ ( datasets.DatasetBuilder): UpperCamelCase_ = SparkConfig def __init__( self : int , UpperCamelCase__ : "pyspark.sql.DataFrame" , UpperCamelCase__ : str = None , UpperCamelCase__ : str = None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' import pyspark SCREAMING_SNAKE_CASE : Optional[int] = pyspark.sql.SparkSession.builder.getOrCreate() SCREAMING_SNAKE_CASE : Union[str, Any] = df SCREAMING_SNAKE_CASE : str = working_dir super().__init__( cache_dir=UpperCamelCase__ , config_name=str(self.df.semanticHash() ) , **UpperCamelCase__ , ) def __A ( self : List[Any] ): '''simple docstring''' def create_cache_and_write_probe(UpperCamelCase__ : Tuple ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCamelCase__ , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: SCREAMING_SNAKE_CASE : Union[str, Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCamelCase__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def __A ( self : Optional[int] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __A ( self : Optional[int] , UpperCamelCase__ : datasets.download.download_manager.DownloadManager ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __A ( self : str , UpperCamelCase__ : Optional[int] ): '''simple docstring''' import pyspark def get_arrow_batch_size(UpperCamelCase__ : Union[str, Any] ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) SCREAMING_SNAKE_CASE : Optional[Any] = self.df.count() SCREAMING_SNAKE_CASE : Dict = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. SCREAMING_SNAKE_CASE : Optional[Any] = ( self.df.limit(UpperCamelCase__ ) .repartition(1 ) .mapInArrow(UpperCamelCase__ , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) SCREAMING_SNAKE_CASE : Any = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. SCREAMING_SNAKE_CASE : Optional[int] = min(UpperCamelCase__ , int(approx_total_size / max_shard_size ) ) SCREAMING_SNAKE_CASE : Tuple = self.df.repartition(UpperCamelCase__ ) def __A ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int , ): '''simple docstring''' import pyspark SCREAMING_SNAKE_CASE : int = ParquetWriter if file_format == '''parquet''' else ArrowWriter SCREAMING_SNAKE_CASE : List[Any] = os.path.join(self._working_dir , os.path.basename(UpperCamelCase__ ) ) if self._working_dir else fpath SCREAMING_SNAKE_CASE : Optional[int] = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. SCREAMING_SNAKE_CASE : Dict = self.config.features SCREAMING_SNAKE_CASE : int = self._writer_batch_size SCREAMING_SNAKE_CASE : List[Any] = self._fs.storage_options def write_arrow(UpperCamelCase__ : List[Any] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. SCREAMING_SNAKE_CASE : Optional[Any] = pyspark.TaskContext().taskAttemptId() SCREAMING_SNAKE_CASE : Tuple = next(UpperCamelCase__ , UpperCamelCase__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = writer_class( features=UpperCamelCase__ , path=working_fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , writer_batch_size=UpperCamelCase__ , storage_options=UpperCamelCase__ , embed_local_files=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Dict = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCamelCase__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: SCREAMING_SNAKE_CASE : List[str] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 SCREAMING_SNAKE_CASE : Dict = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , writer_batch_size=UpperCamelCase__ , storage_options=UpperCamelCase__ , embed_local_files=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : str = pa.Table.from_batches([batch] ) writer.write_table(UpperCamelCase__ ) if writer._num_bytes > 0: SCREAMING_SNAKE_CASE : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE : str = os.path.join(os.path.dirname(UpperCamelCase__ ) , os.path.basename(UpperCamelCase__ ) ) shutil.move(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = ( self.df.mapInArrow(UpperCamelCase__ , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __A ( self : Optional[Any] , UpperCamelCase__ : "datasets.SplitGenerator" , UpperCamelCase__ : str = "arrow" , UpperCamelCase__ : Optional[Union[str, int]] = None , UpperCamelCase__ : Optional[int] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' self._validate_cache_dir() SCREAMING_SNAKE_CASE : Dict = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = not is_remote_filesystem(self._fs ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join if is_local else posixpath.join SCREAMING_SNAKE_CASE : Tuple = '''-TTTTT-SSSSS-of-NNNNN''' SCREAMING_SNAKE_CASE : List[str] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" SCREAMING_SNAKE_CASE : Union[str, Any] = path_join(self._output_dir , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Dict = [] for task_id, content in self._prepare_split_single(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): ( SCREAMING_SNAKE_CASE ) : Union[str, Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = total_num_examples SCREAMING_SNAKE_CASE : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: SCREAMING_SNAKE_CASE : List[str] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. SCREAMING_SNAKE_CASE : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , ): rename( UpperCamelCase__ , fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , fpath.replace('''TTTTT-SSSSS''' , f"""{global_shard_id:05d}""" ).replace('''NNNNN''' , f"""{total_shards:05d}""" ) , ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : List[str] = 0 for i in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE : str = task_id_and_num_shards[i] for shard_id in range(UpperCamelCase__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCamelCase__ , len(UpperCamelCase__ ) ).map(lambda UpperCamelCase__ : _rename_shard(*UpperCamelCase__ ) ).collect() else: # don't use any pattern SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , fpath.replace(UpperCamelCase__ , '''''' ) , ) def __A ( self : List[Any] , UpperCamelCase__ : "datasets.SplitGenerator" , ): '''simple docstring''' return SparkExamplesIterable(self.df )
367
from __future__ import annotations import numpy as np def A ( _lowercase ): return np.maximum(0 , _lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
258
0
from collections import Counter from timeit import timeit def lowercase_ ( _A : str = "" , ): """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def lowercase_ ( _A : str = "" ): """simple docstring""" if len(__lowerCAmelCase ) == 0: return True lowerCamelCase__ : Tuple = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCamelCase__ : List[Any] = {} for character in lower_case_input_str: lowerCamelCase__ : Tuple = character_freq_dict.get(__lowerCAmelCase , 0 ) + 1 lowerCamelCase__ : Optional[int] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowercase_ ( _A : str = "" ): """simple docstring""" print("\nFor string = " , __lowerCAmelCase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(__lowerCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(__lowerCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": A : str = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) A : str = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
184
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : List[Any] = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
270
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( A_ ): lowercase__ = ['''input_features''', '''is_longer'''] def __init__( self : str , snake_case_ : Any=64 , snake_case_ : Tuple=48_000 , snake_case_ : Optional[Any]=480 , snake_case_ : Any=10 , snake_case_ : Tuple=1_024 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : List[Any]=False , snake_case_ : float = 0 , snake_case_ : float = 14_000 , snake_case_ : int = None , snake_case_ : str = "fusion" , snake_case_ : str = "repeatpad" , **snake_case_ : List[str] , ) -> Optional[int]: '''simple docstring''' super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) A__ = top_db A__ = truncation A__ = padding A__ = fft_window_size A__ = (fft_window_size >> 1) + 1 A__ = hop_length A__ = max_length_s A__ = max_length_s * sampling_rate A__ = sampling_rate A__ = frequency_min A__ = frequency_max A__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm=snake_case_ , mel_scale="htk" , ) A__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm="slaney" , mel_scale="slaney" , ) def __magic_name__ ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) A__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __magic_name__ ( self : List[Any] , snake_case_ : np.array , snake_case_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' A__ = spectrogram( snake_case_ , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case_ , log_mel="dB" , ) return log_mel_spectrogram.T def __magic_name__ ( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : List[str] ) -> Any: '''simple docstring''' A__ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A__ = [0] # randomly choose index for each part A__ = np.random.choice(ranges[0] ) A__ = np.random.choice(ranges[1] ) A__ = np.random.choice(ranges[2] ) A__ = mel[idx_front : idx_front + chunk_frames, :] A__ = mel[idx_middle : idx_middle + chunk_frames, :] A__ = mel[idx_back : idx_back + chunk_frames, :] A__ = torch.tensor(mel[None, None, :] ) A__ = torch.nn.functional.interpolate( snake_case_ , size=[chunk_frames, 64] , mode="bilinear" , align_corners=snake_case_ ) A__ = mel_shrink[0][0].numpy() A__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __magic_name__ ( self : Optional[Any] , snake_case_ : np.array , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Dict ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": A__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A__ = len(snake_case_ ) - max_length A__ = np.random.randint(0 , overflow + 1 ) A__ = waveform[idx : idx + max_length] A__ = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": A__ = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) A__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A__ = np.stack([mel, mel, mel, mel] , axis=0 ) A__ = False else: A__ = self._random_mel_fusion(snake_case_ , snake_case_ , snake_case_ ) A__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: A__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A__ = int(max_length / len(snake_case_ ) ) A__ = np.stack(np.tile(snake_case_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A__ = int(max_length / len(snake_case_ ) ) A__ = np.stack(np.tile(snake_case_ , snake_case_ ) ) A__ = np.pad(snake_case_ , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": A__ = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) A__ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: A__ = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : str , snake_case_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case_ : str = None , snake_case_ : Optional[str] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : Union[str, Any] , ) -> BatchFeature: '''simple docstring''' A__ = truncation if truncation is not None else self.truncation A__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A__ = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) A__ = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(snake_case_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): A__ = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [np.asarray(snake_case_ )] # convert to mel spectrogram, truncate and pad if needed. A__ = [ self._get_input_mel(snake_case_ , max_length if max_length else self.nb_max_samples , snake_case_ , snake_case_ ) for waveform in raw_speech ] A__ = [] A__ = [] for mel, longer in padded_inputs: input_mel.append(snake_case_ ) is_longer.append(snake_case_ ) if truncation == "fusion" and sum(snake_case_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A__ = np.random.randint(0 , len(snake_case_ ) ) A__ = True if isinstance(input_mel[0] , snake_case_ ): A__ = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A__ = [[longer] for longer in is_longer] A__ = {"input_features": input_mel, "is_longer": is_longer} A__ = BatchFeature(snake_case_ ) if return_tensors is not None: A__ = input_features.convert_to_tensors(snake_case_ ) return input_features
230
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: A__ = model.config A__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) A__ = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: if "encoder.model" in name: A__ = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: A__ = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: A__ = "encoder." + name if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": A__ = "encoder.layernorm.weight" if name == "encoder.norm.bias": A__ = "encoder.layernorm.bias" return name def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[3] ) A__ = int(key_split[5] ) A__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: A__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> Dict: # load original model A__ = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model A__, A__ = get_configs(lowercase_ ) A__ = DonutSwinModel(lowercase_ ) A__ = MBartForCausalLM(lowercase_ ) A__ = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() A__ = original_model.state_dict() A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document A__ = load_dataset("hf-internal-testing/example-documents" ) A__ = dataset["test"][0]["image"].convert("RGB" ) A__ = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) A__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) A__ = DonutProcessor(lowercase_ , lowercase_ ) A__ = processor(lowercase_ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": A__ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" A__ = "When is the coffee break?" A__ = task_prompt.replace("{user_input}" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": A__ = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: A__ = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": A__ = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": A__ = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt A__ = "hello world" else: raise ValueError("Model name not supported" ) A__ = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="pt" )[ "input_ids" ] A__ = original_model.encoder.model.patch_embed(lowercase_ ) A__, A__ = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states A__ = original_model.encoder(lowercase_ ) A__ = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states A__ = original_model(lowercase_ , lowercase_ , lowercase_ ).logits A__ = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
230
1
"""simple docstring""" from PIL import Image def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(lowercase_ ) -> int: return int(128 + factor * (c - 128) ) return img.point(lowercase_ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 snake_case_ = change_contrast(img, 170) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
78
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case_ = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
1
"""simple docstring""" import cmath import math def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = math.radians(_UpperCamelCase ) __lowerCAmelCase = math.radians(_UpperCamelCase ) # Convert voltage and current to rectangular form __lowerCAmelCase = cmath.rect(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = cmath.rect(_UpperCamelCase , _UpperCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
259
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [[] for _ in range(_UpperCamelCase )] __lowerCAmelCase = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(_UpperCamelCase ) <= key: return input_string for position, character in enumerate(_UpperCamelCase ): __lowerCAmelCase = position % (lowest * 2) # puts it in bounds __lowerCAmelCase = min(_UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_UpperCamelCase ) __lowerCAmelCase = ["".join(_UpperCamelCase ) for row in temp_grid] __lowerCAmelCase = "".join(_UpperCamelCase ) return output_string def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string __lowerCAmelCase = [[] for _ in range(_UpperCamelCase )] # generates template for position in range(len(_UpperCamelCase ) ): __lowerCAmelCase = position % (lowest * 2) # puts it in bounds __lowerCAmelCase = min(_UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) __lowerCAmelCase = 0 for row in temp_grid: # fills in the characters __lowerCAmelCase = input_string[counter : counter + len(_UpperCamelCase )] grid.append(list(_UpperCamelCase ) ) counter += len(_UpperCamelCase ) __lowerCAmelCase = "" # reads as zigzag for position in range(len(_UpperCamelCase ) ): __lowerCAmelCase = position % (lowest * 2) # puts it in bounds __lowerCAmelCase = min(_UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = {} for key_guess in range(1 , len(_UpperCamelCase ) ): # tries every key __lowerCAmelCase = decrypt(_UpperCamelCase , _UpperCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
259
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase = '''ZinengTang/tvlt-base''' lowerCAmelCase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->Optional[int]: return TvltImageProcessor.from_pretrained(self.checkpoint , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->str: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_feature_extractor() lowerCAmelCase = TvltProcessor(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_feature_extractor() lowerCAmelCase = TvltProcessor(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.ones([12000] ) lowerCAmelCase = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) lowerCAmelCase = processor(audio=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_feature_extractor() lowerCAmelCase = TvltProcessor(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.ones([3, 224, 224] ) lowerCAmelCase = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) lowerCAmelCase = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_feature_extractor() lowerCAmelCase = TvltProcessor(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.ones([12000] ) lowerCAmelCase = np.ones([3, 224, 224] ) lowerCAmelCase = processor(audio=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_feature_extractor() lowerCAmelCase = TvltProcessor(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
338
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase : Union[str, Any] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowercase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def lowerCAmelCase_ ( snake_case__ , snake_case__=False ): '''simple docstring''' A, A : Tuple = create_model( '''HTSAT-tiny''' , '''roberta''' , snake_case__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=snake_case__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = {} A : str = R'''.*sequential.(\d+).*''' A : Union[str, Any] = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A : Any = key.replace(snake_case__ , snake_case__ ) if re.match(snake_case__ , snake_case__ ): # replace sequential layers with list A : Any = re.match(snake_case__ , snake_case__ ).group(1 ) A : List[str] = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case__ )//3}.linear.' ) elif re.match(snake_case__ , snake_case__ ): A : Union[str, Any] = int(re.match(snake_case__ , snake_case__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... A : str = 1 if projecton_layer == 0 else 2 A : Optional[Any] = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value A : int = value A : List[Any] = mixed_qkv.size(0 ) // 3 A : Union[str, Any] = mixed_qkv[:qkv_dim] A : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] A : Optional[int] = mixed_qkv[qkv_dim * 2 :] A : Tuple = query_layer A : Union[str, Any] = key_layer A : Optional[int] = value_layer else: A : Dict = value return model_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' A, A : int = init_clap(snake_case__ , enable_fusion=snake_case__ ) clap_model.eval() A : str = clap_model.state_dict() A : Union[str, Any] = rename_state_dict(snake_case__ ) A : Tuple = ClapConfig() A : str = enable_fusion A : str = ClapModel(snake_case__ ) # ignore the spectrogram embedding layer model.load_state_dict(snake_case__ , strict=snake_case__ ) model.save_pretrained(snake_case__ ) transformers_config.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowercase : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
3
0
"""simple docstring""" from math import factorial lowerCamelCase_ : int = {str(d): factorial(d) for d in range(10)} def A__ ( lowerCamelCase ) -> List[Any]: return sum(DIGIT_FACTORIAL[d] for d in str(a_ ) ) def A__ ( ) -> List[str]: UpperCamelCase_: Optional[Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , a_ ) if sum_of_digit_factorial(a_ ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
367
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCamelCase_ : Any = 5_00_00 lowerCamelCase_ : Any = 50_00 lowerCamelCase_ , lowerCamelCase_ : Tuple = os.path.split(__file__) lowerCamelCase_ : int = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: for i in range(lowerCamelCase ): UpperCamelCase_: Dict = dataset[i] @get_duration def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: for i in range(0 , len(lowerCamelCase ) , lowerCamelCase ): UpperCamelCase_: List[Any] = dataset[i : i + batch_size] @get_duration def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: with dataset.formatted_as(type=lowerCamelCase ): for i in range(lowerCamelCase ): UpperCamelCase_: List[str] = dataset[i] @get_duration def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: with dataset.formatted_as(type=lowerCamelCase ): for i in range(0 , lowerCamelCase , lowerCamelCase ): UpperCamelCase_: Union[str, Any] = dataset[i : i + batch_size] def A__ ( ) -> Tuple: UpperCamelCase_: int = {"""num examples""": SPEED_TEST_N_EXAMPLES} UpperCamelCase_: Union[str, Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] UpperCamelCase_: Tuple = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) UpperCamelCase_: int = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) UpperCamelCase_: Optional[int] = generate_example_dataset( os.path.join(lowerCamelCase , """dataset.arrow""" ) , lowerCamelCase , num_examples=lowerCamelCase , seq_shapes={"""list""": (1_00,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(lowerCamelCase ) ) UpperCamelCase_: List[Any] = func(lowerCamelCase , **lowerCamelCase ) print("""shuffling dataset""" ) UpperCamelCase_: Dict = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(lowerCamelCase ) ) UpperCamelCase_: List[Any] = func( lowerCamelCase , **lowerCamelCase ) with open(lowerCamelCase , """wb""" ) as f: f.write(json.dumps(lowerCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
223
0
__UpperCAmelCase = '''Tobias Carryer''' from time import time class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=int(time() ) ) -> Optional[int]: # noqa: B008 UpperCamelCase : Optional[int] = multiplier UpperCamelCase : int = increment UpperCamelCase : Tuple = modulo UpperCamelCase : Optional[int] = seed def snake_case_ ( self ) -> Any: UpperCamelCase : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __UpperCAmelCase = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
119
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Any=0.999 , snake_case__ : List[Any]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCamelCase : List[Any] = [] for i in range(snake_case__ ): UpperCamelCase : Optional[Any] = i / num_diffusion_timesteps UpperCamelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCAmelCase_ ( a__ , a__ ): UpperCAmelCase__ : List[Any] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : List[str] = 2 @register_to_config def __init__( self, SCREAMING_SNAKE_CASE_ = 1000, SCREAMING_SNAKE_CASE_ = 0.0_00_85, SCREAMING_SNAKE_CASE_ = 0.0_12, SCREAMING_SNAKE_CASE_ = "linear", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "epsilon", SCREAMING_SNAKE_CASE_ = "linspace", SCREAMING_SNAKE_CASE_ = 0, ) -> List[str]: if trained_betas is not None: UpperCamelCase : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase : int = ( torch.linspace(beta_start**0.5, beta_end**0.5, SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase : Optional[int] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) UpperCamelCase : Optional[int] = 1.0 - self.betas UpperCamelCase : int = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> str: if schedule_timesteps is None: UpperCamelCase : Union[str, Any] = self.timesteps UpperCamelCase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase : Optional[int] = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0 else: UpperCamelCase : str = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep UpperCamelCase : int = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case_ ( self ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: UpperCamelCase : Optional[int] = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) if self.state_in_first_order: UpperCamelCase : Dict = self.sigmas[step_index] else: UpperCamelCase : int = self.sigmas_interpol[step_index] UpperCamelCase : Any = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, ) -> Optional[int]: UpperCamelCase : Dict = num_inference_steps UpperCamelCase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase : int = np.linspace(0, num_train_timesteps - 1, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase : Optional[Any] = (np.arange(0, SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase : Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase : Any = (np.arange(SCREAMING_SNAKE_CASE_, 0, -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) UpperCamelCase : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase : Optional[int] = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = np.interp(SCREAMING_SNAKE_CASE_, np.arange(0, len(SCREAMING_SNAKE_CASE_ ) ), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) # interpolate sigmas UpperCamelCase : Union[str, Any] = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() UpperCamelCase : Any = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase : Optional[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): # mps does not support float64 UpperCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) else: UpperCamelCase : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) # interpolate timesteps UpperCamelCase : int = self.sigma_to_t(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_, dtype=timesteps.dtype ) UpperCamelCase : List[str] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() UpperCamelCase : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCamelCase : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase : Dict = defaultdict(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # get log sigma UpperCamelCase : List[Any] = sigma.log() # get distribution UpperCamelCase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCamelCase : Optional[int] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCamelCase : Tuple = low_idx + 1 UpperCamelCase : List[str] = self.log_sigmas[low_idx] UpperCamelCase : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas UpperCamelCase : int = (low - log_sigma) / (low - high) UpperCamelCase : Tuple = w.clamp(0, 1 ) # transform interpolation to time range UpperCamelCase : List[str] = (1 - w) * low_idx + w * high_idx UpperCamelCase : Dict = t.view(sigma.shape ) return t @property def snake_case_ ( self ) -> Optional[int]: return self.sample is None def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = True, ) -> Union[SchedulerOutput, Tuple]: UpperCamelCase : str = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) # advance index counter by 1 UpperCamelCase : Optional[int] = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase : Tuple = self.sigmas[step_index] UpperCamelCase : Dict = self.sigmas_interpol[step_index + 1] UpperCamelCase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCamelCase : str = self.sigmas[step_index - 1] UpperCamelCase : Dict = self.sigmas_interpol[step_index] UpperCamelCase : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase : Dict = 0 UpperCamelCase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase : Any = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase : List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase : Any = sigma_interpol - sigma_hat # store for 2nd order step UpperCamelCase : Tuple = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCamelCase : Union[str, Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCamelCase : Dict = sigma_next - sigma_hat UpperCamelCase : Any = self.sample UpperCamelCase : str = None UpperCamelCase : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase : Optional[Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): # mps does not support float64 UpperCamelCase : List[str] = self.timesteps.to(original_samples.device, dtype=torch.floataa ) UpperCamelCase : str = timesteps.to(original_samples.device, dtype=torch.floataa ) else: UpperCamelCase : Dict = self.timesteps.to(original_samples.device ) UpperCamelCase : int = timesteps.to(original_samples.device ) UpperCamelCase : str = [self.index_for_timestep(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for t in timesteps] UpperCamelCase : List[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase : int = sigma.unsqueeze(-1 ) UpperCamelCase : Any = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
119
1
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : List[str] , UpperCAmelCase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Optional[int]: super().__init__() lowerCamelCase__ : int = nn.ModuleList(UpperCAmelCase ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : torch.Tensor , UpperCAmelCase : List[torch.tensor] , UpperCAmelCase : List[float] , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[Dict[str, Any]] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(UpperCAmelCase , UpperCAmelCase , self.nets ) ): lowerCamelCase__ : int = controlnet( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) # merge samples if i == 0: lowerCamelCase__ : str = down_samples, mid_sample else: lowerCamelCase__ : Union[str, Any] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCAmelCase , UpperCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A_ ( self : Union[str, Any] , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = True , UpperCAmelCase : Callable = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[str] = None , ) -> List[str]: lowerCamelCase__ : Dict = 0 lowerCamelCase__ : int = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCAmelCase , is_main_process=UpperCAmelCase , save_function=UpperCAmelCase , safe_serialization=UpperCAmelCase , variant=UpperCAmelCase , ) idx += 1 lowerCamelCase__ : List[Any] = model_path_to_save + F"""_{idx}""" @classmethod def A_ ( cls : List[str] , UpperCAmelCase : Optional[Union[str, os.PathLike]] , **UpperCAmelCase : Tuple ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCamelCase__ : str = pretrained_model_path while os.path.isdir(UpperCAmelCase ): lowerCamelCase__ : List[Any] = ControlNetModel.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) controlnets.append(UpperCAmelCase ) idx += 1 lowerCamelCase__ : Optional[Any] = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(UpperCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(UpperCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(UpperCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(UpperCAmelCase )
363
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> float: return 10 - x * x def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(_UpperCAmelCase ) * equation(_UpperCAmelCase ) >= 0: raise ValueError('Wrong space!' ) lowerCamelCase__ : Tuple = a while (b - a) >= 0.01: # Find middle point lowerCamelCase__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(_UpperCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_UpperCAmelCase ) * equation(_UpperCAmelCase ) < 0: lowerCamelCase__ : Tuple = c else: lowerCamelCase__ : Optional[int] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
45
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowercase = logging.get_logger(__name__) __lowercase = {'''tokenizer_file''': '''tokenizer.json'''} __lowercase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : List[str] = ["""input_ids""", """attention_mask"""] a__ : int = None def __init__( self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="<unk>" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<pad>" , __lowercase=False , __lowercase=False , **__lowercase , ) -> List[str]: super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , add_prefix_space=__lowercase , clean_up_tokenization_spaces=__lowercase , **__lowercase , ) __UpperCamelCase :int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , __lowercase) != add_prefix_space: __UpperCamelCase :Any = getattr(__lowercase , pre_tok_state.pop('''type''')) __UpperCamelCase :str = add_prefix_space __UpperCamelCase :List[str] = pre_tok_class(**__lowercase) __UpperCamelCase :Tuple = add_prefix_space def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> BatchEncoding: __UpperCamelCase :Tuple = kwargs.get('''is_split_into_words''' , __lowercase) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''') return super()._batch_encode_plus(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> BatchEncoding: __UpperCamelCase :List[str] = kwargs.get('''is_split_into_words''' , __lowercase) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''') return super()._encode_plus(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]: __UpperCamelCase :Optional[Any] = self._tokenizer.model.save(__lowercase , name=__lowercase) return tuple(__lowercase) def UpperCamelCase__ ( self , __lowercase) -> List[int]: __UpperCamelCase :str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowercase , add_special_tokens=__lowercase) + [self.eos_token_id]) if len(__lowercase) > self.model_max_length: __UpperCamelCase :Any = input_ids[-self.model_max_length :] return input_ids
43
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=[1, 16, 4, 4] , __UpperCAmelCase=None , ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : List[str] = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : str = use_labels __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCAmelCase : str = (self.image_size // 32) ** 2 __UpperCAmelCase : Union[str, Any] = num_patches + 1 def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__UpperCAmelCase , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = ViTHybridModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = self.type_sequence_label_size __UpperCAmelCase : List[str] = ViTHybridForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : str = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : int = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = False def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = ViTHybridModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(__UpperCAmelCase ) __UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(config=__UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCAmelCase : Union[str, Any] = [f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = ViTHybridModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> Optional[Any]: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCAmelCase ) __UpperCAmelCase : Dict = self.default_image_processor __UpperCAmelCase : int = prepare_img() __UpperCAmelCase : Optional[Any] = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : int = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow @require_accelerate def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) __UpperCAmelCase : Any = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = prepare_img() __UpperCAmelCase : int = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : Dict = model(**__UpperCAmelCase ) __UpperCAmelCase : Dict = outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCAmelCase : int = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
254
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCAmelCase = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" A_ : Dict = TOKEN HfFolder.save_token(lowercase ) @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) A_ : int = FlaxBertModel(lowercase ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) A_ : Tuple = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ : int = flatten_dict(unfreeze(model.params ) ) A_ : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase , repo_id='test-model-flax' , push_to_hub=lowercase , use_auth_token=self._token ) A_ : Any = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ : List[str] = flatten_dict(unfreeze(model.params ) ) A_ : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase , 1E-3 , msg=F'''{key} not identical''' ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) A_ : str = FlaxBertModel(lowercase ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) A_ : Tuple = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) A_ : Optional[int] = flatten_dict(unfreeze(model.params ) ) A_ : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ : Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowercase , repo_id='valid_org/test-model-flax-org' , push_to_hub=lowercase , use_auth_token=self._token ) A_ : int = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) A_ : Dict = flatten_dict(unfreeze(model.params ) ) A_ : Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase , 1E-3 , msg=F'''{key} not identical''' ) def UpperCamelCase ( __lowercase : Dict ,__lowercase : Optional[Any] ): '''simple docstring''' A_ : List[Any] = True A_ : List[str] = flatten_dict(modela.params ) A_ : int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: A_ : Dict = False return models_are_equal @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) A_ : int = FlaxBertModel(lowercase ) A_ : Optional[Any] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase , lowercase ) ) with self.assertRaises(lowercase ): A_ : int = FlaxBertModel.from_pretrained(lowercase ) A_ : Tuple = FlaxBertModel.from_pretrained(lowercase , subfolder=lowercase ) self.assertTrue(check_models_equal(lowercase , lowercase ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) A_ : str = FlaxBertModel(lowercase ) A_ : Tuple = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase , lowercase ) , max_shard_size='10KB' ) with self.assertRaises(lowercase ): A_ : Optional[int] = FlaxBertModel.from_pretrained(lowercase ) A_ : str = FlaxBertModel.from_pretrained(lowercase , subfolder=lowercase ) self.assertTrue(check_models_equal(lowercase , lowercase ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = 'bert' A_ : List[str] = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(lowercase ): A_ : Dict = FlaxBertModel.from_pretrained(lowercase ) A_ : Optional[int] = FlaxBertModel.from_pretrained(lowercase , subfolder=lowercase ) self.assertIsNotNone(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = 'bert' A_ : str = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(lowercase ): A_ : Dict = FlaxBertModel.from_pretrained(lowercase ) A_ : Dict = FlaxBertModel.from_pretrained(lowercase , subfolder=lowercase ) self.assertIsNotNone(lowercase )
192
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''mask2former''' lowerCamelCase_ = ['''swin'''] lowerCamelCase_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowercase = None , lowercase = 2_5_6 , lowercase = 2_5_6 , lowercase = 2_5_6 , lowercase = 1_0_2_4 , lowercase = "relu" , lowercase = 6 , lowercase = 1_0 , lowercase = 8 , lowercase = 0.0 , lowercase = 2_0_4_8 , lowercase = False , lowercase = False , lowercase = 4 , lowercase = 2_5_5 , lowercase = 1_0_0 , lowercase = 0.1 , lowercase = 2.0 , lowercase = 5.0 , lowercase = 5.0 , lowercase = 1_2_5_4_4 , lowercase = 3.0 , lowercase = 0.75 , lowercase = 0.02 , lowercase = 1.0 , lowercase = True , lowercase = [4, 8, 1_6, 3_2] , lowercase = None , **lowercase , ): """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) A_ : List[str] = CONFIG_MAPPING['swin']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowercase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowercase , lowercase ): A_ : str = backbone_config.pop('model_type' ) A_ : List[str] = CONFIG_MAPPING[backbone_model_type] A_ : Tuple = config_class.from_dict(lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) A_ : List[Any] = backbone_config A_ : Optional[Any] = feature_size A_ : int = mask_feature_size A_ : Tuple = hidden_dim A_ : Dict = encoder_feedforward_dim A_ : int = activation_function A_ : str = encoder_layers A_ : Tuple = decoder_layers A_ : Tuple = num_attention_heads A_ : str = dropout A_ : List[str] = dim_feedforward A_ : List[str] = pre_norm A_ : Tuple = enforce_input_projection A_ : Dict = common_stride A_ : Union[str, Any] = ignore_value A_ : List[Any] = num_queries A_ : List[Any] = no_object_weight A_ : int = class_weight A_ : int = mask_weight A_ : Optional[Any] = dice_weight A_ : int = train_num_points A_ : Optional[int] = oversample_ratio A_ : Tuple = importance_sample_ratio A_ : Union[str, Any] = init_std A_ : List[Any] = init_xavier_std A_ : Optional[Any] = use_auxiliary_loss A_ : Dict = feature_strides A_ : List[Any] = output_auxiliary_logits A_ : Optional[int] = decoder_layers super().__init__(**lowercase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , **lowercase ): """simple docstring""" return cls( backbone_config=lowercase , **lowercase , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = copy.deepcopy(self.__dict__ ) A_ : Optional[int] = self.backbone_config.to_dict() A_ : Dict = self.__class__.model_type return output
192
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : str = (32, 32) __UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCamelCase ) return image @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) return CLIPTextModel(__UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Optional[Any] = self.dummy_cond_unet_upscale __UpperCAmelCase : int = DDPMScheduler() __UpperCAmelCase : Union[str, Any] = DDIMScheduler(prediction_type="""v_prediction""" ) __UpperCAmelCase : Any = self.dummy_vae __UpperCAmelCase : Optional[Any] = self.dummy_text_encoder __UpperCAmelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase : Dict = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __UpperCAmelCase : str = StableDiffusionUpscalePipeline( unet=__UpperCamelCase , low_res_scheduler=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , max_noise_level=350 , ) __UpperCAmelCase : Any = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) __UpperCAmelCase : Optional[Any] = """A painting of a squirrel eating a burger""" __UpperCAmelCase : Any = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) __UpperCAmelCase : List[str] = sd_pipe( [prompt] , image=__UpperCamelCase , generator=__UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) __UpperCAmelCase : Tuple = output.images __UpperCAmelCase : Optional[int] = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) __UpperCAmelCase : Dict = sd_pipe( [prompt] , image=__UpperCamelCase , generator=__UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCamelCase , )[0] __UpperCAmelCase : str = image[0, -3:, -3:, -1] __UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] __UpperCAmelCase : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __UpperCAmelCase : int = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : str = self.dummy_cond_unet_upscale __UpperCAmelCase : List[Any] = DDPMScheduler() __UpperCAmelCase : Tuple = DDIMScheduler(prediction_type="""v_prediction""" ) __UpperCAmelCase : Any = self.dummy_vae __UpperCAmelCase : List[str] = self.dummy_text_encoder __UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase : List[Any] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __UpperCAmelCase : Union[str, Any] = StableDiffusionUpscalePipeline( unet=__UpperCamelCase , low_res_scheduler=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , max_noise_level=350 , ) __UpperCAmelCase : Dict = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) __UpperCAmelCase : List[str] = """A painting of a squirrel eating a burger""" __UpperCAmelCase : Union[str, Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) __UpperCAmelCase : List[str] = output.images assert image.shape[0] == 2 __UpperCAmelCase : Optional[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = sd_pipe( [prompt] , image=__UpperCamelCase , generator=__UpperCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) __UpperCAmelCase : Union[str, Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet_upscale __UpperCAmelCase : List[str] = DDPMScheduler() __UpperCAmelCase : Optional[Any] = DDIMScheduler(prediction_type="""v_prediction""" ) __UpperCAmelCase : Dict = self.dummy_vae __UpperCAmelCase : Any = self.dummy_text_encoder __UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __UpperCAmelCase : int = unet.half() __UpperCAmelCase : Tuple = text_encoder.half() # make sure here that pndm scheduler skips prk __UpperCAmelCase : Optional[int] = StableDiffusionUpscalePipeline( unet=__UpperCamelCase , low_res_scheduler=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , max_noise_level=350 , ) __UpperCAmelCase : Any = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) __UpperCAmelCase : List[Any] = """A painting of a squirrel eating a burger""" __UpperCAmelCase : int = torch.manual_seed(0 ) __UpperCAmelCase : List[str] = sd_pipe( [prompt] , image=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ).images __UpperCAmelCase : Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __UpperCAmelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) __UpperCAmelCase : List[str] = """stabilityai/stable-diffusion-x4-upscaler""" __UpperCAmelCase : int = StableDiffusionUpscalePipeline.from_pretrained(__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() __UpperCAmelCase : int = """a cat sitting on a park bench""" __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : int = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , generator=__UpperCamelCase , output_type="""np""" , ) __UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __UpperCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) __UpperCAmelCase : Dict = """stabilityai/stable-diffusion-x4-upscaler""" __UpperCAmelCase : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( __UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() __UpperCAmelCase : List[str] = """a cat sitting on a park bench""" __UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) __UpperCAmelCase : Any = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , generator=__UpperCamelCase , output_type="""np""" , ) __UpperCAmelCase : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __UpperCAmelCase : Dict = """stabilityai/stable-diffusion-x4-upscaler""" __UpperCAmelCase : Dict = StableDiffusionUpscalePipeline.from_pretrained( __UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCAmelCase : List[Any] = """a cat sitting on a park bench""" __UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) __UpperCAmelCase : str = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , output_type="""np""" , ) __UpperCAmelCase : str = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
115
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Union[str, Any] = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class a ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self : Union[str, Any] , lowercase_ : bool , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None ): super().__init__() snake_case_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case_ = torch.zeros(lowercase_ , lowercase_ ) else: snake_case_ = None snake_case_ = torch.nn.Parameter(lowercase_ ) class a ( _lowerCamelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self : Any , lowercase_ : VQModel , lowercase_ : CLIPTextModel , lowercase_ : CLIPTokenizer , lowercase_ : TransformeraDModel , lowercase_ : VQDiffusionScheduler , lowercase_ : LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=lowercase_ , transformer=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , scheduler=lowercase_ , learned_classifier_free_sampling_embeddings=lowercase_ , ) def A_ ( self : Optional[int] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Any ): snake_case_ = len(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else 1 # get prompt text embeddings snake_case_ = self.tokenizer( lowercase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) snake_case_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) snake_case_ = text_input_ids[:, : self.tokenizer.model_max_length] snake_case_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowercase_ ) # duplicate text embeddings for each generation per prompt snake_case_ = prompt_embeds.repeat_interleave(lowercase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case_ = self.learned_classifier_free_sampling_embeddings.embeddings snake_case_ = negative_prompt_embeds.unsqueeze(0 ).repeat(lowercase_ , 1 , 1 ) else: snake_case_ = [''''''] * batch_size snake_case_ = text_input_ids.shape[-1] snake_case_ = self.tokenizer( lowercase_ , padding='''max_length''' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='''pt''' , ) snake_case_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowercase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ = negative_prompt_embeds.shape[1] snake_case_ = negative_prompt_embeds.repeat(1 , lowercase_ , 1 ) snake_case_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Union[str, Any] , lowercase_ : Union[str, List[str]] , lowercase_ : int = 100 , lowercase_ : float = 5.0 , lowercase_ : float = 1.0 , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , ): if isinstance(lowercase_ , lowercase_ ): snake_case_ = 1 elif isinstance(lowercase_ , lowercase_ ): snake_case_ = len(lowercase_ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_ )}" ) snake_case_ = batch_size * num_images_per_prompt snake_case_ = guidance_scale > 1.0 snake_case_ = self._encode_prompt(lowercase_ , lowercase_ , lowercase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_ )}." ) # get the initial completely masked latents unless the user supplied it snake_case_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case_ = self.transformer.num_vector_embeds - 1 snake_case_ = torch.full(lowercase_ , lowercase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F" {self.transformer.num_vector_embeds - 1} (inclusive)." ) snake_case_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) snake_case_ = self.scheduler.timesteps.to(self.device ) snake_case_ = latents for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the sample if we are doing classifier free guidance snake_case_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case_ = self.transformer(lowercase_ , encoder_hidden_states=lowercase_ , timestep=lowercase_ ).sample if do_classifier_free_guidance: snake_case_ ,snake_case_ = model_output.chunk(2 ) snake_case_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowercase_ , dim=1 , keepdim=lowercase_ ) snake_case_ = self.truncate(lowercase_ , lowercase_ ) # remove `log(0)`'s (`-inf`s) snake_case_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step(lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_ ) snake_case_ = self.vqvae.config.vq_embed_dim snake_case_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case_ = self.vqvae.quantize.get_codebook_entry(lowercase_ , shape=lowercase_ ) snake_case_ = self.vqvae.decode(lowercase_ , force_not_quantize=lowercase_ ).sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : torch.FloatTensor , lowercase_ : float ): snake_case_ ,snake_case_ = torch.sort(lowercase_ , 1 , descending=lowercase_ ) snake_case_ = torch.exp(lowercase_ ) snake_case_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case_ = torch.full_like(keep_mask[:, 0:1, :] , lowercase_ ) snake_case_ = torch.cat((all_true, keep_mask) , dim=1 ) snake_case_ = keep_mask[:, :-1, :] snake_case_ = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case_ = log_p_x_0.clone() snake_case_ = -torch.inf # -inf = log(0) return rv
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Tuple = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
56
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase = '''tiny-wmt19-en-ru''' # Build # borrowed from a test UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCamelCase = dict(zip(vocab, range(len(vocab)))) UpperCamelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(tmpdirname) UpperCamelCase = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] UpperCamelCase = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] UpperCamelCase = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) UpperCamelCase = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase = FSMTForConditionalGeneration(config) print(f"num of params {tiny_model.num_parameters()}") # Test UpperCamelCase = tokenizer(['''Making tiny model'''], return_tensors='''pt''') UpperCamelCase = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
333
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
1
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : int = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" A_ : Union[str, Any] = """https://pypi.org/pypi/diffusers/json""" A_ : List[str] = json.loads(request.urlopen(a_ ).read() )["""releases"""].keys() return sorted(a_ , key=lambda a_ : version.Version(a_ ) ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(a_ ) os.makedirs(a_ , exist_ok=a_ ) A_ : Any = Path(a_ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" init_hf_modules() A_ : Optional[Any] = Path(a_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a_ , exist_ok=a_ ) A_ : Optional[int] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" with open(a_ , """r""" , encoding="""utf-8""" ) as f: A_ : Union[str, Any] = f.read() # Imports of the form `import .xxx` A_ : Optional[Any] = re.findall("""^\s*import\s+\.(\S+)\s*$""" , a_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , a_ , flags=re.MULTILINE ) # Unique-ify return list(set(a_ ) ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : str = False A_ : List[str] = [module_file] A_ : int = [] # Let's recurse through all relative imports while not no_change: A_ : Optional[int] = [] for f in files_to_check: new_imports.extend(get_relative_imports(a_ ) ) A_ : Tuple = Path(a_ ).parent A_ : Any = [str(module_path / m ) for m in new_imports] A_ : str = [f for f in new_import_files if f not in all_relative_imports] A_ : int = [F"{f}.py" for f in new_import_files] A_ : Dict = len(a_ ) == 0 all_relative_imports.extend(a_ ) return all_relative_imports def UpperCAmelCase ( a_ ) -> str: """simple docstring""" with open(a_ , """r""" , encoding="""utf-8""" ) as f: A_ : Optional[int] = f.read() # Imports of the form `import xxx` A_ : Dict = re.findall("""^\s*import\s+(\S+)\s*$""" , a_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , a_ , flags=re.MULTILINE ) # Only keep the top-level module A_ : int = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all A_ : List[str] = list(set(a_ ) ) A_ : List[Any] = [] for imp in imports: try: importlib.import_module(a_ ) except ImportError: missing_packages.append(a_ ) if len(a_ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(a_ )}. Run `pip install {' '.join(a_ )}`" ) return get_relative_imports(a_ ) def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : Dict = module_path.replace(os.path.sep , """.""" ) A_ : int = importlib.import_module(a_ ) if class_name is None: return find_pipeline_class(a_ ) return getattr(a_ , a_ ) def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" from ..pipelines import DiffusionPipeline A_ : Optional[Any] = dict(inspect.getmembers(a_ , inspect.isclass ) ) A_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a_ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) A_ : Dict = cls return pipeline_class def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , ) -> Union[str, Any]: """simple docstring""" A_ : Tuple = str(a_ ) A_ : str = os.path.join(a_ , a_ ) if os.path.isfile(a_ ): A_ : Union[str, Any] = module_file_or_url A_ : Tuple = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: A_ : Optional[Any] = get_diffusers_versions() # cut ".dev0" A_ : Dict = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: A_ : Dict = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: A_ : List[Any] = F"v{revision}" elif revision == "main": A_ : int = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub A_ : Optional[int] = COMMUNITY_PIPELINES_URL.format(revision=a_ , pipeline=a_ ) try: A_ : Optional[Any] = cached_download( a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , ) A_ : List[Any] = """git""" A_ : List[str] = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached A_ : List[str] = hf_hub_download( a_ , a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , ) A_ : Union[str, Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment A_ : Optional[int] = check_imports(a_ ) # Now we move the module inside our cached dynamic modules. A_ : List[str] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a_ ) A_ : int = Path(a_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a_ , submodule_path / module_file ) for module_needed in modules_needed: A_ : Any = F"{module_needed}.py" shutil.copy(os.path.join(a_ , a_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a_ , a_ ): A_ : List[str] = use_auth_token elif use_auth_token is True: A_ : str = HfFolder.get_token() else: A_ : Optional[Any] = None A_ : Optional[Any] = model_info(a_ , revision=a_ , token=a_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. A_ : Union[str, Any] = submodule_path / commit_hash A_ : List[str] = full_submodule + os.path.sep + commit_hash create_dynamic_module(a_ ) if not (submodule_path / module_file).exists(): shutil.copy(a_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a_ , F"{module_needed}.py" , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) return os.path.join(a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , **a_ , ) -> List[str]: """simple docstring""" A_ : Tuple = get_cached_module_file( a_ , a_ , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) return get_class_in_module(a_ , final_module.replace(""".py""" , """""" ) )
344
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
1
"""simple docstring""" from collections.abc import Callable import numpy as np def A_ ( _lowerCAmelCase : Callable, _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float ): """simple docstring""" _a = int(np.ceil((x_end - xa) / step_size ) ) _a = np.zeros((n + 1,) ) _a = ya _a = xa for k in range(_lowerCAmelCase ): _a = y[k] + step_size * ode_func(_lowerCAmelCase, y[k] ) _a = y[k] + ( (step_size / 2) * (ode_func(_lowerCAmelCase, y[k] ) + ode_func(x + step_size, _lowerCAmelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
153
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = RobertaTokenizer A_ : Any = RobertaTokenizerFast A_ : Dict = True A_ : Tuple = {'cls_token': '<s>'} def _UpperCAmelCase ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: _a = '''lower newer''' _a = '''lower newer''' return input_text, output_text def _UpperCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''lower newer''' _a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a = tokenizer.tokenize(__UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__UpperCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _UpperCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained('''roberta-base''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.encode( '''sequence builders''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() _a = '''Encode this sequence.''' _a = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing spaces after special tokens _a = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase )} ) # mask token has a left space _a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) _a = '''Encode <mask> sequence''' _a = '''Encode <mask>sequence''' _a = tokenizer.encode(__UpperCAmelCase ) _a = encoded.index(__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase ) _a = encoded.index(__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _a = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _a = '''A, <mask> AllenNLP sentence.''' _a = tokenizer_r.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) _a = tokenizer_p.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _UpperCAmelCase ( self ) -> Any: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __UpperCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __UpperCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _a = F'{text_of_1_token} {text_of_1_token}' _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , )
153
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : def __lowerCAmelCase ( self , __A , __A , __A ) -> List[str]: return None class _SCREAMING_SNAKE_CASE : def __lowerCAmelCase ( self , __A , __A , __A , __A ) -> int: return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): UpperCAmelCase_ :Tuple = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __lowerCAmelCase ( self ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__A , """tf""" , 12 , **__A ) @require_torch @slow def __lowerCAmelCase ( self ) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__A , """pt""" , 12 , **__A ) @require_torch @slow def __lowerCAmelCase ( self ) -> str: from transformers import BertModel lowerCAmelCase_ :Tuple = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(__A ) ) vocab_file.flush() lowerCAmelCase_ :Optional[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCAmelCase_ :List[str] = BertModel(BertConfig(vocab_size=len(__A ) ) ) model.save_pretrained(__A ) self._test_export(__A , """pt""" , 12 , __A ) @require_tf @slow def __lowerCAmelCase ( self ) -> Dict: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase_ :Optional[int] = self._test_export(__A , """tf""" , 12 , **__A ) lowerCAmelCase_ :List[str] = quantize(Path(__A ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__A ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def __lowerCAmelCase ( self ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase_ :str = self._test_export(__A , """pt""" , 12 , **__A ) lowerCAmelCase_ :Optional[Any] = quantize(__A ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__A ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def __lowerCAmelCase ( self , __A , __A , __A , __A=None , **__A ) -> str: try: # Compute path with TemporaryDirectory() as tempdir: lowerCAmelCase_ :Any = Path(__A ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__A , __A , __A , __A , __A , **__A ) return path except Exception as e: self.fail(__A ) @require_torch @require_tokenizers @slow def __lowerCAmelCase ( self ) -> Any: from transformers import BertModel lowerCAmelCase_ :Tuple = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase_ :int = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__A , __A , """pt""" ) @require_tf @require_tokenizers @slow def __lowerCAmelCase ( self ) -> Any: from transformers import TFBertModel lowerCAmelCase_ :int = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase_ :int = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__A , __A , """tf""" ) def __lowerCAmelCase ( self , __A , __A , __A ) -> List[str]: lowerCAmelCase_ :str = FeatureExtractionPipeline(__A , __A ) lowerCAmelCase_ :str = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[str] = infer_shapes(__A , __A ) # Assert all variables are present self.assertEqual(len(__A ) , len(__A ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __A ) self.assertSequenceEqual(variable_names[3:] , __A ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowerCAmelCase_ :str = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowerCAmelCase_ , lowerCAmelCase_ :str = ensure_valid_input(FuncContiguousArgs() , __A , __A ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__A ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__A ) , set(__A ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__A , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCAmelCase_ , lowerCAmelCase_ :Any = ensure_valid_input(FuncNonContiguousArgs() , __A , __A ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__A ) , 1 ) self.assertEqual(len(__A ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :int = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
84
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Dict =['''audio_values''', '''audio_mask'''] def __init__(self , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1 , lowerCAmelCase=[1_6, 1_6] , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_4_1_0_0 , lowerCAmelCase=8_6 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=0.0 , **lowerCAmelCase , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= spectrogram_length __lowercase= num_channels __lowercase= patch_size __lowercase= feature_size // self.patch_size[1] __lowercase= n_fft __lowercase= sampling_rate // hop_length_to_sampling_rate __lowercase= sampling_rate __lowercase= padding_value __lowercase= mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ).T def _A (self , lowerCAmelCase ): __lowercase= spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __lowercase= log_spec[:, :-1] __lowercase= log_spec - 20.0 __lowercase= np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , **lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowercase= isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __lowercase= is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase= [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): __lowercase= np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase= raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase= [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowercase= [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): __lowercase= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowercase= max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowercase= [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowercase= np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding __lowercase= max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowercase= np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowercase= padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): __lowercase= audio_features[i] __lowercase= feature # return as BatchFeature if return_attention_mask: __lowercase= {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowercase= {'audio_values': padded_audio_features} __lowercase= BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
1
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert nand_gate(0, 0 ) == 1 assert nand_gate(0, 1 ) == 1 assert nand_gate(1, 0 ) == 1 assert nand_gate(1, 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
334
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
349
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCamelCase : Optional[int] = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str , lowercase : Any , lowercase : Dict=None ): '''simple docstring''' lowerCamelCase_ = XLNetConfig.from_json_file(snake_case_ ) lowerCamelCase_ = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowerCamelCase_ = finetuning_task lowerCamelCase_ = GLUE_TASKS_NUM_LABELS[finetuning_task] lowerCamelCase_ = XLNetForSequenceClassification(snake_case_ ) elif "squad" in finetuning_task: lowerCamelCase_ = finetuning_task lowerCamelCase_ = XLNetForQuestionAnswering(snake_case_ ) else: lowerCamelCase_ = XLNetLMHeadModel(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model lowerCamelCase_ = os.path.join(snake_case_ , snake_case_ ) lowerCamelCase_ = os.path.join(snake_case_ , snake_case_ ) print(f"""Save PyTorch model to {os.path.abspath(snake_case_ )}""" ) torch.save(model.state_dict() , snake_case_ ) print(f"""Save configuration file to {os.path.abspath(snake_case_ )}""" ) with open(snake_case_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCamelCase : Any = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
355
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''transfo-xl''' UpperCamelCase = ['''mems'''] UpperCamelCase = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , A_ : Optional[Any]=267735 , A_ : Optional[Any]=[20000, 40000, 200000] , A_ : Union[str, Any]=1024 , A_ : Optional[Any]=1024 , A_ : Optional[int]=16 , A_ : Any=64 , A_ : List[Any]=4096 , A_ : str=4 , A_ : int=False , A_ : List[Any]=18 , A_ : Optional[int]=1600 , A_ : Union[str, Any]=1000 , A_ : Optional[Any]=True , A_ : Optional[int]=True , A_ : List[str]=0 , A_ : int=-1 , A_ : List[Any]=True , A_ : List[Any]=0.1 , A_ : str=0.0 , A_ : Dict=True , A_ : Dict="normal" , A_ : Dict=0.01 , A_ : Optional[Any]=0.01 , A_ : Any=0.02 , A_ : int=1E-5 , A_ : List[str]=0 , **A_ : Optional[Any] , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = [] self.cutoffs.extend(A_ ) if proj_share_all_but_first: lowerCamelCase_ = [False] + [True] * len(self.cutoffs ) else: lowerCamelCase_ = [False] + [False] * len(self.cutoffs ) lowerCamelCase_ = d_model lowerCamelCase_ = d_embed lowerCamelCase_ = d_head lowerCamelCase_ = d_inner lowerCamelCase_ = div_val lowerCamelCase_ = pre_lnorm lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = mem_len lowerCamelCase_ = same_length lowerCamelCase_ = attn_type lowerCamelCase_ = clamp_len lowerCamelCase_ = sample_softmax lowerCamelCase_ = adaptive lowerCamelCase_ = dropout lowerCamelCase_ = dropatt lowerCamelCase_ = untie_r lowerCamelCase_ = init lowerCamelCase_ = init_range lowerCamelCase_ = proj_init_std lowerCamelCase_ = init_std lowerCamelCase_ = layer_norm_epsilon super().__init__(eos_token_id=A_ , **A_ ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , A_ : Optional[int] ) -> List[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
208
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCamelCase = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCamelCase ( snake_case__ ,snake_case__=None ) -> List[Any]: """simple docstring""" require_version(deps[pkg] ,snake_case__ )
306
"""simple docstring""" A: Union[str, Any] = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 1_0: "a", 1_1: "b", 1_2: "c", 1_3: "d", 1_4: "e", 1_5: "f", } def _snake_case ( UpperCamelCase : float ): assert type(UpperCamelCase ) in (int, float) and decimal == int(UpperCamelCase ) UpperCAmelCase : str = int(UpperCamelCase ) UpperCAmelCase : Optional[int] = """""" UpperCAmelCase : List[str] = False if decimal < 0: UpperCAmelCase : Any = True decimal *= -1 while decimal > 0: UpperCAmelCase , UpperCAmelCase : Dict = divmod(UpperCamelCase , 16 ) UpperCAmelCase : Union[str, Any] = values[remainder] + hexadecimal UpperCAmelCase : int = """0x""" + hexadecimal if negative: UpperCAmelCase : Optional[int] = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
109
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[Union[str, Path]] = None _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : Optional[Dict] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : Optional[Union[str, bool]] = None _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : Optional[Dict] = None _SCREAMING_SNAKE_CASE : Optional[str] = None def lowerCAmelCase (self : Union[str, Any] ): return self.__class__(**{k: copy.deepcopy(_A ) for k, v in self.__dict__.items()} )
356
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : CommonSchedulerState # setable values _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : Optional[int] = None @classmethod def lowerCAmelCase (cls : int , snake_case_ : CommonSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray ): return cls(common=snake_case_ , init_noise_sigma=snake_case_ , timesteps=snake_case_ ) @dataclass class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : DDPMSchedulerState class UpperCamelCase__ ( __lowercase ,__lowercase ): _SCREAMING_SNAKE_CASE : str = [e.name for e in FlaxKarrasDiffusionSchedulers] _SCREAMING_SNAKE_CASE : jnp.dtype @property def lowerCAmelCase (self : Optional[Any] ): return True @register_to_config def __init__(self : Any , snake_case_ : int = 1_0_0_0 , snake_case_ : float = 0.0001 , snake_case_ : float = 0.02 , snake_case_ : str = "linear" , snake_case_ : Optional[jnp.ndarray] = None , snake_case_ : str = "fixed_small" , snake_case_ : bool = True , snake_case_ : str = "epsilon" , snake_case_ : jnp.dtype = jnp.floataa , ): __a : str = dtype def lowerCAmelCase (self : Any , snake_case_ : Optional[CommonSchedulerState] = None ): if common is None: __a : Optional[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __a : int = jnp.array(1.0 , dtype=self.dtype ) __a : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case_ , init_noise_sigma=snake_case_ , timesteps=snake_case_ , ) def lowerCAmelCase (self : Dict , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : Optional[int] = None ): return sample def lowerCAmelCase (self : List[Any] , snake_case_ : DDPMSchedulerState , snake_case_ : int , snake_case_ : Tuple = () ): __a : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __a : Any = (jnp.arange(0 , snake_case_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case_ , timesteps=snake_case_ , ) def lowerCAmelCase (self : List[Any] , snake_case_ : DDPMSchedulerState , snake_case_ : Optional[Any] , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=None ): __a : Optional[Any] = state.common.alphas_cumprod[t] __a : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __a : Optional[int] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __a : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __a : Optional[Any] = jnp.clip(snake_case_ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __a : int = jnp.log(jnp.clip(snake_case_ , a_min=1E-20 ) ) elif variance_type == "fixed_large": __a : List[str] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __a : Union[str, Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __a : Any = variance __a : Dict = state.common.betas[t] __a : Any = (predicted_variance + 1) / 2 __a : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase (self : Any , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : int , snake_case_ : jnp.ndarray , snake_case_ : Optional[jax.random.KeyArray] = None , snake_case_ : bool = True , ): __a : int = timestep if key is None: __a : Any = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __a , __a : List[str] = jnp.split(snake_case_ , sample.shape[1] , axis=1 ) else: __a : int = None # 1. compute alphas, betas __a : Optional[int] = state.common.alphas_cumprod[t] __a : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __a : Optional[int] = 1 - alpha_prod_t __a : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __a : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __a : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": __a : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __a : Dict = jnp.clip(snake_case_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : str = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __a : str = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __a : Optional[int] = jax.random.split(snake_case_ , num=1 ) __a : Union[str, Any] = jax.random.normal(snake_case_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case_ , snake_case_ , predicted_variance=snake_case_ ) ** 0.5) * noise __a : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __a : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case_ , state=snake_case_ ) def lowerCAmelCase (self : List[str] , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , ): return add_noise_common(state.common , snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase (self : str , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , ): return get_velocity_common(state.common , snake_case_ , snake_case_ , snake_case_ ) def __len__(self : List[str] ): return self.config.num_train_timesteps
90
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCamelCase = 'beit' def __init__( self , lowercase=8192 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=False , lowercase=False , lowercase=False , lowercase=False , lowercase=0.1 , lowercase=0.1 , lowercase=True , lowercase=[3, 5, 7, 11] , lowercase=[1, 2, 3, 6] , lowercase=True , lowercase=0.4 , lowercase=256 , lowercase=1 , lowercase=False , lowercase=255 , **lowercase , ) -> List[Any]: '''simple docstring''' super().__init__(**_a ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = image_size A__ = patch_size A__ = num_channels A__ = use_mask_token A__ = use_absolute_position_embeddings A__ = use_relative_position_bias A__ = use_shared_relative_position_bias A__ = layer_scale_init_value A__ = drop_path_rate A__ = use_mean_pooling # decode head attributes (semantic segmentation) A__ = out_indices A__ = pool_scales # auxiliary head attributes (semantic segmentation) A__ = use_auxiliary_head A__ = auxiliary_loss_weight A__ = auxiliary_channels A__ = auxiliary_num_convs A__ = auxiliary_concat_input A__ = semantic_loss_ignore_index class a__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCamelCase = version.parse('1.11' ) @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase ( self ) -> str: '''simple docstring''' return 1e-4
68
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
45
0
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase: Union[str, Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a__( datasets.BuilderConfig ): lowercase__ = None def lowerCamelCase__ ( _A , _A , ): import pyspark def generate_fn(): a : int = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: a : List[Any] = df_with_partition_id.select('*' ).where(f"""part_id = {partition_id}""" ).drop('part_id' ) a : Optional[int] = partition_df.collect() a : Any = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class a__( _BaseExamplesIterable ): def __init__( self : List[Any] , __snake_case : "pyspark.sql.DataFrame" , __snake_case : int=None , ): a : List[str] = df a : Optional[int] = partition_order or range(self.df.rdd.getNumPartitions() ) a : List[str] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : str ): yield from self.generate_examples_fn() def lowercase_ ( self : Tuple , __snake_case : np.random.Generator ): a : Optional[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__snake_case ) return SparkExamplesIterable(self.df , partition_order=__snake_case ) def lowercase_ ( self : int , __snake_case : int , __snake_case : int ): a : str = self.split_shard_indices_by_worker(__snake_case , __snake_case ) return SparkExamplesIterable(self.df , partition_order=__snake_case ) @property def lowercase_ ( self : int ): return len(self.partition_order ) class a__( datasets.DatasetBuilder ): lowercase__ = SparkConfig def __init__( self : Tuple , __snake_case : "pyspark.sql.DataFrame" , __snake_case : str = None , __snake_case : str = None , **__snake_case : Tuple , ): import pyspark a : Tuple = pyspark.sql.SparkSession.builder.getOrCreate() a : Union[str, Any] = df a : Optional[int] = working_dir super().__init__( cache_dir=__snake_case , config_name=str(self.df.semanticHash() ) , **__snake_case , ) def lowercase_ ( self : Dict ): # Returns the path of the created file. def create_cache_and_write_probe(__snake_case : Tuple ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__snake_case ) a : Dict = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__snake_case , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: a : List[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__snake_case ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def lowercase_ ( self : Optional[Any] ): return datasets.DatasetInfo(features=self.config.features ) def lowercase_ ( self : Tuple , __snake_case : datasets.download.download_manager.DownloadManager ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowercase_ ( self : Optional[int] , __snake_case : List[str] ): import pyspark def get_arrow_batch_size(__snake_case : List[str] ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) a : List[Any] = self.df.count() a : Any = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. a : str = ( self.df.limit(__snake_case ) .repartition(1 ) .mapInArrow(__snake_case , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) a : Tuple = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. a : Optional[int] = min(__snake_case , int(approx_total_size / max_shard_size ) ) a : Dict = self.df.repartition(__snake_case ) def lowercase_ ( self : List[str] , __snake_case : str , __snake_case : str , __snake_case : int , ): import pyspark a : Optional[Any] = ParquetWriter if file_format == 'parquet' else ArrowWriter a : Any = os.path.join(self._working_dir , os.path.basename(__snake_case ) ) if self._working_dir else fpath a : Union[str, Any] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. a : Optional[Any] = self.config.features a : Optional[Any] = self._writer_batch_size a : List[str] = self._fs.storage_options def write_arrow(__snake_case : str ): # Within the same SparkContext, no two task attempts will share the same attempt ID. a : Any = pyspark.TaskContext().taskAttemptId() a : int = next(__snake_case , __snake_case ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) a : Tuple = 0 a : Optional[Any] = writer_class( features=__snake_case , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=__snake_case , storage_options=__snake_case , embed_local_files=__snake_case , ) a : int = pa.Table.from_batches([first_batch] ) writer.write_table(__snake_case ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: a , a : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 a : Dict = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=__snake_case , storage_options=__snake_case , embed_local_files=__snake_case , ) a : Dict = pa.Table.from_batches([batch] ) writer.write_table(__snake_case ) if writer._num_bytes > 0: a , a : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__snake_case ) ): a : List[str] = os.path.join(os.path.dirname(__snake_case ) , os.path.basename(__snake_case ) ) shutil.move(__snake_case , __snake_case ) a : Dict = ( self.df.mapInArrow(__snake_case , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowercase_ ( self : Dict , __snake_case : "datasets.SplitGenerator" , __snake_case : str = "arrow" , __snake_case : Optional[Union[str, int]] = None , __snake_case : Optional[int] = None , **__snake_case : Tuple , ): self._validate_cache_dir() a : Optional[int] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__snake_case ) a : Union[str, Any] = not is_remote_filesystem(self._fs ) a : List[Any] = os.path.join if is_local else posixpath.join a : Any = '-TTTTT-SSSSS-of-NNNNN' a : List[str] = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" a : int = path_join(self._output_dir , __snake_case ) a : List[str] = 0 a : int = 0 a : Any = 0 a : Tuple = [] a : Any = [] for task_id, content in self._prepare_split_single(__snake_case , __snake_case , __snake_case ): ( ( a ) , ( a ) , ( a ) , ( a ) , ) : Any = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__snake_case ) a : Union[str, Any] = total_num_examples a : Dict = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: a : str = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. a : List[str] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __snake_case : int , __snake_case : int , __snake_case : int , ): rename( __snake_case , fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , F"""{global_shard_id:05d}""" ).replace('NNNNN' , F"""{total_shards:05d}""" ) , ) a : Tuple = [] a : str = 0 for i in range(len(__snake_case ) ): a , a : Optional[int] = task_id_and_num_shards[i] for shard_id in range(__snake_case ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__snake_case , len(__snake_case ) ).map(lambda __snake_case : _rename_shard(*__snake_case ) ).collect() else: # don't use any pattern a : Any = 0 a : Any = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace(__snake_case , '' ) , ) def lowercase_ ( self : str , __snake_case : "datasets.SplitGenerator" , ): return SparkExamplesIterable(self.df )
96
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowerCamelCase__ ( _A=None , _A=None ): return field(default_factory=lambda: default , metadata=_A ) @dataclass class a__: lowercase__ = field( metadata={"""help""": """The csv file to plot."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) lowercase__ = list_field( default=lowerCamelCase__ , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def lowerCamelCase__ ( _A ): try: int(_A ) return True except ValueError: return False def lowerCamelCase__ ( _A ): try: float(_A ) return True except ValueError: return False class a__: def __init__( self : Union[str, Any] , __snake_case : Optional[int] ): a : int = args a : Dict = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: a : List[Any] = csv.DictReader(__snake_case ) for row in reader: a : Dict = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None a : Dict = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None a : int = float(row['result'] ) def lowercase_ ( self : int ): a , a : Dict = plt.subplots() a : int = 'Time usage' if self.args.is_time else 'Memory usage' a : int = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): a : Dict = sorted(set(self.result_dict[model_name]['bsz'] ) ) a : Any = sorted(set(self.result_dict[model_name]['seq_len'] ) ) a : Any = self.result_dict[model_name]['result'] ((a) , (a)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) a : int = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: a : Dict = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__snake_case , ) else: a : int = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((a) , (a)) : Optional[int] = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) a : List[str] = np.asarray(__snake_case , __snake_case )[: len(__snake_case )] plt.scatter( __snake_case , __snake_case , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(__snake_case , __snake_case , '--' ) title_str += F""" {label_model_name} vs.""" a : List[Any] = title_str[:-4] a : Optional[Any] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(__snake_case ) plt.xlabel(__snake_case ) plt.ylabel(__snake_case ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowerCamelCase__ ( ): a : Dict = HfArgumentParser(_A ) a : List[str] = parser.parse_args_into_dataclasses()[0] a : Dict = Plot(args=_A ) plot.plot() if __name__ == "__main__": main()
96
1
'''simple docstring''' from collections import defaultdict def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowerCamelCase_ = first_str.lower().strip() lowerCamelCase_ = second_str.lower().strip() # Remove whitespace lowerCamelCase_ = first_str.replace(" " , "" ) lowerCamelCase_ = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): return False # Default values for count should be 0 lowerCamelCase_ = defaultdict(UpperCAmelCase_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCAmelCase_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() a_ : str = input("""Enter the first string """).strip() a_ : Dict = input("""Enter the second string """).strip() a_ : Dict = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
55
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
150
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _snake_case : def __init__( self , _a , _a=100 , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=4 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=3 , _a=None , _a=[0, 1, 2, 3] , ): __magic_name__ : List[str] = parent __magic_name__ : Optional[int] = 100 __magic_name__ : Dict = batch_size __magic_name__ : Dict = image_size __magic_name__ : str = patch_size __magic_name__ : Optional[Any] = num_channels __magic_name__ : int = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : List[str] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : str = intermediate_size __magic_name__ : int = hidden_act __magic_name__ : int = hidden_dropout_prob __magic_name__ : str = attention_probs_dropout_prob __magic_name__ : Tuple = type_sequence_label_size __magic_name__ : Dict = initializer_range __magic_name__ : str = scope __magic_name__ : Any = out_indices __magic_name__ : str = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ : Dict = (image_size // patch_size) ** 2 __magic_name__ : str = num_patches + 1 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None __magic_name__ : Tuple = None if self.use_labels: __magic_name__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __magic_name__ : str = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a ): __magic_name__ : List[str] = BeitModel(config=_a ) model.to(_a ) model.eval() __magic_name__ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a ): __magic_name__ : Union[str, Any] = BeitForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() __magic_name__ : Tuple = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a ): __magic_name__ : Union[str, Any] = self.type_sequence_label_size __magic_name__ : List[Any] = BeitForImageClassification(_a ) model.to(_a ) model.eval() __magic_name__ : Any = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : List[Any] = 1 __magic_name__ : str = BeitForImageClassification(_a ) model.to(_a ) model.eval() __magic_name__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Tuple = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a ): __magic_name__ : Dict = self.num_labels __magic_name__ : Optional[int] = BeitForSemanticSegmentation(_a ) model.to(_a ) model.eval() __magic_name__ : str = model(_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __magic_name__ : List[Any] = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : int = config_and_inputs __magic_name__ : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase__ = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = BeitModelTester(self ) __magic_name__ : Dict = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Any = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : str = model_class(_a ) __magic_name__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Union[str, Any] = [*signature.parameters.keys()] __magic_name__ : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) def SCREAMING_SNAKE_CASE ( self ): if not self.model_tester.is_training: return __magic_name__ , __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_a ), BeitForMaskedImageModeling]: continue __magic_name__ : Any = model_class(_a ) model.to(_a ) model.train() __magic_name__ : Optional[Any] = self._prepare_for_class(_a , _a , return_labels=_a ) __magic_name__ : List[Any] = model(**_a ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __magic_name__ : List[str] = False __magic_name__ : Union[str, Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_a ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __magic_name__ : Union[str, Any] = model_class(_a ) model.gradient_checkpointing_enable() model.to(_a ) model.train() __magic_name__ : List[str] = self._prepare_for_class(_a , _a , return_labels=_a ) __magic_name__ : Union[str, Any] = model(**_a ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = _config_zero_init(_a ) for model_class in self.all_model_classes: __magic_name__ : str = model_class(config=_a ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Any = BeitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' __magic_name__ : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(_a ) __magic_name__ : int = self.default_image_processor __magic_name__ : Tuple = prepare_img() __magic_name__ : Union[str, Any] = image_processor(images=_a , return_tensors="pt" ).pixel_values.to(_a ) # prepare bool_masked_pos __magic_name__ : Any = torch.ones((1, 196) , dtype=torch.bool ).to(_a ) # forward pass with torch.no_grad(): __magic_name__ : Optional[Any] = model(pixel_values=_a , bool_masked_pos=_a ) __magic_name__ : List[str] = outputs.logits # verify the logits __magic_name__ : List[Any] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , _a ) __magic_name__ : List[Any] = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(_a ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _a , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(_a ) __magic_name__ : Any = self.default_image_processor __magic_name__ : List[str] = prepare_img() __magic_name__ : List[Any] = image_processor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): __magic_name__ : Optional[Any] = model(**_a ) __magic_name__ : List[Any] = outputs.logits # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , _a ) __magic_name__ : List[Any] = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(_a ) self.assertTrue(torch.allclose(logits[0, :3] , _a , atol=1e-4 ) ) __magic_name__ : Union[str, Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , _a ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( _a ) __magic_name__ : List[str] = self.default_image_processor __magic_name__ : Union[str, Any] = prepare_img() __magic_name__ : Optional[int] = image_processor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**_a ) __magic_name__ : Optional[int] = outputs.logits # verify the logits __magic_name__ : str = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , _a ) __magic_name__ : Union[str, Any] = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(_a ) self.assertTrue(torch.allclose(logits[0, :3] , _a , atol=1e-4 ) ) __magic_name__ : Tuple = 2_396 self.assertEqual(logits.argmax(-1 ).item() , _a ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) __magic_name__ : Optional[Any] = model.to(_a ) __magic_name__ : Union[str, Any] = BeitImageProcessor(do_resize=_a , size=640 , do_center_crop=_a ) __magic_name__ : str = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __magic_name__ : str = Image.open(ds[0]["file"] ) __magic_name__ : Dict = image_processor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): __magic_name__ : Dict = model(**_a ) __magic_name__ : str = outputs.logits # verify the logits __magic_name__ : Dict = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _a ) __magic_name__ : Any = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: __magic_name__ : Dict = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] , device=_a , ) else: __magic_name__ : Union[str, Any] = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) __magic_name__ : str = model.to(_a ) __magic_name__ : List[str] = BeitImageProcessor(do_resize=_a , size=640 , do_center_crop=_a ) __magic_name__ : str = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __magic_name__ : Any = Image.open(ds[0]["file"] ) __magic_name__ : Any = image_processor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): __magic_name__ : List[str] = model(**_a ) __magic_name__ : Any = outputs.logits.detach().cpu() __magic_name__ : Tuple = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(500, 300)] ) __magic_name__ : Dict = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _a ) __magic_name__ : int = image_processor.post_process_semantic_segmentation(outputs=_a ) __magic_name__ : Dict = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _a )
41
import numpy class _snake_case : def __init__( self , _a , _a ): __magic_name__ : Optional[Any] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __magic_name__ : Any = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __magic_name__ : List[str] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __magic_name__ : Any = numpy.random.rand(3 , 1 ) # Real output values provided. __magic_name__ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __magic_name__ : Tuple = numpy.zeros(output_array.shape ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __magic_name__ : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __magic_name__ : Tuple = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __magic_name__ : Optional[int] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __magic_name__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): for iteration in range(1 , iterations + 1 ): __magic_name__ : Any = self.feedforward() self.back_propagation() if give_loss: __magic_name__ : int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : str = input_arr __magic_name__ : Optional[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __magic_name__ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __magic_name__ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCAmelCase_ ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowerCAmelCase_ ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' __magic_name__ : Tuple = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __magic_name__ : List[str] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __magic_name__ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
41
1
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = AutoencoderKL lowercase__ = "sample" lowercase__ = 1e-2 @property def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[Any] = 4 _snake_case : Tuple = 3 _snake_case : Dict = (32, 32) _snake_case : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(a_ ) return {"sample": image} @property def UpperCamelCase_ ( self: str ): '''simple docstring''' return (3, 32, 32) @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return (3, 32, 32) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } _snake_case : Dict = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' pass def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skipIf(torch_device == """mps""", """Gradient checkpointing skipped on MPS""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.prepare_init_args_and_inputs_for_common() _snake_case : str = self.model_class(**a_ ) model.to(a_ ) assert not model.is_gradient_checkpointing and model.training _snake_case : List[str] = model(**a_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _snake_case : str = torch.randn_like(a_ ) _snake_case : int = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _snake_case : int = self.model_class(**a_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(a_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _snake_case : Tuple = model_a(**a_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _snake_case : int = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _snake_case : List[Any] = dict(model.named_parameters() ) _snake_case : List[Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data, named_params_a[name].grad.data, atol=5E-5 ) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""", output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertEqual(len(loading_info["""missing_keys"""] ), 0 ) model.to(a_ ) _snake_case : List[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : str = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) _snake_case : Tuple = model.to(a_ ) model.eval() if torch_device == "mps": _snake_case : int = torch.manual_seed(0 ) else: _snake_case : Tuple = torch.Generator(device=a_ ).manual_seed(0 ) _snake_case : List[str] = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0 ), ) _snake_case : Union[str, Any] = image.to(a_ ) with torch.no_grad(): _snake_case : List[str] = model(a_, sample_posterior=a_, generator=a_ ).sample _snake_case : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _snake_case : Any = torch.tensor( [ -4.00_78E-01, -3.83_23E-04, -1.26_81E-01, -1.14_62E-01, 2.00_95E-01, 1.08_93E-01, -8.82_47E-02, -3.03_61E-01, -9.86_44E-03, ] ) elif torch_device == "cpu": _snake_case : Dict = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: _snake_case : List[Any] = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(a_, a_, rtol=1E-2 ) ) @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: List[str], a_: List[Any], a_: List[Any] ): '''simple docstring''' return f"gaussian_noise_s={seed}_shape={'_'.join([str(a_ ) for s in shape] )}.npy" def UpperCamelCase_ ( self: str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self: str, a_: List[str]=0, a_: Tuple=(4, 3, 512, 512), a_: Optional[Any]=False ): '''simple docstring''' _snake_case : str = torch.floataa if fpaa else torch.floataa _snake_case : int = torch.from_numpy(load_hf_numpy(self.get_file_format(a_, a_ ) ) ).to(a_ ).to(a_ ) return image def UpperCamelCase_ ( self: Any, a_: Optional[int]="CompVis/stable-diffusion-v1-4", a_: str=False ): '''simple docstring''' _snake_case : str = """fp16""" if fpaa else None _snake_case : Optional[int] = torch.floataa if fpaa else torch.floataa _snake_case : Union[str, Any] = AutoencoderKL.from_pretrained( a_, subfolder="""vae""", torch_dtype=a_, revision=a_, ) model.to(a_ ).eval() return model def UpperCamelCase_ ( self: Union[str, Any], a_: List[str]=0 ): '''simple docstring''' if torch_device == "mps": return torch.manual_seed(a_ ) return torch.Generator(device=a_ ).manual_seed(a_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def UpperCamelCase_ ( self: Dict, a_: Any, a_: Any, a_: int ): '''simple docstring''' _snake_case : str = self.get_sd_vae_model() _snake_case : str = self.get_sd_image(a_ ) _snake_case : Dict = self.get_generator(a_ ) with torch.no_grad(): _snake_case : str = model(a_, generator=a_, sample_posterior=a_ ).sample assert sample.shape == image.shape _snake_case : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _snake_case : Optional[int] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(a_, a_, atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def UpperCamelCase_ ( self: Tuple, a_: int, a_: Dict ): '''simple docstring''' _snake_case : Tuple = self.get_sd_vae_model(fpaa=a_ ) _snake_case : Tuple = self.get_sd_image(a_, fpaa=a_ ) _snake_case : Tuple = self.get_generator(a_ ) with torch.no_grad(): _snake_case : Optional[int] = model(a_, generator=a_, sample_posterior=a_ ).sample assert sample.shape == image.shape _snake_case : Dict = sample[-1, -2:, :2, -2:].flatten().float().cpu() _snake_case : Tuple = torch.tensor(a_ ) assert torch_all_close(a_, a_, atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def UpperCamelCase_ ( self: List[str], a_: Tuple, a_: List[Any], a_: int ): '''simple docstring''' _snake_case : List[Any] = self.get_sd_vae_model() _snake_case : Union[str, Any] = self.get_sd_image(a_ ) with torch.no_grad(): _snake_case : Optional[int] = model(a_ ).sample assert sample.shape == image.shape _snake_case : int = sample[-1, -2:, -2:, :2].flatten().float().cpu() _snake_case : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(a_, a_, atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[int], a_: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_sd_vae_model() _snake_case : List[str] = self.get_sd_image(a_, shape=(3, 4, 64, 64) ) with torch.no_grad(): _snake_case : Union[str, Any] = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] _snake_case : Union[str, Any] = sample[-1, -2:, :2, -2:].flatten().cpu() _snake_case : List[Any] = torch.tensor(a_ ) assert torch_all_close(a_, a_, atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any], a_: int ): '''simple docstring''' _snake_case : Tuple = self.get_sd_vae_model(fpaa=a_ ) _snake_case : Union[str, Any] = self.get_sd_image(a_, shape=(3, 4, 64, 64), fpaa=a_ ) with torch.no_grad(): _snake_case : Any = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] _snake_case : int = sample[-1, -2:, :2, -2:].flatten().float().cpu() _snake_case : Tuple = torch.tensor(a_ ) assert torch_all_close(a_, a_, atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available(), reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCamelCase_ ( self: Any, a_: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.get_sd_vae_model(fpaa=a_ ) _snake_case : List[Any] = self.get_sd_image(a_, shape=(3, 4, 64, 64), fpaa=a_ ) with torch.no_grad(): _snake_case : Optional[int] = model.decode(a_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _snake_case : List[str] = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a_, a_, atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available(), reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCamelCase_ ( self: str, a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = self.get_sd_vae_model() _snake_case : Any = self.get_sd_image(a_, shape=(3, 4, 64, 64) ) with torch.no_grad(): _snake_case : int = model.decode(a_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _snake_case : Union[str, Any] = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a_, a_, atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : str = self.get_sd_vae_model() _snake_case : int = self.get_sd_image(a_ ) _snake_case : Dict = self.get_generator(a_ ) with torch.no_grad(): _snake_case : Dict = model.encode(a_ ).latent_dist _snake_case : Dict = dist.sample(generator=a_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _snake_case : Optional[int] = sample[0, -1, -3:, -3:].flatten().cpu() _snake_case : Tuple = torch.tensor(a_ ) _snake_case : List[Any] = 3E-3 if torch_device != """mps""" else 1E-2 assert torch_all_close(a_, a_, atol=a_ )
64
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser A_ = re.compile(r'''\s+''') def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(snake_case__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def UpperCAmelCase__ (snake_case__ : Dict ): """simple docstring""" _snake_case : Any = [len(snake_case__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(snake_case__ ), "line_max": max(snake_case__ )} def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : List[Any] ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : List[str]=5 ): """simple docstring""" _snake_case : Any = ["""auto-generated""", """autogenerated""", """automatically generated"""] _snake_case : Tuple = example["""content"""].splitlines() for _, line in zip(range(snake_case__ ) , snake_case__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Union[str, Any]=5 , snake_case__ : Any=0.05 ): """simple docstring""" _snake_case : Optional[Any] = ["""unit tests""", """test file""", """configuration file"""] _snake_case : List[Any] = example["""content"""].splitlines() _snake_case : Dict = 0 _snake_case : str = 0 # first test for _, line in zip(range(snake_case__ ) , snake_case__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case : Optional[int] = example["""content"""].count("""\n""" ) _snake_case : Tuple = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : Optional[int] = ["""def """, """class """, """for """, """while """] _snake_case : str = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : List[str]=4 ): """simple docstring""" _snake_case : List[Any] = example["""content"""].splitlines() _snake_case : str = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCAmelCase__ (snake_case__ : List[str] ): """simple docstring""" _snake_case : Optional[Any] = tokenizer(example["""content"""] , truncation=snake_case__ )["""input_ids"""] _snake_case : Optional[Any] = len(example["""content"""] ) / len(snake_case__ ) return {"ratio": ratio} def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Optional[int] = {} results.update(get_hash(snake_case__ ) ) results.update(line_stats(snake_case__ ) ) results.update(alpha_stats(snake_case__ ) ) results.update(char_token_ratio(snake_case__ ) ) results.update(is_autogenerated(snake_case__ ) ) results.update(is_config_or_test(snake_case__ ) ) results.update(has_no_keywords(snake_case__ ) ) results.update(has_few_assignments(snake_case__ ) ) return results def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" if not check_uniques(snake_case__ , snake_case__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" with open(snake_case__ , """rb""" ) as f_in: with gzip.open(str(snake_case__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(snake_case__ , snake_case__ ) os.unlink(snake_case__ ) # Settings A_ = HfArgumentParser(PreprocessingArguments) A_ = parser.parse_args() if args.num_workers is None: A_ = multiprocessing.cpu_count() A_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset A_ = time.time() A_ = load_dataset(args.dataset_name, split='''train''') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing A_ = time.time() A_ = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes A_ = set(ds.unique('''hash''')) A_ = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics A_ = time.time() A_ = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: A_ = time.time() A_ , A_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file A_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) A_ = output_dir / '''data''' data_dir.mkdir(exist_ok=True) A_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): A_ = str(data_dir / F'''file-{file_number+1:012}.json''') A_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
64
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) __magic_name__ : Optional[Any] = str(bin(lowerCAmelCase ) )[2:] # remove the leading "0b" __magic_name__ : Union[str, Any] = str(bin(lowerCAmelCase ) )[2:] __magic_name__ : Any = max(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase ) , b_binary.zfill(lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
275
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase :Optional[int] = logging.get_logger(__name__) set_seed(7_7_0) lowerCAmelCase :str = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowerCAmelCase :Any = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowerCAmelCase :List[Any] = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase :List[Any] = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCAmelCase :List[str] = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=False ): """simple docstring""" __magic_name__ : str = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase , REMOTE_MODEL_PATHS[key]['file_name'] ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) hf_hub_download(repo_id=lowerCAmelCase , filename=lowerCAmelCase , local_dir=lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : str="text" ): """simple docstring""" if model_type == "text": __magic_name__ : Tuple = BarkSemanticModel __magic_name__ : Optional[int] = BarkSemanticConfig __magic_name__ : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": __magic_name__ : List[str] = BarkCoarseModel __magic_name__ : Dict = BarkCoarseConfig __magic_name__ : Tuple = BarkCoarseGenerationConfig elif model_type == "fine": __magic_name__ : Optional[Any] = BarkFineModel __magic_name__ : Dict = BarkFineConfig __magic_name__ : Tuple = BarkFineGenerationConfig else: raise NotImplementedError() __magic_name__ : int = f'{model_type}_small' if use_small else model_type __magic_name__ : List[str] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase ): logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info['repo_id'] , model_info['file_name'] ) __magic_name__ : Optional[Any] = torch.load(lowerCAmelCase , map_location=lowerCAmelCase ) # this is a hack __magic_name__ : Optional[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: __magic_name__ : Dict = model_args['vocab_size'] __magic_name__ : Optional[int] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __magic_name__ : Optional[Any] = model_args.pop('n_head' ) __magic_name__ : List[str] = model_args.pop('n_embd' ) __magic_name__ : List[Any] = model_args.pop('n_layer' ) __magic_name__ : Optional[Any] = ConfigClass(**checkpoint['model_args'] ) __magic_name__ : Any = ModelClass(config=lowerCAmelCase ) __magic_name__ : List[str] = GenerationConfigClass() __magic_name__ : List[Any] = model_generation_config __magic_name__ : str = checkpoint['model'] # fixup checkpoint __magic_name__ : str = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase ): # replace part of the key with corresponding layer name in HF implementation __magic_name__ : Tuple = k[len(lowerCAmelCase ) :] for old_layer_name in new_layer_name_dict: __magic_name__ : int = new_k.replace(lowerCAmelCase , new_layer_name_dict[old_layer_name] ) __magic_name__ : Union[str, Any] = state_dict.pop(lowerCAmelCase ) __magic_name__ : Optional[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) __magic_name__ : Any = {k for k in extra_keys if not k.endswith('.attn.bias' )} __magic_name__ : Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) __magic_name__ : Dict = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCAmelCase ) != 0: raise ValueError(f'extra keys found: {extra_keys}' ) if len(lowerCAmelCase ) != 0: raise ValueError(f'missing keys: {missing_keys}' ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) __magic_name__ : Union[str, Any] = model.num_parameters(exclude_embeddings=lowerCAmelCase ) __magic_name__ : Optional[Any] = checkpoint['best_val_loss'].item() logger.info(f'model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowerCAmelCase , 3 )} loss' ) model.eval() model.to(lowerCAmelCase ) del checkpoint, state_dict return model def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Tuple="text" ): """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __magic_name__ : List[str] = 'cpu' # do conversion on cpu __magic_name__ : int = _get_ckpt_path(lowerCAmelCase , use_small=lowerCAmelCase ) __magic_name__ : Any = _load_model(lowerCAmelCase , lowerCAmelCase , model_type=lowerCAmelCase , use_small=lowerCAmelCase ) # load bark initial model __magic_name__ : List[str] = _bark_load_model(lowerCAmelCase , 'cpu' , model_type=lowerCAmelCase , use_small=lowerCAmelCase ) if model_type == "text": __magic_name__ : int = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCAmelCase ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model __magic_name__ : Union[str, Any] = 5 __magic_name__ : Optional[int] = 10 if model_type in ["text", "coarse"]: __magic_name__ : Optional[Any] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __magic_name__ : List[str] = bark_model(lowerCAmelCase )[0] __magic_name__ : Optional[int] = model(lowerCAmelCase ) # take last logits __magic_name__ : int = output_new_model_total.logits[:, [-1], :] else: __magic_name__ : Tuple = 3 __magic_name__ : List[str] = 8 __magic_name__ : List[str] = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __magic_name__ : str = model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = bark_model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str , ): """simple docstring""" __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Dict = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : str = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : int = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : List[Any] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) __magic_name__ : Optional[int] = BarkSemanticModel.from_pretrained(lowerCAmelCase ) __magic_name__ : Dict = BarkCoarseModel.from_pretrained(lowerCAmelCase ) __magic_name__ : List[str] = BarkFineModel.from_pretrained(lowerCAmelCase ) __magic_name__ : Optional[Any] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) __magic_name__ : Dict = BarkConfig.from_sub_model_configs( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __magic_name__ : int = BarkModel(lowerCAmelCase ) __magic_name__ : List[str] = semantic __magic_name__ : Optional[int] = coarseAcoustic __magic_name__ : List[str] = fineAcoustic __magic_name__ : int = codec __magic_name__ : Union[str, Any] = bark_generation_config Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) bark.save_pretrained(lowerCAmelCase , repo_id=lowerCAmelCase , push_to_hub=lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCAmelCase :Union[str, Any] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
275
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = ["image_processor", "tokenizer"] __lowerCamelCase : str = "LayoutLMv2ImageProcessor" __lowerCamelCase : str = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self, lowerCamelCase__=None, lowerCamelCase__=None, **lowerCamelCase__ ): if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""", lowerCamelCase__, ) A : str = kwargs.pop("""feature_extractor""" ) A : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase__, lowerCamelCase__ ) def __call__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = True, lowerCamelCase__ = False, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = 0, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = True, lowerCamelCase__ = None, **lowerCamelCase__, ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor A : List[str] = self.image_processor(images=lowerCamelCase__, return_tensors=lowerCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase__, lowerCamelCase__ ): A : Any = [text] # add batch dimension (as the image processor always adds a batch dimension) A : List[str] = features["""words"""] A : Optional[int] = self.tokenizer( text=text if text is not None else features["""words"""], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features["""boxes"""], word_labels=lowerCamelCase__, add_special_tokens=lowerCamelCase__, padding=lowerCamelCase__, truncation=lowerCamelCase__, max_length=lowerCamelCase__, stride=lowerCamelCase__, pad_to_multiple_of=lowerCamelCase__, return_token_type_ids=lowerCamelCase__, return_attention_mask=lowerCamelCase__, return_overflowing_tokens=lowerCamelCase__, return_special_tokens_mask=lowerCamelCase__, return_offsets_mapping=lowerCamelCase__, return_length=lowerCamelCase__, verbose=lowerCamelCase__, return_tensors=lowerCamelCase__, **lowerCamelCase__, ) # add pixel values A : Dict = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: A : Any = self.get_overflowing_images(lowerCamelCase__, encoded_inputs["""overflow_to_sample_mapping"""] ) A : str = images return encoded_inputs def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image A : Dict = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(lowerCamelCase__ )} and {len(lowerCamelCase__ )}''' ) return images_with_overflow def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): return self.tokenizer.batch_decode(*lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): return self.tokenizer.decode(*lowerCamelCase__, **lowerCamelCase__ ) @property def _lowerCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCAmelCase ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""", lowerCamelCase__, ) return self.image_processor_class @property def _lowerCAmelCase ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""", lowerCamelCase__, ) return self.image_processor
116
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_:Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = ["input_features", "is_longer"] def __init__( self, lowerCamelCase__=64, lowerCamelCase__=4_8000, lowerCamelCase__=480, lowerCamelCase__=10, lowerCamelCase__=1024, lowerCamelCase__=0.0, lowerCamelCase__=False, lowerCamelCase__ = 0, lowerCamelCase__ = 1_4000, lowerCamelCase__ = None, lowerCamelCase__ = "fusion", lowerCamelCase__ = "repeatpad", **lowerCamelCase__, ): super().__init__( feature_size=lowerCamelCase__, sampling_rate=lowerCamelCase__, padding_value=lowerCamelCase__, return_attention_mask=lowerCamelCase__, **lowerCamelCase__, ) A : Tuple = top_db A : Dict = truncation A : int = padding A : Optional[Any] = fft_window_size A : Optional[Any] = (fft_window_size >> 1) + 1 A : List[Any] = hop_length A : Tuple = max_length_s A : str = max_length_s * sampling_rate A : List[str] = sampling_rate A : Dict = frequency_min A : str = frequency_max A : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm=lowerCamelCase__, mel_scale="""htk""", ) A : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm="""slaney""", mel_scale="""slaney""", ) def _lowerCAmelCase ( self ): A : Any = copy.deepcopy(self.__dict__ ) A : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : Optional[Any] = spectrogram( lowerCamelCase__, window_function(self.fft_window_size, """hann""" ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase__, log_mel="""dB""", ) return log_mel_spectrogram.T def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A : Any = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A : Union[str, Any] = [0] # randomly choose index for each part A : str = np.random.choice(ranges[0] ) A : str = np.random.choice(ranges[1] ) A : Tuple = np.random.choice(ranges[2] ) A : List[str] = mel[idx_front : idx_front + chunk_frames, :] A : Union[str, Any] = mel[idx_middle : idx_middle + chunk_frames, :] A : Any = mel[idx_back : idx_back + chunk_frames, :] A : Any = torch.tensor(mel[None, None, :] ) A : Union[str, Any] = torch.nn.functional.interpolate( lowerCamelCase__, size=[chunk_frames, 64], mode="""bilinear""", align_corners=lowerCamelCase__ ) A : List[Any] = mel_shrink[0][0].numpy() A : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": A : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A : int = len(lowerCamelCase__ ) - max_length A : Optional[int] = np.random.randint(0, overflow + 1 ) A : List[Any] = waveform[idx : idx + max_length] A : Optional[Any] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :] elif truncation == "fusion": A : List[str] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters ) A : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A : str = np.stack([mel, mel, mel, mel], axis=0 ) A : Union[str, Any] = False else: A : Dict = self._random_mel_fusion(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) A : Tuple = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: A : int = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A : Optional[int] = int(max_length / len(lowerCamelCase__ ) ) A : Union[str, Any] = np.stack(np.tile(lowerCamelCase__, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A : Dict = int(max_length / len(lowerCamelCase__ ) ) A : Dict = np.stack(np.tile(lowerCamelCase__, lowerCamelCase__ ) ) A : Any = np.pad(lowerCamelCase__, (0, max_length - waveform.shape[0]), mode="""constant""", constant_values=0 ) if truncation == "fusion": A : Union[str, Any] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters ) A : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: A : List[str] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ): A : Any = truncation if truncation is not None else self.truncation A : Union[str, Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A : str = isinstance(lowerCamelCase__, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) A : Any = is_batched_numpy or ( isinstance(lowerCamelCase__, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: A : Optional[int] = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__, np.ndarray ): A : int = np.asarray(lowerCamelCase__, dtype=np.floataa ) elif isinstance(lowerCamelCase__, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A : List[Any] = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. A : Tuple = [ self._get_input_mel(lowerCamelCase__, max_length if max_length else self.nb_max_samples, lowerCamelCase__, lowerCamelCase__ ) for waveform in raw_speech ] A : Optional[Any] = [] A : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A : Tuple = np.random.randint(0, len(lowerCamelCase__ ) ) A : str = True if isinstance(input_mel[0], lowerCamelCase__ ): A : int = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A : Optional[int] = [[longer] for longer in is_longer] A : Union[str, Any] = {"""input_features""": input_mel, """is_longer""": is_longer} A : Tuple = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: A : List[str] = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
116
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : Any = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Union[str, Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __UpperCAmelCase : Tuple = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } __UpperCAmelCase : str = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def lowerCamelCase_ ( self : List[Any] , **UpperCAmelCase_ : List[Any] ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowerCamelCase_ ( self : Tuple , **UpperCAmelCase_ : List[Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowerCamelCase_ ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Dict = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : List[str] = VisionTextDualEncoderProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : str = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __UpperCAmelCase : Optional[int] = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) __UpperCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : str = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() __UpperCAmelCase : Dict = image_processor(__lowerCAmelCase , return_tensors="np" ) __UpperCAmelCase : int = processor(images=__lowerCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = VisionTextDualEncoderProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __UpperCAmelCase : Tuple = "lower newer" __UpperCAmelCase : List[str] = processor(text=__lowerCAmelCase ) __UpperCAmelCase : List[str] = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : Dict = VisionTextDualEncoderProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __UpperCAmelCase : Any = "lower newer" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Optional[int] = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(__lowerCAmelCase ): processor() def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = VisionTextDualEncoderProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __UpperCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : str = processor.batch_decode(__lowerCAmelCase ) __UpperCAmelCase : Tuple = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : Optional[int] = self.get_tokenizer() __UpperCAmelCase : int = VisionTextDualEncoderProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __UpperCAmelCase : Union[str, Any] = "lower newer" __UpperCAmelCase : Optional[int] = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
358
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''M-CLIP''' def __init__( self : List[str] , UpperCAmelCase_ : str=1_024 , UpperCAmelCase_ : Optional[Any]=768 , **UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : Any = transformerDimSize __UpperCAmelCase : Union[str, Any] = imageDimSize super().__init__(**UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = MCLIPConfig def __init__( self : Optional[Any] , UpperCAmelCase_ : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any] ): """simple docstring""" super().__init__(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCAmelCase : int = XLMRobertaModel(UpperCAmelCase_ ) __UpperCAmelCase : str = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCamelCase_ ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.transformer(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] __UpperCAmelCase : List[Any] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase_ ), embs
37
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case_ = logging.get_logger(__name__) snake_case_ = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ): A_ : Tuple = """swin""" A_ : int = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self : List[Any] , a__ : Union[str, Any]=224 , a__ : Union[str, Any]=4 , a__ : Dict=3 , a__ : Union[str, Any]=96 , a__ : List[str]=[2, 2, 6, 2] , a__ : Dict=[3, 6, 12, 24] , a__ : str=7 , a__ : Any=4.0 , a__ : List[Any]=True , a__ : int=0.0 , a__ : List[Any]=0.0 , a__ : List[Any]=0.1 , a__ : str="gelu" , a__ : Union[str, Any]=False , a__ : Tuple=0.0_2 , a__ : Dict=1E-5 , a__ : Tuple=32 , a__ : int=None , a__ : List[str]=None , **a__ : Optional[int] , ): """simple docstring""" super().__init__(**_a ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = embed_dim __snake_case = depths __snake_case = len(_a ) __snake_case = num_heads __snake_case = window_size __snake_case = mlp_ratio __snake_case = qkv_bias __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_absolute_embeddings __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case = int(embed_dim * 2 ** (len(_a ) - 1) ) __snake_case = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(_a ) + 1 )] __snake_case = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): A_ : str = version.parse('1.11' ) @property def a (self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a (self : int ): """simple docstring""" return 1E-4
24
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a :Tuple = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) a :int = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase ( ) -> Dict: SCREAMING_SNAKE_CASE__ : Any = """https://pypi.org/pypi/diffusers/json""" SCREAMING_SNAKE_CASE__ : str = json.loads(request.urlopen(__lowerCAmelCase ).read() )["""releases"""].keys() return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : version.Version(__lowerCAmelCase ) ) def _lowercase ( ) -> Optional[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = Path(__lowerCAmelCase ) / """__init__.py""" if not init_path.exists(): init_path.touch() def _lowercase ( __lowerCAmelCase ) -> Optional[int]: init_hf_modules() SCREAMING_SNAKE_CASE__ : List[Any] = Path(__lowerCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def _lowercase ( __lowerCAmelCase ) -> Tuple: with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ : int = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE__ : Optional[Any] = re.findall("""^\s*import\s+\.(\S+)\s*$""" , __lowerCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , __lowerCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__lowerCAmelCase ) ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : List[str] = [module_file] SCREAMING_SNAKE_CASE__ : str = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE__ : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : int = Path(__lowerCAmelCase ).parent SCREAMING_SNAKE_CASE__ : Dict = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE__ : Optional[Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE__ : Any = [F'''{f}.py''' for f in new_import_files] SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(__lowerCAmelCase ) == 0 all_relative_imports.extend(__lowerCAmelCase ) return all_relative_imports def _lowercase ( __lowerCAmelCase ) -> Any: with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ : Dict = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE__ : Optional[Any] = re.findall("""^\s*import\s+(\S+)\s*$""" , __lowerCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , __lowerCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE__ : str = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE__ : Tuple = list(set(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = [] for imp in imports: try: importlib.import_module(__lowerCAmelCase ) except ImportError: missing_packages.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F'''{', '.join(__lowerCAmelCase )}. Run `pip install {' '.join(__lowerCAmelCase )}`''' ) return get_relative_imports(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ : str = module_path.replace(os.path.sep , """.""" ) SCREAMING_SNAKE_CASE__ : Any = importlib.import_module(__lowerCAmelCase ) if class_name is None: return find_pipeline_class(__lowerCAmelCase ) return getattr(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE__ : Tuple = dict(inspect.getmembers(__lowerCAmelCase , inspect.isclass ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __lowerCAmelCase ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = cls return pipeline_class def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Dict: SCREAMING_SNAKE_CASE__ : str = str(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE__ : List[str] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: SCREAMING_SNAKE_CASE__ : Optional[int] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE__ : List[Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE__ : Any = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: SCREAMING_SNAKE_CASE__ : List[str] = F'''v{revision}''' elif revision == "main": SCREAMING_SNAKE_CASE__ : int = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE__ : int = COMMUNITY_PIPELINES_URL.format(revision=__lowerCAmelCase , pipeline=__lowerCAmelCase ) try: SCREAMING_SNAKE_CASE__ : Dict = cached_download( __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : Optional[int] = """git""" SCREAMING_SNAKE_CASE__ : Optional[Any] = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE__ : Any = hf_hub_download( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : Dict = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE__ : Optional[int] = check_imports(__lowerCAmelCase ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE__ : Any = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = Path(__lowerCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__lowerCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE__ : Tuple = F'''{module_needed}.py''' shutil.copy(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Dict = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE__ : Optional[int] = HfFolder.get_token() else: SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : int = model_info(__lowerCAmelCase , revision=__lowerCAmelCase , token=__lowerCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE__ : Optional[Any] = submodule_path / commit_hash SCREAMING_SNAKE_CASE__ : Optional[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(__lowerCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__lowerCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __lowerCAmelCase , F'''{module_needed}.py''' , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) return os.path.join(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , **__lowerCAmelCase , ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_cached_module_file( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) return get_class_in_module(__lowerCAmelCase , final_module.replace(""".py""" , """""" ) )
132
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase__ : Optional[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ : Any = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase__ : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase__ : List[str] = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def lowerCamelCase__ ( a , a , a , a ) -> Any: _A: str = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _A: Union[str, Any] = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , _lowercase , ) is not None ): _A: Any = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _A: List[Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _A: str = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] _A: str = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed _A: Optional[Any] = True if not attribute_used: _A: int = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _A: Optional[int] = True elif attribute in ["tie_word_embeddings"] and default_value is False: _A: str = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _A: Any = True elif attribute.endswith('''_token_id''' ): _A: int = True # configuration class specific cases if not case_allowed: _A: Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _A: Dict = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase__ ( a ) -> Any: _A: int = dict(inspect.signature(config_class.__init__ ).parameters ) _A: List[Any] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] _A: Optional[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _A: List[str] = {} if len(config_class.attribute_map ) > 0: _A: Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _A: Union[str, Any] = inspect.getsourcefile(_lowercase ) _A: str = os.path.dirname(_lowercase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _A: List[Any] = [os.path.join(_lowercase , _lowercase ) for fn in os.listdir(_lowercase ) if fn.startswith('''modeling_''' )] # Get the source code strings _A: int = [] for path in modeling_paths: if os.path.isfile(_lowercase ): with open(_lowercase ) as fp: modeling_sources.append(fp.read() ) _A: Optional[Any] = [] for config_param, default_value in zip(_lowercase , _lowercase ): # `attributes` here is all the variant names for `config_param` _A: Union[str, Any] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_lowercase , _lowercase , _lowercase , _lowercase ): unused_attributes.append(attributes[0] ) return sorted(_lowercase ) def lowerCamelCase__ ( ) -> Optional[int]: _A: Tuple = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _A: Dict = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda a : inspect.isclass(_lowercase ) and issubclass(_lowercase , _lowercase ) and inspect.getmodule(_lowercase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _A: List[Any] = check_config_attributes_being_used(_lowercase ) if len(_lowercase ) > 0: _A: Tuple = unused_attributes if len(_lowercase ) > 0: _A: Union[str, Any] = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(_lowercase ) if __name__ == "__main__": check_config_attributes()
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
'''simple docstring''' def __UpperCAmelCase ( A : list ) -> list: def merge(A : list , A : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(A ) <= 1: return collection UpperCAmelCase_ : Union[str, Any] = len(A ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() _UpperCamelCase : Tuple = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
304
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
1
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : Tuple = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } _lowercase : str = {'allegro/herbert-base-cased': 5_14} _lowercase : Tuple = {} class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Any = PRETRAINED_INIT_CONFIGURATION a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = HerbertTokenizer def __init__( self : List[Any] , _lowercase : Optional[int]=None , _lowercase : int=None , _lowercase : Tuple=None , _lowercase : str="<s>" , _lowercase : List[str]="<unk>" , _lowercase : int="<pad>" , _lowercase : str="<mask>" , _lowercase : List[Any]="</s>" , **_lowercase : List[Any] , ): super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sep_token=_lowercase , **_lowercase , ) def a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : str , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
86
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( enum.Enum ): a__ : str = 0 a__ : List[Any] = 1 a__ : str = 2 @add_end_docstrings(_lowerCAmelCase ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : Optional[Any] , *_lowercase : Any , **_lowercase : Optional[int] ): super().__init__(*_lowercase , **_lowercase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __UpperCAmelCase = None if self.model.config.prefix is not None: __UpperCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __UpperCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._sanitize_parameters(prefix=_lowercase , **self._forward_params ) __UpperCAmelCase = {**self._preprocess_params, **preprocess_params} __UpperCAmelCase = {**self._forward_params, **forward_params} def a ( self : Any , _lowercase : Optional[Any]=None , _lowercase : List[str]=None , _lowercase : int=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : List[Any]=None , **_lowercase : str , ): __UpperCAmelCase = {} if prefix is not None: __UpperCAmelCase = prefix if prefix: __UpperCAmelCase = self.tokenizer( _lowercase , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) __UpperCAmelCase = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ''' [None, \'hole\']''' ) __UpperCAmelCase = handle_long_generation preprocess_params.update(_lowercase ) __UpperCAmelCase = generate_kwargs __UpperCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) __UpperCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) __UpperCAmelCase = ReturnType.TENSORS if return_type is not None: __UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: __UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: __UpperCAmelCase = self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) if len(_lowercase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a ( self : Optional[int] , *_lowercase : Optional[int] , **_lowercase : Any ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_lowercase , **_lowercase ) def __call__( self : List[str] , _lowercase : str , **_lowercase : Optional[Any] ): return super().__call__(_lowercase , **_lowercase ) def a ( self : Union[str, Any] , _lowercase : Any , _lowercase : Dict="" , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): __UpperCAmelCase = self.tokenizer( prefix + prompt_text , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) __UpperCAmelCase = prompt_text if handle_long_generation == "hole": __UpperCAmelCase = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: __UpperCAmelCase = generate_kwargs['''max_new_tokens'''] else: __UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __UpperCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) __UpperCAmelCase = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: __UpperCAmelCase = inputs['''attention_mask'''][:, -keep_length:] return inputs def a ( self : Union[str, Any] , _lowercase : List[str] , **_lowercase : Optional[int] ): __UpperCAmelCase = model_inputs['''input_ids'''] __UpperCAmelCase = model_inputs.get('''attention_mask''' , _lowercase ) # Allow empty prompts if input_ids.shape[1] == 0: __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = 1 else: __UpperCAmelCase = input_ids.shape[0] __UpperCAmelCase = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __UpperCAmelCase = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: __UpperCAmelCase = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: __UpperCAmelCase = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __UpperCAmelCase = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __UpperCAmelCase = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase , **_lowercase ) __UpperCAmelCase = generated_sequence.shape[0] if self.framework == "pt": __UpperCAmelCase = generated_sequence.reshape(_lowercase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __UpperCAmelCase = tf.reshape(_lowercase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a ( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Optional[int]=ReturnType.FULL_TEXT , _lowercase : List[str]=True ): __UpperCAmelCase = model_outputs['''generated_sequence'''][0] __UpperCAmelCase = model_outputs['''input_ids'''] __UpperCAmelCase = model_outputs['''prompt_text'''] __UpperCAmelCase = generated_sequence.numpy().tolist() __UpperCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __UpperCAmelCase = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __UpperCAmelCase = self.tokenizer.decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __UpperCAmelCase = 0 else: __UpperCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) ) if return_type == ReturnType.FULL_TEXT: __UpperCAmelCase = prompt_text + text[prompt_length:] else: __UpperCAmelCase = text[prompt_length:] __UpperCAmelCase = {'''generated_text''': all_text} records.append(_lowercase ) return records
86
1
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } __snake_case ={ "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } __snake_case ="</w>" __snake_case ="@@ " def a_ ( lowerCamelCase : Tuple ): lowerCAmelCase = set() lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase = char return pairs # Speech2Text2 has no max input length __snake_case ={"facebook/s2t-wav2vec2-large-en-de": 1_024} class UpperCAmelCase_ ( UpperCAmelCase__ ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]="<s>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Dict="</s>" , UpperCAmelCase__ : List[Any]="<unk>" , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) -> str: super().__init__( unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , do_lower_case=__lowercase , **__lowercase , ) lowerCAmelCase = do_lower_case with open(__lowercase , encoding='utf-8' ) as vocab_handle: lowerCAmelCase = json.load(__lowercase ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) lowerCAmelCase = None lowerCAmelCase = None else: with open(__lowercase , encoding='utf-8' ) as merges_handle: lowerCAmelCase = merges_handle.read().split('\n' )[:-1] lowerCAmelCase = [tuple(merge.split()[:2] ) for merge in merges] lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) lowerCAmelCase = {} @property def __UpperCAmelCase ( self : List[str] ) -> Any: return len(self.decoder ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Dict ) -> str: lowerCAmelCase = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCAmelCase = get_pairs(__lowercase ) if not pairs: return token while True: lowerCAmelCase = min(__lowercase , key=lambda UpperCAmelCase__ : self.bpe_ranks.get(__lowercase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase , lowerCAmelCase = bigram lowerCAmelCase = [] lowerCAmelCase = 0 while i < len(__lowercase ): try: lowerCAmelCase = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase = tuple(__lowercase ) lowerCAmelCase = new_word if len(__lowercase ) == 1: break else: lowerCAmelCase = get_pairs(__lowercase ) lowerCAmelCase = ' '.join(__lowercase ) if word == "\n " + BPE_TOKEN_MERGES: lowerCAmelCase = '\n' + BPE_TOKEN_MERGES if word.endswith(__lowercase ): lowerCAmelCase = word.replace(__lowercase , '' ) lowerCAmelCase = word.replace(' ' , __lowercase ) lowerCAmelCase = word return word def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Dict ) -> Dict: if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: lowerCAmelCase = text.lower() lowerCAmelCase = text.split() lowerCAmelCase = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowercase ).split(' ' ) ) ) return split_tokens def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Any: return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : int ) -> Union[str, Any]: lowerCAmelCase = self.decoder.get(__lowercase , self.unk_token ) return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[str] ) -> Optional[int]: lowerCAmelCase = ' '.join(__lowercase ) # make sure @@ tokens are concatenated lowerCAmelCase = ''.join(string.split(__lowercase ) ) return string def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Optional[Any]: if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '\n' ) lowerCAmelCase = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowercase , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase = token_index writer.write(' '.join(__lowercase ) + '\n' ) index += 1 return (vocab_file, merges_file)
4
from __future__ import annotations lowercase__ : str = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCamelCase__ ( _A , _A , _A , _A , _A , ): '''simple docstring''' snake_case_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_A ) ) ] # the reference grid snake_case_ = 1 snake_case_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_A ) ) ] # the action grid snake_case_ = init[0] snake_case_ = init[1] snake_case_ = 0 snake_case_ = g + heuristic[x][y] # cost from starting cell to destination cell snake_case_ = [[f, g, x, y]] snake_case_ = False # flag that is set when search is complete snake_case_ = False # flag set if we can't find expand while not found and not resign: if len(_A ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case_ = cell.pop() snake_case_ = next_cell[2] snake_case_ = next_cell[3] snake_case_ = next_cell[1] if x == goal[0] and y == goal[1]: snake_case_ = True else: for i in range(len(_A ) ): # to try out different valid actions snake_case_ = x + DIRECTIONS[i][0] snake_case_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_A ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case_ = g + cost snake_case_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case_ = 1 snake_case_ = i snake_case_ = [] snake_case_ = goal[0] snake_case_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case_ = x - DIRECTIONS[action[x][y]][0] snake_case_ = y - DIRECTIONS[action[x][y]][1] snake_case_ = xa snake_case_ = ya invpath.append([x, y] ) snake_case_ = [] for i in range(len(_A ) ): path.append(invpath[len(_A ) - 1 - i] ) return path, action if __name__ == "__main__": lowercase__ : Union[str, Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowercase__ : Optional[Any] = [0, 0] # all coordinates are given in format [y,x] lowercase__ : Tuple = [len(grid) - 1, len(grid[0]) - 1] lowercase__ : Dict = 1 # the cost map which pushes the path closer to the goal lowercase__ : Any = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowercase__ : Union[str, Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowercase__ : int = 99 lowercase__ , lowercase__ : Tuple = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
187
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
366
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowercase_ = (3, 9, -11, 0, 7, 5, 1, -1) lowercase_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 class A : """simple docstring""" def __init__( self : List[str],lowercase_ : Iterable[int] )-> None: '''simple docstring''' A__ = None for i in sorted(lowercase_,reverse=lowercase_ ): A__ = Node(lowercase_,self.head ) def __iter__( self : List[str] )-> Iterator[int]: '''simple docstring''' A__ = self.head while node: yield node.data A__ = node.next_node def __len__( self : str )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self : Optional[int] )-> str: '''simple docstring''' return " -> ".join([str(lowercase_ ) for node in self] ) def _snake_case( SCREAMING_SNAKE_CASE__ : SortedLinkedList , SCREAMING_SNAKE_CASE__ : SortedLinkedList ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(SCREAMING_SNAKE_CASE__ ) + list(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
282
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) _A = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler("sample_euler" ) _A = "A painting of a squirrel eating a burger" _A = torch.manual_seed(0 ) _A = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _A = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler("sample_euler" ) _A = "A painting of a squirrel eating a burger" _A = torch.manual_seed(0 ) _A = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _A = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) _A = "A painting of a squirrel eating a burger" _A = torch.manual_seed(0 ) _A = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=__UpperCAmelCase , ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
79
'''simple docstring''' from typing import List import numpy as np def __lowercase ( __lowercase ) -> int: '''simple docstring''' _A = {key: len(__lowercase ) for key, value in gen_kwargs.items() if isinstance(__lowercase , __lowercase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) _A = max(lists_lengths.values() , default=0 ) return max(1 , __lowercase ) def __lowercase ( __lowercase , __lowercase ) -> List[range]: '''simple docstring''' _A = [] for group_idx in range(__lowercase ): _A = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _A = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _A = range(__lowercase , start + num_shards_to_add ) shards_indices_per_group.append(__lowercase ) return shards_indices_per_group def __lowercase ( __lowercase , __lowercase ) -> List[dict]: '''simple docstring''' _A = _number_of_shards_in_gen_kwargs(__lowercase ) if num_shards == 1: return [dict(__lowercase )] else: _A = _distribute_shards(num_shards=__lowercase , max_num_jobs=__lowercase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__lowercase , __lowercase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__lowercase ) ) ] def __lowercase ( __lowercase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __lowercase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowercase ( __lowercase , __lowercase ) -> dict: '''simple docstring''' _A = {len(__lowercase ) for value in gen_kwargs.values() if isinstance(__lowercase , __lowercase )} _A = {} for size in list_sizes: _A = list(range(__lowercase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _A = dict(__lowercase ) for key, value in shuffled_kwargs.items(): if isinstance(__lowercase , __lowercase ): _A = [value[i] for i in indices_per_size[len(__lowercase )]] return shuffled_kwargs
79
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase (UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int ): '''simple docstring''' # Initialise PyTorch model _lowerCAmelCase : Optional[int] = MobileBertConfig.from_json_file(UpperCamelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase : Tuple = MobileBertForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint _lowerCAmelCase : str = load_tf_weights_in_mobilebert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
159
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowerCamelCase : Dict = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int ): '''simple docstring''' for attribute in key.split(""".""" ): _lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: _lowerCAmelCase : Optional[Any] = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: _lowerCAmelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Tuple = value elif weight_type == "weight_g": _lowerCAmelCase : Optional[int] = value elif weight_type == "weight_v": _lowerCAmelCase : str = value elif weight_type == "bias": _lowerCAmelCase : str = value else: _lowerCAmelCase : Tuple = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Tuple = fairseq_model.state_dict() _lowerCAmelCase : str = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _lowerCAmelCase : Any = None for name, value in fairseq_dict.items(): _lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase : Any = True elif name.split(""".""" )[0] == "proj": _lowerCAmelCase : Union[str, Any] = fairseq_model.proj _lowerCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase : Union[str, Any] = True if "*" in mapped_key: _lowerCAmelCase : Union[str, Any] = name.split(UpperCamelCase_ )[0].split(""".""" )[-2] _lowerCAmelCase : Optional[Any] = mapped_key.replace("""*""" , UpperCamelCase_ ) if "weight_g" in name: _lowerCAmelCase : List[str] = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : Tuple = """weight_v""" elif "bias" in name: _lowerCAmelCase : Dict = """bias""" elif "weight" in name: _lowerCAmelCase : Optional[int] = """weight""" else: _lowerCAmelCase : Optional[Any] = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) return proj_weight def _UpperCAmelCase (UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : List[str] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : Optional[int] = name.split(""".""" ) _lowerCAmelCase : List[str] = int(items[0] ) _lowerCAmelCase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _lowerCAmelCase : Tuple = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase_ ) def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = emb.weight.shape _lowerCAmelCase : Union[str, Any] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) _lowerCAmelCase : List[Any] = emb.weight.data return lin_layer def _UpperCAmelCase (UpperCamelCase_ : Any ): '''simple docstring''' with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f: _lowerCAmelCase : Optional[int] = f.readlines() _lowerCAmelCase : Dict = [line.split(""" """ )[0] for line in lines] _lowerCAmelCase : Dict = len(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCamelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , ): '''simple docstring''' _lowerCAmelCase : Any = WavaVecaConfig.from_pretrained(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = SpeechaTextaConfig.from_pretrained( UpperCamelCase_ , vocab_size=UpperCamelCase_ , decoder_layers=UpperCamelCase_ , do_stable_layer_norm=UpperCamelCase_ ) _lowerCAmelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) _lowerCAmelCase : Tuple = model[0].eval() # set weights for wav2vec2 encoder _lowerCAmelCase : Union[str, Any] = WavaVecaModel(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = recursively_load_weights_wavaveca(model.encoder , UpperCamelCase_ ) _lowerCAmelCase : List[str] = SpeechaTextaForCausalLM(UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase_ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) _lowerCAmelCase : Dict = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) _lowerCAmelCase : List[Any] = SpeechEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) _lowerCAmelCase : Any = False # add projection layer _lowerCAmelCase : List[Any] = nn.Parameter(projection_layer.weight ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(projection_layer.bias ) _lowerCAmelCase : Any = create_vocab_dict(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Any = SpeechaTextaTokenizer(os.path.join(UpperCamelCase_ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowerCAmelCase : str = hf_wavavec.config.to_dict() _lowerCAmelCase : Any = tokenizer.pad_token_id _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : Any = tokenizer.eos_token_id _lowerCAmelCase : Union[str, Any] = """speech_to_text_2""" _lowerCAmelCase : Any = """wav2vec2""" _lowerCAmelCase : str = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) feature_extractor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0_2_2_4, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _lowerCamelCase : Optional[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
159
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class A_ ( _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase__ = 1 @register_to_config def __init__(self :Optional[int] , _UpperCamelCase :int = 1000 , _UpperCamelCase :Optional[Union[np.ndarray, List[float]]] = None )-> Optional[int]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(_UpperCamelCase ) # standard deviation of the initial noise distribution __A = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __A = 4 # running values __A = [] def _lowerCAmelCase (self :str , _UpperCamelCase :int , _UpperCamelCase :Union[str, torch.device] = None )-> Any: __A = num_inference_steps __A = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __A = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __A = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __A = torch.sin(steps * math.pi / 2 ) ** 2 __A = (1.0 - self.betas**2) ** 0.5 __A = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __A = timesteps.to(_UpperCamelCase ) __A = [] def _lowerCAmelCase (self :int , _UpperCamelCase :torch.FloatTensor , _UpperCamelCase :int , _UpperCamelCase :torch.FloatTensor , _UpperCamelCase :bool = True , )-> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) __A = (self.timesteps == timestep).nonzero().item() __A = timestep_index + 1 __A = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_UpperCamelCase ) if len(self.ets ) == 1: __A = self.ets[-1] elif len(self.ets ) == 2: __A = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __A = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __A = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __A = self._get_prev_sample(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCamelCase ) def _lowerCAmelCase (self :str , _UpperCamelCase :torch.FloatTensor , *_UpperCamelCase :Optional[Any] , **_UpperCamelCase :Optional[int] )-> torch.FloatTensor: return sample def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Tuple , _UpperCamelCase :List[str] , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :Any )-> Any: __A = self.alphas[timestep_index] __A = self.betas[timestep_index] __A = self.alphas[prev_timestep_index] __A = self.betas[prev_timestep_index] __A = (sample - sigma * ets) / max(_UpperCamelCase , 1e-8 ) __A = next_alpha * pred + ets * next_sigma return prev_sample def __len__(self :Union[str, Any] )-> Optional[int]: return self.config.num_train_timesteps
117
import numpy as np from PIL import Image def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = np.array(lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __A = 0 __A = 0 __A = 0 __A = 0 # compute the shape of the output matrix __A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __A = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __A = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __A = 0 __A = 0 return updated_arr def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = np.array(lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __A = 0 __A = 0 __A = 0 __A = 0 # compute the shape of the output matrix __A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __A = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __A = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __A = 0 __A = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
117
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = StableUnCLIPPipeline UpperCAmelCase : int = TEXT_TO_IMAGE_PARAMS UpperCAmelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase : int = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase : str = False def lowerCAmelCase_ ( self : Dict ): _A = 32 _A = embedder_hidden_size # prior components torch.manual_seed(0 ) _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _A = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=_UpperCAmelCase , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _A = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_UpperCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _A = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_000 , clip_sample=_UpperCAmelCase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) _A = StableUnCLIPImageNormalizer(embedding_dim=_UpperCAmelCase ) _A = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _A = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _A = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCAmelCase , layers_per_block=1 , upcast_attention=_UpperCAmelCase , use_linear_projection=_UpperCAmelCase , ) torch.manual_seed(0 ) _A = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _A = AutoencoderKL() _A = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=0 ): if str(_UpperCAmelCase ).startswith('mps' ): _A = torch.manual_seed(_UpperCAmelCase ) else: _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCAmelCase_ ( self : str ): _A = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=_UpperCAmelCase ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[Any] ): _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) _A = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe('anime turle' , generator=_UpperCAmelCase , output_type='np' ) _A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _A = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) _A = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
271
"""simple docstring""" from sklearn.metrics import fa_score import datasets a = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' a = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' a = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Union[str, Any]="binary" , _UpperCAmelCase : List[str]=None ): _A = fa_score( _UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase , pos_label=_UpperCAmelCase , average=_UpperCAmelCase , sample_weight=_UpperCAmelCase ) return {"f1": float(_UpperCAmelCase ) if score.size == 1 else score}
271
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : List[Any] =logging.get_logger(__name__) _A : Any ={ '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _lowercase ( _lowercase ): a = """biogpt""" def __init__( self: List[str] , UpperCamelCase__: str=42_384 , UpperCamelCase__: Optional[Any]=1_024 , UpperCamelCase__: List[Any]=24 , UpperCamelCase__: Dict=16 , UpperCamelCase__: Optional[int]=4_096 , UpperCamelCase__: Optional[int]="gelu" , UpperCamelCase__: Any=0.1 , UpperCamelCase__: Optional[int]=0.1 , UpperCamelCase__: List[Any]=1_024 , UpperCamelCase__: Optional[int]=0.02 , UpperCamelCase__: Union[str, Any]=1e-12 , UpperCamelCase__: Any=True , UpperCamelCase__: Dict=True , UpperCamelCase__: Optional[int]=0.0 , UpperCamelCase__: Tuple=0.0 , UpperCamelCase__: Any=1 , UpperCamelCase__: str=0 , UpperCamelCase__: Optional[int]=2 , **UpperCamelCase__: List[str] , ): lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : str = initializer_range lowerCamelCase__ : Union[str, Any] = layer_norm_eps lowerCamelCase__ : int = scale_embedding lowerCamelCase__ : Tuple = use_cache lowerCamelCase__ : Tuple = layerdrop lowerCamelCase__ : str = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
41
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase = 1000 ) -> int: lowerCamelCase__ : str = -1 lowerCamelCase__ : Dict = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCamelCase__ : Dict = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCamelCase__ : Any = n - a - b if c * c == (a * a + b * b): lowerCamelCase__ : Dict = a * b * c if candidate >= product: lowerCamelCase__ : Union[str, Any] = candidate return product if __name__ == "__main__": print(F'{solution() = }')
41
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = int(UpperCAmelCase_ ) # Initialize Result UpperCAmelCase : List[Any] = [] # Traverse through all denomination for denomination in reversed(UpperCAmelCase_ ): # Find denominations while int(UpperCAmelCase_ ) >= int(UpperCAmelCase_ ): total_value -= int(UpperCAmelCase_ ) answer.append(UpperCAmelCase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowercase__ = [] lowercase__ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): lowercase__ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) lowercase__ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter lowercase__ = [1, 2, 5, 10, 20, 50, 100, 500, 2000] lowercase__ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(f'''Following is minimal change for {value}: ''') lowercase__ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
280
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
280
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : Optional[int] = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'xlm' _a = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self : Any, lowerCamelCase : Optional[int]=3_0145, lowerCamelCase : Any=2048, lowerCamelCase : str=12, lowerCamelCase : List[str]=16, lowerCamelCase : Any=0.1, lowerCamelCase : Tuple=0.1, lowerCamelCase : List[Any]=True, lowerCamelCase : List[Any]=False, lowerCamelCase : Optional[Any]=False, lowerCamelCase : str=False, lowerCamelCase : Dict=1, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Optional[int]=512, lowerCamelCase : int=2048**-0.5, lowerCamelCase : Union[str, Any]=1E-12, lowerCamelCase : Tuple=0.02, lowerCamelCase : List[str]=0, lowerCamelCase : str=1, lowerCamelCase : Tuple=2, lowerCamelCase : List[str]=3, lowerCamelCase : Any=5, lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple="first", lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Any=True, lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : str=5, lowerCamelCase : Tuple=5, lowerCamelCase : Any=0, lowerCamelCase : str=0, lowerCamelCase : str=2, lowerCamelCase : Optional[Any]=0, **lowerCamelCase : Dict, )-> str: lowerCamelCase__ : Any =vocab_size lowerCamelCase__ : Union[str, Any] =emb_dim lowerCamelCase__ : Union[str, Any] =n_layers lowerCamelCase__ : Optional[Any] =n_heads lowerCamelCase__ : Optional[int] =dropout lowerCamelCase__ : Tuple =attention_dropout lowerCamelCase__ : Optional[Any] =gelu_activation lowerCamelCase__ : Any =sinusoidal_embeddings lowerCamelCase__ : List[Any] =causal lowerCamelCase__ : List[str] =asm lowerCamelCase__ : Optional[Any] =n_langs lowerCamelCase__ : Optional[Any] =use_lang_emb lowerCamelCase__ : int =layer_norm_eps lowerCamelCase__ : Union[str, Any] =bos_index lowerCamelCase__ : List[Any] =eos_index lowerCamelCase__ : Dict =pad_index lowerCamelCase__ : Dict =unk_index lowerCamelCase__ : Tuple =mask_index lowerCamelCase__ : Dict =is_encoder lowerCamelCase__ : Optional[Any] =max_position_embeddings lowerCamelCase__ : List[Any] =embed_init_std lowerCamelCase__ : int =init_std lowerCamelCase__ : Optional[int] =summary_type lowerCamelCase__ : Optional[Any] =summary_use_proj lowerCamelCase__ : List[str] =summary_activation lowerCamelCase__ : str =summary_proj_to_labels lowerCamelCase__ : Dict =summary_first_dropout lowerCamelCase__ : Optional[int] =start_n_top lowerCamelCase__ : Any =end_n_top lowerCamelCase__ : Tuple =mask_token_id lowerCamelCase__ : Optional[Any] =lang_id if "n_words" in kwargs: lowerCamelCase__ : Dict =kwargs['''n_words'''] super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, **lowerCamelCase ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' @property def snake_case ( self : str )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase__ : str ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : List[Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
238
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowercase : List[str] = logging.get_logger(__name__) _lowercase : int = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'deberta-v2' def __init__( self : Optional[Any], lowerCamelCase : Optional[int]=12_8100, lowerCamelCase : List[Any]=1536, lowerCamelCase : Dict=24, lowerCamelCase : Any=24, lowerCamelCase : Union[str, Any]=6144, lowerCamelCase : List[Any]="gelu", lowerCamelCase : int=0.1, lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : Union[str, Any]=512, lowerCamelCase : Optional[Any]=0, lowerCamelCase : Any=0.02, lowerCamelCase : int=1E-7, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : Union[str, Any]=-1, lowerCamelCase : Tuple=0, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : int=None, lowerCamelCase : Dict=0, lowerCamelCase : Tuple="gelu", **lowerCamelCase : Optional[int], )-> Union[str, Any]: super().__init__(**lowerCamelCase ) lowerCamelCase__ : str =hidden_size lowerCamelCase__ : Optional[int] =num_hidden_layers lowerCamelCase__ : Optional[Any] =num_attention_heads lowerCamelCase__ : List[Any] =intermediate_size lowerCamelCase__ : int =hidden_act lowerCamelCase__ : Tuple =hidden_dropout_prob lowerCamelCase__ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] =max_position_embeddings lowerCamelCase__ : int =type_vocab_size lowerCamelCase__ : Tuple =initializer_range lowerCamelCase__ : Tuple =relative_attention lowerCamelCase__ : Optional[Any] =max_relative_positions lowerCamelCase__ : List[Any] =pad_token_id lowerCamelCase__ : int =position_biased_input # Backwards compatibility if type(lowerCamelCase ) == str: lowerCamelCase__ : Union[str, Any] =[x.strip() for x in pos_att_type.lower().split('''|''' )] lowerCamelCase__ : Tuple =pos_att_type lowerCamelCase__ : Union[str, Any] =vocab_size lowerCamelCase__ : Optional[int] =layer_norm_eps lowerCamelCase__ : Dict =kwargs.get('''pooler_hidden_size''', lowerCamelCase ) lowerCamelCase__ : Tuple =pooler_dropout lowerCamelCase__ : List[Any] =pooler_hidden_act class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' @property def snake_case ( self : List[str] )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase__ : Union[str, Any] ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : Any ={0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def snake_case ( self : List[str] )-> int: return 12 def snake_case ( self : str, lowerCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional["TensorType"] = None, lowerCamelCase : int = 3, lowerCamelCase : int = 40, lowerCamelCase : int = 40, lowerCamelCase : "PreTrainedTokenizerBase" = None, )-> Mapping[str, Any]: lowerCamelCase__ : List[Any] =super().generate_dummy_inputs(preprocessor=lowerCamelCase, framework=lowerCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
238
1
from __future__ import annotations from collections import Counter from random import random class __lowercase : """simple docstring""" def __init__( self ) -> str: snake_case : Optional[Any] = {} def UpperCAmelCase ( self , A ) -> None: snake_case : int = {} def UpperCAmelCase ( self , A , A , A ) -> None: if nodea not in self.connections: self.add_node(A ) if nodea not in self.connections: self.add_node(A ) snake_case : Tuple = probability def UpperCAmelCase ( self ) -> list[str]: return list(self.connections ) def UpperCAmelCase ( self , A ) -> str: snake_case : List[Any] = 0 snake_case : Union[str, Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> dict[str, int]: snake_case : str = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase ,lowercase ,lowercase ) snake_case : Any = Counter(graph.get_nodes() ) snake_case : List[str] = start for _ in range(lowercase ): snake_case : List[Any] = graph.transition(lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
370
import functools def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: # Validation if not isinstance(lowercase ,lowercase ) or not all(isinstance(lowercase ,lowercase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(lowercase ) != 3 or not all(isinstance(lowercase ,lowercase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(lowercase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) snake_case : List[str] = set(lowercase ) @functools.cache def dynamic_programming(lowercase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) ,costs[1] + dynamic_programming(index + 7 ) ,costs[2] + dynamic_programming(index + 30 ) ,) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
176
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[str]=0.999 , __snake_case : str="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__snake_case : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__snake_case : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) UpperCAmelCase_ : Dict = [] for i in range(__snake_case ): UpperCAmelCase_ : Dict = i / num_diffusion_timesteps UpperCAmelCase_ : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' _snake_case : Union[str, Any] = [e.name for e in KarrasDiffusionSchedulers] _snake_case : int = 2 @register_to_config def __init__( self , _UpperCamelCase = 1_0_0_0 , _UpperCamelCase = 0.0_00_85 , _UpperCamelCase = 0.0_12 , _UpperCamelCase = "linear" , _UpperCamelCase = None , _UpperCamelCase = "epsilon" , _UpperCamelCase = "linspace" , _UpperCamelCase = 0 , ) -> Optional[Any]: if trained_betas is not None: UpperCAmelCase_ : Any = torch.tensor(_UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase_ : Optional[int] = torch.linspace(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ : List[str] = betas_for_alpha_bar(_UpperCamelCase ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) UpperCAmelCase_ : Dict = 1.0 - self.betas UpperCAmelCase_ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[Any]: if schedule_timesteps is None: UpperCAmelCase_ : Optional[Any] = self.timesteps UpperCAmelCase_ : Any = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCAmelCase_ : int = 1 if len(_UpperCamelCase ) > 1 else 0 else: UpperCAmelCase_ : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(_UpperCamelCase ) else timestep UpperCAmelCase_ : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ) -> Optional[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , ) -> torch.FloatTensor: UpperCAmelCase_ : List[Any] = self.index_for_timestep(_UpperCamelCase ) if self.state_in_first_order: UpperCAmelCase_ : Dict = self.sigmas[step_index] else: UpperCAmelCase_ : Union[str, Any] = self.sigmas_interpol[step_index] UpperCAmelCase_ : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , ) -> List[str]: UpperCAmelCase_ : Dict = num_inference_steps UpperCAmelCase_ : str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCAmelCase_ : List[Any] = np.linspace(0 , num_train_timesteps - 1 , _UpperCamelCase , dtype=_UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCAmelCase_ : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ : List[Any] = (np.arange(0 , _UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(_UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCAmelCase_ : Optional[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ : List[str] = (np.arange(_UpperCamelCase , 0 , -step_ratio )).round().copy().astype(_UpperCamelCase ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) UpperCAmelCase_ : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCAmelCase_ : List[str] = torch.from_numpy(np.log(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = np.interp(_UpperCamelCase , np.arange(0 , len(_UpperCamelCase ) ) , _UpperCamelCase ) UpperCAmelCase_ : List[str] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCAmelCase_ : str = torch.from_numpy(_UpperCamelCase ).to(device=_UpperCamelCase ) # interpolate sigmas UpperCAmelCase_ : Optional[int] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() UpperCAmelCase_ : Optional[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCAmelCase_ : Optional[int] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_UpperCamelCase ).startswith('mps' ): # mps does not support float64 UpperCAmelCase_ : Optional[Any] = torch.from_numpy(_UpperCamelCase ).to(_UpperCamelCase , dtype=torch.floataa ) else: UpperCAmelCase_ : Any = torch.from_numpy(_UpperCamelCase ).to(_UpperCamelCase ) # interpolate timesteps UpperCAmelCase_ : Optional[int] = self.sigma_to_t(_UpperCamelCase ).to(_UpperCamelCase , dtype=timesteps.dtype ) UpperCAmelCase_ : Optional[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() UpperCAmelCase_ : Tuple = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCAmelCase_ : Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCAmelCase_ : Dict = defaultdict(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: # get log sigma UpperCAmelCase_ : List[str] = sigma.log() # get distribution UpperCAmelCase_ : Any = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCAmelCase_ : int = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCAmelCase_ : List[str] = low_idx + 1 UpperCAmelCase_ : List[str] = self.log_sigmas[low_idx] UpperCAmelCase_ : int = self.log_sigmas[high_idx] # interpolate sigmas UpperCAmelCase_ : Optional[Any] = (low - log_sigma) / (low - high) UpperCAmelCase_ : Any = w.clamp(0 , 1 ) # transform interpolation to time range UpperCAmelCase_ : Union[str, Any] = (1 - w) * low_idx + w * high_idx UpperCAmelCase_ : Optional[Any] = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ) -> int: return self.sample is None def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = True , ) -> Union[SchedulerOutput, Tuple]: UpperCAmelCase_ : List[Any] = self.index_for_timestep(_UpperCamelCase ) # advance index counter by 1 UpperCAmelCase_ : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(_UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCAmelCase_ : List[str] = self.sigmas[step_index] UpperCAmelCase_ : List[str] = self.sigmas_interpol[step_index + 1] UpperCAmelCase_ : Optional[Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCAmelCase_ : Union[str, Any] = self.sigmas[step_index - 1] UpperCAmelCase_ : Any = self.sigmas_interpol[step_index] UpperCAmelCase_ : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCAmelCase_ : str = 0 UpperCAmelCase_ : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCAmelCase_ : Dict = sigma_hat if self.state_in_first_order else sigma_interpol UpperCAmelCase_ : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ : Any = sigma_hat if self.state_in_first_order else sigma_interpol UpperCAmelCase_ : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCAmelCase_ : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCAmelCase_ : Dict = sigma_interpol - sigma_hat # store for 2nd order step UpperCAmelCase_ : Any = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCAmelCase_ : Union[str, Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCAmelCase_ : Any = sigma_next - sigma_hat UpperCAmelCase_ : Dict = self.sample UpperCAmelCase_ : str = None UpperCAmelCase_ : List[str] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCAmelCase_ : Tuple = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_UpperCamelCase ): # mps does not support float64 UpperCAmelCase_ : Optional[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCAmelCase_ : Union[str, Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCAmelCase_ : Any = self.timesteps.to(original_samples.device ) UpperCAmelCase_ : Optional[Any] = timesteps.to(original_samples.device ) UpperCAmelCase_ : Any = [self.index_for_timestep(_UpperCamelCase , _UpperCamelCase ) for t in timesteps] UpperCAmelCase_ : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCAmelCase_ : Optional[Any] = sigma.unsqueeze(-1 ) UpperCAmelCase_ : int = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Union[str, Any]: return self.config.num_train_timesteps
29
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=0 ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [] for old_item in old_list: lowerCAmelCase__ : Optional[Any] = old_item.replace("""in_layers.0""" , """norm1""" ) lowerCAmelCase__ : Optional[int] = new_item.replace("""in_layers.2""" , """conv1""" ) lowerCAmelCase__ : Dict = new_item.replace("""out_layers.0""" , """norm2""" ) lowerCAmelCase__ : str = new_item.replace("""out_layers.3""" , """conv2""" ) lowerCAmelCase__ : str = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) lowerCAmelCase__ : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) lowerCAmelCase__ : Union[str, Any] = shave_segments(UpperCamelCase , n_shave_prefix_segments=UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=0 ): """simple docstring""" lowerCAmelCase__ : int = [] for old_item in old_list: lowerCAmelCase__ : List[str] = old_item lowerCAmelCase__ : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) lowerCAmelCase__ : Optional[Any] = new_item.replace("""norm.bias""" , """group_norm.bias""" ) lowerCAmelCase__ : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) lowerCAmelCase__ : int = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) lowerCAmelCase__ : str = shave_segments(UpperCamelCase , n_shave_prefix_segments=UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowerCAmelCase__ : Any = old_checkpoint[path] lowerCAmelCase__ : int = old_tensor.shape[0] // 3 lowerCAmelCase__ : int = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowerCAmelCase__ : Tuple = old_tensor.shape[0] // config["""num_head_channels"""] // 3 lowerCAmelCase__ : List[Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = old_tensor.split(channels // num_heads , dim=1 ) lowerCAmelCase__ : int = query.reshape(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = key.reshape(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = value.reshape(UpperCamelCase ) for path in paths: lowerCAmelCase__ : Any = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowerCAmelCase__ : Any = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) lowerCAmelCase__ : Any = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) lowerCAmelCase__ : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: lowerCAmelCase__ : Any = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowerCAmelCase__ : List[Any] = old_checkpoint[path["""old"""]][:, :, 0] else: lowerCAmelCase__ : Dict = old_checkpoint[path["""old"""]] def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = {} lowerCAmelCase__ : str = checkpoint["""time_embed.0.weight"""] lowerCAmelCase__ : List[Any] = checkpoint["""time_embed.0.bias"""] lowerCAmelCase__ : int = checkpoint["""time_embed.2.weight"""] lowerCAmelCase__ : List[str] = checkpoint["""time_embed.2.bias"""] lowerCAmelCase__ : str = checkpoint["""input_blocks.0.0.weight"""] lowerCAmelCase__ : Any = checkpoint["""input_blocks.0.0.bias"""] lowerCAmelCase__ : Union[str, Any] = checkpoint["""out.0.weight"""] lowerCAmelCase__ : Union[str, Any] = checkpoint["""out.0.bias"""] lowerCAmelCase__ : str = checkpoint["""out.2.weight"""] lowerCAmelCase__ : Tuple = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only lowerCAmelCase__ : Optional[Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) lowerCAmelCase__ : Optional[Any] = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(UpperCamelCase ) } # Retrieves the keys for the middle blocks only lowerCAmelCase__ : Union[str, Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) lowerCAmelCase__ : Union[str, Any] = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(UpperCamelCase ) } # Retrieves the keys for the output blocks only lowerCAmelCase__ : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) lowerCAmelCase__ : List[Any] = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(UpperCamelCase ) } for i in range(1 , UpperCamelCase ): lowerCAmelCase__ : Dict = (i - 1) // (config["""num_res_blocks"""] + 1) lowerCAmelCase__ : Tuple = (i - 1) % (config["""num_res_blocks"""] + 1) lowerCAmelCase__ : Optional[int] = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] lowerCAmelCase__ : Optional[Any] = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: lowerCAmelCase__ : Optional[int] = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] lowerCAmelCase__ : Tuple = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue lowerCAmelCase__ : Optional[Any] = renew_resnet_paths(UpperCamelCase ) lowerCAmelCase__ : Dict = {"""old""": f"""input_blocks.{i}.0""", """new""": f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} lowerCAmelCase__ : Optional[Any] = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCamelCase ) if len(UpperCamelCase ): lowerCAmelCase__ : Optional[Any] = renew_attention_paths(UpperCamelCase ) lowerCAmelCase__ : Tuple = { """old""": f"""input_blocks.{i}.1""", """new""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } lowerCAmelCase__ : List[str] = { f"""input_blocks.{i}.1.qkv.bias""": { """key""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", """query""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", """value""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { """key""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", """query""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", """value""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCamelCase , config=UpperCamelCase , ) lowerCAmelCase__ : Dict = middle_blocks[0] lowerCAmelCase__ : Union[str, Any] = middle_blocks[1] lowerCAmelCase__ : Dict = middle_blocks[2] lowerCAmelCase__ : Any = renew_resnet_paths(UpperCamelCase ) assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , config=UpperCamelCase ) lowerCAmelCase__ : Dict = renew_resnet_paths(UpperCamelCase ) assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , config=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = renew_attention_paths(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( UpperCamelCase , UpperCamelCase , UpperCamelCase , attention_paths_to_split=UpperCamelCase , config=UpperCamelCase ) for i in range(UpperCamelCase ): lowerCAmelCase__ : Tuple = i // (config["""num_res_blocks"""] + 1) lowerCAmelCase__ : List[str] = i % (config["""num_res_blocks"""] + 1) lowerCAmelCase__ : int = [shave_segments(UpperCamelCase , 2 ) for name in output_blocks[i]] lowerCAmelCase__ : Union[str, Any] = {} for layer in output_block_layers: lowerCAmelCase__ , lowerCAmelCase__ : Any = layer.split(""".""" )[0], shave_segments(UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCamelCase ) else: lowerCAmelCase__ : str = [layer_name] if len(UpperCamelCase ) > 1: lowerCAmelCase__ : str = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] lowerCAmelCase__ : Dict = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] lowerCAmelCase__ : Optional[int] = renew_resnet_paths(UpperCamelCase ) lowerCAmelCase__ : int = renew_resnet_paths(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = {"""old""": f"""output_blocks.{i}.0""", """new""": f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowerCAmelCase__ : List[Any] = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) lowerCAmelCase__ : int = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] lowerCAmelCase__ : int = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(UpperCamelCase ) == 2: lowerCAmelCase__ : Tuple = [] if len(UpperCamelCase ): lowerCAmelCase__ : Dict = renew_attention_paths(UpperCamelCase ) lowerCAmelCase__ : Tuple = { """old""": f"""output_blocks.{i}.1""", """new""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } lowerCAmelCase__ : Tuple = { f"""output_blocks.{i}.1.qkv.bias""": { """key""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", """query""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", """value""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { """key""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", """query""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", """value""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=UpperCamelCase , ) else: lowerCAmelCase__ : int = renew_resnet_paths(UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowerCAmelCase__ : Tuple = """.""".join(["""output_blocks""", str(UpperCamelCase ), path["""old"""]] ) lowerCAmelCase__ : List[Any] = """.""".join(["""up_blocks""", str(UpperCamelCase ), """resnets""", str(UpperCamelCase ), path["""new"""]] ) lowerCAmelCase__ : Union[str, Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowerCAmelCase = json.loads(f.read()) _lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowerCAmelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _lowerCAmelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
37
0
import heapq def A_ ( _lowerCAmelCase ) -> set[int]: UpperCamelCase : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_lowerCAmelCase , [-1 * len(_lowerCAmelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCamelCase : Tuple = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCamelCase : Optional[int] = heapq.heappop(_lowerCAmelCase )[1][0] chosen_vertices.add(_lowerCAmelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCamelCase : Tuple = elem[1][1].index(_lowerCAmelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_lowerCAmelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
140
__lowerCamelCase : Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def A_ ( _lowerCAmelCase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase : str = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_lowerCAmelCase ) UpperCamelCase : Optional[int] = "".join(bin(_lowerCAmelCase )[2:].zfill(8 ) for byte in data ) UpperCamelCase : str = len(_lowerCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCamelCase : Optional[Any] = b"=" * ((6 - len(_lowerCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowerCAmelCase ) % 6) else: UpperCamelCase : List[Any] = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowerCAmelCase ) , 6 ) ).encode() + padding ) def A_ ( _lowerCAmelCase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase : List[Any] = ( "argument should be a bytes-like object or ASCII string, " F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_lowerCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: UpperCamelCase : Any = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) UpperCamelCase : Union[str, Any] = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCamelCase : List[str] = encoded_data[:-padding] UpperCamelCase : List[Any] = "".join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCamelCase : List[Any] = "".join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCamelCase : Any = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowerCAmelCase ) , 8 ) ] return bytes(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
140
1
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase = { "Salesforce/codegen-350M-mono": 2048, } class lowerCamelCase (UpperCamelCase_ ): '''simple docstring''' _snake_case : str = VOCAB_FILES_NAMES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : int = ["""input_ids""", """attention_mask"""] _snake_case : Optional[Any] = CodeGenTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="<|endoftext|>" , _UpperCamelCase="<|endoftext|>" , _UpperCamelCase="<|endoftext|>" , _UpperCamelCase=False , **_UpperCamelCase , ) -> Dict: super().__init__( _a , _a , tokenizer_file=_a , unk_token=_a , bos_token=_a , eos_token=_a , add_prefix_space=_a , **_a , ) if kwargs.pop('add_bos_token' , _a ): UpperCAmelCase_ : List[str] = kwargs.pop('name_or_path' , '' ) raise ValueError( 'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.' 'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n' f"`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n" f"`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n" 'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.' ' so that the fast tokenizer works correctly.' ) UpperCAmelCase_ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _a ) != add_prefix_space: UpperCAmelCase_ : Any = getattr(_a , pre_tok_state.pop('type' ) ) UpperCAmelCase_ : Optional[int] = add_prefix_space UpperCAmelCase_ : Union[str, Any] = pre_tok_class(**_a ) UpperCAmelCase_ : Tuple = add_prefix_space def __UpperCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ) -> BatchEncoding: UpperCAmelCase_ : Union[str, Any] = kwargs.get('is_split_into_words' , _a ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_a , **_a ) def __UpperCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ) -> BatchEncoding: UpperCAmelCase_ : Optional[Any] = kwargs.get('is_split_into_words' , _a ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_a , **_a ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: UpperCAmelCase_ : int = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> str: UpperCAmelCase_ : Optional[Any] = super().decode( token_ids=_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , **_a , ) if truncate_before_pattern is not None and len(_a ) > 0: UpperCAmelCase_ : Any = self.truncate(_a , _a ) return decoded_text def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: def find_re(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Any = pattern.search(_a , _a ) return m.start() if m else -1 UpperCAmelCase_ : int = [re.compile(_a , re.MULTILINE ) for pattern in truncate_before_pattern] UpperCAmelCase_ : List[Any] = list(re.finditer('^print' , _a , re.MULTILINE ) ) if len(_a ) > 1: UpperCAmelCase_ : List[Any] = completion[: prints[1].start()] UpperCAmelCase_ : Optional[int] = list(re.finditer('^def' , _a , re.MULTILINE ) ) if len(_a ) > 1: UpperCAmelCase_ : Dict = completion[: defs[1].start()] UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Dict = [ pos for pos in [find_re(_a , _a , _a ) for terminal in terminals] if pos != -1 ] if len(_a ) > 0: return completion[: min(_a )] else: return completion
29
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1E-12 ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__lowerCAmelCase , axis=1 ) , a_min=__lowerCAmelCase ) ).T SCREAMING_SNAKE_CASE__ : str = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__lowerCAmelCase , axis=1 ) , a_min=__lowerCAmelCase ) ).T return jnp.matmul(__lowerCAmelCase , norm_emb_a.T ) class __a (nn.Module): '''simple docstring''' _SCREAMING_SNAKE_CASE :CLIPConfig _SCREAMING_SNAKE_CASE :jnp.dtype = jnp.floataa def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.Dense(self.config.projection_dim , use_bias=_a , dtype=self.dtype ) SCREAMING_SNAKE_CASE__ : Tuple = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) SCREAMING_SNAKE_CASE__ : Any = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__( self , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.vision_model(_a )[1] SCREAMING_SNAKE_CASE__ : str = self.visual_projection(_a ) SCREAMING_SNAKE_CASE__ : List[str] = jax_cosine_distance(_a , self.special_care_embeds ) SCREAMING_SNAKE_CASE__ : Optional[Any] = jax_cosine_distance(_a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs SCREAMING_SNAKE_CASE__ : int = 0.0 SCREAMING_SNAKE_CASE__ : Optional[int] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment SCREAMING_SNAKE_CASE__ : Dict = jnp.round(_a , 3 ) SCREAMING_SNAKE_CASE__ : Dict = jnp.any(special_scores > 0 , axis=1 , keepdims=_a ) # Use a lower threshold if an image has any special care concept SCREAMING_SNAKE_CASE__ : Any = is_special_care * 0.01 SCREAMING_SNAKE_CASE__ : List[Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.round(_a , 3 ) SCREAMING_SNAKE_CASE__ : List[str] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Dict = CLIPConfig _SCREAMING_SNAKE_CASE :Union[str, Any] = """clip_input""" _SCREAMING_SNAKE_CASE :Dict = FlaxStableDiffusionSafetyCheckerModule def __init__( self , _a , _a = None , _a = 0 , _a = jnp.floataa , _a = True , **_a , ) -> Optional[int]: """simple docstring""" if input_shape is None: SCREAMING_SNAKE_CASE__ : List[Any] = (1, 224, 224, 3) SCREAMING_SNAKE_CASE__ : Any = self.module_class(config=_a , dtype=_a , **_a ) super().__init__(_a , _a , input_shape=_a , seed=_a , dtype=_a , _do_init=_do_init ) def _a ( self , _a , _a , _a = None ) -> FrozenDict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = jax.random.normal(_a , _a ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = jax.random.split(_a ) SCREAMING_SNAKE_CASE__ : List[str] = {"""params""": params_rng, """dropout""": dropout_rng} SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.module.init(_a , _a )["""params"""] return random_params def __call__( self , _a , _a = None , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = jnp.transpose(_a , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(_a , dtype=jnp.floataa ) , rngs={} , )
132
0
import math def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(_UpperCAmelCase ) if number < 1: lowerCAmelCase__ : int = F'''Input value of [number={number}] must be > 0''' raise ValueError(_UpperCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: lowerCAmelCase__ : Optional[int] = int(math.log(number // 3 , 2 ) ) + 2 lowerCAmelCase__ : str = [3, 5] lowerCAmelCase__ : str = 2 lowerCAmelCase__ : Optional[Any] = 3 for block in range(1 , _UpperCAmelCase ): for _ in range(_UpperCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowerCamelCase__ = 0 try: lowerCamelCase__ = proth(number) except ValueError: print(F"""ValueError: there is no {number}th Proth number""") continue print(F"""The {number}th Proth number: {value}""")
359
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCAmelCase_ = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=snake_case__ , required=snake_case__ , help="""Model\'s type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=snake_case__ , required=snake_case__ , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=snake_case__ , required=snake_case__ , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=snake_case__ , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=snake_case__ , default=snake_case__ , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=snake_case__ ) def __init__( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , *_UpperCAmelCase : int , ): """simple docstring""" UpperCAmelCase__ = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f'''Loading model {model_type}''' ) UpperCAmelCase__ = model_type UpperCAmelCase__ = tf_checkpoint UpperCAmelCase__ = pytorch_dump_output UpperCAmelCase__ = config UpperCAmelCase__ = finetuning_task_name def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase__ = self._tf_checkpoint UpperCAmelCase__ = '''''' else: UpperCAmelCase__ = self._tf_checkpoint UpperCAmelCase__ = '''''' convert_transfo_xl_checkpoint_to_pytorch( snake_case__ , self._config , self._pytorch_dump_output , snake_case__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
346
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean() UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item()) UpperCAmelCase : List[str] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
0
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] ) -> Union[str, Any]: return 1 if input_a == input_a else 0 def snake_case__ ( ) -> str: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
357
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Union[str, Any] = KandinskyImgaImgPipeline A: Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image"] A: int = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] A: List[str] = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] A: Any = False @property def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' return 100 @property def UpperCAmelCase__ ( self : Tuple ) -> Dict: '''simple docstring''' UpperCamelCase__ : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) UpperCamelCase__ : Tuple = MultilingualCLIP(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = text_encoder.eval() return text_encoder @property def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : str = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCamelCase__ : str = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def UpperCAmelCase__ ( self : int ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self : List[str] ) -> str: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : str = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self : Tuple ) -> Dict: '''simple docstring''' UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : int = self.dummy_tokenizer UpperCamelCase__ : Optional[int] = self.dummy_unet UpperCamelCase__ : Optional[int] = self.dummy_movq UpperCamelCase__ : int = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCamelCase__ : str = DDIMScheduler(**lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple=0 ) -> Dict: '''simple docstring''' UpperCamelCase__ : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCamelCase__ : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCamelCase__ ) # create init_image UpperCamelCase__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCamelCase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ : List[str] = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) if str(lowerCamelCase__ ).startswith('''mps''' ): UpperCamelCase__ : Dict = torch.manual_seed(lowerCamelCase__ ) else: UpperCamelCase__ : Optional[Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Optional[Any] = '''cpu''' UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : Union[str, Any] = self.pipeline_class(**lowerCamelCase__ ) UpperCamelCase__ : str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ : Dict = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) UpperCamelCase__ : List[Any] = output.images UpperCamelCase__ : Dict = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : str = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : List[str] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) UpperCamelCase__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCamelCase__ : Any = '''A red cartoon frog, 4k''' UpperCamelCase__ : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) UpperCamelCase__ : Dict = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) UpperCamelCase__ : Any = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCamelCase__ , UpperCamelCase__ : str = pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCamelCase__ : int = pipeline( lowerCamelCase__ , image=lowerCamelCase__ , image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) UpperCamelCase__ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
146
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __UpperCamelCase : str = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE : torch.nn.Module , SCREAMING_SNAKE_CASE : BnbQuantizationConfig , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = bnb_quantization_config.load_in_abit UpperCamelCase__ : List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCamelCase__ : int = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: UpperCamelCase__ : int = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase__ : List[Any] = get_keys_to_not_convert(SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : List[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE ) # compatibility with peft UpperCamelCase__ : Optional[Any] = load_in_abit UpperCamelCase__ : List[str] = load_in_abit UpperCamelCase__ : str = get_parameter_device(SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCamelCase__ : Union[str, Any] = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) # convert param to the right dtype UpperCamelCase__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase__ : Union[str, Any] = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE ): param.to(SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): UpperCamelCase__ : str = replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = get_quantized_model_device_map( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase__ : Dict = True UpperCamelCase__ : str = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): UpperCamelCase__ : int = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCamelCase__ : str = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = special_dtypes UpperCamelCase__ : Optional[int] = no_split_module_classes UpperCamelCase__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase__ : Dict = get_balanced_memory( SCREAMING_SNAKE_CASE , low_zero=(device_map == '''balanced_low_0''') , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Tuple = max_memory UpperCamelCase__ : Dict = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu UpperCamelCase__ : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase__ : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" if modules_to_not_convert is None: UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ , UpperCamelCase__ : Dict = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): """simple docstring""" UpperCamelCase__ : str = False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase__ : Tuple = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase__ : int = '''.'''.join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase__ : List[str] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase__ : int = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase__ : Optional[int] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCamelCase__ : List[Any] = module.weight.data if module.bias is not None: UpperCamelCase__ : List[str] = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = True if len(list(module.children() ) ) > 0: UpperCamelCase__ , UpperCamelCase__ : Tuple = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" with init_empty_weights(): UpperCamelCase__ : Dict = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase__ : str = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase__ : int = sum(SCREAMING_SNAKE_CASE , [] ) UpperCamelCase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model UpperCamelCase__ : str = False if hasattr(SCREAMING_SNAKE_CASE , '''base_model_prefix''' ): UpperCamelCase__ : int = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase__ : Tuple = list(model.named_children() ) UpperCamelCase__ : str = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase__ : Dict = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys UpperCamelCase__ : int = ['''.weight''', '''.bias'''] UpperCamelCase__ : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase__ : int = name.replace(SCREAMING_SNAKE_CASE , '''''' ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names def _a ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _a ( SCREAMING_SNAKE_CASE : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = param_name UpperCamelCase__ : str = model if "." in tensor_name: UpperCamelCase__ : List[Any] = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) UpperCamelCase__ : Optional[int] = new_module UpperCamelCase__ : List[str] = splits[-1] # offload weights UpperCamelCase__ : Any = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , ) else: offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) offload_weight(SCREAMING_SNAKE_CASE , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''meta''' , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
146
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __lowerCamelCase : List[Any] = logging.get_logger(__name__) class A__ ( __snake_case ): def __init__( self , *A_ , **A_ ): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , A_ , ) super().__init__(*A_ , **A_ )
140
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __lowerCamelCase : Any = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __lowerCamelCase : str = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def A_ ( _lowerCAmelCase ) -> Optional[Any]: UpperCamelCase : Tuple = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_lowerCAmelCase )[0] @deprecated(_lowerCAmelCase , "Please use tf.data to implement this functionality." ) def A_ ( _lowerCAmelCase ) -> int: print("Extracting" , f.name ) with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream: UpperCamelCase : Dict = _readaa(_lowerCAmelCase ) if magic != 2051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) UpperCamelCase : Optional[int] = _readaa(_lowerCAmelCase ) UpperCamelCase : int = _readaa(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = _readaa(_lowerCAmelCase ) UpperCamelCase : List[Any] = bytestream.read(rows * cols * num_images ) UpperCamelCase : List[str] = numpy.frombuffer(_lowerCAmelCase , dtype=numpy.uinta ) UpperCamelCase : Optional[Any] = data.reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) return data @deprecated(_lowerCAmelCase , "Please use tf.one_hot on tensors." ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: UpperCamelCase : List[str] = labels_dense.shape[0] UpperCamelCase : str = numpy.arange(_lowerCAmelCase ) * num_classes UpperCamelCase : Optional[Any] = numpy.zeros((num_labels, num_classes) ) UpperCamelCase : Dict = 1 return labels_one_hot @deprecated(_lowerCAmelCase , "Please use tf.data to implement this functionality." ) def A_ ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=10 ) -> str: print("Extracting" , f.name ) with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream: UpperCamelCase : int = _readaa(_lowerCAmelCase ) if magic != 2049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) UpperCamelCase : List[str] = _readaa(_lowerCAmelCase ) UpperCamelCase : List[Any] = bytestream.read(_lowerCAmelCase ) UpperCamelCase : List[str] = numpy.frombuffer(_lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_lowerCAmelCase , _lowerCAmelCase ) return labels class A__ : @deprecated( A_ , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self , A_ , A_ , A_=False , A_=False , A_=dtypes.floataa , A_=True , A_=None , ): '''simple docstring''' UpperCamelCase , UpperCamelCase : int = random_seed.get_seed(A_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) UpperCamelCase : Optional[Any] = dtypes.as_dtype(A_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: UpperCamelCase : List[str] = 1_0000 UpperCamelCase : int = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"""images.shape: {images.shape} labels.shape: {labels.shape}""" UpperCamelCase : Optional[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCamelCase : int = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCamelCase : str = images.astype(numpy.floataa ) UpperCamelCase : str = numpy.multiply(A_ , 1.0 / 2_55.0 ) UpperCamelCase : Optional[int] = images UpperCamelCase : str = labels UpperCamelCase : Optional[Any] = 0 UpperCamelCase : Optional[int] = 0 @property def __UpperCamelCase( self ): '''simple docstring''' return self._images @property def __UpperCamelCase( self ): '''simple docstring''' return self._labels @property def __UpperCamelCase( self ): '''simple docstring''' return self._num_examples @property def __UpperCamelCase( self ): '''simple docstring''' return self._epochs_completed def __UpperCamelCase( self , A_ , A_=False , A_=True ): '''simple docstring''' if fake_data: UpperCamelCase : Optional[int] = [1] * 784 UpperCamelCase : Optional[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A_ )], [fake_label for _ in range(A_ )], ) UpperCamelCase : Optional[Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCamelCase : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) UpperCamelCase : int = self.images[perma] UpperCamelCase : Any = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCamelCase : List[Any] = self._num_examples - start UpperCamelCase : Union[str, Any] = self._images[start : self._num_examples] UpperCamelCase : str = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCamelCase : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) UpperCamelCase : Union[str, Any] = self.images[perm] UpperCamelCase : Union[str, Any] = self.labels[perm] # Start next epoch UpperCamelCase : Tuple = 0 UpperCamelCase : Tuple = batch_size - rest_num_examples UpperCamelCase : List[str] = self._index_in_epoch UpperCamelCase : Dict = self._images[start:end] UpperCamelCase : int = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size UpperCamelCase : Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_lowerCAmelCase , "Please write your own downloading logic." ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if not gfile.Exists(_lowerCAmelCase ): gfile.MakeDirs(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if not gfile.Exists(_lowerCAmelCase ): urllib.request.urlretrieve(_lowerCAmelCase , _lowerCAmelCase ) # noqa: S310 with gfile.GFile(_lowerCAmelCase ) as f: UpperCamelCase : Optional[int] = f.size() print("Successfully downloaded" , _lowerCAmelCase , _lowerCAmelCase , "bytes." ) return filepath @deprecated( _lowerCAmelCase , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def A_ ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=dtypes.floataa , _lowerCAmelCase=True , _lowerCAmelCase=5000 , _lowerCAmelCase=None , _lowerCAmelCase=DEFAULT_SOURCE_URL , ) -> List[str]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_lowerCAmelCase , one_hot=_lowerCAmelCase , dtype=_lowerCAmelCase , seed=_lowerCAmelCase ) UpperCamelCase : Any = fake() UpperCamelCase : List[str] = fake() UpperCamelCase : Union[str, Any] = fake() return _Datasets(train=_lowerCAmelCase , validation=_lowerCAmelCase , test=_lowerCAmelCase ) if not source_url: # empty string check UpperCamelCase : str = DEFAULT_SOURCE_URL UpperCamelCase : List[str] = "train-images-idx3-ubyte.gz" UpperCamelCase : Optional[int] = "train-labels-idx1-ubyte.gz" UpperCamelCase : List[str] = "t10k-images-idx3-ubyte.gz" UpperCamelCase : Union[str, Any] = "t10k-labels-idx1-ubyte.gz" UpperCamelCase : Optional[int] = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + train_images_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : List[str] = _extract_images(_lowerCAmelCase ) UpperCamelCase : Dict = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : List[Any] = _extract_labels(_lowerCAmelCase , one_hot=_lowerCAmelCase ) UpperCamelCase : Any = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + test_images_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : Any = _extract_images(_lowerCAmelCase ) UpperCamelCase : List[str] = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : str = _extract_labels(_lowerCAmelCase , one_hot=_lowerCAmelCase ) if not 0 <= validation_size <= len(_lowerCAmelCase ): UpperCamelCase : Any = ( "Validation size should be between 0 and " F"""{len(_lowerCAmelCase )}. Received: {validation_size}.""" ) raise ValueError(_lowerCAmelCase ) UpperCamelCase : str = train_images[:validation_size] UpperCamelCase : int = train_labels[:validation_size] UpperCamelCase : List[str] = train_images[validation_size:] UpperCamelCase : Union[str, Any] = train_labels[validation_size:] UpperCamelCase : List[str] = {"dtype": dtype, "reshape": reshape, "seed": seed} UpperCamelCase : List[str] = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) UpperCamelCase : List[str] = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) UpperCamelCase : Any = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) return _Datasets(train=_lowerCAmelCase , validation=_lowerCAmelCase , test=_lowerCAmelCase )
140
1
def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :int )->str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) snake_case_ = str(bin(lowerCAmelCase_ ) )[2:] # remove the leading "0b" snake_case_ = str(bin(lowerCAmelCase_ ) )[2:] snake_case_ = max(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase_ ) , b_binary.zfill(lowerCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
159
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 class __lowerCAmelCase ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = (16, 32, 96, 256) _SCREAMING_SNAKE_CASE = jnp.floataa def lowerCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" snake_case_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) snake_case_ = [] for i in range(len(self.block_out_channels ) - 1 ): snake_case_ = self.block_out_channels[i] snake_case_ = self.block_out_channels[i + 1] snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_lowerCAmelCase ) snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_lowerCAmelCase ) snake_case_ = blocks snake_case_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" snake_case_ = self.conv_in(_lowerCAmelCase ) snake_case_ = nn.silu(_lowerCAmelCase ) for block in self.blocks: snake_case_ = block(_lowerCAmelCase ) snake_case_ = nn.silu(_lowerCAmelCase ) snake_case_ = self.conv_out(_lowerCAmelCase ) return embedding @flax_register_to_config class __lowerCAmelCase ( nn.Module , a , a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = (320, 640, 1280, 1280) _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = 1280 _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = jnp.floataa _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = "rgb" _SCREAMING_SNAKE_CASE = (16, 32, 96, 256) def lowerCAmelCase__ ( self : str , _lowerCAmelCase : jax.random.KeyArray ) -> FrozenDict: """simple docstring""" # init input tensors snake_case_ = (1, self.in_channels, self.sample_size, self.sample_size) snake_case_ = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) snake_case_ = jnp.ones((1,) , dtype=jnp.intaa ) snake_case_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case_ = (1, 3, self.sample_size * 8, self.sample_size * 8) snake_case_ = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) snake_case_ , snake_case_ = jax.random.split(_lowerCAmelCase ) snake_case_ = {"params": params_rng, "dropout": dropout_rng} return self.init(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )["params"] def lowerCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" snake_case_ = self.block_out_channels snake_case_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case_ = self.num_attention_heads or self.attention_head_dim # input snake_case_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case_ = FlaxTimestepEmbedding(_lowerCAmelCase , dtype=self.dtype ) snake_case_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) snake_case_ = self.only_cross_attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case_ = (num_attention_heads,) * len(self.down_block_types ) # down snake_case_ = [] snake_case_ = [] snake_case_ = block_out_channels[0] snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): snake_case_ = output_channel snake_case_ = block_out_channels[i] snake_case_ = i == len(_lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case_ = FlaxCrossAttnDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: snake_case_ = FlaxDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCAmelCase ) for _ in range(self.layers_per_block ): snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_lowerCAmelCase ) if not is_final_block: snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_lowerCAmelCase ) snake_case_ = down_blocks snake_case_ = controlnet_down_blocks # mid snake_case_ = block_out_channels[-1] snake_case_ = FlaxUNetMidBlockaDCrossAttn( in_channels=_lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" snake_case_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": snake_case_ = jnp.flip(_lowerCAmelCase , axis=1 ) # 1. time if not isinstance(_lowerCAmelCase , jnp.ndarray ): snake_case_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case_ = timesteps.astype(dtype=jnp.floataa ) snake_case_ = jnp.expand_dims(_lowerCAmelCase , 0 ) snake_case_ = self.time_proj(_lowerCAmelCase ) snake_case_ = self.time_embedding(_lowerCAmelCase ) # 2. pre-process snake_case_ = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) snake_case_ = self.conv_in(_lowerCAmelCase ) snake_case_ = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) snake_case_ = self.controlnet_cond_embedding(_lowerCAmelCase ) sample += controlnet_cond # 3. down snake_case_ = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case_ , snake_case_ = down_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) else: snake_case_ , snake_case_ = down_block(_lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid snake_case_ = self.mid_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) # 5. contronet blocks snake_case_ = () for down_block_res_sample, controlnet_block in zip(_lowerCAmelCase , self.controlnet_down_blocks ): snake_case_ = controlnet_block(_lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) snake_case_ = controlnet_down_block_res_samples snake_case_ = self.controlnet_mid_block(_lowerCAmelCase ) # 6. scaling snake_case_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_lowerCAmelCase , mid_block_res_sample=_lowerCAmelCase )
159
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase : int = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(a__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """words.txt""" ) __SCREAMING_SNAKE_CASE = """""" with open(a__ ) as f: __SCREAMING_SNAKE_CASE = f.readline() __SCREAMING_SNAKE_CASE = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] __SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
331
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = analyze_text(a__ ) __SCREAMING_SNAKE_CASE = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __SCREAMING_SNAKE_CASE = sum(single_char_strings.values() ) # one length string __SCREAMING_SNAKE_CASE = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __SCREAMING_SNAKE_CASE = single_char_strings[ch] __SCREAMING_SNAKE_CASE = my_str / all_sum my_fir_sum += prob * math.loga(a__ ) # entropy formula. # print entropy print(F'{round(-1 * my_fir_sum ):.1f}' ) # two len string __SCREAMING_SNAKE_CASE = sum(two_char_strings.values() ) __SCREAMING_SNAKE_CASE = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __SCREAMING_SNAKE_CASE = cha + cha if sequence in two_char_strings: __SCREAMING_SNAKE_CASE = two_char_strings[sequence] __SCREAMING_SNAKE_CASE = int(a__ ) / all_sum my_sec_sum += prob * math.loga(a__ ) # print second entropy print(F'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(F'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = Counter() # type: ignore __SCREAMING_SNAKE_CASE = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(a__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
331
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str ,_a : int ,_a : Union[str, Any]=7 ,_a : Union[str, Any]=3 ,_a : Dict=30 ,_a : Union[str, Any]=400 ,_a : str=True ,_a : Tuple=None ,_a : List[str]=True ,_a : Optional[int]=[0.5, 0.5, 0.5] ,_a : Union[str, Any]=[0.5, 0.5, 0.5] ,_a : Optional[int]=True ,_a : Optional[int]=1 / 255 ,_a : int=True ,): '''simple docstring''' _a : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _a : List[str] = parent _a : Any = batch_size _a : str = num_channels _a : Optional[Any] = min_resolution _a : Any = max_resolution _a : Dict = do_resize _a : int = size _a : List[Any] = do_normalize _a : Union[str, Any] = image_mean _a : Union[str, Any] = image_std _a : Union[str, Any] = do_rescale _a : Tuple = rescale_factor _a : Any = do_pad def __lowercase ( self : Dict ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowercase ( self : Any ,_a : Optional[Any] ,_a : Dict=False ): '''simple docstring''' if not batched: _a : Optional[Any] = image_inputs[0] if isinstance(_a ,Image.Image ): _a, _a : List[str] = image.size else: _a, _a : List[Any] = image.shape[1], image.shape[2] if w < h: _a : List[Any] = int(self.size['shortest_edge'] * h / w ) _a : Any = self.size['shortest_edge'] elif w > h: _a : Dict = self.size['shortest_edge'] _a : str = int(self.size['shortest_edge'] * w / h ) else: _a : str = self.size['shortest_edge'] _a : Optional[int] = self.size['shortest_edge'] else: _a : Optional[int] = [] for image in image_inputs: _a, _a : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _a : int = max(_a ,key=lambda _a : item[0] )[0] _a : Dict = max(_a ,key=lambda _a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = ConditionalDetrImageProcessor if is_vision_available() else None def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[int] = ConditionalDetrImageProcessingTester(self ) @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a ,'image_mean' ) ) self.assertTrue(hasattr(_a ,'image_std' ) ) self.assertTrue(hasattr(_a ,'do_normalize' ) ) self.assertTrue(hasattr(_a ,'do_resize' ) ) self.assertTrue(hasattr(_a ,'size' ) ) def __lowercase ( self : Any ): '''simple docstring''' _a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad ,_a ) _a : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=_a ) self.assertEqual(image_processor.size ,{'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad ,_a ) def __lowercase ( self : Any ): '''simple docstring''' pass def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a ,Image.Image ) # Test not batched input _a : List[str] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _a, _a : List[str] = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _a, _a : str = self.image_processor_tester.get_expected_values(_a ,batched=_a ) _a : Optional[Any] = image_processing(_a ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __lowercase ( self : List[str] ): '''simple docstring''' _a : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_a ,numpify=_a ) for image in image_inputs: self.assertIsInstance(_a ,np.ndarray ) # Test not batched input _a : Any = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _a, _a : Optional[Any] = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _a : List[Any] = image_processing(_a ,return_tensors='pt' ).pixel_values _a, _a : List[Any] = self.image_processor_tester.get_expected_values(_a ,batched=_a ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_a ,torchify=_a ) for image in image_inputs: self.assertIsInstance(_a ,torch.Tensor ) # Test not batched input _a : List[str] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _a, _a : str = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _a : Tuple = image_processing(_a ,return_tensors='pt' ).pixel_values _a, _a : Optional[int] = self.image_processor_tester.get_expected_values(_a ,batched=_a ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def __lowercase ( self : str ): '''simple docstring''' _a : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f: _a : List[str] = json.loads(f.read() ) _a : Optional[Any] = {'image_id': 3_9769, 'annotations': target} # encode them _a : Optional[int] = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) _a : str = image_processing(images=_a ,annotations=_a ,return_tensors='pt' ) # verify pixel values _a : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,_a ) _a : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,_a ,atol=1E-4 ) ) # verify area _a : Dict = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,_a ) ) # verify boxes _a : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,_a ) _a : Optional[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,_a ,atol=1E-3 ) ) # verify image_id _a : str = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,_a ) ) # verify is_crowd _a : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,_a ) ) # verify class_labels _a : Optional[int] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,_a ) ) # verify orig_size _a : List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,_a ) ) # verify size _a : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,_a ) ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f: _a : str = json.loads(f.read() ) _a : str = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} _a : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _a : int = ConditionalDetrImageProcessor(format='coco_panoptic' ) _a : int = image_processing(images=_a ,annotations=_a ,masks_path=_a ,return_tensors='pt' ) # verify pixel values _a : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,_a ) _a : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,_a ,atol=1E-4 ) ) # verify area _a : int = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,_a ) ) # verify boxes _a : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,_a ) _a : List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,_a ,atol=1E-3 ) ) # verify image_id _a : Dict = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,_a ) ) # verify is_crowd _a : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,_a ) ) # verify class_labels _a : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,_a ) ) # verify masks _a : Tuple = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,_a ) # verify orig_size _a : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,_a ) ) # verify size _a : Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,_a ) )
271
'''simple docstring''' from __future__ import annotations __lowerCAmelCase = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] __lowerCAmelCase = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : Optional[int] = [] _a : int = len(__a ) for i in range(__a ): _a : float = -1 for j in range(i + 1 , __a ): if arr[i] < arr[j]: _a : Any = arr[j] break result.append(__a ) return result def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : Tuple = [] for i, outer in enumerate(__a ): _a : float = -1 for inner in arr[i + 1 :]: if outer < inner: _a : Dict = inner break result.append(__a ) return result def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : int = len(__a ) _a : list[float] = [] _a : list[float] = [-1] * arr_size for index in reversed(range(__a ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _a : Dict = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __lowerCAmelCase = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
271
1
"""simple docstring""" import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , **snake_case__ ): """simple docstring""" raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : List[str] = max_length lowerCAmelCase : Union[str, Any] = max_position_embeddings @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = input_ids.shape[-1] lowerCAmelCase : List[str] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ "exceptions, performance degradation, or nothing at all." ) return is_done class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ "with `max_length = start_length + max_new_tokens` instead." , snake_case__ , ) lowerCAmelCase : Any = start_length lowerCAmelCase : Union[str, Any] = max_new_tokens lowerCAmelCase : Union[str, Any] = start_length + max_new_tokens @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , **snake_case__ ): """simple docstring""" return input_ids.shape[-1] >= self.max_length class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Dict = max_time lowerCAmelCase : List[Any] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , **snake_case__ ): """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , **snake_case__ ): """simple docstring""" return any(criteria(snake_case__ , snake_case__ ) for criteria in self ) @property def lowercase__ ( self ): """simple docstring""" for stopping_criterium in self: if isinstance(snake_case__ , snake_case__ ): return stopping_criterium.max_length elif isinstance(snake_case__ , snake_case__ ): return stopping_criterium.max_length return None def a__ ( SCREAMING_SNAKE_CASE : StoppingCriteriaList , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Tuple = stopping_criteria.max_length lowerCAmelCase : Optional[int] = deepcopy(SCREAMING_SNAKE_CASE ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , SCREAMING_SNAKE_CASE ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=SCREAMING_SNAKE_CASE ) ) return new_stopping_criteria
133
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[Any] = tmp_path / "cache" lowerCAmelCase : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : str = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path / "cache" lowerCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Tuple = features.copy() if features else default_expected_features lowerCAmelCase : List[str] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : List[str] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[Any] = tmp_path / "cache" lowerCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Tuple = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = parquet_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = [parquet_path] lowerCAmelCase : Optional[Any] = tmp_path / "cache" lowerCAmelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Optional[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: lowerCAmelCase : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Tuple = tmp_path / "cache" lowerCAmelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Optional[Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Any = tmp_path / "cache" lowerCAmelCase : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : List[Any] = features.copy() if features else default_expected_features lowerCAmelCase : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[int] = ParquetDatasetReader({"train": parquet_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if split: lowerCAmelCase : List[str] = {split: parquet_path} else: lowerCAmelCase : List[str] = "train" lowerCAmelCase : str = {"train": parquet_path, "test": parquet_path} lowerCAmelCase : Optional[int] = tmp_path / "cache" lowerCAmelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : List[str] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Optional[int] = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCAmelCase : List[str] = pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCAmelCase : Union[str, Any] = pf.read() assert dataset.data.table == output_table def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : str = str(shared_datadir / "test_image_rgb.jpg" ) lowerCAmelCase : List[str] = {"image": [image_path]} lowerCAmelCase : str = Features({"image": Image()} ) lowerCAmelCase : Optional[Any] = Dataset.from_dict(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCAmelCase : Any = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCAmelCase : Optional[int] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert get_writer_batch_size(SCREAMING_SNAKE_CASE ) == expected
133
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : str = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A ( __snake_case ): __magic_name__ = '''gpt_neo''' __magic_name__ = ['''past_key_values'''] __magic_name__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , SCREAMING_SNAKE_CASE=50257 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=50256 , SCREAMING_SNAKE_CASE=50256 , **SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" A : Union[str, Any] = vocab_size A : Optional[Any] = max_position_embeddings A : Dict = hidden_size A : Optional[Any] = num_layers A : Tuple = num_heads A : int = intermediate_size A : Optional[Any] = window_size A : List[Any] = activation_function A : Union[str, Any] = resid_dropout A : Any = embed_dropout A : List[Any] = attention_dropout A : str = classifier_dropout A : List[Any] = layer_norm_epsilon A : str = initializer_range A : List[str] = use_cache A : Optional[int] = bos_token_id A : List[Any] = eos_token_id A : int = attention_types A : int = self.expand_attention_types_params(SCREAMING_SNAKE_CASE ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : List[str] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' import torch A : Tuple = input.size() A : Union[str, Any] = len(snake_case__ ) A : List[str] = shape[dimension] A : Union[str, Any] = torch.arange(0 , snake_case__ , snake_case__ ) A : List[str] = torch.div(sizedim - size , snake_case__ , rounding_mode='''floor''' ) + 1 A : Optional[int] = torch.arange(snake_case__ ) + low_indices[:min_length][:, None] A : str = [slice(snake_case__ )] * rank A : List[Any] = indices A : Union[str, Any] = input[s] A : List[str] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' import torch A : List[str] = torch.arange(1 , snake_case__ ) A : Optional[int] = torch.remainder(snake_case__ , snake_case__ ) A : Optional[int] = remainders == 0 A : Optional[Any] = candidates[divisor_indices] A : Optional[int] = torch.max(snake_case__ ) return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='''floor''' ) class A ( __snake_case ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" A : Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction='''inputs''' ) A : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: A : Dict = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return self._config.num_heads def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: """simple docstring""" A : List[str] = super(SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() A : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A, A : Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values A : str = seqlen + 2 A : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A : Any = [ (torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] A : str = common_inputs['''attention_mask'''] if self.use_past: A : Optional[int] = ordered_inputs['''attention_mask'''].dtype A : List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return 13
3
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class UpperCamelCase__( __A ): lowerCAmelCase__ : List[Any] = ['pixel_values'] def __init__( self ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,__UpperCAmelCase = 1 / 2_55 ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: super().__init__(**__UpperCAmelCase ) A__ = size if size is not None else {'shortest_edge': 2_56} A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) A__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} A__ = get_size_dict(__UpperCAmelCase ,param_name='crop_size' ) A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = offset A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: A__ = get_resize_output_image_size(__UpperCAmelCase ,size['shortest_edge'] ,default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: A__ = (size['height'], size['width']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCAmelCase ,size=(size['height'], size['width']) ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> Optional[Any]: A__ = image.astype(np.floataa ) if offset: A__ = image - (scale / 2) return rescale(__UpperCAmelCase ,scale=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: return normalize(__UpperCAmelCase ,mean=__UpperCAmelCase ,std=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. A__ = to_numpy_array(__UpperCAmelCase ) if do_resize: A__ = self.resize(image=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ) if do_center_crop: A__ = self.center_crop(__UpperCAmelCase ,size=__UpperCAmelCase ) if do_rescale: A__ = self.rescale(image=__UpperCAmelCase ,scale=__UpperCAmelCase ,offset=__UpperCAmelCase ) if do_normalize: A__ = self.normalize(image=__UpperCAmelCase ,mean=__UpperCAmelCase ,std=__UpperCAmelCase ) A__ = to_channel_dimension_format(__UpperCAmelCase ,__UpperCAmelCase ) return image def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,**__UpperCAmelCase ,) -> PIL.Image.Image: A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = offset if offset is not None else self.offset A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(__UpperCAmelCase ,param_name='crop_size' ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) A__ = make_batched(__UpperCAmelCase ) A__ = [ [ self._preprocess_image( image=__UpperCAmelCase ,do_resize=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ,do_center_crop=__UpperCAmelCase ,crop_size=__UpperCAmelCase ,do_rescale=__UpperCAmelCase ,rescale_factor=__UpperCAmelCase ,offset=__UpperCAmelCase ,do_normalize=__UpperCAmelCase ,image_mean=__UpperCAmelCase ,image_std=__UpperCAmelCase ,data_format=__UpperCAmelCase ,) for img in video ] for video in videos ] A__ = {'pixel_values': videos} return BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase )
221
0
import os def __lowerCAmelCase (SCREAMING_SNAKE_CASE = "matrix.txt" )-> int: """simple docstring""" with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) as in_file: snake_case_ = in_file.read() snake_case_ = [[int(SCREAMING_SNAKE_CASE ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] snake_case_ = [[0 for cell in row] for row in grid] snake_case_ = len(grid[0] ) snake_case_ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] snake_case_ = grid[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): snake_case_ = grid[0][i] + dp[0][i - 1] for i in range(1 , SCREAMING_SNAKE_CASE ): snake_case_ = grid[i][0] + dp[i - 1][0] for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(1 , SCREAMING_SNAKE_CASE ): snake_case_ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'''{solution() = }''')
267
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" for char in word: snake_case_ = ord(SCREAMING_SNAKE_CASE ) if not _is_chinese_char(SCREAMING_SNAKE_CASE ): return 0 return 1 def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = set() for token in tokens: snake_case_ = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE ) snake_case_ = list(SCREAMING_SNAKE_CASE ) return word_list def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" if not chinese_word_set: return bert_tokens snake_case_ = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) snake_case_ = bert_tokens snake_case_ , snake_case_ = 0, len(SCREAMING_SNAKE_CASE ) while start < end: snake_case_ = True if is_chinese(bert_word[start] ): snake_case_ = min(end - start , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ): snake_case_ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ = '''##''' + bert_word[j] snake_case_ = start + i snake_case_ = False break if single_word: start += 1 return bert_word def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws snake_case_ = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = [] for id in input_ids: snake_case_ = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE ) input_tokens.append(SCREAMING_SNAKE_CASE ) snake_case_ = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE ): if token[:2] == "##": snake_case_ = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ): ref_id.append(SCREAMING_SNAKE_CASE ) ref_ids.append(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) return ref_ids def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: snake_case_ = f.readlines() snake_case_ = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ = LTP(args.ltp ) # faster in GPU device snake_case_ = BertTokenizer.from_pretrained(args.bert ) snake_case_ = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: snake_case_ = [json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) UpperCAmelCase = parser.parse_args() main(args)
267
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Union[str, Any] ="nllb-moe" lowerCamelCase : int =["past_key_values"] lowerCamelCase : str ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , a : Optional[int]=12_81_12 , a : Optional[Any]=10_24 , a : Optional[int]=12 , a : List[Any]=40_96 , a : Optional[int]=16 , a : Dict=12 , a : Optional[Any]=40_96 , a : List[str]=16 , a : Union[str, Any]=0.05 , a : Any=0.05 , a : Tuple=True , a : Any=True , a : Optional[int]="relu" , a : List[str]=10_24 , a : Any=0.1 , a : Any=0.1 , a : str=0.0 , a : Dict=0.02 , a : int=2 , a : Optional[Any]=True , a : Tuple=False , a : int="float32" , a : Tuple=False , a : Tuple=1_28 , a : List[Any]=64 , a : Dict=4 , a : Any=4 , a : Optional[int]=0.0_01 , a : Union[str, Any]=0.0_01 , a : List[str]="all" , a : Any=False , a : Any=False , a : List[Any]=1.0 , a : Dict=0.2 , a : Any=1 , a : List[str]=0 , a : int=2 , a : Dict=False , **a : List[str] , ): """simple docstring""" __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = d_model __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = router_z_loss_coef __lowerCamelCase = router_aux_loss_coef __lowerCamelCase = decoder_sparse_step __lowerCamelCase = encoder_sparse_step __lowerCamelCase = num_experts __lowerCamelCase = expert_capacity __lowerCamelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __lowerCamelCase = router_dtype __lowerCamelCase = router_ignore_padding_tokens __lowerCamelCase = batch_prioritized_routing __lowerCamelCase = second_expert_policy __lowerCamelCase = normalize_router_prob_before_dropping __lowerCamelCase = moe_eval_capacity_token_fraction __lowerCamelCase = moe_token_dropout __lowerCamelCase = output_router_logits super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , )
67
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __A : @staticmethod def lowercase__ ( *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): pass def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : List[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Tuple = np.array(_UpperCAmelCase ) lowerCAmelCase : Dict = npimg.shape return {"hash": hashimage(_UpperCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __A ( unittest.TestCase ): lowerCAmelCase_ : Dict = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase_ : Any = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ): lowerCAmelCase : List[str] = MaskGenerationPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ): pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def lowercase__ ( self : Dict ): pass @slow @require_torch def lowercase__ ( self : str ): lowerCAmelCase : Optional[int] = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) lowerCAmelCase : Union[str, Any] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing lowerCAmelCase : List[str] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(UpperCAmelCase_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_21}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.00_53}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.99_67}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_93}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.99_09}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.98_79}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.98_34}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.97_16}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.96_12}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.95_99}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.95_52}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.95_32}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.95_16}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.94_99}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.94_83}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.94_64}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_43}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_43}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.94_08}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.93_35}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.93_26}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.92_62}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.89_99}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.89_86}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.89_84}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.88_73}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.88_71} ] , ) # fmt: on @require_torch @slow def lowercase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = 'facebook/sam-vit-huge' lowerCAmelCase : str = pipeline('mask-generation' , model=UpperCAmelCase_ ) lowerCAmelCase : int = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowerCAmelCase : Optional[int] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(UpperCAmelCase_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.02_10}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.00_53}, ] , )
138
0
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return 1 / (1 + np.exp(-z )) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return (-y * np.log(UpperCamelCase ) - (1 - y) * np.log(1 - h )).mean() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = np.dot(UpperCamelCase , UpperCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(UpperCamelCase ) ) ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=70000 ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = np.zeros(x.shape[1] ) for iterations in range(UpperCamelCase ): lowerCAmelCase__ : str = np.dot(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = sigmoid_function(UpperCamelCase ) lowerCAmelCase__ : List[str] = np.dot(x.T , h - y ) / y.size lowerCAmelCase__ : List[Any] = theta - alpha * gradient # updating the weights lowerCAmelCase__ : List[Any] = np.dot(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = sigmoid_function(UpperCamelCase ) lowerCAmelCase__ : List[Any] = cost_function(UpperCamelCase , UpperCamelCase ) if iterations % 100 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _lowerCAmelCase = datasets.load_iris() _lowerCAmelCase = iris.data[:, :2] _lowerCAmelCase = (iris.target != 0) * 1 _lowerCAmelCase = 0.1 _lowerCAmelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return sigmoid_function( np.dot(UpperCamelCase , UpperCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((_lowerCAmelCase) , (_lowerCAmelCase)) = (x[:, 0].min(), x[:, 0].max()) ((_lowerCAmelCase) , (_lowerCAmelCase)) = (x[:, 1].min(), x[:, 1].max()) ((_lowerCAmelCase) , (_lowerCAmelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _lowerCAmelCase = np.c_[xxa.ravel(), xxa.ravel()] _lowerCAmelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
184
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowerCAmelCase_( enum.Enum ): '''simple docstring''' __lowercase : Any = 0 __lowercase : List[str] = 1 __lowercase : List[Any] = 2 @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase__ : List[Any] = None if self.model.config.prefix is not None: lowerCAmelCase__ : Optional[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase__ : Optional[int] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self._sanitize_parameters(prefix=__UpperCAmelCase ,**self._forward_params ) lowerCAmelCase__ : int = {**self._preprocess_params, **preprocess_params} lowerCAmelCase__ : Optional[Any] = {**self._forward_params, **forward_params} def UpperCAmelCase_ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Dict: lowerCAmelCase__ : List[Any] = {} if prefix is not None: lowerCAmelCase__ : Any = prefix if prefix: lowerCAmelCase__ : Optional[Any] = self.tokenizer( __UpperCAmelCase ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) lowerCAmelCase__ : int = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" """ [None, 'hole']""" ) lowerCAmelCase__ : int = handle_long_generation preprocess_params.update(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = generate_kwargs lowerCAmelCase__ : Union[str, Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) lowerCAmelCase__ : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) lowerCAmelCase__ : int = ReturnType.TENSORS if return_type is not None: lowerCAmelCase__ : Optional[Any] = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase__ : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase__ : Tuple = self.tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowerCAmelCase__ : Tuple = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*__UpperCAmelCase ,**__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase="" ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> str: lowerCAmelCase__ : List[Any] = self.tokenizer( prefix + prompt_text ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) lowerCAmelCase__ : Optional[int] = prompt_text if handle_long_generation == "hole": lowerCAmelCase__ : Tuple = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase__ : str = generate_kwargs["""max_new_tokens"""] else: lowerCAmelCase__ : List[Any] = generate_kwargs.get("""max_length""" ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase__ : List[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) lowerCAmelCase__ : str = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase__ : Union[str, Any] = inputs["""attention_mask"""][:, -keep_length:] return inputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Tuple = model_inputs["""input_ids"""] lowerCAmelCase__ : Dict = model_inputs.get("""attention_mask""" ,__UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : int = 1 else: lowerCAmelCase__ : str = input_ids.shape[0] lowerCAmelCase__ : List[Any] = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase__ : Union[str, Any] = generate_kwargs.pop("""prefix_length""" ,0 ) if prefix_length > 0: lowerCAmelCase__ : Union[str, Any] = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase__ : Tuple = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase__ : str = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase__ : Optional[int] = self.model.generate(input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : str = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase__ : Dict = generated_sequence.reshape(__UpperCAmelCase ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCAmelCase__ : Any = tf.reshape(__UpperCAmelCase ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=ReturnType.FULL_TEXT ,__UpperCAmelCase=True ) -> str: lowerCAmelCase__ : int = model_outputs["""generated_sequence"""][0] lowerCAmelCase__ : Dict = model_outputs["""input_ids"""] lowerCAmelCase__ : Tuple = model_outputs["""prompt_text"""] lowerCAmelCase__ : Optional[Any] = generated_sequence.numpy().tolist() lowerCAmelCase__ : List[str] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase__ : List[str] = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase__ : Dict = self.tokenizer.decode( __UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase__ : Optional[int] = 0 else: lowerCAmelCase__ : str = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) ) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase__ : Optional[int] = prompt_text + text[prompt_length:] else: lowerCAmelCase__ : List[str] = text[prompt_length:] lowerCAmelCase__ : List[Any] = {"""generated_text""": all_text} records.append(__UpperCAmelCase ) return records
184
1
from ...configuration_utils import PretrainedConfig class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''bert-generation''' def __init__( self , lowercase=5_0_3_5_8 , lowercase=1_0_2_4 , lowercase=2_4 , lowercase=1_6 , lowercase=4_0_9_6 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_1_2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase=2 , lowercase=1 , lowercase="absolute" , lowercase=True , **lowercase , ): """simple docstring""" super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A_ : Any = vocab_size A_ : Any = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : Optional[Any] = hidden_act A_ : Optional[int] = intermediate_size A_ : Dict = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Any = initializer_range A_ : Optional[Any] = layer_norm_eps A_ : Tuple = position_embedding_type A_ : Tuple = use_cache
140
from queue import PriorityQueue from typing import Any import numpy as np def UpperCamelCase ( __lowercase : dict ,__lowercase : str ,__lowercase : set ,__lowercase : set ,__lowercase : dict ,__lowercase : dict ,__lowercase : PriorityQueue ,__lowercase : dict ,__lowercase : float | int ,): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue A_ : List[str] = cst_fwd.get(__lowercase ,np.inf ) A_ : Any = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ : Any = new_cost_f A_ : Optional[int] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ : str = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCamelCase ( __lowercase : str ,__lowercase : str ,__lowercase : dict ,__lowercase : dict ): '''simple docstring''' A_ : List[str] = -1 A_ : List[Any] = set() A_ : Union[str, Any] = set() A_ : int = {source: 0} A_ : List[Any] = {destination: 0} A_ : Dict = {source: None} A_ : Optional[int] = {destination: None} A_ : PriorityQueue[Any] = PriorityQueue() A_ : PriorityQueue[Any] = PriorityQueue() A_ : Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ : List[str] = queue_forward.get() visited_forward.add(__lowercase ) A_ , A_ : Union[str, Any] = queue_backward.get() visited_backward.add(__lowercase ) A_ : int = pass_and_relaxation( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,) A_ : str = pass_and_relaxation( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ : int = shortest_distance return shortest_path_distance _UpperCAmelCase = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } _UpperCAmelCase = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
140
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case :str = logging.get_logger(__name__) __snake_case :List[str] = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Tuple = '''distilbert''' UpperCamelCase__ : Any = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=30_522 , __SCREAMING_SNAKE_CASE : int=512 , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Any=6 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : Dict=768 , __SCREAMING_SNAKE_CASE : List[Any]=4 * 768 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[str]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.2 , __SCREAMING_SNAKE_CASE : str=0 , **__SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' __a = vocab_size __a = max_position_embeddings __a = sinusoidal_pos_embds __a = n_layers __a = n_heads __a = dim __a = hidden_dim __a = dropout __a = attention_dropout __a = activation __a = initializer_range __a = qa_dropout __a = seq_classif_dropout super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_) class _A ( __UpperCAmelCase ): @property def _lowerCamelCase ( self : Dict): '''simple docstring''' if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
361
def __snake_case ( _UpperCAmelCase = 1000000 ): __a = limit + 1 __a = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __a = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'{solution() = }')
131
0
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _UpperCamelCase ( snake_case__ ) -> List[str]: return 1.0 / (1.0 + np.exp(-_outputs )) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: __UpperCAmelCase : List[str] = np.max(_outputs, axis=-1, keepdims=snake_case__ ) __UpperCAmelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=snake_case__ ) class _snake_case ( _lowercase ): lowerCamelCase__: Optional[Any] = "sigmoid" lowerCamelCase__: Dict = "softmax" lowerCamelCase__: Optional[int] = "none" @add_end_docstrings( _lowercase , R"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class _snake_case ( _lowercase ): lowerCamelCase__: List[Any] = False lowerCamelCase__: Any = ClassificationFunction.NONE def __init__( self: Union[str, Any] , **__lowerCamelCase: List[Any] ) -> Optional[int]: super().__init__(**__lowerCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: str="" , **__lowerCamelCase: str ) -> Tuple: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __UpperCAmelCase : Optional[int] = tokenizer_kwargs __UpperCAmelCase : str = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: __UpperCAmelCase : List[Any] = self.model.config.return_all_scores if isinstance(__lowerCamelCase , __lowerCamelCase ) or top_k is None: __UpperCAmelCase : Dict = top_k __UpperCAmelCase : str = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , __lowerCamelCase , ) if return_all_scores: __UpperCAmelCase : Any = None else: __UpperCAmelCase : Union[str, Any] = 1 if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Any = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __UpperCAmelCase : Any = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: Any , *__lowerCamelCase: Dict , **__lowerCamelCase: int ) -> Dict: __UpperCAmelCase : Any = super().__call__(*__lowerCamelCase , **__lowerCamelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __UpperCAmelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] , __lowerCamelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Dict , **__lowerCamelCase: Optional[int] ) -> Dict[str, GenericTensor]: __UpperCAmelCase : Tuple = self.framework if isinstance(__lowerCamelCase , __lowerCamelCase ): return self.tokenizer(**__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) == 1 and isinstance(inputs[0] , __lowerCamelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__lowerCamelCase , **__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Optional[Any] ) -> List[Any]: return self.model(**__lowerCamelCase ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Tuple , __lowerCamelCase: List[str]=None , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: int=True ) -> Dict: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __UpperCAmelCase : Union[str, Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __UpperCAmelCase : str = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: __UpperCAmelCase : Any = self.model.config.function_to_apply else: __UpperCAmelCase : Optional[Any] = ClassificationFunction.NONE __UpperCAmelCase : Tuple = model_outputs["logits"][0] __UpperCAmelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __UpperCAmelCase : Optional[Any] = sigmoid(__lowerCamelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: __UpperCAmelCase : Any = softmax(__lowerCamelCase ) elif function_to_apply == ClassificationFunction.NONE: __UpperCAmelCase : str = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __UpperCAmelCase : int = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCamelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCamelCase : x["score"] , reverse=__lowerCamelCase ) if top_k is not None: __UpperCAmelCase : Tuple = dict_scores[:top_k] return dict_scores
157
from math import sqrt def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Union[str, Any] = 0 for i in range(1, int(sqrt(snake_case__ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case__ ): total += i + n // i elif i == sqrt(snake_case__ ): total += i return total - n def _UpperCamelCase ( snake_case__ = 1_0000 ) -> int: __UpperCAmelCase : List[str] = sum( i for i in range(1, snake_case__ ) if sum_of_divisors(sum_of_divisors(snake_case__ ) ) == i and sum_of_divisors(snake_case__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
157
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase : Any = logging.get_logger(__name__) _lowercase : List[Any] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''deformable_detr''' UpperCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Any , lowercase_ : Tuple=True , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=3 , lowercase_ : Any=300 , lowercase_ : Tuple=1024 , lowercase_ : Optional[int]=6 , lowercase_ : List[str]=1024 , lowercase_ : Dict=8 , lowercase_ : Dict=6 , lowercase_ : Tuple=1024 , lowercase_ : Optional[int]=8 , lowercase_ : Dict=0.0 , lowercase_ : str=True , lowercase_ : Union[str, Any]="relu" , lowercase_ : List[str]=256 , lowercase_ : List[str]=0.1 , lowercase_ : Any=0.0 , lowercase_ : Any=0.0 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Tuple=1.0 , lowercase_ : Dict=True , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple="sine" , lowercase_ : Dict="resnet50" , lowercase_ : Union[str, Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : List[str]=4 , lowercase_ : List[Any]=4 , lowercase_ : Union[str, Any]=4 , lowercase_ : Union[str, Any]=False , lowercase_ : List[Any]=300 , lowercase_ : Any=False , lowercase_ : Any=1 , lowercase_ : Union[str, Any]=5 , lowercase_ : List[Any]=2 , lowercase_ : List[str]=1 , lowercase_ : List[Any]=1 , lowercase_ : Optional[int]=5 , lowercase_ : List[str]=2 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[Any]=0.25 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase_ : Dict = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowercase_ : str = backbone_config.get("""model_type""" ) lowercase_ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase_ : Union[str, Any] = config_class.from_dict(lowercase_ ) lowercase_ : Tuple = use_timm_backbone lowercase_ : Dict = backbone_config lowercase_ : str = num_channels lowercase_ : List[Any] = num_queries lowercase_ : str = max_position_embeddings lowercase_ : Union[str, Any] = d_model lowercase_ : List[Any] = encoder_ffn_dim lowercase_ : Dict = encoder_layers lowercase_ : Tuple = encoder_attention_heads lowercase_ : Any = decoder_ffn_dim lowercase_ : int = decoder_layers lowercase_ : Optional[Any] = decoder_attention_heads lowercase_ : List[Any] = dropout lowercase_ : Dict = attention_dropout lowercase_ : Optional[int] = activation_dropout lowercase_ : int = activation_function lowercase_ : Union[str, Any] = init_std lowercase_ : Optional[Any] = init_xavier_std lowercase_ : Union[str, Any] = encoder_layerdrop lowercase_ : Optional[int] = auxiliary_loss lowercase_ : Optional[Any] = position_embedding_type lowercase_ : str = backbone lowercase_ : Any = use_pretrained_backbone lowercase_ : Optional[int] = dilation # deformable attributes lowercase_ : List[Any] = num_feature_levels lowercase_ : Tuple = encoder_n_points lowercase_ : Optional[Any] = decoder_n_points lowercase_ : Optional[int] = two_stage lowercase_ : Union[str, Any] = two_stage_num_proposals lowercase_ : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowercase_ : str = class_cost lowercase_ : Optional[Any] = bbox_cost lowercase_ : str = giou_cost # Loss coefficients lowercase_ : str = mask_loss_coefficient lowercase_ : Union[str, Any] = dice_loss_coefficient lowercase_ : Optional[Any] = bbox_loss_coefficient lowercase_ : Union[str, Any] = giou_loss_coefficient lowercase_ : str = eos_coefficient lowercase_ : List[Any] = focal_alpha lowercase_ : Union[str, Any] = disable_custom_kernels super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self : Any ): return self.d_model def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase_ : str = self.backbone_config.to_dict() lowercase_ : Dict = self.__class__.model_type return output
353
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
0
from __future__ import annotations def a ( snake_case__: list , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' lowercase_ = [] lowercase_ , lowercase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowercase_ = result + left + right return input_list def a ( snake_case__: list ): '''simple docstring''' if len(snake_case__ ) <= 1: return input_list lowercase_ = list(snake_case__ ) # iteration for two-way merging lowercase_ = 2 while p <= len(snake_case__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case__ ) , snake_case__ ): lowercase_ = i lowercase_ = i + p - 1 lowercase_ = (low + high + 1) // 2 lowercase_ = merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # final merge of last two parts if p * 2 >= len(snake_case__ ): lowercase_ = i lowercase_ = merge(snake_case__ , 0 , snake_case__ , len(snake_case__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() if user_input == "": __a = [] else: __a = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
30
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.prepare(UpperCAmelCase__ ) try: pickle.loads(pickle.dumps(UpperCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
4
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' UpperCamelCase_ : str = '''conditional_detr''' UpperCamelCase_ : Tuple = ['''past_key_values'''] UpperCamelCase_ : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : str=3_00 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=6 , SCREAMING_SNAKE_CASE_ : Any=20_48 , SCREAMING_SNAKE_CASE_ : str=8 , SCREAMING_SNAKE_CASE_ : Tuple=6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE_ : Any=8 , SCREAMING_SNAKE_CASE_ : Dict=0.0 , SCREAMING_SNAKE_CASE_ : Dict=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]="relu" , SCREAMING_SNAKE_CASE_ : Any=2_56 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Dict=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : List[str]=1.0 , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Optional[Any]="sine" , SCREAMING_SNAKE_CASE_ : int="resnet50" , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : int=1 , SCREAMING_SNAKE_CASE_ : Any=2 , SCREAMING_SNAKE_CASE_ : Tuple=5 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict=0.25 , **SCREAMING_SNAKE_CASE_ : Any , ) -> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A: Union[str, Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__snake_case , __snake_case ): A: List[str] = backbone_config.get('''model_type''' ) A: int = CONFIG_MAPPING[backbone_model_type] A: Union[str, Any] = config_class.from_dict(__snake_case ) A: List[Any] = use_timm_backbone A: Dict = backbone_config A: str = num_channels A: Union[str, Any] = num_queries A: Tuple = d_model A: Dict = encoder_ffn_dim A: Optional[Any] = encoder_layers A: Union[str, Any] = encoder_attention_heads A: str = decoder_ffn_dim A: Any = decoder_layers A: List[str] = decoder_attention_heads A: Optional[int] = dropout A: List[Any] = attention_dropout A: str = activation_dropout A: Optional[int] = activation_function A: Tuple = init_std A: Optional[Any] = init_xavier_std A: str = encoder_layerdrop A: Union[str, Any] = decoder_layerdrop A: List[Any] = encoder_layers A: Dict = auxiliary_loss A: List[str] = position_embedding_type A: Dict = backbone A: int = use_pretrained_backbone A: Optional[Any] = dilation # Hungarian matcher A: Optional[Any] = class_cost A: List[str] = bbox_cost A: Optional[int] = giou_cost # Loss coefficients A: List[Any] = mask_loss_coefficient A: Optional[int] = dice_loss_coefficient A: Dict = cls_loss_coefficient A: List[str] = bbox_loss_coefficient A: List[str] = giou_loss_coefficient A: Dict = focal_alpha super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def _snake_case ( self : Dict ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ) -> int: '''simple docstring''' return self.d_model def _snake_case ( self : List[str] ) -> Optional[int]: '''simple docstring''' A: str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A: Union[str, Any] = self.backbone_config.to_dict() A: List[str] = self.__class__.model_type return output class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' UpperCamelCase_ : str = version.parse("""1.11""" ) @property def _snake_case ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _snake_case ( self : int ) -> float: '''simple docstring''' return 1E-5 @property def _snake_case ( self : Any ) -> int: '''simple docstring''' return 12
371
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = DebertaTokenizer UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = DebertaTokenizerFast def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A: Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A: int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: Union[str, Any] = {'''unk_token''': '''[UNK]'''} A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = '''lower newer''' A: str = '''lower newer''' return input_text, output_text def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: str = self.get_tokenizer() A: Any = '''lower newer''' A: Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokens + [tokenizer.unk_token] A: int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: str = self.get_tokenizer() A: List[str] = tokenizer('''Hello''' , '''World''' ) A: Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Any = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A: List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A: Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: Any = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for seq in encoding['''input_ids''']] # fmt: off A: Any = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A: Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE_ ) for expected, decoded in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' import requests lowerCamelCase = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(f"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
166
'''simple docstring''' from scipy.stats import spearmanr import datasets lowerCamelCase = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowerCamelCase = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowerCamelCase = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : int=False): '''simple docstring''' __lowercase =spearmanr(_lowerCAmelCase , _lowerCAmelCase) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
166
1
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _lowercase : List[str] =0B10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _lowercase : Dict =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case__ : """simple docstring""" def __init__( self ) -> Dict: """simple docstring""" a__ : Union[str, Any] = WATERMARK_BITS a__ : Union[str, Any] = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" if images.shape[-1] < 2_5_6: return images a__ : List[str] = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a__ : Any = [self.encoder.encode(__lowercase , """dwtDct""" ) for image in images] a__ : Any = torch.from_numpy(np.array(__lowercase ) ).permute(0 , 3 , 1 , 2 ) a__ : int = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 ) return images
266
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowercase : Union[str, Any] =logging.get_logger(__name__) class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , **__lowercase ) -> None: """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
266
1
import math import sys def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = '' try: with open(__SCREAMING_SNAKE_CASE , 'rb' ) as binary_file: lowercase = binary_file.read() for dat in data: lowercase = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = {'0': '0', '1': '1'} lowercase , lowercase = '', '' lowercase = len(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase = lexicon[curr_string] result += last_match_id lowercase = last_match_id + '0' if math.loga(__SCREAMING_SNAKE_CASE ).is_integer(): lowercase = {} for curr_key in list(__SCREAMING_SNAKE_CASE ): lowercase = lexicon.pop(__SCREAMING_SNAKE_CASE ) lowercase = new_lex lowercase = last_match_id + '1' index += 1 lowercase = '' return result def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = 8 try: with open(__SCREAMING_SNAKE_CASE , 'wb' ) as opened_file: lowercase = [ to_write[i : i + byte_length] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase = data_bits[counter:] lowercase = data_bits[counter + 1 :] return data_bits def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = read_file_binary(__SCREAMING_SNAKE_CASE ) lowercase = remove_prefix(__SCREAMING_SNAKE_CASE ) lowercase = decompress_data(__SCREAMING_SNAKE_CASE ) write_file_binary(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
195
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class A_ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): return None class A_ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): return None class A_ ( unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Tuple = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , 'tf' , 12 , **snake_case ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , 'pt' , 12 , **snake_case ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import BertModel lowercase = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(snake_case ) ) vocab_file.flush() lowercase = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase = BertModel(BertConfig(vocab_size=len(snake_case ) ) ) model.save_pretrained(snake_case ) self._test_export(snake_case , 'pt' , 12 , snake_case ) @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase = self._test_export(snake_case , 'tf' , 12 , **snake_case ) lowercase = quantize(Path(snake_case ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase = self._test_export(snake_case , 'pt' , 12 , **snake_case ) lowercase = quantize(snake_case ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case=None , **snake_case ): try: # Compute path with TemporaryDirectory() as tempdir: lowercase = Path(snake_case ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case ) return path except Exception as e: self.fail(snake_case ) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import BertModel lowercase = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(snake_case , snake_case , 'pt' ) @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import TFBertModel lowercase = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(snake_case , snake_case , 'tf' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = FeatureExtractionPipeline(snake_case , snake_case ) lowercase = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase , lowercase , lowercase , lowercase = infer_shapes(snake_case , snake_case ) # Assert all variables are present self.assertEqual(len(snake_case ) , len(snake_case ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , snake_case ) self.assertSequenceEqual(variable_names[3:] , snake_case ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase , lowercase = ensure_valid_input(FuncContiguousArgs() , snake_case , snake_case ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(snake_case ) , 3 ) # Should have exactly the same input names self.assertEqual(set(snake_case ) , set(snake_case ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(snake_case , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase , lowercase = ensure_valid_input(FuncNonContiguousArgs() , snake_case , snake_case ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(snake_case ) , 1 ) self.assertEqual(len(snake_case ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
195
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor SCREAMING_SNAKE_CASE__:int = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): def __init__( self , *lowerCamelCase , **lowerCamelCase ): warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
360
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case__ ( snake_case_ ): _snake_case : UNetaDModel _snake_case : KarrasVeScheduler def __init__( self , lowerCamelCase , lowerCamelCase ): super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self , lowerCamelCase = 1 , lowerCamelCase = 50 , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , **lowerCamelCase , ): __a = self.unet.config.sample_size __a = (batch_size, 3, img_size, img_size) __a = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __a = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper __a = self.scheduler.schedule[t] __a = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __a , __a = self.scheduler.add_noise_to_input(lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __a = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __a = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __a = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample __a = self.scheduler.step_correct( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , step_output.prev_sample , step_output["derivative"] , ) __a = step_output.prev_sample __a = (sample / 2 + 0.5).clamp(0 , 1 ) __a = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
268
0
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str ="data2vec-audio" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__="gelu" , snake_case__=(512, 512, 512, 512, 512, 512, 512) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=16 , snake_case__=19 , snake_case__=5 , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="sum" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=(512, 512, 512, 512, 1_500) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=512 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) lowerCAmelCase : int = hidden_size lowerCAmelCase : Tuple = feat_extract_activation lowerCAmelCase : Any = list(snake_case__ ) lowerCAmelCase : List[Any] = list(snake_case__ ) lowerCAmelCase : Dict = list(snake_case__ ) lowerCAmelCase : List[Any] = conv_bias lowerCAmelCase : Any = num_conv_pos_embeddings lowerCAmelCase : List[str] = num_conv_pos_embedding_groups lowerCAmelCase : List[str] = conv_pos_kernel_size lowerCAmelCase : Tuple = len(self.conv_dim ) lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Optional[int] = hidden_dropout lowerCAmelCase : Optional[int] = attention_dropout lowerCAmelCase : Tuple = activation_dropout lowerCAmelCase : Any = feat_proj_dropout lowerCAmelCase : List[str] = final_dropout lowerCAmelCase : Optional[Any] = layerdrop lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : str = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase : int = mask_time_prob lowerCAmelCase : List[Any] = mask_time_length lowerCAmelCase : int = mask_time_min_masks lowerCAmelCase : Any = mask_feature_prob lowerCAmelCase : List[Any] = mask_feature_length lowerCAmelCase : Optional[Any] = mask_feature_min_masks # ctc loss lowerCAmelCase : Dict = ctc_loss_reduction lowerCAmelCase : Tuple = ctc_zero_infinity # adapter lowerCAmelCase : int = add_adapter lowerCAmelCase : Dict = adapter_kernel_size lowerCAmelCase : Tuple = adapter_stride lowerCAmelCase : Tuple = num_adapter_layers lowerCAmelCase : Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase : List[Any] = list(snake_case__ ) lowerCAmelCase : Optional[int] = list(snake_case__ ) lowerCAmelCase : List[str] = list(snake_case__ ) lowerCAmelCase : Dict = xvector_output_dim @property def lowercase__ ( self ): """simple docstring""" return math.prod(self.conv_stride )
108
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : str =BigBirdTokenizer a : Union[str, Any] =BigBirdTokenizerFast a : Tuple =True a : Any =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : str = self.tokenizer_class(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "<s>" lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(snake_case__ ) , 1_004 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowercase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase : Tuple = self.get_tokenizer() lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() lowerCAmelCase : Tuple = "I was born in 92000, and this is falsé." lowerCAmelCase : Optional[int] = tokenizer.tokenize(snake_case__ ) lowerCAmelCase : int = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) lowerCAmelCase : int = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = self.get_rust_tokenizer() lowerCAmelCase : Tuple = tokenizer.encode(snake_case__ ) lowerCAmelCase : List[Any] = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = BigBirdTokenizer(snake_case__ , keep_accents=snake_case__ ) lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase : str = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase__ ( self ): """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "Hello World!" lowerCAmelCase : Any = [65, 18_536, 2_260, 101, 66] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off lowerCAmelCase : List[str] = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowerCAmelCase : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase : int = " ".join(snake_case__ ) lowerCAmelCase : Dict = self.big_tokenizer.encode_plus(snake_case__ , return_tensors="pt" , return_token_type_ids=snake_case__ ) lowerCAmelCase : Any = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=snake_case__ ) lowerCAmelCase : str = BigBirdConfig(attention_type="original_full" ) lowerCAmelCase : Any = BigBirdModel(snake_case__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case__ ) model(**snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) lowerCAmelCase : Union[str, Any] = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = {"input_ids": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
108
1
"""simple docstring""" from datetime import datetime as dt import os from github import Github A__ : Tuple = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def _snake_case ( ) -> Any: lowerCamelCase_ : Union[str, Any] =Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase_ : Optional[Any] =g.get_repo("huggingface/transformers" ) lowerCamelCase_ : Optional[int] =repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase_ : int =sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase__ : i.created_at , reverse=lowerCamelCase__ ) lowerCamelCase_ : int =comments[0] if len(lowerCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
209
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ) -> Tuple: lowerCamelCase_ : Optional[int] =ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCamelCase__ ) lowerCamelCase_ : Optional[int] =parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCamelCase__ ) env_command_parser(subparsers=lowerCamelCase__ ) launch_command_parser(subparsers=lowerCamelCase__ ) tpu_command_parser(subparsers=lowerCamelCase__ ) test_command_parser(subparsers=lowerCamelCase__ ) # Let's go lowerCamelCase_ : int =parser.parse_args() if not hasattr(lowerCamelCase__ , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCamelCase__ ) if __name__ == "__main__": main()
209
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if len(__lowercase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) A: Any = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
import numpy # List of input, output pairs _UpperCAmelCase = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _UpperCAmelCase = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _UpperCAmelCase = [2, 4, 1, 5] _UpperCAmelCase = len(train_data) _UpperCAmelCase = 0.009 def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCamelCase_ , UpperCamelCase_ ) - output( UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = 0 for i in range(len(UpperCamelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=m ) -> Dict: UpperCamelCase_ = 0 for i in range(UpperCamelCase_ ): if index == -1: summation_value += _error(UpperCamelCase_ ) else: summation_value += _error(UpperCamelCase_ ) * train_data[i][0][index] return summation_value def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = summation_of_cost_derivative(UpperCamelCase_ , UpperCamelCase_ ) / m return cost_derivative_value def lowerCAmelCase_ ( ) -> int: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_ = 0.00_00_02 UpperCamelCase_ = 0 UpperCamelCase_ = 0 while True: j += 1 UpperCamelCase_ = [0, 0, 0, 0] for i in range(0 , len(UpperCamelCase_ ) ): UpperCamelCase_ = get_cost_derivative(i - 1 ) UpperCamelCase_ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCamelCase_ , UpperCamelCase_ , atol=UpperCamelCase_ , rtol=UpperCamelCase_ , ): break UpperCamelCase_ = temp_parameter_vector print(("Number of iterations:", j) ) def lowerCAmelCase_ ( ) -> Tuple: for i in range(len(UpperCamelCase_ ) ): print(("Actual output value:", output(UpperCamelCase_ , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(UpperCamelCase_ , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
328
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
1
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil lowercase__ = 100 lowercase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowercase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def __a ( _SCREAMING_SNAKE_CASE ) ->set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} a__: set[int] = set() a__: int a__: int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __a ( _SCREAMING_SNAKE_CASE = 5000 ) ->int | None: for number_to_partition in range(1 , _SCREAMING_SNAKE_CASE ): if len(partition(_SCREAMING_SNAKE_CASE ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
290
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( __lowerCAmelCase ): a__ = 42 a__ = jnp.floataa a__ = True def lowerCamelCase_ ( self) -> int: '''simple docstring''' super().setup() a__: int = nn.Dense(5 , dtype=self.dtype) def __call__( self , *lowercase , **lowercase) -> Dict: '''simple docstring''' a__: Dict = super().__call__(*lowercase , **lowercase) a__: str = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class __snake_case ( __lowerCAmelCase ): a__ = FlaxBigBirdForNaturalQuestionsModule def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: def cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): a__: Any = logits.shape[-1] a__: List[Any] = (labels[..., None] == jnp.arange(_SCREAMING_SNAKE_CASE )[None]).astype('f4' ) a__: List[str] = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) a__: Dict = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: a__: str = reduction(_SCREAMING_SNAKE_CASE ) return loss a__: Tuple = partial(_SCREAMING_SNAKE_CASE , reduction=jnp.mean ) a__: List[str] = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Union[str, Any] = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Any = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : a__ = "google/bigbird-roberta-base" a__ = 3000 a__ = 1_0500 a__ = 128 a__ = 3 a__ = 1 a__ = 5 # tx_args a__ = 3e-5 a__ = 0.0 a__ = 2_0000 a__ = 0.0095 a__ = "bigbird-roberta-natural-questions" a__ = "training-expt" a__ = "data/nq-training.jsonl" a__ = "data/nq-validation.jsonl" def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=lowercase) a__: str = os.path.join(self.base_dir , self.save_dir) a__: List[str] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : a__ = 42 a__ = 4096 # no dynamic padding on TPUs def __call__( self , lowercase) -> List[Any]: '''simple docstring''' a__: int = self.collate_fn(lowercase) a__: Optional[int] = jax.tree_util.tree_map(lowercase , lowercase) return batch def lowerCamelCase_ ( self , lowercase) -> Dict: '''simple docstring''' a__ , a__: Dict = self.fetch_inputs(features['input_ids']) a__: List[Any] = { 'input_ids': jnp.array(lowercase , dtype=jnp.intaa), 'attention_mask': jnp.array(lowercase , dtype=jnp.intaa), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa), } return batch def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' a__: List[Any] = [self._fetch_inputs(lowercase) for ids in input_ids] return zip(*lowercase) def lowerCamelCase_ ( self , lowercase) -> Dict: '''simple docstring''' a__: Union[str, Any] = [1 for _ in range(len(lowercase))] while len(lowercase) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: if seed is not None: a__: int = dataset.shuffle(seed=_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) // batch_size ): a__: Union[str, Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_SCREAMING_SNAKE_CASE ) @partial(jax.pmap , axis_name='batch' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ->Any: def loss_fn(_SCREAMING_SNAKE_CASE ): a__: str = model_inputs.pop('start_labels' ) a__: Dict = model_inputs.pop('end_labels' ) a__: Optional[int] = model_inputs.pop('pooled_labels' ) a__: Optional[Any] = state.apply_fn(**_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , dropout_rng=_SCREAMING_SNAKE_CASE , train=_SCREAMING_SNAKE_CASE ) a__ , a__ , a__: Optional[int] = outputs return state.loss_fn( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) a__ , a__: Union[str, Any] = jax.random.split(_SCREAMING_SNAKE_CASE ) a__: List[Any] = jax.value_and_grad(_SCREAMING_SNAKE_CASE ) a__ , a__: str = grad_fn(state.params ) a__: Optional[int] = jax.lax.pmean({'loss': loss} , axis_name='batch' ) a__: int = jax.lax.pmean(_SCREAMING_SNAKE_CASE , 'batch' ) a__: Union[str, Any] = state.apply_gradients(grads=_SCREAMING_SNAKE_CASE ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def __a ( _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: Optional[int] = model_inputs.pop('start_labels' ) a__: int = model_inputs.pop('end_labels' ) a__: Dict = model_inputs.pop('pooled_labels' ) a__: Union[str, Any] = state.apply_fn(**_SCREAMING_SNAKE_CASE , params=state.params , train=_SCREAMING_SNAKE_CASE ) a__ , a__ , a__: int = outputs a__: Optional[int] = state.loss_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Tuple = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class __snake_case ( train_state.TrainState ): a__ = struct.field(pytree_node=__lowerCAmelCase ) @dataclass class __snake_case : a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = None def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase=None) -> Optional[int]: '''simple docstring''' a__: Dict = model.params a__: Any = TrainState.create( apply_fn=model.__call__ , params=lowercase , tx=lowercase , loss_fn=lowercase , ) if ckpt_dir is not None: a__ , a__ , a__ , a__ , a__: Any = restore_checkpoint(lowercase , lowercase) a__: Any = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } a__ , a__: str = build_tx(**lowercase) a__: Optional[Any] = train_state.TrainState( step=lowercase , apply_fn=model.__call__ , params=lowercase , tx=lowercase , opt_state=lowercase , ) a__: int = args a__: Union[str, Any] = data_collator a__: Any = lr a__: Dict = params a__: Tuple = jax_utils.replicate(lowercase) return state def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__: int = self.args a__: str = len(lowercase) // args.batch_size a__: Tuple = jax.random.PRNGKey(0) a__: List[Any] = jax.random.split(lowercase , jax.device_count()) for epoch in range(args.max_epochs): a__: str = jnp.array(0 , dtype=jnp.floataa) a__: Tuple = get_batched_dataset(lowercase , args.batch_size , seed=lowercase) a__: Optional[int] = 0 for batch in tqdm(lowercase , total=lowercase , desc=f'Running EPOCH-{epoch}'): a__: List[str] = self.data_collator(lowercase) a__ , a__ , a__: int = self.train_step_fn(lowercase , lowercase , **lowercase) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 if i % args.logging_steps == 0: a__: List[Any] = jax_utils.unreplicate(state.step) a__: Tuple = running_loss.item() / i a__: Optional[Any] = self.scheduler_fn(state_step - 1) a__: List[Any] = self.evaluate(lowercase , lowercase) a__: List[str] = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(lowercase)) self.logger.log(lowercase , commit=lowercase) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=lowercase) def lowerCamelCase_ ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__: Tuple = get_batched_dataset(lowercase , self.args.batch_size) a__: Dict = len(lowercase) // self.args.batch_size a__: Tuple = jnp.array(0 , dtype=jnp.floataa) a__: List[Any] = 0 for batch in tqdm(lowercase , total=lowercase , desc='Evaluating ... '): a__: str = self.data_collator(lowercase) a__: List[str] = self.val_step_fn(lowercase , **lowercase) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 return running_loss / i def lowerCamelCase_ ( self , lowercase , lowercase) -> Any: '''simple docstring''' a__: List[Any] = jax_utils.unreplicate(lowercase) print(f'SAVING CHECKPOINT IN {save_dir}' , end=' ... ') self.model_save_fn(lowercase , params=state.params) with open(os.path.join(lowercase , 'opt_state.msgpack') , 'wb') as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(lowercase , 'args.joblib')) joblib.dump(self.data_collator , os.path.join(lowercase , 'data_collator.joblib')) with open(os.path.join(lowercase , 'training_state.json') , 'w') as f: json.dump({'step': state.step.item()} , lowercase) print('DONE') def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'flax_model.msgpack' ) , 'rb' ) as f: a__: int = from_bytes(state.params , f.read() ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'opt_state.msgpack' ) , 'rb' ) as f: a__: Optional[Any] = from_bytes(state.opt_state , f.read() ) a__: Optional[Any] = joblib.load(os.path.join(_SCREAMING_SNAKE_CASE , 'args.joblib' ) ) a__: int = joblib.load(os.path.join(_SCREAMING_SNAKE_CASE , 'data_collator.joblib' ) ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'training_state.json' ) , 'r' ) as f: a__: Any = json.load(_SCREAMING_SNAKE_CASE ) a__: Optional[Any] = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: a__: str = num_train_steps - warmup_steps a__: str = optax.linear_schedule(init_value=_SCREAMING_SNAKE_CASE , end_value=_SCREAMING_SNAKE_CASE , transition_steps=_SCREAMING_SNAKE_CASE ) a__: List[Any] = optax.linear_schedule(init_value=_SCREAMING_SNAKE_CASE , end_value=1e-7 , transition_steps=_SCREAMING_SNAKE_CASE ) a__: int = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: def weight_decay_mask(_SCREAMING_SNAKE_CASE ): a__: List[Any] = traverse_util.flatten_dict(_SCREAMING_SNAKE_CASE ) a__: List[str] = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(_SCREAMING_SNAKE_CASE ) a__: List[str] = scheduler_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Any = optax.adamw(learning_rate=_SCREAMING_SNAKE_CASE , weight_decay=_SCREAMING_SNAKE_CASE , mask=_SCREAMING_SNAKE_CASE ) return tx, lr
290
1
def UpperCAmelCase ( UpperCAmelCase = 4000000 ) -> int: snake_case_ = [0, 1] snake_case_ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 snake_case_ = 0 for j in range(len(__A ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): __lowercase = LongformerTokenizer __lowercase = True __lowercase = LongformerTokenizerFast __lowercase = True def UpperCAmelCase_ ( self :Optional[Any] )-> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] A__ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) A__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] A__ = {"unk_token": "<unk>"} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def UpperCAmelCase_ ( self :Tuple , **lowercase_ :List[Any] )-> Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self :int , **lowercase_ :Tuple )-> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self :Any , lowercase_ :Optional[int] )-> Tuple: A__ = "lower newer" A__ = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self :Any )-> Tuple: A__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ = "lower newer" A__ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] A__ = tokenizer.tokenize(lowercase_ ) # , add_prefix_space=True) self.assertListEqual(lowercase_ , lowercase_ ) A__ = tokens + [tokenizer.unk_token] A__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self :str )-> List[str]: A__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=lowercase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=lowercase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCAmelCase_ ( self :List[Any] )-> Dict: A__ = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) A__ = tokenizer.encode("sequence builders" , add_special_tokens=lowercase_ ) A__ = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase_ ) A__ = tokenizer.encode( "sequence builders" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) A__ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: A__ = self.get_tokenizer() A__ = "Encode this sequence." A__ = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments A__ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) A__ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase_ , lowercase_ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) A__ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) A__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) # Testing spaces after special tokens A__ = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ )} ) # mask token has a left space A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) A__ = "Encode <mask> sequence" A__ = "Encode <mask>sequence" A__ = tokenizer.encode(lowercase_ ) A__ = encoded.index(lowercase_ ) A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase_ , lowercase_ ) A__ = tokenizer.encode(lowercase_ ) A__ = encoded.index(lowercase_ ) A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self :Any )-> Optional[int]: pass def UpperCAmelCase_ ( self :List[str] )-> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) A__ = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) A__ = "A, <mask> AllenNLP sentence." A__ = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) A__ = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) A__ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) A__ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def UpperCAmelCase_ ( self :int )-> Optional[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): A__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) A__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , lowercase_ ) self.assertEqual(post_processor_state["add_prefix_space"] , lowercase_ ) self.assertEqual(post_processor_state["trim_offsets"] , lowercase_ ) def UpperCAmelCase_ ( self :Any )-> Dict: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` A__ = F"{text_of_1_token} {text_of_1_token}" A__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) A__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) A__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) A__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) A__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) A__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) A__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) A__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) A__ = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) A__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) A__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) A__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) A__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) A__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , )
237
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : Optional[int] =16 __lowerCAmelCase : Tuple =32 def UpperCamelCase ( _lowerCamelCase : Accelerator , _lowerCamelCase : DatasetDict , _lowerCamelCase : List[int] , _lowerCamelCase : List[int] , _lowerCamelCase : int = 16 ): A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = DatasetDict( { "train": dataset["train"].select(_lowerCamelCase ), "validation": dataset["train"].select(_lowerCamelCase ), "test": dataset["validation"], } ) def tokenize_function(_lowerCamelCase : Dict ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) A__ = DataLoader( tokenized_datasets["test"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : str ): # New Code # A__ = [] # Download the dataset A__ = load_dataset("glue" , "mrpc" ) # Create our splits A__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(_lowerCamelCase ) # New Code # # Create our folds: A__ = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) A__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowerCamelCase ): A__, A__, A__ = get_fold_dataloaders( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__, A__, A__, A__, A__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**_lowerCamelCase ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_lowerCamelCase ) A__ = outputs.logits.argmax(dim=-1 ) A__, A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) # New Code # # We also run predictions on the test set at the very end A__ = [] for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_lowerCamelCase ) A__ = outputs.logits A__, A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowerCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ = torch.cat(_lowerCamelCase , dim=0 ) A__ = torch.stack(_lowerCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ = metric.compute(predictions=_lowerCamelCase , references=_lowerCamelCase ) accelerator.print("Average test metrics from all folds:" , _lowerCamelCase ) def UpperCamelCase ( ): A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=_lowerCamelCase , default=3 , help="The number of splits to perform across the dataset" ) A__ = parser.parse_args() A__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
237
1
__lowerCamelCase : Optional[int] = """Input must be a string of 8 numbers plus letter""" __lowerCamelCase : Any = """TRWAGMYFPDXBNJZSQVHLCKE""" def SCREAMING_SNAKE_CASE ( snake_case_ : str ): if not isinstance(snake_case_ , snake_case_ ): snake_case__ : str = F'''Expected string as input, found {type(snake_case_ ).__name__}''' raise TypeError(snake_case_ ) snake_case__ : Tuple = spanish_id.replace("-" , "" ).upper() if len(snake_case_ ) != 9: raise ValueError(snake_case_ ) try: snake_case__ : Union[str, Any] = int(spanish_id_clean[0:8] ) snake_case__ : Tuple = spanish_id_clean[8] except ValueError as ex: raise ValueError(snake_case_ ) from ex if letter.isdigit(): raise ValueError(snake_case_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
286
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Any = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
286
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase : Dict = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
280
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase ( self, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : Dict = {} if top_k is not None: _lowercase : List[str] = top_k return {}, {}, postprocess_params def __call__( self, lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = load_image(lowerCamelCase) _lowercase : List[str] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) return model_inputs def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.model(**lowerCamelCase) return model_outputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=5) -> Dict: """simple docstring""" if top_k > self.model.config.num_labels: _lowercase : List[Any] = self.model.config.num_labels if self.framework == "pt": _lowercase : int = model_outputs.logits.softmax(-1)[0] _lowercase , _lowercase : Union[str, Any] = probs.topk(lowerCamelCase) elif self.framework == "tf": _lowercase : int = stable_softmax(model_outputs.logits, axis=-1)[0] _lowercase : List[Any] = tf.math.top_k(lowerCamelCase, k=lowerCamelCase) _lowercase , _lowercase : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : str = scores.tolist() _lowercase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase, lowerCamelCase)]
21
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __UpperCAmelCase :Union[str, Any] = logging.get_logger(__name__) class a : """simple docstring""" SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : str = None @staticmethod def lowerCamelCase__ ( ) -> str: raise NotImplementedError def lowerCamelCase__ ( self : Optional[int] , snake_case : List[str] , snake_case : Optional[Any] , snake_case : List[str] , **snake_case : Optional[Any] ) -> Dict: raise NotImplementedError def lowerCamelCase__ ( self : str , snake_case : Optional[int] ) -> Tuple: raise NotImplementedError def lowerCamelCase__ ( self : Union[str, Any] ) -> int: if not self.is_available(): raise RuntimeError( f'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def lowerCamelCase__ ( cls : Dict ) -> Optional[int]: return f'`pip install {cls.pip_package or cls.name}`' class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : str = """optuna""" @staticmethod def lowerCamelCase__ ( ) -> Tuple: return is_optuna_available() def lowerCamelCase__ ( self : Optional[int] , snake_case : List[Any] , snake_case : List[str] , snake_case : int , **snake_case : Any ) -> Dict: return run_hp_search_optuna(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] , snake_case : List[Any] ) -> str: return default_hp_space_optuna(__lowerCAmelCase ) class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = """ray""" SCREAMING_SNAKE_CASE : Any = """'ray[tune]'""" @staticmethod def lowerCamelCase__ ( ) -> Any: return is_ray_available() def lowerCamelCase__ ( self : Union[str, Any] , snake_case : List[Any] , snake_case : List[Any] , snake_case : List[str] , **snake_case : int ) -> Tuple: return run_hp_search_ray(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple , snake_case : List[Any] ) -> Optional[int]: return default_hp_space_ray(__lowerCAmelCase ) class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : int = """sigopt""" @staticmethod def lowerCamelCase__ ( ) -> Optional[Any]: return is_sigopt_available() def lowerCamelCase__ ( self : int , snake_case : List[Any] , snake_case : int , snake_case : Optional[Any] , **snake_case : Any ) -> Any: return run_hp_search_sigopt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] , snake_case : Optional[Any] ) -> Dict: return default_hp_space_sigopt(__lowerCAmelCase ) class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = """wandb""" @staticmethod def lowerCamelCase__ ( ) -> Dict: return is_wandb_available() def lowerCamelCase__ ( self : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : str , **snake_case : Optional[int] ) -> Union[str, Any]: return run_hp_search_wandb(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def lowerCamelCase__ ( self : int , snake_case : Tuple ) -> Tuple: return default_hp_space_wandb(__lowerCAmelCase ) __UpperCAmelCase :Any = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _a ( ): '''simple docstring''' __UpperCAmelCase : int = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(a__ ) > 0: __UpperCAmelCase : List[Any] = available_backends[0].name if len(a__ ) > 1: logger.info( F'{len(a__ )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
371
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __UpperCAmelCase :Tuple = "Create a default config file for Accelerate with only a few flags set." def _a ( _lowercase : List[Any]="no" , _lowercase : str = default_json_config_file , _lowercase : bool = False ): '''simple docstring''' __UpperCAmelCase : Dict = Path(_lowercase ) path.parent.mkdir(parents=_lowercase , exist_ok=_lowercase ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __UpperCAmelCase : List[str] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __UpperCAmelCase : int = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): __UpperCAmelCase : Optional[Any] = torch.cuda.device_count() __UpperCAmelCase : List[str] = num_gpus __UpperCAmelCase : int = False if num_gpus > 1: __UpperCAmelCase : Any = '''MULTI_GPU''' else: __UpperCAmelCase : int = '''NO''' elif is_xpu_available() and use_xpu: __UpperCAmelCase : List[Any] = torch.xpu.device_count() __UpperCAmelCase : List[Any] = num_xpus __UpperCAmelCase : Optional[int] = False if num_xpus > 1: __UpperCAmelCase : Any = '''MULTI_XPU''' else: __UpperCAmelCase : Optional[Any] = '''NO''' elif is_npu_available(): __UpperCAmelCase : Dict = torch.npu.device_count() __UpperCAmelCase : Any = num_npus __UpperCAmelCase : Any = False if num_npus > 1: __UpperCAmelCase : Dict = '''MULTI_NPU''' else: __UpperCAmelCase : Optional[int] = '''NO''' else: __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Tuple = '''NO''' __UpperCAmelCase : List[Any] = ClusterConfig(**_lowercase ) config.to_json_file(_lowercase ) return path def _a ( _lowercase : Union[str, Any] , _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = parser.add_parser('''default''' , parents=_lowercase , help=_lowercase , formatter_class=_lowercase ) parser.add_argument( '''--config_file''' , default=_lowercase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_lowercase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_lowercase ) return parser def _a ( _lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
240
0
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Dict="attention" ): """simple docstring""" lowerCAmelCase_ = params[F"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] lowerCAmelCase_ = params[F"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] lowerCAmelCase_ = params[F"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] lowerCAmelCase_ = params[F"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def lowerCamelCase__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]=False ): """simple docstring""" if split_mlp_wi: lowerCAmelCase_ = params[F"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] lowerCAmelCase_ = params[F"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] lowerCAmelCase_ = (wi_a, wi_a) else: lowerCAmelCase_ = params[F"""{prefix}/layers_{i}/mlp/wi/kernel"""] lowerCAmelCase_ = params[F"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): """simple docstring""" return params[F"""{prefix}/layers_{i}/{layer_name}/scale"""] def lowerCamelCase__ ( __lowerCAmelCase : dict , *, __lowerCAmelCase : int , __lowerCAmelCase : bool ): """simple docstring""" lowerCAmelCase_ = traverse_util.flatten_dict(variables["target"] ) lowerCAmelCase_ = {"/".join(__lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCAmelCase ) lowerCAmelCase_ = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCAmelCase ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ = tax_layer_norm_lookup(__lowerCAmelCase , __lowerCAmelCase , "encoder" , "pre_attention_layer_norm" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = tax_attention_lookup(__lowerCAmelCase , __lowerCAmelCase , "encoder" , "attention" ) lowerCAmelCase_ = layer_norm lowerCAmelCase_ = k.T lowerCAmelCase_ = o.T lowerCAmelCase_ = q.T lowerCAmelCase_ = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ = tax_layer_norm_lookup(__lowerCAmelCase , __lowerCAmelCase , "encoder" , "pre_mlp_layer_norm" ) lowerCAmelCase_ , lowerCAmelCase_ = tax_mlp_lookup(__lowerCAmelCase , __lowerCAmelCase , "encoder" , __lowerCAmelCase ) lowerCAmelCase_ = layer_norm if split_mlp_wi: lowerCAmelCase_ = wi[0].T lowerCAmelCase_ = wi[1].T else: lowerCAmelCase_ = wi.T lowerCAmelCase_ = wo.T lowerCAmelCase_ = old[ "encoder/relpos_bias/rel_embedding" ].T lowerCAmelCase_ = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(__lowerCAmelCase ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ = tax_layer_norm_lookup(__lowerCAmelCase , __lowerCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = tax_attention_lookup(__lowerCAmelCase , __lowerCAmelCase , "decoder" , "self_attention" ) lowerCAmelCase_ = layer_norm lowerCAmelCase_ = k.T lowerCAmelCase_ = o.T lowerCAmelCase_ = q.T lowerCAmelCase_ = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ = tax_layer_norm_lookup(__lowerCAmelCase , __lowerCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = tax_attention_lookup(__lowerCAmelCase , __lowerCAmelCase , "decoder" , "encoder_decoder_attention" ) lowerCAmelCase_ = layer_norm lowerCAmelCase_ = k.T lowerCAmelCase_ = o.T lowerCAmelCase_ = q.T lowerCAmelCase_ = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ = tax_layer_norm_lookup(__lowerCAmelCase , __lowerCAmelCase , "decoder" , "pre_mlp_layer_norm" ) lowerCAmelCase_ , lowerCAmelCase_ = tax_mlp_lookup(__lowerCAmelCase , __lowerCAmelCase , "decoder" , __lowerCAmelCase ) lowerCAmelCase_ = layer_norm if split_mlp_wi: lowerCAmelCase_ = wi[0].T lowerCAmelCase_ = wi[1].T else: lowerCAmelCase_ = wi.T lowerCAmelCase_ = wo.T lowerCAmelCase_ = old["decoder/decoder_norm/scale"] lowerCAmelCase_ = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ = old["decoder/logits_dense/kernel"].T return new def lowerCamelCase__ ( __lowerCAmelCase : int , __lowerCAmelCase : bool ): """simple docstring""" lowerCAmelCase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowerCAmelCase_ = state_dict["shared.weight"] return state_dict def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" lowerCAmelCase_ = checkpoints.load_tax_checkpoint(__lowerCAmelCase ) lowerCAmelCase_ = convert_tax_to_pytorch(__lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=__lowerCAmelCase ) lowerCAmelCase_ = make_state_dict(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) def lowerCamelCase__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : bool = False ): """simple docstring""" lowerCAmelCase_ = TaConfig.from_json_file(__lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ = TaEncoderModel(__lowerCAmelCase ) else: lowerCAmelCase_ = TaForConditionalGeneration(__lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCAmelCase ) print("Done" ) if __name__ == "__main__": _A = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) _A = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
231
import functools def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = len(__lowerCAmelCase ) lowerCAmelCase_ = len(__lowerCAmelCase ) @functools.cache def min_distance(__lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __lowerCAmelCase ) , 1 + min_distance(__lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
231
1
import argparse import os import re import packaging.version lowercase__ ='examples/' lowercase__ ={ 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowercase__ ={ 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowercase__ ='README.md' def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.read() __a , __a : Optional[int] = REPLACE_PATTERNS[pattern] __a : List[Any] = replace.replace('''VERSION''' , lowerCAmelCase__ ) __a : Any = re_pattern.sub(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple ): for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , pattern='''examples''' ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : Optional[int] = '''🤗 Transformers currently provides the following architectures''' __a : int = '''1. Want to contribute a new model?''' with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.readlines() # Find the start of the list. __a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __a : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __a : str = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCAmelCase__ ) def __UpperCamelCase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __a : Optional[int] = f.read() __a : str = REPLACE_PATTERNS['''init'''][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any]=False ): __a : str = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __a : Union[str, Any] = default_version.base_version elif patch: __a : Tuple = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __a : List[str] = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __a : List[str] = input(f"Which version are you releasing? [{default_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Tuple = default_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ , patch=lowerCAmelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCamelCase ( ): __a : Dict = get_version() __a : str = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __a : Any = current_version.base_version # Check with the user we got that right. __a : Any = input(f"Which version are we developing now? [{dev_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Any = dev_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowercase__ =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
90
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
90
1