code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def __magic_name__ ( lowercase = 1000 ): return sum(e for e in range(3 , lowercase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
173
def lowerCamelCase__ ( a ) -> bool: _A: Dict = [int(a ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(a ) == 4 and all(0 <= int(a ) <= 2_54 for octet in octets ) if __name__ == "__main__": UpperCAmelCase__ : str = input().strip() UpperCAmelCase__ : Any = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
121
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=13 , A_=2 , A_=24 , A_=16 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , A_=2 , )-> int: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = patch_size UpperCamelCase = max_length UpperCamelCase = num_mel_bins UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = frequency_stride UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCamelCase = frequency_out_dimension * time_out_dimension UpperCamelCase = num_patches + 2 def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, input_values, labels def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = ASTModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_values': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ )-> Dict: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ASTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['input_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ASTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset') UpperCamelCase , UpperCamelCase = torchaudio.load(A) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.default_feature_extractor UpperCamelCase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(A_ ) UpperCamelCase = self.default_feature_extractor UpperCamelCase , UpperCamelCase = prepare_audio() UpperCamelCase = audio.squeeze().numpy() UpperCamelCase = feature_extractor(A_ , sampling_rate=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
251
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
251
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
1
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCamelCase = 50_000 lowerCamelCase = 5_000 lowerCamelCase , lowerCamelCase = os.path.split(__file__) lowerCamelCase = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i] @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i : i + batch_size] @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i] @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i : i + batch_size] def a__ ( ): UpperCAmelCase_ = {"num examples": SPEED_TEST_N_EXAMPLES} UpperCAmelCase_ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] UpperCAmelCase_ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) UpperCAmelCase_ = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) UpperCAmelCase_ = generate_example_dataset( os.path.join(lowerCAmelCase__ , "dataset.arrow" ) , lowerCAmelCase__ , num_examples=lowerCAmelCase__ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase__ ) ) UpperCAmelCase_ = func(lowerCAmelCase__ , **lowerCAmelCase__ ) print("shuffling dataset" ) UpperCAmelCase_ = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(lowerCAmelCase__ ) ) UpperCAmelCase_ = func( lowerCAmelCase__ , **lowerCAmelCase__ ) with open(lowerCAmelCase__ , "wb" ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
241
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
241
1
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __magic_name__ = logging.get_logger(__name__) __magic_name__ = {} __magic_name__ = {} __magic_name__ = {} def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , ): __SCREAMING_SNAKE_CASE = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) __SCREAMING_SNAKE_CASE = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) __SCREAMING_SNAKE_CASE = format_type def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None ): __SCREAMING_SNAKE_CASE = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __SCREAMING_SNAKE_CASE = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: __magic_name__ = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: __magic_name__ = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: __magic_name__ = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def _lowerCAmelCase ( UpperCamelCase_ ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _lowerCAmelCase ( UpperCamelCase_ , **UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = get_format_type_from_alias(UpperCamelCase_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
100
"""simple docstring""" __magic_name__ = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
100
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( __UpperCamelCase ): A__ : str =(DDPMParallelScheduler,) def A_ ( self : List[Any] , **UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = { 'num_train_timesteps': 1000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**UpperCAmelCase_ ) return config def A_ ( self : List[str] ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_ ) def A_ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): self.check_over_configs(thresholding=UpperCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def A_ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def A_ ( self : List[Any] ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_ ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE__ = samplea.shape[0] SCREAMING_SNAKE_CASE__ = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.arange(UpperCAmelCase_ )[0:3, None].repeat(1 , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE__ = scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5_005 ) < 1e-3 def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase_ ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase_ ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_ ): if i == len(UpperCAmelCase_ ) - 1: SCREAMING_SNAKE_CASE__ = -1 else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] SCREAMING_SNAKE_CASE__ = scheduler.previous_timestep(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) with self.assertRaises(UpperCAmelCase_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_ ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ )
351
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE__ = True if checkpoint_name is None: SCREAMING_SNAKE_CASE__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = checkpoint.split('/' ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = dump_path else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) SCREAMING_SNAKE_CASE__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(UpperCamelCase_ ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) __snake_case = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
169
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _snake_case ( _snake_case : Union[str, Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Union[str, Any] ): lowerCAmelCase : Optional[Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCAmelCase : Dict = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) lowerCAmelCase : List[Any] = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) lowerCAmelCase : List[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) lowerCAmelCase : List[str] = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) lowerCAmelCase : Optional[Any] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) lowerCAmelCase : Tuple = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) lowerCAmelCase : int = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) lowerCAmelCase : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) lowerCAmelCase : List[str] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) lowerCAmelCase : Dict = key.replace('''image_encoder.module''' , '''flava.image_model''' ) lowerCAmelCase : Optional[int] = key.replace('''text_encoder.module''' , '''flava.text_model''' ) lowerCAmelCase : Optional[int] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) lowerCAmelCase : Tuple = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) lowerCAmelCase : Tuple = key.replace('''text_projection''' , '''flava.text_projection''' ) lowerCAmelCase : Dict = key.replace('''image_projection''' , '''flava.image_projection''' ) lowerCAmelCase : Union[str, Any] = value.float() for key, value in codebook_state_dict.items(): lowerCAmelCase : Dict = value return upgrade @torch.no_grad() def _snake_case ( _snake_case : Tuple , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : int=None ): if config_path is not None: lowerCAmelCase : Optional[int] = FlavaConfig.from_pretrained(_snake_case ) else: lowerCAmelCase : Optional[Any] = FlavaConfig() lowerCAmelCase : List[Any] = FlavaForPreTraining(_snake_case ).eval() lowerCAmelCase : int = convert_dalle_checkpoint(_snake_case , _snake_case , save_checkpoint=_snake_case ) if os.path.exists(_snake_case ): lowerCAmelCase : Tuple = torch.load(_snake_case , map_location='''cpu''' ) else: lowerCAmelCase : str = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' ) lowerCAmelCase : str = upgrade_state_dict(_snake_case , _snake_case ) hf_model.load_state_dict(_snake_case ) lowerCAmelCase : Optional[int] = hf_model.state_dict() lowerCAmelCase : Any = count_parameters(_snake_case ) lowerCAmelCase : List[Any] = count_parameters(_snake_case ) + count_parameters(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1E-3 ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case__ : str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') snake_case__ : Any = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
60
def UpperCamelCase ( __lowercase : list[list[int]] ,__lowercase : int ,__lowercase : int ,__lowercase : list[int] ): '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCamelCase ( __lowercase : list[list[int]] ,__lowercase : list[int] ,__lowercase : int ): '''simple docstring''' if curr_ind == len(__lowercase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 ,len(__lowercase ) ): if valid_connection(__lowercase ,__lowercase ,__lowercase ,__lowercase ): # Insert current vertex into path as next transition A_ : Tuple = next_ver # Validate created path if util_hamilton_cycle(__lowercase ,__lowercase ,curr_ind + 1 ): return True # Backtrack A_ : Tuple = -1 return False def UpperCamelCase ( __lowercase : list[list[int]] ,__lowercase : int = 0 ): '''simple docstring''' A_ : Any = [-1] * (len(__lowercase ) + 1) # initialize start and end of path with starting index A_ : Dict = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__lowercase ,__lowercase ,1 ) else []
140
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase ( a_ ): """simple docstring""" A : UNetaDModel A : ScoreSdeVeScheduler def __init__( self : List[str] , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : ScoreSdeVeScheduler): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) @torch.no_grad() def __call__( self : Any , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 2_0_0_0 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Dict , ): """simple docstring""" a : str = self.unet.config.sample_size a : str = (batch_size, 3, img_size, img_size) a : List[Any] = self.unet a : Optional[int] = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_) * self.scheduler.init_noise_sigma a : Union[str, Any] = sample.to(self.device) self.scheduler.set_timesteps(UpperCAmelCase_) self.scheduler.set_sigmas(UpperCAmelCase_) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): a : str = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): a : Tuple = self.unet(UpperCAmelCase_ , UpperCAmelCase_).sample a : int = self.scheduler.step_correct(UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample # prediction step a : Dict = model(UpperCAmelCase_ , UpperCAmelCase_).sample a : Optional[Any] = self.scheduler.step_pred(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_) a : int = output.prev_sample, output.prev_sample_mean a : str = sample_mean.clamp(0 , 1) a : Optional[int] = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": a : Any = self.numpy_to_pil(UpperCAmelCase_) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCAmelCase_)
367
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCamelCase : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : Tuple): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a : Dict = deepcopy(UpperCAmelCase_) elif os.path.exists(UpperCAmelCase_): with io.open(UpperCAmelCase_ , 'r' , encoding='utf-8') as f: a : Union[str, Any] = json.load(UpperCAmelCase_) else: try: a : Union[str, Any] = baseaa.urlsafe_baadecode(UpperCAmelCase_).decode('utf-8') a : List[str] = json.loads(UpperCAmelCase_) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""") a : Optional[int] = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = self.get_value('zero_optimization.stage' , -1) # offload a : Any = False if self.is_zeroa() or self.is_zeroa(): a : Tuple = set(['cpu', 'nvme']) a : int = set( [ self.get_value('zero_optimization.offload_optimizer.device'), self.get_value('zero_optimization.offload_param.device'), ]) if len(offload_devices & offload_devices_valid) > 0: a : List[str] = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[str] = self.config # find the config node of interest if it exists a : int = ds_key_long.split('.') a : Union[str, Any] = nodes.pop() for node in nodes: a : Union[str, Any] = config.get(UpperCAmelCase_) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=None): """simple docstring""" a , a : int = self.find_config_node(UpperCAmelCase_) if config is None: return default return config.get(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=False): """simple docstring""" a : Any = self.config # find the config node of interest if it exists a : Optional[Any] = ds_key_long.split('.') for node in nodes: a : List[str] = config a : int = config.get(UpperCAmelCase_) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""") else: return # if found remove it if parent_config is not None: parent_config.pop(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str): """simple docstring""" a : List[str] = self.get_value(UpperCAmelCase_) return False if value is None else bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : List[Any] = self.get_value(UpperCAmelCase_) return False if value is None else not bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return self._offload class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : int): """simple docstring""" a : Union[str, Any] = engine def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): """simple docstring""" self.engine.backward(UpperCAmelCase_ , **UpperCAmelCase_) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any): """simple docstring""" super().__init__(UpperCAmelCase_ , device_placement=UpperCAmelCase_ , scaler=UpperCAmelCase_) a : List[str] = hasattr(self.optimizer , 'overflow') def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict=None): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=0.0_01 , UpperCAmelCase_ : List[Any]=0 , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : int = params a : str = lr a : Tuple = weight_decay a : Dict = kwargs class UpperCamelCase : """simple docstring""" def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=0 , **UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = optimizer a : Tuple = total_num_steps a : Optional[Any] = warmup_num_steps a : List[str] = kwargs
345
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase ={ 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _lowerCamelCase =logging.get_logger(__name__) class a_ ( __A ): """simple docstring""" __UpperCAmelCase = 'mask2former' __UpperCAmelCase = ['swin'] __UpperCAmelCase = {'hidden_size': 'hidden_dim'} def __init__( self : Union[str, Any] ,snake_case : Dict = None ,snake_case : List[str] = 256 ,snake_case : Optional[int] = 256 ,snake_case : Any = 256 ,snake_case : int = 1024 ,snake_case : Dict = "relu" ,snake_case : Dict = 6 ,snake_case : Dict = 10 ,snake_case : Optional[int] = 8 ,snake_case : List[str] = 0.0 ,snake_case : Union[str, Any] = 2048 ,snake_case : List[str] = False ,snake_case : str = False ,snake_case : str = 4 ,snake_case : Dict = 255 ,snake_case : Dict = 100 ,snake_case : Optional[int] = 0.1 ,snake_case : Optional[int] = 2.0 ,snake_case : List[str] = 5.0 ,snake_case : Tuple = 5.0 ,snake_case : int = 12544 ,snake_case : int = 3.0 ,snake_case : List[Any] = 0.75 ,snake_case : Union[str, Any] = 0.02 ,snake_case : Tuple = 1.0 ,snake_case : List[str] = True ,snake_case : int = [4, 8, 16, 32] ,snake_case : List[Any] = None ,**snake_case : List[str] ,): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) SCREAMING_SNAKE_CASE =CONFIG_MAPPING["""swin"""]( image_size=224 ,in_channels=3 ,patch_size=4 ,embed_dim=96 ,depths=[2, 2, 18, 2] ,num_heads=[3, 6, 12, 24] ,window_size=7 ,drop_path_rate=0.3 ,use_absolute_embeddings=_lowerCamelCase ,out_features=['stage1', 'stage2', 'stage3', 'stage4'] ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): SCREAMING_SNAKE_CASE =backbone_config.pop('model_type' ) SCREAMING_SNAKE_CASE =CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE =config_class.from_dict(_lowerCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) SCREAMING_SNAKE_CASE =backbone_config SCREAMING_SNAKE_CASE =feature_size SCREAMING_SNAKE_CASE =mask_feature_size SCREAMING_SNAKE_CASE =hidden_dim SCREAMING_SNAKE_CASE =encoder_feedforward_dim SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dim_feedforward SCREAMING_SNAKE_CASE =pre_norm SCREAMING_SNAKE_CASE =enforce_input_projection SCREAMING_SNAKE_CASE =common_stride SCREAMING_SNAKE_CASE =ignore_value SCREAMING_SNAKE_CASE =num_queries SCREAMING_SNAKE_CASE =no_object_weight SCREAMING_SNAKE_CASE =class_weight SCREAMING_SNAKE_CASE =mask_weight SCREAMING_SNAKE_CASE =dice_weight SCREAMING_SNAKE_CASE =train_num_points SCREAMING_SNAKE_CASE =oversample_ratio SCREAMING_SNAKE_CASE =importance_sample_ratio SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =init_xavier_std SCREAMING_SNAKE_CASE =use_auxiliary_loss SCREAMING_SNAKE_CASE =feature_strides SCREAMING_SNAKE_CASE =output_auxiliary_logits SCREAMING_SNAKE_CASE =decoder_layers super().__init__(**_lowerCamelCase ) @classmethod def _lowerCAmelCase ( cls : Any ,snake_case : Union[str, Any] ,**snake_case : List[str] ): return cls( backbone_config=_lowerCamelCase ,**_lowerCamelCase ,) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.backbone_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
0
'''simple docstring''' def A (__lowerCamelCase :list ): _lowerCAmelCase = len(__lowerCamelCase ) for i in range(1 , __lowerCamelCase ): _lowerCAmelCase = collection[i] _lowerCAmelCase = 0 _lowerCAmelCase = i - 1 while low <= high: _lowerCAmelCase = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase = mid - 1 else: _lowerCAmelCase = mid + 1 for j in range(__lowerCamelCase , __lowerCamelCase , -1 ): _lowerCAmelCase = collection[j - 1] _lowerCAmelCase = val return collection if __name__ == "__main__": _lowercase = input("""Enter numbers separated by a comma:\n""").strip() _lowercase = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
354
'''simple docstring''' import os def A (): with open(os.path.dirname(__lowerCamelCase ) + """/grid.txt""" ) as f: _lowerCAmelCase = [] # noqa: E741 for _ in range(20 ): l.append([int(__lowerCamelCase ) for x in f.readline().split()] ) _lowerCAmelCase = 0 # right for i in range(20 ): for j in range(17 ): _lowerCAmelCase = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _lowerCAmelCase = temp # down for i in range(17 ): for j in range(20 ): _lowerCAmelCase = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _lowerCAmelCase = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _lowerCAmelCase = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _lowerCAmelCase = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): _lowerCAmelCase = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _lowerCAmelCase = temp return maximum if __name__ == "__main__": print(solution())
229
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase (snake_case_ ): '''simple docstring''' _snake_case : Tuple = '''trocr''' _snake_case : List[str] = ['''past_key_values'''] _snake_case : Optional[int] = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCamelCase=5_0_2_6_5 , _UpperCamelCase=1_0_2_4 , _UpperCamelCase=1_2 , _UpperCamelCase=1_6 , _UpperCamelCase=4_0_9_6 , _UpperCamelCase="gelu" , _UpperCamelCase=5_1_2 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=0.0 , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ) -> Tuple: UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : str = d_model UpperCAmelCase_ : List[Any] = decoder_layers UpperCAmelCase_ : Any = decoder_attention_heads UpperCAmelCase_ : Tuple = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = activation_function UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : Optional[Any] = attention_dropout UpperCAmelCase_ : Dict = activation_dropout UpperCAmelCase_ : str = init_std UpperCAmelCase_ : Dict = decoder_layerdrop UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : str = scale_embedding UpperCAmelCase_ : List[str] = use_learned_position_embeddings UpperCAmelCase_ : Optional[Any] = layernorm_embedding super().__init__( pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , **_UpperCamelCase , )
29
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
175
0
'''simple docstring''' import numpy as np class lowercase_ : """simple docstring""" def __init__( self : List[Any] ,lowercase__ : int=None ,lowercase__ : str=None ,lowercase__ : List[Any]=None ,lowercase__ : Dict=None ,lowercase__ : Tuple=None ): self.set_matricies(red=lowercase__ ,green=lowercase__ ,blue=lowercase__ ,red_edge=lowercase__ ,nir=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Dict=None ,lowercase__ : List[Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Union[str, Any]=None ): if red is not None: __lowercase = red if green is not None: __lowercase = green if blue is not None: __lowercase = blue if red_edge is not None: __lowercase = red_edge if nir is not None: __lowercase = nir return True def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int="" ,lowercase__ : Any=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : int=None ,lowercase__ : Optional[int]=None ,lowercase__ : Tuple=None ): self.set_matricies(red=lowercase__ ,green=lowercase__ ,blue=lowercase__ ,red_edge=lowercase__ ,nir=lowercase__ ) __lowercase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def SCREAMING_SNAKE_CASE ( self : Tuple ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def SCREAMING_SNAKE_CASE ( self : int ): return self.nir * (self.red / (self.green**2)) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return (self.nir - self.red) / (self.nir + self.red) def SCREAMING_SNAKE_CASE ( self : List[str] ): return (self.nir - self.blue) / (self.nir + self.blue) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return (self.redEdge - self.red) / (self.redEdge + self.red) def SCREAMING_SNAKE_CASE ( self : List[str] ): return (self.nir - self.green) / (self.nir + self.green) def SCREAMING_SNAKE_CASE ( self : Tuple ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def SCREAMING_SNAKE_CASE ( self : Dict ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def SCREAMING_SNAKE_CASE ( self : Dict ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str]=0.0_8 ,lowercase__ : Any=1.2_2 ,lowercase__ : Dict=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return (self.nir / self.green) - 1 def SCREAMING_SNAKE_CASE ( self : Tuple ): return (self.nir / self.redEdge) - 1 def SCREAMING_SNAKE_CASE ( self : Any ): return (self.red - self.blue) / self.red def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return self.nir - self.green def SCREAMING_SNAKE_CASE ( self : Dict ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[str]=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Dict=None ,lowercase__ : int=None ): return (self.nir - b) / (a * self.red) def SCREAMING_SNAKE_CASE ( self : Tuple ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return (self.red + self.green + self.blue) / 3_0.5 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return self.nir / self.red def SCREAMING_SNAKE_CASE ( self : List[Any] ): return (self.rvi() - 1) / (self.rvi() + 1) def SCREAMING_SNAKE_CASE ( self : int ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return self.green / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.nir / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE ( self : str ): return self.red / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return (self.green - self.red) / (self.green + self.red) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return (self.red - self.green) / (self.red + self.green) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowercase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def SCREAMING_SNAKE_CASE ( self : Any ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return self.nir / self.red def SCREAMING_SNAKE_CASE ( self : int ): return (self.ndvi() + 0.5) ** (1 / 2) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
368
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : """simple docstring""" def __init__( self : int ,lowercase__ : str ,lowercase__ : List[Any]=1_3 ,lowercase__ : Optional[int]=3_2 ,lowercase__ : Any=3 ,lowercase__ : int=4 ,lowercase__ : Optional[int]=[1_0, 2_0, 3_0, 4_0] ,lowercase__ : List[Any]=[2, 2, 3, 2] ,lowercase__ : List[Any]=True ,lowercase__ : Optional[Any]=True ,lowercase__ : int=3_7 ,lowercase__ : Union[str, Any]="gelu" ,lowercase__ : Tuple=1_0 ,lowercase__ : int=0.0_2 ,lowercase__ : Any=["stage2", "stage3", "stage4"] ,lowercase__ : Optional[Any]=3 ,lowercase__ : Tuple=None ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = out_features __lowercase = num_labels __lowercase = scope __lowercase = num_stages def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : str ): return ConvNextConfig( num_channels=self.num_channels ,num_stages=self.num_stages ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,is_training=self.is_training ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,out_features=self.out_features ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return UperNetConfig( backbone_config=self.get_backbone_config() ,hidden_size=5_1_2 ,pool_scales=[1, 2, 3, 6] ,use_auxiliary_head=lowercase__ ,auxiliary_loss_weight=0.4 ,auxiliary_in_channels=4_0 ,auxiliary_channels=2_5_6 ,auxiliary_num_convs=1 ,auxiliary_concat_input=lowercase__ ,loss_ignore_index=2_5_5 ,num_labels=self.num_labels ,) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : Any ): __lowercase = UperNetForSemanticSegmentation(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Tuple = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = UperNetModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__ ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : int ): pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : str ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE ( self : Any ): def check_hidden_states_output(lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[str] ): __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(lowercase__ ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(lowercase__ ) __lowercase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowercase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F"Parameter {name} of model {model_class} seems not properly initialized" ,) @unittest.skip(reason='''UperNet does not have tied weights''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = UperNetForSemanticSegmentation.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _A ( ): """simple docstring""" __lowercase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) __lowercase = Image.open(A__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) __lowercase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(lowercase__ ) __lowercase = prepare_img() __lowercase = processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,lowercase__ ,atol=1e-4 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) __lowercase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(lowercase__ ) __lowercase = prepare_img() __lowercase = processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,lowercase__ ,atol=1e-4 ) )
52
0
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowercase = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' _lowercase = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' _lowercase = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[Any] ,A_ : Union[str, Any] ,A_ : Dict=None ,A_ : Union[str, Any]=None ,A_ : List[Any]=None ,A_ : List[Any]=None ,A_ : Optional[Any]="auto" ,A_ : Optional[int]=-1 ,A_ : Dict=0.9 ,A_ : Tuple=5 ,A_ : int=500 ,A_ : List[Any]="gpt2-large" ,A_ : Dict=-1 ,A_ : int=1024 ,A_ : Optional[Any]=25 ,A_ : str=5 ,A_ : Dict=True ,A_ : Optional[int]=25 ,) -> str: A = compute_mauve( p_text=A_ ,q_text=A_ ,p_features=A_ ,q_features=A_ ,p_tokens=A_ ,q_tokens=A_ ,num_buckets=A_ ,pca_max_data=A_ ,kmeans_explained_var=A_ ,kmeans_num_redo=A_ ,kmeans_max_iter=A_ ,featurize_model_name=A_ ,device_id=A_ ,max_text_length=A_ ,divergence_curve_discretization_size=A_ ,mauve_scaling_factor=A_ ,verbose=A_ ,seed=A_ ,) return out
74
"""simple docstring""" import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _lowercase = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _lowercase = '''sshleifer/student_marian_en_ro_6_1''' _lowercase = '''sshleifer/tiny-mbart''' @require_torch class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any]=False ,A_ : Optional[int]=None ,A_ : List[str]=True ,A_ : Tuple=True ,A_ : Union[str, Any]=True ,A_ : List[str]=True ,) -> Tuple: A = self.run_trainer( eval_steps=1 ,max_len=12 ,model_name=A_ ,num_train_epochs=1 ,distributed=A_ ,extra_args_str=A_ ,predict_with_generate=A_ ,do_train=A_ ,do_eval=A_ ,do_predict=A_ ,) A = TrainerState.load_from_json(os.path.join(A_ ,'trainer_state.json' ) ).log_history if not do_eval: return A = [log for log in logs if 'eval_loss' in log.keys()] A = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats A = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'] ,A_ ) assert not math.isnan(float(last_step_stats['eval_loss'] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: self.run_seqaseq_quick() @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : int ) -> int: self.run_seqaseq_quick(distributed=A_ ) @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: self.run_seqaseq_quick(distributed=A_ ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: self.run_seqaseq_quick(distributed=A_ ,extra_args_str='--sharded_ddp simple' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: self.run_seqaseq_quick(distributed=A_ ,extra_args_str='--sharded_ddp simple --fp16' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: self.run_seqaseq_quick(distributed=A_ ,extra_args_str='--sharded_ddp zero_dp_2' ,predict_with_generate=A_ ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self.run_seqaseq_quick( distributed=A_ ,extra_args_str='--sharded_ddp zero_dp_2 --fp16' ,predict_with_generate=A_ ) @require_apex @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A_ ,extra_args_str='--fp16 --fp16_backend=apex' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A_ ,extra_args_str='--fp16 --fp16_backend=apex' ) @parameterized.expand(['base', 'low', 'high', 'mixed'] ) @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Dict ) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout A = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } A = experiments[experiment_id] A = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} A = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**A_ ,extra_args_str=data['extra_args_str'] ) A = len(re.findall(A_ ,cl.err ) ) self.assertEqual(A_ ,data['n_matches'] ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: A = self.run_trainer( eval_steps=2 ,max_len=128 ,model_name=A_ ,learning_rate=3e-4 ,num_train_epochs=10 ,distributed=A_ ,) # Check metrics A = TrainerState.load_from_json(os.path.join(A_ ,'trainer_state.json' ) ).log_history A = [log for log in logs if 'eval_loss' in log.keys()] A = eval_metrics[0] A = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'] ,A_ ) # test if do_predict saves generations and metrics A = os.listdir(A_ ) A = {os.path.basename(A_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: from transformers.training_args import OptimizerNames def train_and_return_metrics(A_ : str ) -> Tuple[int, float]: A = '--skip_memory_metrics 0' A = self.run_trainer( max_len=128 ,model_name=A_ ,learning_rate=3e-4 ,num_train_epochs=1 ,optim=A_ ,distributed=A_ ,extra_args_str=A_ ,do_eval=A_ ,do_predict=A_ ,n_gpus_to_use=1 ,) # Check metrics A = TrainerState.load_from_json(Path(A_ ,'trainer_state.json' ) ).log_history A = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**20 ) A = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**20 ) A = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss A , A , A = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) A , A , A = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) A = gpu_alloc_mem_orig - gpu_alloc_mem_bnb A = gpu_peak_mem_orig + gpu_alloc_mem_orig A = gpu_peak_mem_bnb + gpu_alloc_mem_bnb A = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings A = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A_ ,A_ ,'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' F' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and' F' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB' ,) self.assertGreater( A_ ,A_ ,'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' F' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and' F' gpu_total_mem_bnb={gpu_total_mem_bnb}MB' ,) self.assertEqual( A_ ,A_ ,F'loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : int ,A_ : str ,A_ : int ,A_ : float = 3e-3 ,A_ : str = "adafactor" ,A_ : bool = False ,A_ : str = None ,A_ : int = 0 ,A_ : bool = True ,A_ : bool = True ,A_ : bool = True ,A_ : bool = True ,A_ : int = None ,) -> Dict: A = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' A = self.get_auto_remove_tmp_dir() A = F'\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '.split() A = F'\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A_ )}\n '.split() A = '\n --do_predict\n '.split() A = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'--optim {optim}'.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: A = get_gpu_count() A = get_torch_dist_unique_port() A = F'\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '.split() A = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A_ ,env=self.get_env() ) else: A = ['run_translation.py'] + args with patch.object(A_ ,'argv' ,A_ ): main() return output_dir
74
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase_ = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def A ( ) -> Any: '''simple docstring''' UpperCAmelCase_ = '''https://pypi.org/pypi/diffusers/json''' UpperCAmelCase_ = json.loads(request.urlopen(__UpperCAmelCase ).read() )['''releases'''].keys() return sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : version.Version(__UpperCAmelCase ) ) def A ( ) -> Any: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCAmelCase_ = Path(__UpperCAmelCase ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def A ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' init_hf_modules() UpperCAmelCase_ = Path(__UpperCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCAmelCase_ = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def A ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ = f.read() # Imports of the form `import .xxx` UpperCAmelCase_ = re.findall('''^\s*import\s+\.(\S+)\s*$''' , __UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __UpperCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__UpperCAmelCase ) ) def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = [module_file] UpperCAmelCase_ = [] # Let's recurse through all relative imports while not no_change: UpperCAmelCase_ = [] for f in files_to_check: new_imports.extend(get_relative_imports(__UpperCAmelCase ) ) UpperCAmelCase_ = Path(__UpperCAmelCase ).parent UpperCAmelCase_ = [str(module_path / m ) for m in new_imports] UpperCAmelCase_ = [f for f in new_import_files if f not in all_relative_imports] UpperCAmelCase_ = [f"{f}.py" for f in new_import_files] UpperCAmelCase_ = len(__UpperCAmelCase ) == 0 all_relative_imports.extend(__UpperCAmelCase ) return all_relative_imports def A ( __UpperCAmelCase ) -> Dict: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ = f.read() # Imports of the form `import xxx` UpperCAmelCase_ = re.findall('''^\s*import\s+(\S+)\s*$''' , __UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __UpperCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module UpperCAmelCase_ = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all UpperCAmelCase_ = list(set(__UpperCAmelCase ) ) UpperCAmelCase_ = [] for imp in imports: try: importlib.import_module(__UpperCAmelCase ) except ImportError: missing_packages.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' f"{', '.join(__UpperCAmelCase )}. Run `pip install {' '.join(__UpperCAmelCase )}`" ) return get_relative_imports(__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' UpperCAmelCase_ = module_path.replace(os.path.sep , '''.''' ) UpperCAmelCase_ = importlib.import_module(__UpperCAmelCase ) if class_name is None: return find_pipeline_class(__UpperCAmelCase ) return getattr(__UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase ) -> int: '''simple docstring''' from ..pipelines import DiffusionPipeline UpperCAmelCase_ = dict(inspect.getmembers(__UpperCAmelCase , inspect.isclass ) ) UpperCAmelCase_ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __UpperCAmelCase ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" f" {loaded_module}." ) UpperCAmelCase_ = cls return pipeline_class def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = str(__UpperCAmelCase ) UpperCAmelCase_ = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ): UpperCAmelCase_ = module_file_or_url UpperCAmelCase_ = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: UpperCAmelCase_ = get_diffusers_versions() # cut ".dev0" UpperCAmelCase_ = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: UpperCAmelCase_ = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(f"Defaulting to latest_version: {revision}." ) elif revision in available_versions: UpperCAmelCase_ = f"v{revision}" elif revision == "main": UpperCAmelCase_ = revision else: raise ValueError( f"`custom_revision`: {revision} does not exist. Please make sure to choose one of" f" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub UpperCAmelCase_ = COMMUNITY_PIPELINES_URL.format(revision=__UpperCAmelCase , pipeline=__UpperCAmelCase ) try: UpperCAmelCase_ = cached_download( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , ) UpperCAmelCase_ = '''git''' UpperCAmelCase_ = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached UpperCAmelCase_ = hf_hub_download( __UpperCAmelCase , __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , ) UpperCAmelCase_ = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment UpperCAmelCase_ = check_imports(__UpperCAmelCase ) # Now we move the module inside our cached dynamic modules. UpperCAmelCase_ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__UpperCAmelCase ) UpperCAmelCase_ = Path(__UpperCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__UpperCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: UpperCAmelCase_ = f"{module_needed}.py" shutil.copy(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = use_auth_token elif use_auth_token is True: UpperCAmelCase_ = HfFolder.get_token() else: UpperCAmelCase_ = None UpperCAmelCase_ = model_info(__UpperCAmelCase , revision=__UpperCAmelCase , token=__UpperCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCAmelCase_ = submodule_path / commit_hash UpperCAmelCase_ = full_submodule + os.path.sep + commit_hash create_dynamic_module(__UpperCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__UpperCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __UpperCAmelCase , f"{module_needed}.py" , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , resume_download=__UpperCAmelCase , proxies=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , **__UpperCAmelCase , ) -> int: '''simple docstring''' UpperCAmelCase_ = get_cached_module_file( __UpperCAmelCase , __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , resume_download=__UpperCAmelCase , proxies=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) return get_class_in_module(__UpperCAmelCase , final_module.replace('''.py''' , '''''' ) )
344
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
1
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( _snake_case ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_snake_case ): return ext raise Exception( f'''Unable to determine file format from file extension {path}. ''' f'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : int = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) SCREAMING_SNAKE_CASE__ : Tuple = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format SCREAMING_SNAKE_CASE__ : Tuple = PipelineDataFormat.from_str( format=_snake_case ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,) return RunCommand(_snake_case ,_snake_case ) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = nlp SCREAMING_SNAKE_CASE__ : Tuple = reader @staticmethod def __magic_name__ (SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=SCREAMING_SNAKE_CASE__ , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=SCREAMING_SNAKE_CASE__ , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=SCREAMING_SNAKE_CASE__ , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=SCREAMING_SNAKE_CASE__ , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=SCREAMING_SNAKE_CASE__ , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=SCREAMING_SNAKE_CASE__ , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=SCREAMING_SNAKE_CASE__ , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=SCREAMING_SNAKE_CASE__ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self._nlp, [] for entry in self._reader: SCREAMING_SNAKE_CASE__ : List[Any] = nlp(**SCREAMING_SNAKE_CASE__ ) if self._reader.is_multi_columns else nlp(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): outputs.append(SCREAMING_SNAKE_CASE__ ) else: outputs += output # Saving data if self._nlp.binary_output: SCREAMING_SNAKE_CASE__ : Tuple = self._reader.save_binary(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''' ) else: self._reader.save(SCREAMING_SNAKE_CASE__ )
25
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__snake_case ) # Let's go lowercase = parser.parse_args() if not hasattr(__snake_case , 'func' ): parser.print_help() exit(1 ) # Run lowercase = args.func(__snake_case ) service.run() if __name__ == "__main__": main()
220
0
"""simple docstring""" from __future__ import annotations import time import numpy as np A_ : Optional[Any] = [8, 5, 9, 7] A_ : Dict = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A_ : Dict = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = claim_vector lowerCamelCase__ : Optional[int] = allocated_resources_table lowerCamelCase__ : Dict = maximum_claim_table def a__ (self ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def a__ (self ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def a__ (self ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_A ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def a__ (self ): '''simple docstring''' return {self.__need().index(_A ): i for i in self.__need()} def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.__need() lowerCamelCase__ : Any = self.__allocated_resources_table lowerCamelCase__ : List[str] = self.__available_resources() lowerCamelCase__ : Any = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 5_0 + '\n' ) while need_list: lowerCamelCase__ : Union[str, Any] = False for each_need in need_list: lowerCamelCase__ : str = True for index, need in enumerate(_A ): if need > available_resources[index]: lowerCamelCase__ : Any = False break if execution: lowerCamelCase__ : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : int = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_A ) # update available/freed resources stack lowerCamelCase__ : str = np.array(_A ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_A ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def a__ (self ): '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(_A ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(_A ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_A ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_A ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a_ : Optional[int] = """true""" def __snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str=82 , UpperCAmelCase_ : int=16 ): set_seed(42 ) lowerCamelCase_ = RegressionModel() lowerCamelCase_ = deepcopy(UpperCAmelCase_ ) lowerCamelCase_ = RegressionDataset(length=UpperCAmelCase_ ) lowerCamelCase_ = DataLoader(UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) model.to(accelerator.device ) lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare(UpperCAmelCase_ , UpperCAmelCase_ ) return model, ddp_model, dataloader def __snake_case ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : str=False ): lowerCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) lowerCamelCase_ = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(UpperCAmelCase_ : Union[str, Any] ): lowerCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs with accelerator.main_process_first(): lowerCamelCase_ = dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) lowerCamelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCAmelCase_ : int ): if use_longest: return tokenizer.pad(UpperCAmelCase_ , padding="longest" , return_tensors="pt" ) return tokenizer.pad(UpperCAmelCase_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(UpperCAmelCase_ , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=16 ) def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : Any ): lowerCamelCase_ = Accelerator(dispatch_batches=UpperCAmelCase_ , split_batches=UpperCAmelCase_ ) lowerCamelCase_ = get_dataloader(UpperCAmelCase_ , not dispatch_batches ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare(UpperCAmelCase_ , UpperCAmelCase_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ): lowerCamelCase_ = [] for batch in dataloader: lowerCamelCase_ ,lowerCamelCase_ = batch.values() with torch.no_grad(): lowerCamelCase_ = model(UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCamelCase_ ,lowerCamelCase_ = [], [] for logit, targ in logits_and_targets: logits.append(UpperCAmelCase_ ) targs.append(UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = torch.cat(UpperCAmelCase_ ), torch.cat(UpperCAmelCase_ ) return logits, targs def __snake_case ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : Optional[Any]=82 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=16 ): lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = get_basic_setup(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = generate_predictions(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) assert ( len(UpperCAmelCase_ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(UpperCAmelCase_ )}''' def __snake_case ( UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False ): lowerCamelCase_ = evaluate.load("glue" , "mrpc" ) lowerCamelCase_ ,lowerCamelCase_ = get_mrpc_setup(UpperCAmelCase_ , UpperCAmelCase_ ) # First do baseline lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = setup["no"] model.to(UpperCAmelCase_ ) model.eval() for batch in dataloader: batch.to(UpperCAmelCase_ ) with torch.inference_mode(): lowerCamelCase_ = model(**UpperCAmelCase_ ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=UpperCAmelCase_ , references=batch["labels"] ) lowerCamelCase_ = metric.compute() # Then do distributed lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCamelCase_ = model(**UpperCAmelCase_ ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ = batch["labels"] lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=UpperCAmelCase_ , references=UpperCAmelCase_ ) lowerCamelCase_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __snake_case ( ): lowerCamelCase_ = Accelerator(split_batches=UpperCAmelCase_ , dispatch_batches=UpperCAmelCase_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(UpperCAmelCase_ , UpperCAmelCase_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCamelCase_ = Accelerator(split_batches=UpperCAmelCase_ , dispatch_batches=UpperCAmelCase_ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(UpperCAmelCase_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) lowerCamelCase_ = Accelerator() test_torch_metrics(UpperCAmelCase_ , 512 ) accelerator.state._reset_state() def __snake_case ( UpperCAmelCase_ : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
55
'''simple docstring''' a_ : Any = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
55
1
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCamelCase : def __init__(self : Union[str, Any] , _A : List[str] , ) -> Union[str, Any]: __snake_case : List[Any] = parent __snake_case : Any = 13 __snake_case : Any = 7 __snake_case : List[Any] = 30 __snake_case : Union[str, Any] = self.seq_length + self.mem_len __snake_case : Optional[Any] = 15 __snake_case : int = True __snake_case : Any = True __snake_case : List[Any] = 99 __snake_case : Optional[int] = [10, 50, 80] __snake_case : List[Any] = 32 __snake_case : List[str] = 32 __snake_case : Optional[int] = 4 __snake_case : Any = 8 __snake_case : Optional[int] = 1_28 __snake_case : List[str] = 2 __snake_case : List[Any] = 2 __snake_case : int = None __snake_case : Optional[int] = 1 __snake_case : str = 0 __snake_case : Optional[int] = 3 __snake_case : Any = self.vocab_size - 1 __snake_case : Tuple = 0.01 def _lowercase (self : List[str]) -> Dict: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case : Dict = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case : Tuple = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _lowercase (self : Optional[int]) -> List[str]: random.seed(self.seed) tf.random.set_seed(self.seed) def _lowercase (self : List[Any] , _A : Dict , _A : List[str] , _A : List[str] , _A : str) -> str: __snake_case : Optional[int] = TFTransfoXLModel(_A) __snake_case , __snake_case : Optional[Any] = model(_A).to_tuple() __snake_case : str = {'input_ids': input_ids_a, 'mems': mems_a} __snake_case , __snake_case : Union[str, Any] = model(_A).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowercase (self : Optional[Any] , _A : Dict , _A : List[Any] , _A : Union[str, Any] , _A : Tuple) -> int: __snake_case : Union[str, Any] = TFTransfoXLLMHeadModel(_A) __snake_case , __snake_case : Tuple = model(_A).to_tuple() __snake_case : Tuple = {'input_ids': input_ids_a, 'labels': lm_labels} __snake_case , __snake_case : Optional[Any] = model(_A).to_tuple() __snake_case , __snake_case : Union[str, Any] = model([input_ids_a, mems_a]).to_tuple() __snake_case : str = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels} __snake_case , __snake_case : Optional[int] = model(_A).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowercase (self : Tuple , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int]) -> Union[str, Any]: __snake_case : Optional[int] = TFTransfoXLForSequenceClassification(_A) __snake_case : Tuple = model(_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowercase (self : int) -> Optional[Any]: __snake_case : List[str] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : int = config_and_inputs __snake_case : Dict = {'input_ids': input_ids_a} return config, inputs_dict @require_tf class UpperCamelCase ( lowercase , lowercase , unittest.TestCase ): UpperCAmelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase : Union[str, Any] = () if is_tf_available() else () UpperCAmelCase : Tuple = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented UpperCAmelCase : Optional[int] = False UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[int] = False def _lowercase (self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : str , _A : Union[str, Any]) -> Tuple: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _lowercase (self : Optional[int]) -> int: __snake_case : Optional[int] = TFTransfoXLModelTester(self) __snake_case : Union[str, Any] = ConfigTester(self , config_class=_A , d_embed=37) def _lowercase (self : Union[str, Any]) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase (self : str) -> Dict: self.model_tester.set_seed() __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_A) def _lowercase (self : Any) -> Union[str, Any]: self.model_tester.set_seed() __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_A) def _lowercase (self : Any) -> Optional[int]: __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_A) def _lowercase (self : List[str]) -> List[Any]: __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(_A) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: __snake_case : Tuple = model.get_output_embeddings() assert isinstance(_A , tf.keras.layers.Layer) __snake_case : Union[str, Any] = model.get_bias() assert name is None else: __snake_case : Optional[int] = model.get_output_embeddings() assert x is None __snake_case : Union[str, Any] = model.get_bias() assert name is None def _lowercase (self : Any) -> Dict: # TODO JP: Make TransfoXL XLA compliant pass @slow def _lowercase (self : int) -> Optional[int]: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = TFTransfoXLModel.from_pretrained(_A) self.assertIsNotNone(_A) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.') def _lowercase (self : List[Any]) -> List[Any]: pass @require_tf class UpperCamelCase ( unittest.TestCase ): @unittest.skip('Skip test until #12651 is resolved.') @slow def _lowercase (self : int) -> Optional[int]: __snake_case : Dict = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103') # fmt: off __snake_case : Union[str, Any] = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __snake_case : List[str] = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __snake_case : Dict = model.generate(_A , max_length=2_00 , do_sample=_A) self.assertListEqual(output_ids[0].numpy().tolist() , _A)
95
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _a : int= NewType("DataClass", Any) _a : Dict= NewType("DataClassType", Any) def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Optional[Any]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def __UpperCAmelCase ( UpperCAmelCase_ : list ) -> Callable[[str], Any]: '''simple docstring''' __snake_case : str = {str(UpperCAmelCase_ ): choice for choice in choices} return lambda UpperCAmelCase_ : str_to_choice.get(UpperCAmelCase_ , UpperCAmelCase_ ) def __UpperCAmelCase ( *, UpperCAmelCase_ : Union[str, List[str]] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Any = dataclasses.MISSING , UpperCAmelCase_ : Callable[[], Any] = dataclasses.MISSING , UpperCAmelCase_ : dict = None , **UpperCAmelCase_ : str , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __snake_case : Optional[Any] = {} if aliases is not None: __snake_case : Optional[int] = aliases if help is not None: __snake_case : Optional[int] = help return dataclasses.field(metadata=UpperCAmelCase_ , default=UpperCAmelCase_ , default_factory=UpperCAmelCase_ , **UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): UpperCAmelCase : Iterable[DataClassType] def __init__(self : Tuple , _A : Union[DataClassType, Iterable[DataClassType]] , **_A : int) -> int: # To make the default appear when using --help if "formatter_class" not in kwargs: __snake_case : Union[str, Any] = ArgumentDefaultsHelpFormatter super().__init__(**_A) if dataclasses.is_dataclass(_A): __snake_case : Optional[int] = [dataclass_types] __snake_case : Dict = list(_A) for dtype in self.dataclass_types: self._add_dataclass_arguments(_A) @staticmethod def _lowercase (_A : ArgumentParser , _A : dataclasses.Field) -> Tuple: __snake_case : Union[str, Any] = f"--{field.name}" __snake_case : Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _A): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default') __snake_case : Any = kwargs.pop('aliases' , []) if isinstance(_A , _A): __snake_case : Optional[Any] = [aliases] __snake_case : Tuple = getattr(field.type , '__origin__' , field.type) if origin_type is Union or (hasattr(_A , 'UnionType') and isinstance(_A , types.UnionType)): if str not in field.type.__args__ and ( len(field.type.__args__) != 2 or type(_A) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' f" Problem encountered in field '{field.name}'.") if type(_A) not in field.type.__args__: # filter `str` in Union __snake_case : Tuple = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __snake_case : Optional[int] = getattr(field.type , '__origin__' , field.type) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __snake_case : Optional[Any] = ( field.type.__args__[0] if isinstance(_A , field.type.__args__[1]) else field.type.__args__[1] ) __snake_case : Tuple = getattr(field.type , '__origin__' , field.type) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __snake_case : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , _A) and issubclass(field.type , _A)): if origin_type is Literal: __snake_case : Tuple = field.type.__args__ else: __snake_case : Dict = [x.value for x in field.type] __snake_case : Dict = make_choice_type_function(kwargs['choices']) if field.default is not dataclasses.MISSING: __snake_case : Dict = field.default else: __snake_case : Union[str, Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __snake_case : Tuple = copy(_A) # Hack because type=bool in argparse does not behave as we want. __snake_case : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __snake_case : str = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __snake_case : Any = default # This tells argparse we accept 0 or 1 value after --field_name __snake_case : Dict = '?' # This is the value that will get picked if we do --field_name (without value) __snake_case : List[str] = True elif isclass(_A) and issubclass(_A , _A): __snake_case : str = field.type.__args__[0] __snake_case : Any = '+' if field.default_factory is not dataclasses.MISSING: __snake_case : List[str] = field.default_factory() elif field.default is dataclasses.MISSING: __snake_case : Any = True else: __snake_case : Tuple = field.type if field.default is not dataclasses.MISSING: __snake_case : Optional[int] = field.default elif field.default_factory is not dataclasses.MISSING: __snake_case : List[Any] = field.default_factory() else: __snake_case : Union[str, Any] = True parser.add_argument(_A , *_A , **_A) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __snake_case : List[str] = False parser.add_argument(f"--no_{field.name}" , action='store_false' , dest=field.name , **_A) def _lowercase (self : List[Any] , _A : DataClassType) -> Optional[int]: if hasattr(_A , '_argument_group_name'): __snake_case : Union[str, Any] = self.add_argument_group(dtype._argument_group_name) else: __snake_case : int = self try: __snake_case : Dict[str, type] = get_type_hints(_A) except NameError: raise RuntimeError( f"Type resolution failed for {dtype}. Try declaring the class in global scope or " 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)') except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_A): __snake_case : Union[str, Any] = '.'.join(map(_A , sys.version_info[:3])) raise RuntimeError( f"Type resolution failed for {dtype} on Python {python_version}. Try removing " 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.') from ex raise for field in dataclasses.fields(_A): if not field.init: continue __snake_case : Optional[Any] = type_hints[field.name] self._parse_dataclass_field(_A , _A) def _lowercase (self : Union[str, Any] , _A : List[Any]=None , _A : Optional[Any]=False , _A : int=True , _A : List[Any]=None , _A : str=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)): __snake_case : Any = [] if args_filename: args_files.append(Path(_A)) elif look_for_args_file and len(sys.argv): args_files.append(Path(sys.argv[0]).with_suffix('.args')) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __snake_case : int = ArgumentParser() args_file_parser.add_argument(_A , type=_A , action='append') # Use only remaining args for further parsing (remove the args_file_flag) __snake_case , __snake_case : int = args_file_parser.parse_known_args(args=_A) __snake_case : int = vars(_A).get(args_file_flag.lstrip('-') , _A) if cmd_args_file_paths: args_files.extend([Path(_A) for p in cmd_args_file_paths]) __snake_case : Optional[int] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __snake_case : List[str] = file_args + args if args is not None else file_args + sys.argv[1:] __snake_case , __snake_case : Tuple = self.parse_known_args(args=_A) __snake_case : Dict = [] for dtype in self.dataclass_types: __snake_case : List[Any] = {f.name for f in dataclasses.fields(_A) if f.init} __snake_case : List[str] = {k: v for k, v in vars(_A).items() if k in keys} for k in keys: delattr(_A , _A) __snake_case : List[str] = dtype(**_A) outputs.append(_A) if len(namespace.__dict__) > 0: # additional namespace. outputs.append(_A) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}") return (*outputs,) def _lowercase (self : Tuple , _A : Dict[str, Any] , _A : bool = False) -> Tuple[DataClass, ...]: __snake_case : List[Any] = set(args.keys()) __snake_case : Dict = [] for dtype in self.dataclass_types: __snake_case : List[str] = {f.name for f in dataclasses.fields(_A) if f.init} __snake_case : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys()) __snake_case : List[str] = dtype(**_A) outputs.append(_A) if not allow_extra_keys and unused_keys: raise ValueError(f"Some keys are not used by the HfArgumentParser: {sorted(_A)}") return tuple(_A) def _lowercase (self : int , _A : str , _A : bool = False) -> Tuple[DataClass, ...]: with open(Path(_A) , encoding='utf-8') as open_json_file: __snake_case : int = json.loads(open_json_file.read()) __snake_case : Optional[int] = self.parse_dict(_A , allow_extra_keys=_A) return tuple(_A) def _lowercase (self : List[str] , _A : str , _A : bool = False) -> Tuple[DataClass, ...]: __snake_case : Dict = self.parse_dict(yaml.safe_load(Path(_A).read_text()) , allow_extra_keys=_A) return tuple(_A)
95
1
import argparse from collections import defaultdict import yaml A_ :Tuple = '''docs/source/en/_toctree.yml''' def A ( a_ ) -> Tuple: __UpperCamelCase : Tuple =defaultdict(a_ ) for doc in model_doc: counts[doc["local"]] += 1 __UpperCamelCase : int =[key for key, value in counts.items() if value > 1] __UpperCamelCase : Any =[] for duplicate_key in duplicates: __UpperCamelCase : Union[str, Any] =list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(a_ ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(a_ ,key=lambda a_ : s["title"].lower() ) def A ( a_=False ) -> Union[str, Any]: with open(a_ ,encoding='utf-8' ) as f: __UpperCamelCase : Any =yaml.safe_load(f.read() ) # Get to the API doc __UpperCamelCase : List[str] =0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCamelCase : Any =content[api_idx]['sections'] # Then to the model doc __UpperCamelCase : List[str] =0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __UpperCamelCase : str =api_doc[model_idx]['sections'] __UpperCamelCase : int =[(idx, section) for idx, section in enumerate(a_ ) if 'sections' in section] __UpperCamelCase : Any =False for idx, modality_doc in modalities_docs: __UpperCamelCase : Optional[Any] =modality_doc['sections'] __UpperCamelCase : str =clean_model_doc_toc(a_ ) if old_modality_doc != new_modality_doc: __UpperCamelCase : str =True if overwrite: __UpperCamelCase : List[Any] =new_modality_doc if diff: if overwrite: __UpperCamelCase : Union[str, Any] =model_doc __UpperCamelCase : int =api_doc with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(yaml.dump(a_ ,allow_unicode=a_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": A_ :Dict = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ :Any = parser.parse_args() check_model_doc(args.fix_and_overwrite)
71
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=16 , lowerCamelCase__=[32, 64, 128] , lowerCamelCase__=[1, 2, 1] , lowerCamelCase__=[2, 2, 4] , lowerCamelCase__=2 , lowerCamelCase__=2.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=10 , lowerCamelCase__=8 , lowerCamelCase__=["stage1", "stage2"] , lowerCamelCase__=[1, 2] , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = patch_norm __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = is_training __lowerCamelCase = scope __lowerCamelCase = use_labels __lowerCamelCase = type_sequence_label_size __lowerCamelCase = encoder_stride __lowerCamelCase = out_features __lowerCamelCase = out_indices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> List[str]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __lowerCamelCase = None __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) snake_case_ = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> str: '''simple docstring''' return def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # FocalNet has a different seq_length __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowerCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = reshaped_hidden_states[0].shape __lowerCamelCase = ( reshaped_hidden_states[0].view(lowerCamelCase__ , lowerCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = 3 __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @slow def lowercase_ ( self ) -> str: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = FocalNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FocalNetBackbone,) if is_torch_available() else () snake_case_ = FocalNetConfig snake_case_ = False def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self )
90
0
'''simple docstring''' import string from math import logaa def _lowerCamelCase ( lowercase : str , lowercase : str ) -> int: _a = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) _a = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _lowerCamelCase ( lowercase : str , lowercase : str ) -> tuple[int, int]: _a = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' _a = corpus_without_punctuation.split("\n" ) _a = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : Tuple=False ) -> float: if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def _lowerCamelCase ( lowercase : int , lowercase : int ) -> float: return round(tf * idf , 3 )
370
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Any: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : List[str] = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Union[str, Any]: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _a = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Dict , lowercase : Dict ) -> str: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Tuple , __a : Optional[int] , __a : Any ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Tuple , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Dict=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : List[Any] , __a : Dict ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Optional[int] , __a : pl.Trainer , __a : str ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
346
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Optional[int] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : str )->int: super().__init__(*__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = {} def lowercase__ ( self : int , __UpperCamelCase : Any , *__UpperCamelCase : List[str] , **__UpperCamelCase : Tuple )->str: _UpperCAmelCase = super().add_tokens(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' ''' `placeholder_token` that is not already in the tokenizer.''' ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] , *__UpperCamelCase : Any , __UpperCamelCase : Dict=1 , **__UpperCamelCase : str )->Dict: _UpperCAmelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) output.append(__UpperCamelCase ) else: _UpperCAmelCase = [] for i in range(__UpperCamelCase ): _UpperCAmelCase = placeholder_token + F'_{i}' self.try_adding_tokens(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) output.append(__UpperCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) _UpperCAmelCase = output def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str]=False , __UpperCamelCase : Union[str, Any]=1.0 )->List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = [] for i in range(len(__UpperCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__UpperCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _UpperCAmelCase = self.token_map[placeholder_token] _UpperCAmelCase = tokens[: 1 + int(len(__UpperCamelCase ) * prop_tokens_to_load )] if vector_shuffle: _UpperCAmelCase = copy.copy(__UpperCamelCase ) random.shuffle(__UpperCamelCase ) _UpperCAmelCase = text.replace(__UpperCamelCase , ''' '''.join(__UpperCamelCase ) ) return text def __call__( self : List[Any] , __UpperCamelCase : List[Any] , *__UpperCamelCase : Any , __UpperCamelCase : Dict=False , __UpperCamelCase : Tuple=1.0 , **__UpperCamelCase : Tuple )->Any: return super().__call__( self.replace_placeholder_tokens_in_text( __UpperCamelCase , vector_shuffle=__UpperCamelCase , prop_tokens_to_load=__UpperCamelCase ) , *__UpperCamelCase , **__UpperCamelCase , ) def lowercase__ ( self : List[str] , __UpperCamelCase : List[Any] , *__UpperCamelCase : str , __UpperCamelCase : Tuple=False , __UpperCamelCase : Union[str, Any]=1.0 , **__UpperCamelCase : Any )->Optional[Any]: return super().encode( self.replace_placeholder_tokens_in_text( __UpperCamelCase , vector_shuffle=__UpperCamelCase , prop_tokens_to_load=__UpperCamelCase ) , *__UpperCamelCase , **__UpperCamelCase , )
260
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _UpperCAmelCase = True for i in range(_SCREAMING_SNAKE_CASE ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _UpperCAmelCase = True if a[i].islower(): _UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
260
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 snake_case_ = get_tests_dir('fixtures') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Any ): """simple docstring""" __snake_case = mock.Mock() __snake_case = 500 __snake_case = {} __snake_case = HTTPError __snake_case = {} # Download this model to make sure it's in the cache. __snake_case = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=a__ ) as mock_head: __snake_case = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def a (self : Dict ): """simple docstring""" __snake_case = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def a (self : List[str] ): """simple docstring""" with self.assertRaises(a__ ): # config is in subfolder, the following should not work without specifying the subfolder __snake_case = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) __snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(a__ ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @classmethod def a (cls : Optional[Any] ): """simple docstring""" __snake_case = TOKEN HfFolder.save_token(a__ ) @classmethod def a (cls : Optional[int] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def a (self : int ): """simple docstring""" __snake_case = ViTImageProcessor.from_pretrained(a__ ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) __snake_case = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a__ , getattr(a__ , a__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a__ , repo_id='''test-image-processor''' , push_to_hub=a__ , use_auth_token=self._token ) __snake_case = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a__ , getattr(a__ , a__ ) ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = ViTImageProcessor.from_pretrained(a__ ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) __snake_case = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(a__ , getattr(a__ , a__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a__ , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=a__ , use_auth_token=self._token ) __snake_case = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(a__ , getattr(a__ , a__ ) ) def a (self : List[str] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() __snake_case = CustomImageProcessor.from_pretrained(a__ ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) __snake_case = AutoImageProcessor.from_pretrained( f"""{USER}/test-dynamic-image-processor""" , trust_remote_code=a__ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
356
# Algorithm for the pigeonhole sorting def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: __snake_case = min(snake_case_ ) # min() finds the minimum value __snake_case = max(snake_case_ ) # max() finds the maximum value __snake_case = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __snake_case = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(snake_case_ , snake_case_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __snake_case = 0 for count in range(snake_case_ ): while holes[count] > 0: holes[count] -= 1 __snake_case = count + min_val i += 1 def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(snake_case_ ) print('''Sorted order is:''' , ''' '''.join(snake_case_ ) ) if __name__ == "__main__": main()
238
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _snake_case = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A , __A=16 , __A=13 , __A=7 , __A=14 , __A=10 , __A=19 , __A=5 , __A=4 , __A=True , __A=16 , __A=2 , __A=4 , __A=4 , __A="gelu" , __A=0.1 , __A=0.1 , __A=[1, 2, 3, 4, 5] , __A=25 , __A=5 , ): """simple docstring""" lowerCamelCase : Union[str, Any] = d_model lowerCamelCase : Any = parent lowerCamelCase : List[Any] = batch_size lowerCamelCase : Union[str, Any] = prediction_length lowerCamelCase : str = context_length lowerCamelCase : List[Any] = cardinality lowerCamelCase : Dict = num_time_features lowerCamelCase : Any = lags_sequence lowerCamelCase : Any = embedding_dimension lowerCamelCase : Union[str, Any] = is_training lowerCamelCase : List[str] = hidden_size lowerCamelCase : int = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : Any = intermediate_size lowerCamelCase : List[Any] = hidden_act lowerCamelCase : List[Any] = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : Any = context_length lowerCamelCase : str = prediction_length + label_length lowerCamelCase : Any = label_length lowerCamelCase : Union[str, Any] = moving_average lowerCamelCase : Dict = autocorrelation_factor def _snake_case ( self ): """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Any = config.context_length + max(config.lags_sequence ) lowerCamelCase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCamelCase : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase : List[Any] = floats_tensor([self.batch_size, _past_length] ) lowerCamelCase : Dict = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase : List[str] = floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase : Dict = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_config() lowerCamelCase : Any = self.prepare_autoformer_inputs_dict(lowerCamelCase_ ) return config, inputs_dict def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self , __A , __A ): """simple docstring""" lowerCamelCase : str = AutoformerModel(config=lowerCamelCase_ ).to(lowerCamelCase_ ).eval() lowerCamelCase : List[str] = model(**lowerCamelCase_ ) lowerCamelCase : List[Any] = outputs.encoder_last_hidden_state lowerCamelCase : Dict = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase : Optional[Any] = model.get_encoder() encoder.save_pretrained(lowerCamelCase_ ) lowerCamelCase : Any = AutoformerEncoder.from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) lowerCamelCase : Tuple = model.create_network_inputs(**lowerCamelCase_ ) lowerCamelCase : Tuple = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase : Dict = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCamelCase : Tuple = encoder(inputs_embeds=lowerCamelCase_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowerCamelCase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCamelCase : int = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCamelCase : List[str] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCamelCase : List[str] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase : Optional[Any] = model.get_decoder() decoder.save_pretrained(lowerCamelCase_ ) lowerCamelCase : List[str] = AutoformerDecoder.from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) lowerCamelCase : List[Any] = decoder( trend=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __A : Union[str, Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () __A : List[Any] = {"feature-extraction": AutoformerModel} if is_torch_available() else {} __A : Union[str, Any] = False __A : int = False __A : Optional[Any] = False __A : Tuple = False __A : Optional[int] = False __A : Any = False def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = AutoformerModelTester(self ) lowerCamelCase : int = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase : Dict = model_class(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ ) lowerCamelCase : Tuple = model_class.from_pretrained(lowerCamelCase_ , output_loading_info=lowerCamelCase_ ) self.assertEqual(info["missing_keys"] , [] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCamelCase_ ) @unittest.skip(reason="Model has no tokens embeddings" ) def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = inspect.signature(getattr(lowerCamelCase_ , "forward" ) ) # The main input is the name of the argument after `self` lowerCamelCase : Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCamelCase_ ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[str] = model_class(lowerCamelCase_ ) lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Optional[int] = [*signature.parameters.keys()] lowerCamelCase : Tuple = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(lowerCamelCase_ )] , lowerCamelCase_ ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : Optional[int] = True lowerCamelCase : Union[str, Any] = getattr(self.model_tester , "seq_length" , lowerCamelCase_ ) lowerCamelCase : Dict = getattr(self.model_tester , "decoder_seq_length" , lowerCamelCase_ ) lowerCamelCase : Dict = getattr(self.model_tester , "encoder_seq_length" , lowerCamelCase_ ) lowerCamelCase : Tuple = getattr(self.model_tester , "d_model" , lowerCamelCase_ ) lowerCamelCase : Optional[int] = getattr(self.model_tester , "num_attention_heads" , lowerCamelCase_ ) lowerCamelCase : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase : Optional[int] = True lowerCamelCase : str = False lowerCamelCase : str = True lowerCamelCase : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCamelCase : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase : Tuple = True lowerCamelCase : Dict = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCamelCase : Union[str, Any] = outputs.encoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCamelCase : Any = len(lowerCamelCase_ ) lowerCamelCase : Dict = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) # decoder attentions lowerCamelCase : List[Any] = outputs.decoder_attentions self.assertIsInstance(lowerCamelCase_ , (list, tuple) ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCamelCase : List[Any] = outputs.cross_attentions self.assertIsInstance(lowerCamelCase_ , (list, tuple) ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCamelCase : Tuple = True lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase : Dict = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + 2 , len(lowerCamelCase_ ) ) lowerCamelCase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _snake_case ( self ): """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowercase_( SCREAMING_SNAKE_CASE_="train-batch.pt" ): '''simple docstring''' lowerCamelCase : Optional[Any] = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=_a , repo_type="dataset" ) lowerCamelCase : Any = torch.load(_a , map_location=_a ) return batch @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(lowerCamelCase_ ) lowerCamelCase : Optional[int] = prepare_batch() with torch.no_grad(): lowerCamelCase : str = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] lowerCamelCase : Optional[Any] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCamelCase_ ) lowerCamelCase : Dict = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=lowerCamelCase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCamelCase_ , atol=lowerCamelCase_ ) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(lowerCamelCase_ ) lowerCamelCase : List[Any] = prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase : List[Any] = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state lowerCamelCase : Optional[int] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCamelCase_ ) lowerCamelCase : Tuple = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=lowerCamelCase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCamelCase_ , atol=lowerCamelCase_ ) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(lowerCamelCase_ ) lowerCamelCase : Any = prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase : List[str] = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) lowerCamelCase : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCamelCase_ ) lowerCamelCase : List[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=lowerCamelCase_ ) lowerCamelCase : Union[str, Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCamelCase_ , rtol=1e-1 ) )
283
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = AutoencoderKL A__ : Optional[int] = "sample" A__ : Tuple = 1E-2 @property def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Any = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def A__ ( self: List[str] ) -> Tuple: return (3, 32, 32) @property def A__ ( self: Optional[Any] ) -> Any: return (3, 32, 32) def A__ ( self: Any ) -> Tuple: UpperCAmelCase_ : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } UpperCAmelCase_ : int = self.dummy_input return init_dict, inputs_dict def A__ ( self: Optional[Any] ) -> int: pass def A__ ( self: str ) -> Any: pass @unittest.skipIf(torch_device == """mps""" ,"""Gradient checkpointing skipped on MPS""" ) def A__ ( self: Union[str, Any] ) -> Dict: # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ : Any = torch.randn_like(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ : str = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ : Optional[int] = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCAmelCase_ : Dict = dict(model.named_parameters() ) UpperCAmelCase_ : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def A__ ( self: Optional[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ,output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self: Optional[int] ) -> int: UpperCAmelCase_ : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) UpperCAmelCase_ : Tuple = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : str = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase_ : int = image.to(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample UpperCAmelCase_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ : List[str] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: UpperCAmelCase_ : List[str] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy''' def A__ ( self: Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: List[Any]=(4, 3, 512, 512) ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]: UpperCAmelCase_ : Tuple = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def A__ ( self: List[Any] ,lowerCamelCase_: List[str]="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_: Union[str, Any]=False ) -> Any: UpperCAmelCase_ : Optional[Any] = """fp16""" if fpaa else None UpperCAmelCase_ : str = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : int = AutoencoderKL.from_pretrained( lowerCamelCase_ ,subfolder="""vae""" ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,) model.to(lowerCamelCase_ ).eval() return model def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=0 ) -> Optional[int]: if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ) -> Tuple: UpperCAmelCase_ : List[Any] = self.get_sd_vae_model() UpperCAmelCase_ : int = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Tuple: UpperCAmelCase_ : List[str] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Dict: UpperCAmelCase_ : Optional[int] = self.get_sd_vae_model() UpperCAmelCase_ : Dict = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : str = model(lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Any = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.get_sd_vae_model() UpperCAmelCase_ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : str = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : Any = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> int: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.get_sd_vae_model() UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model() UpperCAmelCase_ : Optional[Any] = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : str = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : int = model.encode(lowerCamelCase_ ).latent_dist UpperCAmelCase_ : Optional[Any] = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ : Tuple = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
345
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowerCAmelCase :Tuple = pd.read_csv('''sample_data.csv''', header=None) lowerCAmelCase :List[Any] = df.shape[:1][0] # If you're using some other dataset input the target column lowerCAmelCase :List[str] = df.iloc[:, 1:2] lowerCAmelCase :Optional[int] = actual_data.values.reshape(len_data, 1) lowerCAmelCase :Any = MinMaxScaler().fit_transform(actual_data) lowerCAmelCase :Any = 1_0 lowerCAmelCase :List[Any] = 5 lowerCAmelCase :str = 2_0 lowerCAmelCase :List[str] = len_data - periods * look_back lowerCAmelCase :List[str] = actual_data[:division] lowerCAmelCase :int = actual_data[division - look_back :] lowerCAmelCase :Optional[int] = [], [] lowerCAmelCase :Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowerCAmelCase :Union[str, Any] = np.array(train_x) lowerCAmelCase :Tuple = np.array(test_x) lowerCAmelCase :Optional[int] = np.array([list(i.ravel()) for i in train_y]) lowerCAmelCase :Dict = np.array([list(i.ravel()) for i in test_y]) lowerCAmelCase :Dict = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') lowerCAmelCase :Optional[Any] = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) lowerCAmelCase :List[Any] = model.predict(x_test)
359
'''simple docstring''' import math def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return math.pow(lowerCAmelCase , 2 ) - a def lowerCamelCase ( lowerCAmelCase : float ): """simple docstring""" return 2 * x def lowerCamelCase ( lowerCAmelCase : float ): """simple docstring""" __magic_name__ : List[Any] = 2.0 while start <= a: __magic_name__ : List[str] = math.pow(lowerCAmelCase , 2 ) return start def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : int = 9999 , lowerCAmelCase : float = 0.00_0000_0000_0001 ): """simple docstring""" if a < 0: raise ValueError('math domain error' ) __magic_name__ : Any = get_initial_point(lowerCAmelCase ) for _ in range(lowerCAmelCase ): __magic_name__ : List[str] = value __magic_name__ : Optional[int] = value - fx(lowerCAmelCase , lowerCAmelCase ) / fx_derivative(lowerCAmelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
275
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _snake_case = "." if __name__ == "__main__": _snake_case = os.path.join(REPO_PATH, "utils/documentation_tests.txt") _snake_case = [] _snake_case = [] with open(doctest_file_path) as fp: for line in fp: _snake_case = line.strip() _snake_case = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _snake_case = "\n".join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
36
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _A : Optional[Any] = 16 _A : Union[str, Any] = 32 def UpperCamelCase_ ( snake_case_ : List[str] ) -> str: '''simple docstring''' return int(x / 2**20 ) class _lowercase : '''simple docstring''' def __enter__( self : List[Any] ) -> int: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowerCAmelCase = torch.cuda.memory_allocated() return self def __exit__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: gc.collect() torch.cuda.empty_cache() __lowerCAmelCase = torch.cuda.memory_allocated() __lowerCAmelCase = torch.cuda.max_memory_allocated() __lowerCAmelCase = bamb(self.end - self.begin ) __lowerCAmelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCamelCase_ ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" , snake_case_ : int = 3_20 , snake_case_ : int = 1_60 , ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = AutoTokenizer.from_pretrained(snake_case_ ) __lowerCAmelCase = load_dataset( """glue""" , """mrpc""" , split={"""train""": f"""train[:{n_train}]""", """validation""": f"""validation[:{n_val}]"""} ) def tokenize_function(snake_case_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Tuple ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["""lr"""] __lowerCAmelCase = int(config["""num_epochs"""] ) __lowerCAmelCase = int(config["""seed"""] ) __lowerCAmelCase = int(config["""batch_size"""] ) __lowerCAmelCase = args.model_name_or_path set_seed(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(snake_case_ , snake_case_ , snake_case_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __lowerCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCAmelCase = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCAmelCase = 1 __lowerCAmelCase = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __lowerCAmelCase = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCAmelCase = 0 # Now we train the model __lowerCAmelCase = {} for epoch in range(snake_case_ , snake_case_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case_ ): __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowerCAmelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(snake_case_ , snake_case_ ) def UpperCamelCase_ ( ) -> Any: '''simple docstring''' __lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=snake_case_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case_ , ) parser.add_argument( """--output_dir""" , type=snake_case_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=snake_case_ , default=snake_case_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=snake_case_ , default=3_20 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=snake_case_ , default=1_60 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case_ , default=1 , help="""Number of train epochs.""" , ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
229
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCamelCase__ = (3, 9, -11, 0, 7, 5, 1, -1) lowerCamelCase__ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : lowercase = 42 lowercase = 42 class A__ : def __init__( self : Dict , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : int = None for i in sorted(__lowercase , reverse=__lowercase ): lowerCAmelCase__ : List[Any] = Node(__lowercase , self.head ) def __iter__( self : str ): '''simple docstring''' lowerCAmelCase__ : Dict = self.head while node: yield node.data lowerCAmelCase__ : Any = node.next_node def __len__( self : int ): '''simple docstring''' return sum(1 for _ in self ) def __str__( self : Optional[Any] ): '''simple docstring''' return " -> ".join([str(__lowercase ) for node in self] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: return SortedLinkedList(list(SCREAMING_SNAKE_CASE_ ) + list(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
359
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" snake_case = (boundary[1] - boundary[0]) / steps snake_case = boundary[0] snake_case = boundary[1] snake_case = make_points(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case = 0.0 y += (h / 2.0) * f(_lowerCAmelCase ) for i in x_i: # print(i) y += h * f(_lowerCAmelCase ) y += (h / 2.0) * f(_lowerCAmelCase ) return y def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" snake_case = a + h while x < (b - h): yield x snake_case = x + h def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> Optional[Any]: # enter your function here """simple docstring""" snake_case = (x - 0) * (x - 0) return y def lowerCAmelCase__ ( ) -> Dict: """simple docstring""" snake_case = 0.0 # Lower bound of integration snake_case = 1.0 # Upper bound of integration snake_case = 10.0 # define number of steps or resolution snake_case = [a, b] # define boundary of integration snake_case = method_a(_lowerCAmelCase , _lowerCAmelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
150
from math import sqrt def A_ ( _lowerCAmelCase ) -> bool: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" UpperCamelCase : List[Any] = True # 0 and 1 are none primes. if number <= 1: UpperCamelCase : List[Any] = False for divisor in range(2 , int(round(sqrt(_lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCamelCase : Union[str, Any] = False break # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'status' must been from type bool" return status def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCamelCase : int = list(range(2 , n + 1 ) ) UpperCamelCase : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_lowerCAmelCase ) ): for j in range(i + 1 , len(_lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCamelCase : Tuple = 0 # filters actual prime numbers. UpperCamelCase : str = [x for x in begin_list if x != 0] # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" UpperCamelCase : str = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_lowerCAmelCase ): ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" UpperCamelCase : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. UpperCamelCase : Tuple = 2 UpperCamelCase : str = number if number == 0 or number == 1: ans.append(_lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_lowerCAmelCase ): while quotient != 1: if is_prime(_lowerCAmelCase ) and (quotient % factor == 0): ans.append(_lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase : List[Any] = 0 # prime factorization of 'number' UpperCamelCase : Any = prime_factorization(_lowerCAmelCase ) UpperCamelCase : List[Any] = max(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase : List[Any] = 0 # prime factorization of 'number' UpperCamelCase : Dict = prime_factorization(_lowerCAmelCase ) UpperCamelCase : List[Any] = min(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def A_ ( _lowerCAmelCase ) -> List[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def A_ ( _lowerCAmelCase ) -> Any: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (number > 2) and is_even(_lowerCAmelCase ) ), "'number' must been an int, even and > 2" UpperCamelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCamelCase : Dict = get_prime_numbers(_lowerCAmelCase ) UpperCamelCase : Tuple = len(_lowerCAmelCase ) # run variable for while-loops. UpperCamelCase : Optional[int] = 0 UpperCamelCase : int = None # exit variable. for break up the loops UpperCamelCase : Union[str, Any] = True while i < len_pn and loop: UpperCamelCase : Tuple = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCamelCase : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (len(_lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCamelCase : Tuple = 0 while numbera != 0: UpperCamelCase : Tuple = numbera % numbera UpperCamelCase : Any = numbera UpperCamelCase : Union[str, Any] = rest # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCamelCase : Optional[int] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCamelCase : List[Any] = prime_factorization(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = prime_factorization(_lowerCAmelCase ) elif numbera == 1 or numbera == 1: UpperCamelCase : Optional[Any] = [] UpperCamelCase : int = [] UpperCamelCase : List[Any] = max(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 0 UpperCamelCase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCamelCase : str = prime_fac_a.count(_lowerCAmelCase ) UpperCamelCase : Tuple = prime_fac_a.count(_lowerCAmelCase ) for _ in range(max(_lowerCAmelCase , _lowerCAmelCase ) ): ans *= n else: UpperCamelCase : str = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCamelCase : Any = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A_ ( _lowerCAmelCase ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" UpperCamelCase : int = 0 UpperCamelCase : int = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_lowerCAmelCase ): ans += 1 # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and is_prime( _lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: assert ( is_prime(_lowerCAmelCase ) and is_prime(_lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCamelCase : str = p_number_a + 1 # jump to the next number UpperCamelCase : Dict = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(_lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ans[0] != p_number_a and ans[len(_lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A_ ( _lowerCAmelCase ) -> List[str]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" UpperCamelCase : Dict = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def A_ ( _lowerCAmelCase ) -> int: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCamelCase : int = get_divisors(_lowerCAmelCase ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(_lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCamelCase : List[str] = gcd(abs(_lowerCAmelCase ) , abs(_lowerCAmelCase ) ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A_ ( _lowerCAmelCase ) -> Dict: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" UpperCamelCase : str = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def A_ ( _lowerCAmelCase ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" UpperCamelCase : Dict = 0 UpperCamelCase : Dict = 1 UpperCamelCase : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): UpperCamelCase : Any = ans ans += fiba UpperCamelCase : str = tmp return ans
52
0
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase = 50 ): __UpperCAmelCase : Optional[int] = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"{solution() = }")
37
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCAmelCase__ : str = logging.get_logger(__name__) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = UNetaDModel SCREAMING_SNAKE_CASE = '''sample''' @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Dict = 4 __UpperCAmelCase : Dict = 3 __UpperCAmelCase : Dict = (32, 32) __UpperCAmelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : str = torch.tensor([10] ).to(UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : int ): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return (3, 32, 32) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } __UpperCAmelCase : List[str] = self.dummy_input return init_dict, inputs_dict class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = UNetaDModel SCREAMING_SNAKE_CASE = '''sample''' @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : str = 4 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : Optional[int] = (32, 32) __UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = torch.tensor([10] ).to(UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return (4, 32, 32) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return (4, 32, 32) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Dict = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } __UpperCAmelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : str = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : List[str] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : List[str] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase_ ( self : str ): """simple docstring""" # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` __UpperCAmelCase , __UpperCAmelCase : str = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) model_accelerate.to(UpperCAmelCase_ ) model_accelerate.eval() __UpperCAmelCase : Optional[Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) __UpperCAmelCase : int = noise.to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = model_accelerate(UpperCAmelCase_ , UpperCAmelCase_ )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() __UpperCAmelCase , __UpperCAmelCase : str = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ , low_cpu_mem_usage=UpperCAmelCase_ ) model_normal_load.to(UpperCAmelCase_ ) model_normal_load.eval() __UpperCAmelCase : Optional[Any] = model_normal_load(UpperCAmelCase_ , UpperCAmelCase_ )["sample"] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Tuple = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __UpperCAmelCase : Optional[int] = noise.to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase_ ) with torch.no_grad(): __UpperCAmelCase : Dict = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample __UpperCAmelCase : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __UpperCAmelCase : int = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = UNetaDModel SCREAMING_SNAKE_CASE = '''sample''' @property def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : List[str]=(32, 32) ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : str ): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase_ ( self : Any ): """simple docstring""" return (3, 32, 32) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : List[Any] = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } __UpperCAmelCase : int = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : int = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Any = self.dummy_input __UpperCAmelCase : int = floats_tensor((4, 3) + (256, 256) ).to(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = noise __UpperCAmelCase : Optional[Any] = model(**UpperCAmelCase_ ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Any = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : int = (256, 256) __UpperCAmelCase : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : Dict = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase_ ) with torch.no_grad(): __UpperCAmelCase : Tuple = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample __UpperCAmelCase : List[str] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __UpperCAmelCase : Tuple = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2 ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : Dict = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = 4 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : Union[str, Any] = (32, 32) __UpperCAmelCase : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase_ ) with torch.no_grad(): __UpperCAmelCase : str = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample __UpperCAmelCase : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __UpperCAmelCase : Any = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2 ) ) def lowerCamelCase_ ( self : Any ): """simple docstring""" # not required for this model pass
37
1
'''simple docstring''' from __future__ import annotations class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Any=None): '''simple docstring''' __lowercase =data __lowercase =None def __repr__( self : Tuple): '''simple docstring''' __lowercase =[] __lowercase =self while temp: string_rep.append(f"""{temp.data}""") __lowercase =temp.next return "->".join(_lowerCAmelCase) def _A ( _lowerCAmelCase ): """simple docstring""" if not elements_list: raise Exception('The Elements List is empty' ) __lowercase =__lowercase =Node(elements_list[0] ) for i in range(1 , len(_lowerCAmelCase ) ): __lowercase =Node(elements_list[i] ) __lowercase =current.next return head def _A ( _lowerCAmelCase ): """simple docstring""" if head_node is not None and isinstance(_lowerCAmelCase , _lowerCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def _A ( ): """simple docstring""" from doctest import testmod testmod() __lowercase =make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(_lowerCAmelCase ) print('Elements in Reverse:' ) print_reverse(_lowerCAmelCase ) if __name__ == "__main__": main()
166
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) return (preds == labels).mean() def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) __lowercase =simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) __lowercase =pearsonr(_lowerCAmelCase , _lowerCAmelCase )[0] __lowercase =spearmanr(_lowerCAmelCase , _lowerCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mrpc": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "qqp": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase )
166
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _a : '''simple docstring''' UpperCAmelCase__: List[Any] = XGLMConfig UpperCAmelCase__: Any = {} UpperCAmelCase__: str = '''gelu''' def __init__( self , A__ , A__=14 , A__=7 , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=2 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=0.0_2 , ): A__ : str = parent A__ : Any = batch_size A__ : Optional[Any] = seq_length A__ : Optional[int] = is_training A__ : Tuple = use_input_mask A__ : Tuple = use_labels A__ : List[Any] = vocab_size A__ : Optional[int] = d_model A__ : Optional[Any] = num_hidden_layers A__ : Union[str, Any] = num_attention_heads A__ : List[Any] = ffn_dim A__ : Dict = activation_function A__ : Optional[Any] = activation_dropout A__ : str = attention_dropout A__ : List[Any] = max_position_embeddings A__ : Tuple = initializer_range A__ : Any = None A__ : Any = 0 A__ : Dict = 2 A__ : Dict = 1 def __A ( self ): return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def __A ( self ): A__ : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) A__ : List[str] = None if self.use_input_mask: A__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = self.get_config() A__ : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __A ( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=A__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=A__ , ) def __A ( self ): A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Union[str, Any] = config_and_inputs A__ : Tuple = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Optional[int] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase__: int = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase__: Any = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase__: Tuple = False UpperCAmelCase__: int = False UpperCAmelCase__: Dict = False def __A ( self ): A__ : Tuple = TFXGLMModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=A__ , n_embd=37 ) def __A ( self ): self.config_tester.run_common_tests() @slow def __A ( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : int = TFXGLMModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def __A ( self ): super().test_resize_token_embeddings() @require_tf class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self , A__=True ): A__ : Tuple = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) A__ : Any = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off A__ : Tuple = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on A__ : Dict = model.generate(A__ , do_sample=A__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , A__ ) @slow def __A ( self ): A__ : List[str] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) A__ : List[Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) A__ : str = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) A__ : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): A__ : List[str] = model.generate(A__ , do_sample=A__ , seed=[7, 0] ) A__ : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=A__ ) A__ : List[Any] = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(A__ , A__ ) @slow def __A ( self ): A__ : Optional[int] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) A__ : Tuple = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) A__ : List[str] = """left""" # use different length sentences to test batching A__ : Union[str, Any] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] A__ : Union[str, Any] = tokenizer(A__ , return_tensors="""tf""" , padding=A__ ) A__ : int = inputs["""input_ids"""] A__ : Dict = model.generate(input_ids=A__ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) A__ : str = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids A__ : Tuple = model.generate(input_ids=A__ , max_new_tokens=12 ) A__ : str = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids A__ : int = model.generate(input_ids=A__ , max_new_tokens=12 ) A__ : Any = tokenizer.batch_decode(A__ , skip_special_tokens=A__ ) A__ : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A__ ) A__ : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=A__ ) A__ : Optional[Any] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , [non_padded_sentence, padded_sentence] )
141
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _a : '''simple docstring''' def __init__( self , A__ , A__=3 , A__=7 , A__=True , A__=True , A__=False , A__=True , A__=99 , A__=32 , A__=5 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=16 , A__=2 , A__=0.0_2 , A__=3 , A__=4 , A__=None , ): A__ : List[Any] = parent A__ : List[str] = batch_size A__ : Optional[int] = seq_length A__ : Optional[int] = is_training A__ : Any = use_input_mask A__ : Tuple = use_token_type_ids A__ : str = use_labels A__ : Tuple = vocab_size A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : Optional[Any] = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Union[str, Any] = attention_probs_dropout_prob A__ : List[str] = max_position_embeddings A__ : Union[str, Any] = type_vocab_size A__ : str = type_sequence_label_size A__ : Tuple = initializer_range A__ : Tuple = num_labels A__ : Dict = num_choices A__ : List[str] = scope def __A ( self ): A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = None if self.use_input_mask: A__ : int = random_attention_mask([self.batch_size, self.seq_length] ) A__ : str = None A__ : Union[str, Any] = None A__ : List[str] = None A__ : Optional[Any] = None if self.use_labels: A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=A__ , ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : List[str] = FalconModel(config=A__ ) model.to(A__ ) model.eval() A__ : int = model(A__ , attention_mask=A__ ) A__ : Union[str, Any] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : Union[str, Any] = True A__ : Union[str, Any] = FalconModel(A__ ) model.to(A__ ) model.eval() A__ : Tuple = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) A__ : Union[str, Any] = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , ) A__ : List[str] = model(A__ , attention_mask=A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : Any = FalconForCausalLM(config=A__ ) model.to(A__ ) model.eval() A__ : Tuple = model(A__ , attention_mask=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : Optional[Any] = True A__ : Union[str, Any] = True A__ : int = FalconForCausalLM(config=A__ ) model.to(A__ ) model.eval() # first forward pass A__ : List[Any] = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , use_cache=A__ , ) A__ : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) A__ : Optional[int] = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , output_hidden_states=A__ , )["""hidden_states"""][0] A__ : Any = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , past_key_values=A__ , output_hidden_states=A__ , )["""hidden_states"""][0] # select random slice A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A__ , A__ , atol=1e-3 ) ) def __A ( self ): A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Tuple = config_and_inputs A__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__: Tuple = (FalconForCausalLM,) if is_torch_available() else () UpperCAmelCase__: Optional[int] = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__: str = False UpperCAmelCase__: int = False def __A ( self ): A__ : List[Any] = FalconModelTester(self ) A__ : Union[str, Any] = ConfigTester(self , config_class=A__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def __A ( self ): A__ , *A__ : List[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: A__ : Tuple = alibi self.model_tester.create_and_check_model(A__ , *A__ ) def __A ( self ): A__ , A__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] = 3 A__ : int = input_dict["""input_ids"""] A__ : int = input_ids.ne(1 ).to(A__ ) A__ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Optional[int] = FalconForSequenceClassification(A__ ) model.to(A__ ) model.eval() A__ : int = model(A__ , attention_mask=A__ , labels=A__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : Dict = 3 A__ : Tuple = """single_label_classification""" A__ : List[Any] = input_dict["""input_ids"""] A__ : Dict = input_ids.ne(1 ).to(A__ ) A__ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Any = FalconForSequenceClassification(A__ ) model.to(A__ ) model.eval() A__ : Any = model(A__ , attention_mask=A__ , labels=A__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : List[str] = input_dict["""input_ids"""] A__ : List[str] = FalconForCausalLM(A__ ) model.to(A__ ) model.eval() A__ : Any = model(A__ , use_cache=A__ ) A__ : Any = input_ids.shape[0] A__ : Union[str, Any] = model._convert_to_rw_cache(result.past_key_values ) A__ : int = model._convert_cache_to_standard_format(A__ , A__ ) for layer in range(len(A__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __A ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[Any] = 3 A__ : List[Any] = """multi_label_classification""" A__ : Tuple = input_dict["""input_ids"""] A__ : List[Any] = input_ids.ne(1 ).to(A__ ) A__ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ : Optional[int] = FalconForSequenceClassification(A__ ) model.to(A__ ) model.eval() A__ : List[Any] = model(A__ , attention_mask=A__ , labels=A__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: A__ , A__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(A__ , """use_cache""" ): return A__ : Optional[Any] = model_class(A__ ).to(A__ ) if "use_cache" not in inputs: A__ : Optional[int] = True A__ : List[Any] = model(**A__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return A__ : str = ( getattr(A__ , """decoder_layers""" , A__ ) or getattr(A__ , """num_decoder_layers""" , A__ ) or config.num_hidden_layers ) A__ : Dict = getattr(A__ , """num_kv_heads""" , config.num_attention_heads ) A__ : List[str] = getattr(A__ , """d_model""" , config.hidden_size ) A__ : Union[str, Any] = embed_dim // num_attention_heads A__ : str = outputs["""past_key_values"""] self.assertEqual(len(A__ ) , A__ ) A__ , A__ : int = inputs["""input_ids"""].shape for i in range(A__ ): if config.new_decoder_architecture: A__ : Any = config.num_attention_heads elif config.multi_query: A__ : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : Dict = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) A__ : List[Any] = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(A__ ) A__ : Optional[int] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(A__ ) A__ : Optional[Any] = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) A__ : Any = model.generate(**A__ , do_sample=A__ , max_new_tokens=19 ) A__ : Optional[int] = tokenizer.batch_decode(A__ )[0] self.assertEqual(A__ , A__ ) @slow def __A ( self ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: A__ : Dict = AutoTokenizer.from_pretrained(A__ ) A__ : List[str] = FalconForCausalLM.from_pretrained(A__ ) model.eval() model.to(A__ ) A__ : Union[str, Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(A__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**A__ , do_sample=A__ , max_new_tokens=4 ) model.generate(**A__ , do_sample=A__ , max_new_tokens=4 ) model.generate(**A__ , num_beams=2 , max_new_tokens=4 ) @slow def __A ( self ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: A__ : Dict = AutoTokenizer.from_pretrained(A__ ) A__ : Any = FalconForCausalLM.from_pretrained(A__ ) model.eval() model.to(device=A__ ) A__ : List[str] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(A__ ) # Test results are the same with and without cache A__ : Tuple = model.generate(**A__ , do_sample=A__ , max_new_tokens=20 , use_cache=A__ ) A__ : Optional[Any] = model.generate(**A__ , do_sample=A__ , max_new_tokens=20 , use_cache=A__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
141
1
def __UpperCamelCase ( _A = 600851475143 ): try: lowerCAmelCase_ = int(_A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowerCAmelCase_ = 2 lowerCAmelCase_ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowerCAmelCase_ = i while n % i == 0: lowerCAmelCase_ = n // i i += 1 return int(_A ) if __name__ == "__main__": print(f"{solution() = }")
278
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class A ( __UpperCAmelCase ): __snake_case = 'vit' def __init__( self, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=224, UpperCamelCase__=16, UpperCamelCase__=3, UpperCamelCase__=True, UpperCamelCase__=16, **UpperCamelCase__, ): """simple docstring""" super().__init__(**UpperCamelCase__ ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = encoder_stride class A ( __UpperCAmelCase ): __snake_case = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 1E-4
278
1
"""simple docstring""" import qiskit def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Any =qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register lowerCamelCase__ : Optional[int] =qiskit.QuantumCircuit(__lowerCamelCase , __lowerCamelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowerCamelCase__ : Optional[int] =qiskit.execute(__lowerCamelCase , __lowerCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowerCamelCase ) if __name__ == "__main__": _lowercase : int = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
272
"""simple docstring""" import numpy as np from PIL import Image def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : int =0 lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Union[str, Any] =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase__ : Union[str, Any] =np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase__ : str =np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : Optional[int] =0 return updated_arr def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : str =0 lowerCamelCase__ : List[Any] =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Dict =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase__ : Optional[Any] =np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase__ : Optional[int] =int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[Any] =0 lowerCamelCase__ : int =0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image _lowercase : int = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
272
1
from math import pi def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
95
def _A ( SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" a__ : Optional[Any] =len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr a__ : List[Any] =arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi a__ : int =arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list a__ : List[str] =arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase : int = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase : Optional[int] = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
95
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = "▁" UpperCamelCase_ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } UpperCamelCase_ = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } UpperCamelCase_ = { "facebook/m2m100_418M": 1_024, } # fmt: off UpperCamelCase_ = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class a_ ( _snake_case ): UpperCamelCase__ : str =VOCAB_FILES_NAMES UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Optional[int] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Optional[int] =["input_ids", "attention_mask"] UpperCamelCase__ : List[int] =[] UpperCamelCase__ : List[int] =[] def __init__( self :Optional[Any] , _lowercase :Dict , _lowercase :List[str] , _lowercase :Dict=None , _lowercase :Union[str, Any]=None , _lowercase :Union[str, Any]="<s>" , _lowercase :Any="</s>" , _lowercase :List[Any]="</s>" , _lowercase :List[str]="<pad>" , _lowercase :Union[str, Any]="<unk>" , _lowercase :Tuple="m2m100" , _lowercase :Optional[Dict[str, Any]] = None , _lowercase :str=8 , **_lowercase :Any , ) -> None: UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ = language_codes UpperCAmelCase_ = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase_ = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} UpperCAmelCase_ = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ self.get_lang_token(_lowercase) for lang_code in fairseq_language_code if self.get_lang_token(_lowercase) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowercase , tgt_lang=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , language_codes=_lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_lowercase , **_lowercase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = load_json(_lowercase) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = spm_file UpperCAmelCase_ = load_spm(_lowercase , self.sp_model_kwargs) UpperCAmelCase_ = len(self.encoder) UpperCAmelCase_ = { self.get_lang_token(_lowercase): self.encoder_size + i for i, lang_code in enumerate(_lowercase) } UpperCAmelCase_ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_lowercase)} UpperCAmelCase_ = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase_ = src_lang if src_lang is not None else '''en''' UpperCAmelCase_ = tgt_lang UpperCAmelCase_ = self.get_lang_id(self._src_lang) self.set_src_lang_special_tokens(self._src_lang) UpperCAmelCase_ = num_madeup_words @property def __a ( self :Optional[Any]) -> int: return len(self.encoder) + len(self.lang_token_to_id) @property def __a ( self :int) -> str: return self._src_lang @src_lang.setter def __a ( self :Dict , _lowercase :str) -> None: UpperCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __a ( self :Optional[Any] , _lowercase :str) -> List[str]: return self.sp_model.encode(_lowercase , out_type=_lowercase) def __a ( self :Optional[int] , _lowercase :Tuple) -> List[str]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_lowercase , self.encoder[self.unk_token]) def __a ( self :int , _lowercase :int) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_lowercase , self.unk_token) def __a ( self :str , _lowercase :Any) -> Any: UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(_lowercase) out_string += self.sp_model.decode(_lowercase) return out_string.strip() def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) UpperCAmelCase_ = [1] * len(self.prefix_tokens) UpperCAmelCase_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(_lowercase)) + suffix_ones return prefix_ones + ([0] * len(_lowercase)) + ([0] * len(_lowercase)) + suffix_ones def __a ( self :List[Any] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :List[str]) -> Dict: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :str , _lowercase :Dict) -> None: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = load_spm(self.spm_file , self.sp_model_kwargs) def __a ( self :Tuple , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: UpperCAmelCase_ = Path(_lowercase) if not save_dir.is_dir(): raise OSError(f"{save_directory} should be a directory") UpperCAmelCase_ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase_ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowercase) if os.path.abspath(self.spm_file) != os.path.abspath(_lowercase) and os.path.isfile(self.spm_file): copyfile(self.spm_file , _lowercase) elif not os.path.isfile(self.spm_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (str(_lowercase), str(_lowercase)) def __a ( self :Union[str, Any] , _lowercase :List[str] , _lowercase :str = "en" , _lowercase :Optional[List[str]] = None , _lowercase :str = "ro" , **_lowercase :Tuple , ) -> BatchEncoding: UpperCAmelCase_ = src_lang UpperCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self.src_lang) return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase) def __a ( self :int , _lowercase :Dict , _lowercase :Optional[str] , _lowercase :Optional[str] , **_lowercase :List[str]) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') UpperCAmelCase_ = src_lang UpperCAmelCase_ = self(_lowercase , add_special_tokens=_lowercase , **_lowercase) UpperCAmelCase_ = self.get_lang_id(_lowercase) UpperCAmelCase_ = tgt_lang_id return inputs def __a ( self :Optional[Any]) -> Optional[int]: self.set_src_lang_special_tokens(self.src_lang) def __a ( self :List[str]) -> Tuple: self.set_tgt_lang_special_tokens(self.tgt_lang) def __a ( self :Optional[Any] , _lowercase :str) -> None: UpperCAmelCase_ = self.get_lang_token(_lowercase) UpperCAmelCase_ = self.lang_token_to_id[lang_token] UpperCAmelCase_ = [self.cur_lang_id] UpperCAmelCase_ = [self.eos_token_id] def __a ( self :str , _lowercase :str) -> None: UpperCAmelCase_ = self.get_lang_token(_lowercase) UpperCAmelCase_ = self.lang_token_to_id[lang_token] UpperCAmelCase_ = [self.cur_lang_id] UpperCAmelCase_ = [self.eos_token_id] def __a ( self :Dict , _lowercase :str) -> str: return self.lang_code_to_token[lang] def __a ( self :Union[str, Any] , _lowercase :str) -> int: UpperCAmelCase_ = self.get_lang_token(_lowercase) return self.lang_token_to_id[lang_token] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' UpperCAmelCase_ = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def A ( __UpperCAmelCase ) -> Union[Dict, List]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' ) as f: return json.load(__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
352
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def a ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : np.ndarray ): '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ) ) ) def a ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : np.ndarray ): '''simple docstring''' if dataset.ndim != value_array.ndim: __UpperCAmelCase : Union[str, Any] = ( '''Wrong input data\'s dimensions... ''' f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(_UpperCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: __UpperCAmelCase : Optional[int] = ( '''Wrong input data\'s shape... ''' f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(_UpperCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: __UpperCAmelCase : Dict = ( '''Input data have different datatype... ''' f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(_UpperCAmelCase ) __UpperCAmelCase : Tuple = [] for value in value_array: __UpperCAmelCase : List[Any] = euclidean(_UpperCAmelCase , dataset[0] ) __UpperCAmelCase : Union[str, Any] = dataset[0].tolist() for dataset_value in dataset[1:]: __UpperCAmelCase : List[Any] = euclidean(_UpperCAmelCase , _UpperCAmelCase ) if dist > temp_dist: __UpperCAmelCase : Optional[int] = temp_dist __UpperCAmelCase : Dict = dataset_value.tolist() answer.append([vector, dist] ) return answer def a ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : np.ndarray ): '''simple docstring''' return np.dot(_UpperCAmelCase , _UpperCAmelCase ) / (norm(_UpperCAmelCase ) * norm(_UpperCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
226
import qiskit def a ( _UpperCAmelCase : int , _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCAmelCase : Optional[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __UpperCAmelCase : str = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": __A =half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
226
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : """simple docstring""" def __init__( self : int ,lowercase__ : str ,lowercase__ : List[Any]=1_3 ,lowercase__ : Optional[int]=3_2 ,lowercase__ : Any=3 ,lowercase__ : int=4 ,lowercase__ : Optional[int]=[1_0, 2_0, 3_0, 4_0] ,lowercase__ : List[Any]=[2, 2, 3, 2] ,lowercase__ : List[Any]=True ,lowercase__ : Optional[Any]=True ,lowercase__ : int=3_7 ,lowercase__ : Union[str, Any]="gelu" ,lowercase__ : Tuple=1_0 ,lowercase__ : int=0.0_2 ,lowercase__ : Any=["stage2", "stage3", "stage4"] ,lowercase__ : Optional[Any]=3 ,lowercase__ : Tuple=None ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = out_features __lowercase = num_labels __lowercase = scope __lowercase = num_stages def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : str ): return ConvNextConfig( num_channels=self.num_channels ,num_stages=self.num_stages ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,is_training=self.is_training ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,out_features=self.out_features ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return UperNetConfig( backbone_config=self.get_backbone_config() ,hidden_size=5_1_2 ,pool_scales=[1, 2, 3, 6] ,use_auxiliary_head=lowercase__ ,auxiliary_loss_weight=0.4 ,auxiliary_in_channels=4_0 ,auxiliary_channels=2_5_6 ,auxiliary_num_convs=1 ,auxiliary_concat_input=lowercase__ ,loss_ignore_index=2_5_5 ,num_labels=self.num_labels ,) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : Any ): __lowercase = UperNetForSemanticSegmentation(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Tuple = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = UperNetModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__ ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : int ): pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : str ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE ( self : Any ): def check_hidden_states_output(lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[str] ): __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(lowercase__ ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(lowercase__ ) __lowercase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowercase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F"Parameter {name} of model {model_class} seems not properly initialized" ,) @unittest.skip(reason='''UperNet does not have tied weights''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = UperNetForSemanticSegmentation.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _A ( ): """simple docstring""" __lowercase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) __lowercase = Image.open(A__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) __lowercase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(lowercase__ ) __lowercase = prepare_img() __lowercase = processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,lowercase__ ,atol=1e-4 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) __lowercase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(lowercase__ ) __lowercase = prepare_img() __lowercase = processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,lowercase__ ,atol=1e-4 ) )
52
0
'''simple docstring''' from functools import reduce _UpperCamelCase : List[str] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __UpperCAmelCase ( A : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda A , A : str(int(A ) * int(A ) ) , n[i : i + 1_3] ) ) for i in range(len(A ) - 1_2 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
304
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
1
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a_ ( __snake_case : Optional[int] ) -> int: """simple docstring""" return 1 / (1 + np.exp(-z )) def a_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Dict: """simple docstring""" return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def a_ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =np.dot(__snake_case , __snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Dict=7_0000 ) -> List[str]: """simple docstring""" lowerCamelCase_ =np.zeros(x.shape[1] ) for iterations in range(__snake_case ): lowerCamelCase_ =np.dot(__snake_case , __snake_case ) lowerCamelCase_ =sigmoid_function(__snake_case ) lowerCamelCase_ =np.dot(x.T , h - y ) / y.size lowerCamelCase_ =theta - alpha * gradient # updating the weights lowerCamelCase_ =np.dot(__snake_case , __snake_case ) lowerCamelCase_ =sigmoid_function(__snake_case ) lowerCamelCase_ =cost_function(__snake_case , __snake_case ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ : List[str] = datasets.load_iris() a_ : int = iris.data[:, :2] a_ : Tuple = (iris.target != 0) * 1 a_ : Union[str, Any] = 0.1 a_ : Dict = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("""theta: """, theta) # printing the theta i.e our weights vector def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" return sigmoid_function( np.dot(__snake_case , __snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((a_) , (a_)) : Dict = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) : List[str] = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ : int = np.c_[xxa.ravel(), xxa.ravel()] a_ : Optional[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
6
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
1
from ...processing_utils import ProcessorMixin class a ( lowercase__ ): """simple docstring""" a : Dict = ['image_processor', 'feature_extractor'] a : Optional[int] = 'TvltImageProcessor' a : int = 'TvltFeatureExtractor' def __init__( self : int , __lowercase : Optional[Any] , __lowercase : Tuple ) -> Tuple: super().__init__(image_processor=__lowercase , feature_extractor=__lowercase ) __UpperCAmelCase : Optional[int] = image_processor __UpperCAmelCase : Tuple = feature_extractor def __call__( self : Tuple , __lowercase : Optional[int]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : int=None , __lowercase : List[str]=False , __lowercase : Union[str, Any]=False , *__lowercase : Optional[int] , **__lowercase : Optional[int] , ) -> Dict: if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __UpperCAmelCase : Optional[int] = None if images is not None: __UpperCAmelCase : List[Any] = self.image_processor(__lowercase , mask_pixel=__lowercase , *__lowercase , **__lowercase ) if images_mixed is not None: __UpperCAmelCase : Tuple = self.image_processor(__lowercase , is_mixed=__lowercase , *__lowercase , **__lowercase ) if audio is not None: __UpperCAmelCase : Optional[Any] = self.feature_extractor( __lowercase , *__lowercase , sampling_rate=__lowercase , mask_audio=__lowercase , **__lowercase ) __UpperCAmelCase : Tuple = {} if audio is not None: output_dict.update(__lowercase ) if images is not None: output_dict.update(__lowercase ) if images_mixed_dict is not None: output_dict.update(__lowercase ) return output_dict @property def UpperCAmelCase ( self : Tuple ) -> Any: __UpperCAmelCase : Dict = self.image_processor.model_input_names __UpperCAmelCase : Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
114
from __future__ import annotations from math import pi def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
114
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : int=10 , SCREAMING_SNAKE_CASE__ : Any=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE__ : str=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Any="relu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Tuple=None , ) -> int: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = embeddings_size __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = num_labels __lowerCamelCase = scope __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple ) -> List[Any]: __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def __A ( self : Union[str, Any] ) -> Tuple: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = TFResNetModel(config=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: __lowerCamelCase = self.num_labels __lowerCamelCase = TFResNetForImageClassification(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : int ) -> Union[str, Any]: __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): a__ : str = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a__ : Tuple = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) a__ : List[str] = False a__ : List[str] = False a__ : Dict = False a__ : Tuple = False a__ : str = False def __A ( self : Any ) -> int: __lowerCamelCase = TFResNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : Union[str, Any] ) -> int: return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def __A ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def __A ( self : Optional[int] ) -> Optional[int]: pass def __A ( self : List[str] ) -> Tuple: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple ) -> List[str]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple ) -> int: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCamelCase = layer_type __lowerCamelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Dict: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __A ( self : Dict ) -> int: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __magic_name__ ( ) -> Union[str, Any]: __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __A ( self : int ) -> str: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self : str ) -> Optional[int]: __lowerCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''tf''' ) # forward pass __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __lowerCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
339
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "philschmid/bart-large-cnn-samsum" lowercase_ = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) lowercase_ = "summarizer" lowercase_ = AutoTokenizer lowercase_ = AutoModelForSeqaSeqLM lowercase_ = ["text"] lowercase_ = ["text"] def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int) ->Dict: '''simple docstring''' return self.pre_processor(UpperCAmelCase_ , return_tensors="pt" , truncation=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' return self.model.generate(**UpperCAmelCase_)[0] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' return self.pre_processor.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_)
10
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "gptsan-japanese" _UpperCAmelCase = [ "past_key_values", ] _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[Any] , UpperCamelCase: List[str]=3_60_00 , UpperCamelCase: List[str]=12_80 , UpperCamelCase: List[Any]=10_24 , UpperCamelCase: Any=81_92 , UpperCamelCase: Dict=40_96 , UpperCamelCase: Optional[int]=1_28 , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=0 , UpperCamelCase: Dict=16 , UpperCamelCase: Tuple=16 , UpperCamelCase: Union[str, Any]=1_28 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Union[str, Any]=1e-5 , UpperCamelCase: int=False , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: Dict="float32" , UpperCamelCase: Any=False , UpperCamelCase: Dict=False , UpperCamelCase: List[str]=False , UpperCamelCase: Union[str, Any]=0.002 , UpperCamelCase: int=False , UpperCamelCase: str=True , UpperCamelCase: Dict=3_59_98 , UpperCamelCase: Optional[Any]=3_59_95 , UpperCamelCase: Optional[Any]=3_59_99 , **UpperCamelCase: Optional[int] , ) -> Optional[int]: snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = d_model snake_case__ = d_ff snake_case__ = d_ext snake_case__ = d_spout snake_case__ = num_switch_layers snake_case__ = num_ext_layers snake_case__ = num_switch_layers + num_ext_layers snake_case__ = num_heads snake_case__ = num_experts snake_case__ = expert_capacity snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = router_bias snake_case__ = router_jitter_noise snake_case__ = router_dtype snake_case__ = router_ignore_padding_tokens snake_case__ = output_hidden_states snake_case__ = output_attentions snake_case__ = initializer_factor snake_case__ = output_router_logits snake_case__ = use_cache super().__init__( separator_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase , )
307
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _lowercase): def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : str ) -> List[str]: with open(__UpperCamelCase , encoding='''utf-8''' ) as input_file: _UpperCamelCase = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) _UpperCamelCase = input_file.read() _UpperCamelCase = regexp.search(__UpperCamelCase ) return match def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str ) -> Union[str, Any]: with open(__UpperCamelCase , encoding='''utf-8''' ) as input_file: _UpperCamelCase = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) _UpperCamelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCamelCase = regexp.finditer(__UpperCamelCase ) _UpperCamelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCamelCase ( self : Optional[int] ) -> str: _UpperCamelCase = Path('''./datasets''' ) _UpperCamelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__UpperCamelCase ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def _UpperCamelCase ( self : Dict ) -> int: _UpperCamelCase = Path('''./datasets''' ) _UpperCamelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__UpperCamelCase ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
54
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''deta''' snake_case__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Dict , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=900 , __UpperCamelCase : Dict=2048 , __UpperCamelCase : Dict=6 , __UpperCamelCase : Union[str, Any]=2048 , __UpperCamelCase : str=8 , __UpperCamelCase : List[Any]=6 , __UpperCamelCase : Union[str, Any]=1024 , __UpperCamelCase : Optional[int]=8 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any="relu" , __UpperCamelCase : Dict=256 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : int=0.0 , __UpperCamelCase : Any=0.0 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Union[str, Any]=1.0 , __UpperCamelCase : Dict=True , __UpperCamelCase : str=False , __UpperCamelCase : List[Any]="sine" , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : Dict=4 , __UpperCamelCase : int=4 , __UpperCamelCase : Dict=True , __UpperCamelCase : List[Any]=300 , __UpperCamelCase : Any=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : List[str]=1 , __UpperCamelCase : Optional[Any]=5 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Tuple=1 , __UpperCamelCase : int=1 , __UpperCamelCase : str=5 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Tuple=0.2_5 , **__UpperCamelCase : Union[str, Any] , ) -> Optional[int]: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = backbone_config.pop('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__UpperCamelCase ) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def _UpperCamelCase ( self : Optional[Any] ) -> int: return self.encoder_attention_heads @property def _UpperCamelCase ( self : List[str] ) -> int: return self.d_model def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
54
1
'''simple docstring''' import torch from diffusers import DiffusionPipeline class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: super().__init__() self.register_modules(unet=__UpperCAmelCase ,scheduler=__UpperCAmelCase ) def __call__( self ) -> str: lowerCAmelCase__ : Tuple = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) ,) lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : Union[str, Any] = self.unet(__UpperCAmelCase ,__UpperCAmelCase ).sample lowerCAmelCase__ : List[Any] = self.scheduler.step(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ).prev_sample lowerCAmelCase__ : Optional[int] = scheduler_output - scheduler_output + torch.ones_like(__UpperCAmelCase ) return result
37
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" try: with open(UpperCamelCase , """rb""" ) as flax_state_f: lowerCAmelCase__ : Union[str, Any] = from_bytes(UpperCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCamelCase ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(UpperCamelCase , UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights lowerCAmelCase__ : str = flatten_dict(jax.tree_util.tree_map(lambda UpperCamelCase : x.dtype == jnp.bfloataa , UpperCamelCase ) ).values() if any(UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) lowerCAmelCase__ : Dict = jax.tree_util.tree_map( lambda UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCamelCase ) lowerCAmelCase__ : Any = """""" lowerCAmelCase__ : Any = flatten_dict(UpperCamelCase , sep=""".""" ) lowerCAmelCase__ : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase__ : Union[str, Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCAmelCase__ : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] lowerCAmelCase__ : Any = jnp.transpose(UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCAmelCase__ : str = flax_key_tuple_array[:-1] + ["""weight"""] lowerCAmelCase__ : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCAmelCase__ : int = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCamelCase ): lowerCAmelCase__ : List[str] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) lowerCAmelCase__ : Union[str, Any] = """.""".join(UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowerCAmelCase__ : int = np.asarray(UpperCamelCase ) if not isinstance(UpperCamelCase , np.ndarray ) else flax_tensor lowerCAmelCase__ : int = torch.from_numpy(UpperCamelCase ) # remove from missing keys missing_keys.remove(UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCamelCase ) pt_model.load_state_dict(UpperCamelCase ) # re-transform missing_keys to list lowerCAmelCase__ : Optional[int] = list(UpperCamelCase ) if len(UpperCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(UpperCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
37
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "microsoft/speecht5_tts" __UpperCamelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) __UpperCamelCase = "text_reader" __UpperCamelCase = SpeechTaProcessor __UpperCamelCase = SpeechTaForTextToSpeech __UpperCamelCase = SpeechTaHifiGan __UpperCamelCase = ["text"] __UpperCamelCase = ["audio"] def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' if self.post_processor is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''microsoft/speecht5_hifigan''' super().setup() def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Dict=None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.pre_processor(text=lowercase_ , return_tensors='''pt''' , truncation=lowercase_) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''') SCREAMING_SNAKE_CASE_ : int = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''') SCREAMING_SNAKE_CASE_ : str = torch.tensor(embeddings_dataset[7305]['''xvector''']).unsqueeze(0) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Union[str, Any]): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[str]): '''simple docstring''' with torch.no_grad(): return self.post_processor(lowercase_).cpu().detach()
318
"""simple docstring""" from __future__ import annotations UpperCAmelCase_ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _A (__a , __a , __a , __a ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _A (__a ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _A (__a ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__a ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = digit if sudoku(__a ) is not None: return grid SCREAMING_SNAKE_CASE_ : Any = 0 return None def _A (__a ) -> None: """simple docstring""" for row in grid: for cell in row: print(__a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") UpperCAmelCase_ : str = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
318
1
'''simple docstring''' def a_ ( __snake_case : str , __snake_case : Dict ) -> Dict: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def a_ ( __snake_case : Tuple , __snake_case : Union[str, Any]=0 ) -> List[str]: """simple docstring""" return sorted(__snake_case , key=lambda __snake_case : x[column] ) def a_ ( __snake_case : Any , __snake_case : Dict , __snake_case : Tuple=float('''inf''' ) ) -> Union[str, Any]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , __snake_case ): lowerCamelCase_ =euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase_ =current_dis return min_dis def a_ ( __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[int]=float('''inf''' ) ) -> str: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , __snake_case ): for j in range(max(0 , i - 6 ) , __snake_case ): lowerCamelCase_ =euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase_ =current_dis return min_dis def a_ ( __snake_case : Any , __snake_case : Optional[int] , __snake_case : Dict ) -> Optional[Any]: """simple docstring""" # base case if points_counts <= 3: return dis_between_closest_pair(__snake_case , __snake_case ) # recursion lowerCamelCase_ =points_counts // 2 lowerCamelCase_ =closest_pair_of_points_sqr( __snake_case , points_sorted_on_y[:mid] , __snake_case ) lowerCamelCase_ =closest_pair_of_points_sqr( __snake_case , points_sorted_on_y[mid:] , points_counts - mid ) lowerCamelCase_ =min(__snake_case , __snake_case ) lowerCamelCase_ =[] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__snake_case ) lowerCamelCase_ =dis_between_closest_in_strip( __snake_case , len(__snake_case ) , __snake_case ) return min(__snake_case , __snake_case ) def a_ ( __snake_case : Union[str, Any] , __snake_case : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =column_based_sort(__snake_case , column=0 ) lowerCamelCase_ =column_based_sort(__snake_case , column=1 ) return ( closest_pair_of_points_sqr( __snake_case , __snake_case , __snake_case ) ) ** 0.5 if __name__ == "__main__": a_ : Optional[int] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
75
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _A = '''\ ''' _A = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' _A = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def lowerCamelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1_6 , __UpperCamelCase = True , __UpperCamelCase=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase_ = """cuda""" else: UpperCamelCase_ = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(__UpperCamelCase ) UpperCamelCase_ = model.to(__UpperCamelCase ) UpperCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__UpperCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase_ = model.config.max_length - 1 else: UpperCamelCase_ = model.config.max_length UpperCamelCase_ = tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors="""pt""" , return_attention_mask=__UpperCamelCase , ).to(__UpperCamelCase ) UpperCamelCase_ = encodings["""input_ids"""] UpperCamelCase_ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase_ = [] UpperCamelCase_ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(__UpperCamelCase ) , __UpperCamelCase ) ): UpperCamelCase_ = min(start_index + batch_size , len(__UpperCamelCase ) ) UpperCamelCase_ = encoded_texts[start_index:end_index] UpperCamelCase_ = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__UpperCamelCase ) UpperCamelCase_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCamelCase_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__UpperCamelCase ), attn_mask] , dim=1 ) UpperCamelCase_ = encoded_batch with torch.no_grad(): UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).logits UpperCamelCase_ = out_logits[..., :-1, :].contiguous() UpperCamelCase_ = labels[..., 1:].contiguous() UpperCamelCase_ = attn_mask[..., 1:].contiguous() UpperCamelCase_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __UpperCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__UpperCamelCase )}
122
0
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): a__ : Optional[int] = MODEL_FOR_MASKED_LM_MAPPING a__ : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def a ( self : List[str] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a ( self : Tuple ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_80_15, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_55_06, '''token_str''': ''' accuser'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 3_80_15, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 2_55_06, '''token_str''': ''' accuser''', }, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def a ( self : Optional[int] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 29_41, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, ] , ) __UpperCAmelCase = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def a ( self : Any ): __UpperCAmelCase = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() __UpperCAmelCase = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowercase , _lowercase ) @slow @require_torch def a ( self : int ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(_lowercase ) @slow @require_tf def a ( self : Optional[Any] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(_lowercase ) def a ( self : Dict , _lowercase : str ): __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase ) , [ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 6_10, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 15_73, '''token_str''': ''' Chris'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 22_01, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 1_27_90, '''token_str''': ''' Lyon''', }, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def a ( self : List[Any] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) __UpperCAmelCase = None __UpperCAmelCase = None self.run_pipeline_test(_lowercase , [] ) @require_tf def a ( self : str ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) __UpperCAmelCase = None __UpperCAmelCase = None self.run_pipeline_test(_lowercase , [] ) def a ( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a ( self : int , _lowercase : Tuple , _lowercase : Tuple ): __UpperCAmelCase = fill_masker.tokenizer __UpperCAmelCase = fill_masker.model __UpperCAmelCase = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _lowercase , [ [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], ] , ) with self.assertRaises(_lowercase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowercase ): fill_masker('''This is''' ) self.run_test_top_k(_lowercase , _lowercase ) self.run_test_targets(_lowercase , _lowercase ) self.run_test_top_k_targets(_lowercase , _lowercase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowercase , _lowercase ) self.fill_mask_with_multiple_masks(_lowercase , _lowercase ) def a ( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : List[Any] ): __UpperCAmelCase = tokenizer.get_vocab() __UpperCAmelCase = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , targets=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowercase ) __UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowercase ) ) # Call argument __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowercase ) __UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowercase ) ) # Score equivalence __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) __UpperCAmelCase = [top_mask['''token_str'''] for top_mask in outputs] __UpperCAmelCase = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ) == set(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) __UpperCAmelCase = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) # Raises with invalid with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets='''''' ) def a ( self : List[Any] , _lowercase : Tuple , _lowercase : Optional[Any] ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , top_k=2 ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def a ( self : Optional[int] , _lowercase : int , _lowercase : Tuple ): __UpperCAmelCase = tokenizer.get_vocab() __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) # top_k=2, ntargets=3 __UpperCAmelCase = sorted(vocab.keys() )[:3] __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_lowercase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase = [el['''token_str'''] for el in sorted(_lowercase , key=lambda _lowercase : x["score"] , reverse=_lowercase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ).issubset(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_lowercase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def a ( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Union[str, Any] ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase = sorted(vocab.keys() )[:3] __UpperCAmelCase = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_lowercase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowercase ) , 3 ) def a ( self : Dict , _lowercase : Dict , _lowercase : Any ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowercase , [ [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], ] , )
368
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : List[Any] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _a : List[Any] = ['gpt2'] _a : List[str] = 'gpt2' if is_tf_available(): class __A ( tf.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : int = tokenizer _lowerCAmelCase : Tuple = AutoConfig.from_pretrained(a__ ) _lowerCAmelCase : Union[str, Any] = TFGPTaLMHeadModel.from_config(a__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = self.tokenizer(a__ ) _lowerCAmelCase : List[str] = tokenized["""input_ids"""].to_tensor() _lowerCAmelCase : Union[str, Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _lowerCAmelCase : List[str] = self.model(input_ids=a__ , attention_mask=a__ )["""logits"""] return outputs @require_tf @require_keras_nlp class __A ( unittest.TestCase ): def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [GPTaTokenizer.from_pretrained(a__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _lowerCAmelCase : str = [TFGPTaTokenizer.from_pretrained(a__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _lowerCAmelCase : str = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] _lowerCAmelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __A ( self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _lowerCAmelCase : Dict = tokenizer([test_inputs] , return_tensors="""tf""" ) _lowerCAmelCase : Dict = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _lowerCAmelCase : List[str] = python_outputs[key].numpy() _lowerCAmelCase : Union[str, Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(a__ , tf.intaa ) == tf_outputs_values ) ) @slow def __A ( self ): for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Tuple = tf.function(a__ ) for test_inputs in self.test_sentences: _lowerCAmelCase : Optional[Any] = tf.constant(a__ ) _lowerCAmelCase : Dict = compiled_tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tf_tokenizer(a__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __A ( self ): for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Tuple = ModelToSave(tokenizer=a__ ) _lowerCAmelCase : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCAmelCase : List[str] = model.serving(a__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCAmelCase : str = Path(a__ ) / """saved.model""" tf.saved_model.save(a__ , a__ , signatures={"""serving_default""": model.serving} ) _lowerCAmelCase : Union[str, Any] = tf.saved_model.load(a__ ) _lowerCAmelCase : Any = loaded_model.signatures["""serving_default"""](a__ )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __A ( self ): for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCAmelCase : str = tf_tokenizer(a__ ) # Build model with some sample inputs _lowerCAmelCase : Optional[int] = tf_tokenizer.get_config() _lowerCAmelCase : List[str] = TFGPTaTokenizer.from_config(a__ ) _lowerCAmelCase : Any = model_from_config(a__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __A ( self ): for tf_tokenizer in self.tf_tokenizers: # for the test to run _lowerCAmelCase : List[str] = 123123 for max_length in [3, 5, 1024]: _lowerCAmelCase : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCAmelCase : List[str] = tf_tokenizer(a__ , max_length=a__ ) _lowerCAmelCase : Union[str, Any] = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
44
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='new-model' if is_tf_available(): class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =NewModelConfig @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''bert-base-cased''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : int = TFAutoModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''bert-base-cased''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : List[Any] = TFAutoModelForPreTraining.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Dict = TFAutoModelForCausalLM.from_pretrained(a_ ) __snake_case , __snake_case : int = TFAutoModelForCausalLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(a_ ) __snake_case , __snake_case : int = TFAutoModelForMaskedLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a_ ) __snake_case , __snake_case : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case : Any = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Dict = TFAutoModelForSequenceClassification.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case : Optional[int] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow @require_tensorflow_probability def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __snake_case : Dict = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) __snake_case : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(a_ ) __snake_case , __snake_case : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a_ ) , 1_44_10 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a_ ) , 1_44_10 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(a_ , a_ ) __snake_case : Optional[Any] = copy.deepcopy(model.config ) __snake_case : int = ['''FunnelBaseModel'''] __snake_case : Any = TFAutoModel.from_config(a_ ) self.assertIsInstance(a_ , a_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a_ ) __snake_case : Dict = TFAutoModel.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' try: AutoConfig.register('''new-model''' , a_ ) __snake_case : List[str] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(a_ ): auto_class.register(a_ , a_ ) auto_class.register(a_ , a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): auto_class.register(a_ , a_ ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case : Union[str, Any] = BertModelTester(self ).get_config() __snake_case : str = NewModelConfig(**tiny_config.to_dict() ) __snake_case : Optional[int] = auto_class.from_config(a_ ) self.assertIsInstance(a_ , a_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a_ ) __snake_case : Optional[int] = auto_class.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex( a_ , '''bert-base is not a local folder and is not a valid model identifier''' ): __snake_case : Any = TFAutoModel.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex( a_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __snake_case : Dict = TFAutoModel.from_pretrained(a_ , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex( a_ , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): __snake_case : Any = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaisesRegex(a_ , '''Use `from_pt=True` to load this model''' ): __snake_case : Dict = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __snake_case : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __snake_case : Dict = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: __snake_case : Dict = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
102
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : float = 3.0 class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() ,{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() ,{'''a''': 2} ) self.assertDictEqual(MockClass(a=2 ,b=SCREAMING_SNAKE_CASE__ ).to_kwargs() ,{'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 ,c=2.2_5 ).to_kwargs() ,{'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :int = GradScalerKwargs(init_scale=10_24 ,growth_factor=2 ) AcceleratorState._reset_state() __SCREAMING_SNAKE_CASE :int = Accelerator(mixed_precision='''fp16''' ,kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __SCREAMING_SNAKE_CASE :Union[str, Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale ,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor ,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor ,0.5 ) self.assertEqual(scaler._growth_interval ,20_00 ) self.assertEqual(scaler._enabled ,SCREAMING_SNAKE_CASE__ ) @require_multi_gpu def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE__ ,env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowerCamelCase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCamelCase_ = torch.nn.Linear(1_0_0, 2_0_0) lowerCamelCase_ = accelerator.prepare(model) # Check the values changed in kwargs lowerCamelCase_ = "" lowerCamelCase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
239
"""simple docstring""" def __lowerCamelCase ( a_ : int = 10 , a_ : int = 22 ) -> int: __SCREAMING_SNAKE_CASE :Optional[int] = range(1 , a_ ) __SCREAMING_SNAKE_CASE :List[Any] = range(1 , a_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(1_0, 2_2) = }')
239
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''char''' __snake_case = '''bpe''' __snake_case = '''wp''' UpperCAmelCase__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''char_tokenizer'''] __snake_case = '''ViTImageProcessor''' __snake_case = '''MgpstrTokenizer''' def __init__( self : Optional[int] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) a = tokenizer a = AutoTokenizer.from_pretrained('''gpt2''' ) a = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : List[str] ) ->List[Any]: """simple docstring""" if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: a = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: a = encodings['''input_ids'''] return inputs def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[Any] ) ->List[Any]: """simple docstring""" a , a , a = sequences a = char_preds.size(0 ) a , a = self._decode_helper(__UpperCAmelCase , '''char''' ) a , a = self._decode_helper(__UpperCAmelCase , '''bpe''' ) a , a = self._decode_helper(__UpperCAmelCase , '''wp''' ) a = [] a = [] for i in range(__UpperCAmelCase ): a = [char_scores[i], bpe_scores[i], wp_scores[i]] a = [char_strs[i], bpe_strs[i], wp_strs[i]] a = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) a = {} a = final_strs a = final_scores a = char_strs a = bpe_strs a = wp_strs return out def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ) ->int: """simple docstring""" if format == DecodeType.CHARACTER: a = self.char_decode a = 1 a = '''[s]''' elif format == DecodeType.BPE: a = self.bpe_decode a = 2 a = '''#''' elif format == DecodeType.WORDPIECE: a = self.wp_decode a = 102 a = '''[SEP]''' else: raise ValueError(F"""Format {format} is not supported.""" ) a , a = [], [] a = pred_logits.size(0 ) a = pred_logits.size(1 ) a , a = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) a = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] a = decoder(__UpperCAmelCase ) a , a = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) a = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): a = preds_str[index].find(__UpperCAmelCase ) a = preds_str[index][:pred_eos] a = preds_index[index].cpu().tolist() a = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 a = preds_max_prob[index][: pred_eos_index + 1] a = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Union[str, Any]: """simple docstring""" a = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[Any] ) ->List[Any]: """simple docstring""" return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[Any] ) ->List[Any]: """simple docstring""" a = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ['''input_features''', '''attention_mask'''] def __init__( self : List[Any] , lowerCAmelCase__ : Union[str, Any]=8_0 , lowerCAmelCase__ : Tuple=1_6_0_0_0 , lowerCAmelCase__ : Union[str, Any]=8_0 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[Any]=True , **lowerCAmelCase__ : int , ) -> int: """simple docstring""" super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : str = num_mel_bins _UpperCAmelCase : Optional[int] = do_ceptral_normalize _UpperCAmelCase : List[str] = normalize_means _UpperCAmelCase : str = normalize_vars _UpperCAmelCase : Union[str, Any] = True def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : np.ndarray , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : Tuple = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers _UpperCAmelCase : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ) _UpperCAmelCase : List[Any] = ta_kaldi.fbank(lowerCAmelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : float = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: _UpperCAmelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _UpperCAmelCase : Dict = np.subtract(lowerCAmelCase__ , lowerCAmelCase__ ) if normalize_vars: _UpperCAmelCase : Any = x[:input_length].std(axis=0 ) _UpperCAmelCase : Optional[int] = np.divide(lowerCAmelCase__ , lowerCAmelCase__ ) if input_length < x.shape[0]: _UpperCAmelCase : str = padding_value # make sure array is in float32 _UpperCAmelCase : Union[str, Any] = x.astype(np.floataa ) return x def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[np.ndarray] , lowerCAmelCase__ : Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" _UpperCAmelCase : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCAmelCase__ , lowerCAmelCase__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] def __call__( self : List[Any] , lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , **lowerCAmelCase__ : Optional[Any] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : List[Any] = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Any = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): _UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : List[Any] = [raw_speech] # extract fbank features _UpperCAmelCase : Tuple = [self._extract_fbank_features(lowerCAmelCase__ ) for waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : Optional[Any] = BatchFeature({"input_features": features} ) _UpperCAmelCase : Optional[Any] = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) # make sure list is in array format _UpperCAmelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , lowerCAmelCase__ ): _UpperCAmelCase : int = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: _UpperCAmelCase : Dict = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _UpperCAmelCase : List[str] = ( np.array(lowerCAmelCase__ , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) _UpperCAmelCase : str = self.normalize( padded_inputs["input_features"] , attention_mask=lowerCAmelCase__ ) if return_tensors is not None: _UpperCAmelCase : Any = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs
145
0
import sys import turtle def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase ) , get_mid(_lowerCamelCase , _lowerCamelCase ) , depth - 1 ) triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase ) , get_mid(_lowerCamelCase , _lowerCamelCase ) , depth - 1 ) triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase ) , get_mid(_lowerCamelCase , _lowerCamelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) _snake_case = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") _snake_case = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
300
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase__ ( lowercase ): lowercase__ = 42 lowercase__ = 42 class lowercase__ ( nn.Module ): lowercase__ = 42 lowercase__ = (16, 32, 96, 2_56) lowercase__ = jnp.floataa def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[str] = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) _UpperCamelCase : List[Any] = [] for i in range(len(self.block_out_channels ) - 1 ): _UpperCamelCase : Optional[int] = self.block_out_channels[i] _UpperCamelCase : List[Any] = self.block_out_channels[i + 1] _UpperCamelCase : int = nn.Conv( lowerCamelCase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = nn.Conv( lowerCamelCase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowerCamelCase__ ) _UpperCamelCase : Any = blocks _UpperCamelCase : List[str] = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[Any] ,lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.conv_in(lowerCamelCase__ ) _UpperCamelCase : List[Any] = nn.silu(lowerCamelCase__ ) for block in self.blocks: _UpperCamelCase : List[str] = block(lowerCamelCase__ ) _UpperCamelCase : Dict = nn.silu(lowerCamelCase__ ) _UpperCamelCase : List[str] = self.conv_out(lowerCamelCase__ ) return embedding @flax_register_to_config class lowercase__ ( nn.Module , lowercase , lowercase ): lowercase__ = 32 lowercase__ = 4 lowercase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase__ = False lowercase__ = (3_20, 6_40, 12_80, 12_80) lowercase__ = 2 lowercase__ = 8 lowercase__ = None lowercase__ = 12_80 lowercase__ = 0.0 lowercase__ = False lowercase__ = jnp.floataa lowercase__ = True lowercase__ = 0 lowercase__ = "rgb" lowercase__ = (16, 32, 96, 2_56) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : jax.random.KeyArray ): '''simple docstring''' # init input tensors _UpperCamelCase : Optional[Any] = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCamelCase : Tuple = jnp.zeros(lowerCamelCase__ ,dtype=jnp.floataa ) _UpperCamelCase : Optional[int] = jnp.ones((1,) ,dtype=jnp.intaa ) _UpperCamelCase : Any = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) _UpperCamelCase : Tuple = (1, 3, self.sample_size * 8, self.sample_size * 8) _UpperCamelCase : Union[str, Any] = jnp.zeros(lowerCamelCase__ ,dtype=jnp.floataa ) _UpperCamelCase , _UpperCamelCase : Optional[int] = jax.random.split(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ )["params"] def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.block_out_channels _UpperCamelCase : Optional[int] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCamelCase : Dict = self.num_attention_heads or self.attention_head_dim # input _UpperCamelCase : Optional[int] = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time _UpperCamelCase : Union[str, Any] = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) _UpperCamelCase : List[Any] = FlaxTimestepEmbedding(lowerCamelCase__ ,dtype=self.dtype ) _UpperCamelCase : str = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) _UpperCamelCase : Tuple = self.only_cross_attention if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : int = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : List[str] = (num_attention_heads,) * len(self.down_block_types ) # down _UpperCamelCase : List[Any] = [] _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : Dict = block_out_channels[0] _UpperCamelCase : int = nn.Conv( lowerCamelCase__ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowerCamelCase__ ) for i, down_block_type in enumerate(self.down_block_types ): _UpperCamelCase : Dict = output_channel _UpperCamelCase : List[Any] = block_out_channels[i] _UpperCamelCase : Any = i == len(lowerCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCamelCase : Any = FlaxCrossAttnDownBlockaD( in_channels=lowerCamelCase__ ,out_channels=lowerCamelCase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: _UpperCamelCase : Dict = FlaxDownBlockaD( in_channels=lowerCamelCase__ ,out_channels=lowerCamelCase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowerCamelCase__ ) for _ in range(self.layers_per_block ): _UpperCamelCase : Any = nn.Conv( lowerCamelCase__ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowerCamelCase__ ) if not is_final_block: _UpperCamelCase : List[Any] = nn.Conv( lowerCamelCase__ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = down_blocks _UpperCamelCase : List[str] = controlnet_down_blocks # mid _UpperCamelCase : Any = block_out_channels[-1] _UpperCamelCase : Tuple = FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCamelCase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) _UpperCamelCase : Any = nn.Conv( lowerCamelCase__ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : int ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : int ,lowerCamelCase__ : str ,lowerCamelCase__ : float = 1.0 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = False ,): '''simple docstring''' _UpperCamelCase : Any = self.controlnet_conditioning_channel_order if channel_order == "bgr": _UpperCamelCase : Optional[Any] = jnp.flip(lowerCamelCase__ ,axis=1 ) # 1. time if not isinstance(lowerCamelCase__ ,jnp.ndarray ): _UpperCamelCase : Tuple = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowerCamelCase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: _UpperCamelCase : Optional[Any] = timesteps.astype(dtype=jnp.floataa ) _UpperCamelCase : List[str] = jnp.expand_dims(lowerCamelCase__ ,0 ) _UpperCamelCase : Any = self.time_proj(lowerCamelCase__ ) _UpperCamelCase : Dict = self.time_embedding(lowerCamelCase__ ) # 2. pre-process _UpperCamelCase : List[Any] = jnp.transpose(lowerCamelCase__ ,(0, 2, 3, 1) ) _UpperCamelCase : Optional[int] = self.conv_in(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = jnp.transpose(lowerCamelCase__ ,(0, 2, 3, 1) ) _UpperCamelCase : Tuple = self.controlnet_cond_embedding(lowerCamelCase__ ) sample += controlnet_cond # 3. down _UpperCamelCase : Any = (sample,) for down_block in self.down_blocks: if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = down_block(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,deterministic=not train ) else: _UpperCamelCase , _UpperCamelCase : str = down_block(lowerCamelCase__ ,lowerCamelCase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid _UpperCamelCase : Optional[int] = self.mid_block(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,deterministic=not train ) # 5. contronet blocks _UpperCamelCase : Union[str, Any] = () for down_block_res_sample, controlnet_block in zip(lowerCamelCase__ ,self.controlnet_down_blocks ): _UpperCamelCase : List[str] = controlnet_block(lowerCamelCase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) _UpperCamelCase : Optional[int] = controlnet_down_block_res_samples _UpperCamelCase : Tuple = self.controlnet_mid_block(lowerCamelCase__ ) # 6. scaling _UpperCamelCase : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCamelCase__ ,mid_block_res_sample=lowerCamelCase__ )
83
from math import sqrt def A_ ( _lowerCAmelCase ) -> bool: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" UpperCamelCase : List[Any] = True # 0 and 1 are none primes. if number <= 1: UpperCamelCase : List[Any] = False for divisor in range(2 , int(round(sqrt(_lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCamelCase : Union[str, Any] = False break # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'status' must been from type bool" return status def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCamelCase : int = list(range(2 , n + 1 ) ) UpperCamelCase : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_lowerCAmelCase ) ): for j in range(i + 1 , len(_lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCamelCase : Tuple = 0 # filters actual prime numbers. UpperCamelCase : str = [x for x in begin_list if x != 0] # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" UpperCamelCase : str = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_lowerCAmelCase ): ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" UpperCamelCase : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. UpperCamelCase : Tuple = 2 UpperCamelCase : str = number if number == 0 or number == 1: ans.append(_lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_lowerCAmelCase ): while quotient != 1: if is_prime(_lowerCAmelCase ) and (quotient % factor == 0): ans.append(_lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase : List[Any] = 0 # prime factorization of 'number' UpperCamelCase : Any = prime_factorization(_lowerCAmelCase ) UpperCamelCase : List[Any] = max(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase : List[Any] = 0 # prime factorization of 'number' UpperCamelCase : Dict = prime_factorization(_lowerCAmelCase ) UpperCamelCase : List[Any] = min(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def A_ ( _lowerCAmelCase ) -> List[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def A_ ( _lowerCAmelCase ) -> Any: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (number > 2) and is_even(_lowerCAmelCase ) ), "'number' must been an int, even and > 2" UpperCamelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCamelCase : Dict = get_prime_numbers(_lowerCAmelCase ) UpperCamelCase : Tuple = len(_lowerCAmelCase ) # run variable for while-loops. UpperCamelCase : Optional[int] = 0 UpperCamelCase : int = None # exit variable. for break up the loops UpperCamelCase : Union[str, Any] = True while i < len_pn and loop: UpperCamelCase : Tuple = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCamelCase : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (len(_lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCamelCase : Tuple = 0 while numbera != 0: UpperCamelCase : Tuple = numbera % numbera UpperCamelCase : Any = numbera UpperCamelCase : Union[str, Any] = rest # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCamelCase : Optional[int] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCamelCase : List[Any] = prime_factorization(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = prime_factorization(_lowerCAmelCase ) elif numbera == 1 or numbera == 1: UpperCamelCase : Optional[Any] = [] UpperCamelCase : int = [] UpperCamelCase : List[Any] = max(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 0 UpperCamelCase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCamelCase : str = prime_fac_a.count(_lowerCAmelCase ) UpperCamelCase : Tuple = prime_fac_a.count(_lowerCAmelCase ) for _ in range(max(_lowerCAmelCase , _lowerCAmelCase ) ): ans *= n else: UpperCamelCase : str = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCamelCase : Any = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A_ ( _lowerCAmelCase ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" UpperCamelCase : int = 0 UpperCamelCase : int = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_lowerCAmelCase ): ans += 1 # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and is_prime( _lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: assert ( is_prime(_lowerCAmelCase ) and is_prime(_lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCamelCase : str = p_number_a + 1 # jump to the next number UpperCamelCase : Dict = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(_lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ans[0] != p_number_a and ans[len(_lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A_ ( _lowerCAmelCase ) -> List[str]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" UpperCamelCase : Dict = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def A_ ( _lowerCAmelCase ) -> int: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCamelCase : int = get_divisors(_lowerCAmelCase ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(_lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCamelCase : List[str] = gcd(abs(_lowerCAmelCase ) , abs(_lowerCAmelCase ) ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A_ ( _lowerCAmelCase ) -> Dict: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" UpperCamelCase : str = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def A_ ( _lowerCAmelCase ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" UpperCamelCase : Dict = 0 UpperCamelCase : Dict = 1 UpperCamelCase : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): UpperCamelCase : Any = ans ans += fiba UpperCamelCase : str = tmp return ans
52
0
"""simple docstring""" from __future__ import annotations def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Dict = list(range(len(A__ ) ) ) UpperCAmelCase_ : List[Any] = [v / w for v, w in zip(A__ ,A__ )] index.sort(key=lambda A__ : ratio[i] ,reverse=A__ ) UpperCAmelCase_ : float = 0 UpperCAmelCase_ : list[float] = [0] * len(A__ ) for i in index: if weight[i] <= capacity: UpperCAmelCase_ : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase_ : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class UpperCamelCase_ (__A ): __magic_name__ = '''table-transformer''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[Any]=100 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : List[Any]=2_048 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : List[Any]=2_048 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]="relu" , lowerCAmelCase_ : List[Any]=256 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=0.0_2 , lowerCAmelCase_ : Any=1.0 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Dict="sine" , lowerCAmelCase_ : Optional[Any]="resnet50" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=0.1 , **lowerCAmelCase_ : Dict , ) -> Union[str, Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Dict = backbone_config.get("model_type" ) UpperCAmelCase_ : str = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowerCAmelCase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Optional[Any] = num_queries UpperCAmelCase_ : List[str] = d_model UpperCAmelCase_ : Union[str, Any] = encoder_ffn_dim UpperCAmelCase_ : Optional[Any] = encoder_layers UpperCAmelCase_ : List[str] = encoder_attention_heads UpperCAmelCase_ : int = decoder_ffn_dim UpperCAmelCase_ : int = decoder_layers UpperCAmelCase_ : Optional[int] = decoder_attention_heads UpperCAmelCase_ : List[str] = dropout UpperCAmelCase_ : Dict = attention_dropout UpperCAmelCase_ : Union[str, Any] = activation_dropout UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : int = init_std UpperCAmelCase_ : Any = init_xavier_std UpperCAmelCase_ : Union[str, Any] = encoder_layerdrop UpperCAmelCase_ : Dict = decoder_layerdrop UpperCAmelCase_ : Union[str, Any] = encoder_layers UpperCAmelCase_ : Any = auxiliary_loss UpperCAmelCase_ : List[str] = position_embedding_type UpperCAmelCase_ : Dict = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Tuple = dilation # Hungarian matcher UpperCAmelCase_ : Optional[Any] = class_cost UpperCAmelCase_ : List[Any] = bbox_cost UpperCAmelCase_ : Optional[int] = giou_cost # Loss coefficients UpperCAmelCase_ : Optional[int] = mask_loss_coefficient UpperCAmelCase_ : List[str] = dice_loss_coefficient UpperCAmelCase_ : Union[str, Any] = bbox_loss_coefficient UpperCAmelCase_ : Union[str, Any] = giou_loss_coefficient UpperCAmelCase_ : Dict = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.d_model class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> float: return 1e-5 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 12
253
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __lowerCAmelCase ( a__ ) -> Dict: return 1 / (1 + np.exp(-z )) def __lowerCAmelCase ( a__ , a__ ) -> Tuple: return (-y * np.log(a__ ) - (1 - y) * np.log(1 - h )).mean() def __lowerCAmelCase ( a__ , a__ , a__ ) -> List[Any]: __a = np.dot(a__ , a__ ) return np.sum(y * scores - np.log(1 + np.exp(a__ ) ) ) def __lowerCAmelCase ( a__ , a__ , a__ , a__=7_0000 ) -> Tuple: __a = np.zeros(x.shape[1] ) for iterations in range(a__ ): __a = np.dot(a__ , a__ ) __a = sigmoid_function(a__ ) __a = np.dot(x.T , h - y ) / y.size __a = theta - alpha * gradient # updating the weights __a = np.dot(a__ , a__ ) __a = sigmoid_function(a__ ) __a = cost_function(a__ , a__ ) if iterations % 100 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A : List[Any] = datasets.load_iris() A : Any = iris.data[:, :2] A : int = (iris.target != 0) * 1 A : Dict = 0.1 A : str = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('theta: ', theta) # printing the theta i.e our weights vector def __lowerCAmelCase ( a__ ) -> Union[str, Any]: return sigmoid_function( np.dot(a__ , a__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((A) , (A)) : Tuple = (x[:, 0].min(), x[:, 0].max()) ((A) , (A)) : int = (x[:, 1].min(), x[:, 1].max()) ((A) , (A)) : List[str] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A : int = np.c_[xxa.ravel(), xxa.ravel()] A : Any = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
6
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
1
"""simple docstring""" from __future__ import annotations import pandas as pd def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : int = [0] * no_of_processes __lowerCAmelCase : str = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__snake_case ): __lowerCAmelCase : List[Any] = burst_time[i] __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : str = 0 __lowerCAmelCase : Optional[int] = 9_9999_9999 __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : List[str] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__snake_case ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __lowerCAmelCase : List[str] = remaining_time[j] __lowerCAmelCase : int = j __lowerCAmelCase : Optional[int] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __lowerCAmelCase : Tuple = remaining_time[short] if minm == 0: __lowerCAmelCase : Any = 9_9999_9999 if remaining_time[short] == 0: complete += 1 __lowerCAmelCase : str = False # Find finish time of current process __lowerCAmelCase : Union[str, Any] = increment_time + 1 # Calculate waiting time __lowerCAmelCase : Optional[Any] = finish_time - arrival_time[short] __lowerCAmelCase : Optional[Any] = finar - burst_time[short] if waiting_time[short] < 0: __lowerCAmelCase : Any = 0 # Increment time increment_time += 1 return waiting_time def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Dict = [0] * no_of_processes for i in range(__snake_case ): __lowerCAmelCase : Optional[Any] = burst_time[i] + waiting_time[i] return turn_around_time def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = 0 __lowerCAmelCase : List[str] = 0 for i in range(__snake_case ): __lowerCAmelCase : int = total_waiting_time + waiting_time[i] __lowerCAmelCase : str = total_turn_around_time + turn_around_time[i] print(F"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") lowerCamelCase__ = int(input()) lowerCamelCase__ = [0] * no_of_processes lowerCamelCase__ = [0] * no_of_processes lowerCamelCase__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) lowerCamelCase__ , lowerCamelCase__ = map(int, input().split()) lowerCamelCase__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ = burst_time lowerCamelCase__ = no_of_processes lowerCamelCase__ = waiting_time lowerCamelCase__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCamelCase__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
362
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class A__ ( _lowerCamelCase): A_ : str = 'nllb-moe' A_ : Optional[Any] = ['past_key_values'] A_ : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=12_81_12 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="float32" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1_28 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE="all" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : int = vocab_size __lowerCAmelCase : str = max_position_embeddings __lowerCAmelCase : Dict = d_model __lowerCAmelCase : Tuple = encoder_ffn_dim __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Any = encoder_attention_heads __lowerCAmelCase : Tuple = decoder_ffn_dim __lowerCAmelCase : Dict = decoder_layers __lowerCAmelCase : str = decoder_attention_heads __lowerCAmelCase : str = dropout __lowerCAmelCase : List[str] = attention_dropout __lowerCAmelCase : Optional[int] = activation_dropout __lowerCAmelCase : List[Any] = activation_function __lowerCAmelCase : List[str] = init_std __lowerCAmelCase : Union[str, Any] = encoder_layerdrop __lowerCAmelCase : List[Any] = decoder_layerdrop __lowerCAmelCase : Optional[int] = use_cache __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : Union[str, Any] = router_z_loss_coef __lowerCAmelCase : Optional[Any] = router_aux_loss_coef __lowerCAmelCase : int = decoder_sparse_step __lowerCAmelCase : str = encoder_sparse_step __lowerCAmelCase : Tuple = num_experts __lowerCAmelCase : Dict = expert_capacity __lowerCAmelCase : Union[str, Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowerCAmelCase : Union[str, Any] = router_dtype __lowerCAmelCase : Any = router_ignore_padding_tokens __lowerCAmelCase : str = batch_prioritized_routing __lowerCAmelCase : Tuple = second_expert_policy __lowerCAmelCase : List[str] = normalize_router_prob_before_dropping __lowerCAmelCase : Dict = moe_eval_capacity_token_fraction __lowerCAmelCase : Union[str, Any] = moe_token_dropout __lowerCAmelCase : List[Any] = output_router_logits super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
182
0
'''simple docstring''' import qiskit def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> qiskit.result.counts.Counts: '''simple docstring''' snake_case_ = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register snake_case_ = qiskit.QuantumCircuit(__UpperCAmelCase, __UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0], [0] ) # Execute the circuit on the simulator snake_case_ = qiskit.execute(__UpperCAmelCase, __UpperCAmelCase, shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
56
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters a : Dict = (720, 1280) # Height, Width a : Tuple = (0.4, 0.6) # if height or width lower than this scale, drop it. a : Dict = 1 / 100 a : str = '' a : Any = '' a : Optional[int] = '' a : List[str] = 250 def __magic_name__ ( ) -> None: '''simple docstring''' snake_case_ ,snake_case_ = get_dataset(__UpperCAmelCase, __UpperCAmelCase ) for index in range(__UpperCAmelCase ): snake_case_ = random.sample(range(len(__UpperCAmelCase ) ), 4 ) snake_case_ ,snake_case_ ,snake_case_ = update_image_and_anno( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, filter_scale=__UpperCAmelCase, ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case_ = random_chars(32 ) snake_case_ = path.split(os.sep )[-1].rsplit('''.''', 1 )[0] snake_case_ = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg", __UpperCAmelCase, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) snake_case_ = [] for anno in new_annos: snake_case_ = anno[3] - anno[1] snake_case_ = anno[4] - anno[2] snake_case_ = anno[1] + width / 2 snake_case_ = anno[2] + height / 2 snake_case_ = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(__UpperCAmelCase ) with open(F"{file_root}.txt", '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> tuple[list, list]: '''simple docstring''' snake_case_ = [] snake_case_ = [] for label_file in glob.glob(os.path.join(__UpperCAmelCase, '''*.txt''' ) ): snake_case_ = label_file.split(os.sep )[-1].rsplit('''.''', 1 )[0] with open(__UpperCAmelCase ) as in_file: snake_case_ = in_file.readlines() snake_case_ = os.path.join(__UpperCAmelCase, F"{label_name}.jpg" ) snake_case_ = [] for obj_list in obj_lists: snake_case_ = obj_list.rstrip('''\n''' ).split(''' ''' ) snake_case_ = float(obj[1] ) - float(obj[3] ) / 2 snake_case_ = float(obj[2] ) - float(obj[4] ) / 2 snake_case_ = float(obj[1] ) + float(obj[3] ) / 2 snake_case_ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__UpperCAmelCase ) labels.append(__UpperCAmelCase ) return img_paths, labels def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = 0.0, ) -> tuple[list, list, str]: '''simple docstring''' snake_case_ = np.zeros([output_size[0], output_size[1], 3], dtype=np.uinta ) snake_case_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ = int(scale_x * output_size[1] ) snake_case_ = int(scale_y * output_size[0] ) snake_case_ = [] snake_case_ = [] for i, index in enumerate(__UpperCAmelCase ): snake_case_ = all_img_list[index] path_list.append(__UpperCAmelCase ) snake_case_ = all_annos[index] snake_case_ = cva.imread(__UpperCAmelCase ) if i == 0: # top-left snake_case_ = cva.resize(__UpperCAmelCase, (divid_point_x, divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = bbox[1] * scale_x snake_case_ = bbox[2] * scale_y snake_case_ = bbox[3] * scale_x snake_case_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right snake_case_ = cva.resize(__UpperCAmelCase, (output_size[1] - divid_point_x, divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = scale_x + bbox[1] * (1 - scale_x) snake_case_ = bbox[2] * scale_y snake_case_ = scale_x + bbox[3] * (1 - scale_x) snake_case_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left snake_case_ = cva.resize(__UpperCAmelCase, (divid_point_x, output_size[0] - divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = bbox[1] * scale_x snake_case_ = scale_y + bbox[2] * (1 - scale_y) snake_case_ = bbox[3] * scale_x snake_case_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right snake_case_ = cva.resize( __UpperCAmelCase, (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = scale_x + bbox[1] * (1 - scale_x) snake_case_ = scale_y + bbox[2] * (1 - scale_y) snake_case_ = scale_x + bbox[3] * (1 - scale_x) snake_case_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: snake_case_ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" snake_case_ = ascii_lowercase + digits return "".join(random.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
56
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowercase__ : int = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ : Union[str, Any] = 256 class a__ ( UpperCamelCase__ ): a : Any = ["""melgan"""] def __init__( self , A , A , A , A , A , ) -> None: '''simple docstring''' super().__init__() # From MELGAN a = math.log(1e-5 ) # Matches MelGAN training. a = 4.0 # Largest value for most examples a = 128 self.register_modules( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) def lowerCAmelCase_ ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[Any]: '''simple docstring''' a , a = output_range if clip: a = torch.clip(A , self.min_value , self.max_value ) # Scale to [0, 1]. a = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCAmelCase_ ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[Any]: '''simple docstring''' a , a = input_range a = torch.clip(A , A , A ) if clip else outputs # Scale to [0, 1]. a = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCAmelCase_ ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' a = input_tokens > 0 a , a = self.notes_encoder( encoder_input_tokens=A , encoder_inputs_mask=A ) a , a = self.continuous_encoder( encoder_inputs=A , encoder_inputs_mask=A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCAmelCase_ ( self , A , A , A ) -> Optional[Any]: '''simple docstring''' a = noise_time if not torch.is_tensor(A ): a = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: a = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) a = self.decoder( encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A ) return logits @torch.no_grad() def __call__( self , A , A = None , A = 100 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A )}.''' ) a = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) a = np.zeros([1, 0, self.n_dims] , np.floataa ) a = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) for i, encoder_input_tokens in enumerate(A ): if i == 0: a = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. a = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. a = ones a = self.scale_features( A , output_range=[-1.0, 1.0] , clip=A ) a = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop a = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): a = self.decode( encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 a = self.scheduler.step(A , A , A , generator=A ).prev_sample a = self.scale_to_features(A , input_range=[-1.0, 1.0] ) a = mel[:1] a = mel.cpu().float().numpy() a = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A ) logger.info("Generated segment" , A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": a = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: a = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A )
180
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: a = 0 a = number while duplicate > 0: a , a = divmod(__UpperCamelCase , 10) fact_sum += factorial(__UpperCamelCase) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") lowercase__ : str = int(input("Enter number: ").strip()) print( F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
180
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor a__ : Optional[int] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Tuple ) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
54
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef a__ : Any = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' warnings.warn(lowerCAmelCase_ , lowerCAmelCase_ ) requires_backends(lowerCAmelCase_ , "sklearn" ) return (preds == labels).mean() def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' warnings.warn(lowerCAmelCase_ , lowerCAmelCase_ ) requires_backends(lowerCAmelCase_ , "sklearn" ) __SCREAMING_SNAKE_CASE = simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = fa_score(y_true=lowerCAmelCase_ , y_pred=lowerCAmelCase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' warnings.warn(lowerCAmelCase_ , lowerCAmelCase_ ) requires_backends(lowerCAmelCase_ , "sklearn" ) __SCREAMING_SNAKE_CASE = pearsonr(lowerCAmelCase_ , lowerCAmelCase_ )[0] __SCREAMING_SNAKE_CASE = spearmanr(lowerCAmelCase_ , lowerCAmelCase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' warnings.warn(lowerCAmelCase_ , lowerCAmelCase_ ) requires_backends(lowerCAmelCase_ , "sklearn" ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), f"""Predictions and labels have mismatched lengths {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "mrpc": return acc_and_fa(lowerCAmelCase_ , lowerCAmelCase_ ) elif task_name == "sts-b": return pearson_and_spearman(lowerCAmelCase_ , lowerCAmelCase_ ) elif task_name == "qqp": return acc_and_fa(lowerCAmelCase_ , lowerCAmelCase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} else: raise KeyError(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' warnings.warn(lowerCAmelCase_ , lowerCAmelCase_ ) requires_backends(lowerCAmelCase_ , "sklearn" ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )} else: raise KeyError(lowerCAmelCase_ )
54
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase : Any = {'facebook/blenderbot-3B': 128} class __lowercase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _UpperCAmelCase : List[Any] = BlenderbotTokenizer def __init__( self : List[str] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Tuple="replace" , lowerCAmelCase__ : List[Any]="<s>" , lowerCAmelCase__ : Union[str, Any]="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : str="<unk>" , lowerCAmelCase__ : int="<pad>" , lowerCAmelCase__ : Dict="<mask>" , lowerCAmelCase__ : int=False , lowerCAmelCase__ : List[Any]=True , **lowerCAmelCase__ : Optional[int] , ): super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase__) != add_prefix_space: SCREAMING_SNAKE_CASE_: Tuple = getattr(lowerCAmelCase__ , pre_tok_state.pop("type")) SCREAMING_SNAKE_CASE_: Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE_: Tuple = pre_tok_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE_: Dict = 'post_processor' SCREAMING_SNAKE_CASE_: Dict = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_: int = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_: List[Any] = tuple(state["sep"]) if "cls" in state: SCREAMING_SNAKE_CASE_: Optional[int] = tuple(state["cls"]) SCREAMING_SNAKE_CASE_: Union[str, Any] = False if state.get("add_prefix_space" , lowerCAmelCase__) != add_prefix_space: SCREAMING_SNAKE_CASE_: Any = add_prefix_space SCREAMING_SNAKE_CASE_: Tuple = True if state.get("trim_offsets" , lowerCAmelCase__) != trim_offsets: SCREAMING_SNAKE_CASE_: Dict = trim_offsets SCREAMING_SNAKE_CASE_: Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE_: Any = getattr(lowerCAmelCase__ , state.pop("type")) SCREAMING_SNAKE_CASE_: List[str] = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else value SCREAMING_SNAKE_CASE_: str = value def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = kwargs.get("is_split_into_words" , lowerCAmelCase__) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: str = kwargs.get("is_split_into_words" , lowerCAmelCase__) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): SCREAMING_SNAKE_CASE_: Optional[int] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: str = [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : "Conversation"): SCREAMING_SNAKE_CASE_: Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = ' '.join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = self.encode(lowerCAmelCase__) if len(lowerCAmelCase__) > self.model_max_length: SCREAMING_SNAKE_CASE_: Any = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens.") return input_ids
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
127
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "microsoft/speecht5_tts" lowerCamelCase : Dict = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) lowerCamelCase : Union[str, Any] = "text_reader" lowerCamelCase : Dict = SpeechTaProcessor lowerCamelCase : Optional[int] = SpeechTaForTextToSpeech lowerCamelCase : Tuple = SpeechTaHifiGan lowerCamelCase : List[str] = ["text"] lowerCamelCase : List[str] = ["audio"] def UpperCAmelCase__ (self ): if self.post_processor is None: lowerCamelCase_ : int = '''microsoft/speecht5_hifigan''' super().setup() def UpperCAmelCase__ (self , A , A=None ): lowerCamelCase_ : List[str] = self.pre_processor(text=A , return_tensors='''pt''' , truncation=A ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) lowerCamelCase_ : Tuple = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) lowerCamelCase_ : Optional[int] = torch.tensor(embeddings_dataset[7_3_0_5]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase__ (self , A ): with torch.no_grad(): return self.model.generate_speech(**A ) def UpperCAmelCase__ (self , A ): with torch.no_grad(): return self.post_processor(A ).cpu().detach()
318
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
1
def A__ ( __lowerCamelCase, __lowerCamelCase ): return 1 if input_a == input_a else 0 def A__ ( ): assert xnor_gate(0, 0 ) == 1 assert xnor_gate(0, 1 ) == 0 assert xnor_gate(1, 0 ) == 0 assert xnor_gate(1, 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
257
from graphs.minimum_spanning_tree_kruskal import kruskal def A__ ( ): SCREAMING_SNAKE_CASE_ = 9 SCREAMING_SNAKE_CASE_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE_ = kruskal(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowerCamelCase ) == sorted(__lowerCamelCase )
257
1
"""simple docstring""" __magic_name__ = [0, 2, 4, 6, 8] __magic_name__ = [1, 3, 5, 7, 9] def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __SCREAMING_SNAKE_CASE = 0 for digit in range(10 ): __SCREAMING_SNAKE_CASE = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _UpperCAmelCase , _UpperCAmelCase ) return result __SCREAMING_SNAKE_CASE = 0 for digita in range(10 ): __SCREAMING_SNAKE_CASE = digita if (remainder + digita) % 2 == 0: __SCREAMING_SNAKE_CASE = ODD_DIGITS else: __SCREAMING_SNAKE_CASE = EVEN_DIGITS for digita in other_parity_digits: __SCREAMING_SNAKE_CASE = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _UpperCAmelCase , _UpperCAmelCase , ) return result def _lowerCAmelCase ( UpperCamelCase_ = 9 ): __SCREAMING_SNAKE_CASE = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_UpperCAmelCase , 0 , [0] * length , _UpperCAmelCase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
100
import os UpperCAmelCase__ = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def A ( _UpperCAmelCase : str ) -> int: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(_UpperCAmelCase ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1_000 numerals += m_count * "M" num %= 1_000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A ( _UpperCAmelCase : str = "/p089_roman.txt" ) -> int: '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(_UpperCAmelCase ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(_UpperCAmelCase ) _UpperCAmelCase = generate_roman_numerals(_UpperCAmelCase ) savings += len(_UpperCAmelCase ) - len(_UpperCAmelCase ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
339
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( __lowerCAmelCase ): a__ = ["""image_processor""", """tokenizer"""] a__ = """LayoutLMv3ImageProcessor""" a__ = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self , lowercase=None , lowercase=None , **lowercase) -> Any: '''simple docstring''' a__: Tuple = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase , ) a__: Union[str, Any] = kwargs.pop('feature_extractor') a__: Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowercase , lowercase) def __call__( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.') # first, apply the image processor a__: Optional[int] = self.image_processor(images=lowercase , return_tensors=lowercase) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase , lowercase): a__: List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) a__: Any = features['words'] a__: Dict = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) # add pixel values a__: List[str] = features.pop('pixel_values') if return_overflowing_tokens is True: a__: str = self.get_overflowing_images(lowercase , encoded_inputs['overflow_to_sample_mapping']) a__: Optional[Any] = images return encoded_inputs def lowerCamelCase_ ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__: Optional[int] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(lowercase) != len(lowercase): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f' {len(lowercase)} and {len(lowercase)}') return images_with_overflow def lowerCamelCase_ ( self , *lowercase , **lowercase) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase) def lowerCamelCase_ ( self , *lowercase , **lowercase) -> str: '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase) @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase , ) return self.image_processor_class @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase , ) return self.image_processor
203
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } lowercase__ = { 'unc-nlp/lxmert-base-uncased': 512, } lowercase__ = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class __snake_case ( __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_INIT_CONFIGURATION a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = LxmertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Dict: '''simple docstring''' super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) a__: Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , lowercase) != do_lower_case or normalizer_state.get('strip_accents' , lowercase) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase) != tokenize_chinese_chars ): a__: int = getattr(lowercase , normalizer_state.pop('type')) a__: Dict = do_lower_case a__: Dict = strip_accents a__: Optional[int] = tokenize_chinese_chars a__: List[Any] = normalizer_class(**lowercase) a__: Optional[int] = do_lower_case def lowerCamelCase_ ( self , lowercase , lowercase=None) -> Tuple: '''simple docstring''' a__: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: List[Any] = [self.sep_token_id] a__: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCamelCase_ ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__: List[Any] = self._tokenizer.model.save(lowercase , name=lowercase) return tuple(lowercase)
203
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) lowerCAmelCase__ : List[str] ={ '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : List[str] = '''beit''' def __init__( self , _A=8_192 , _A=768 , _A=12 , _A=12 , _A=3_072 , _A="gelu" , _A=0.0 , _A=0.0 , _A=0.0_2 , _A=1e-12 , _A=224 , _A=16 , _A=3 , _A=False , _A=False , _A=False , _A=False , _A=0.1 , _A=0.1 , _A=True , _A=[3, 5, 7, 11] , _A=[1, 2, 3, 6] , _A=True , _A=0.4 , _A=256 , _A=1 , _A=False , _A=255 , **_A , ): '''simple docstring''' super().__init__(**_A ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = use_mask_token __SCREAMING_SNAKE_CASE = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE = use_relative_position_bias __SCREAMING_SNAKE_CASE = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE = out_indices __SCREAMING_SNAKE_CASE = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE = use_auxiliary_head __SCREAMING_SNAKE_CASE = auxiliary_loss_weight __SCREAMING_SNAKE_CASE = auxiliary_channels __SCREAMING_SNAKE_CASE = auxiliary_num_convs __SCREAMING_SNAKE_CASE = auxiliary_concat_input __SCREAMING_SNAKE_CASE = semantic_loss_ignore_index class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : List[str] = version.parse('''1.11''' ) @property def _A ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _A ( self ): '''simple docstring''' return 1e-4
257
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) def __lowercase ( a__ , a__ , a__ , a__ ) -> Tuple[int, int]: def constraint_to_multiple_of(a__ , a__ , a__=0 , a__=None ): __SCREAMING_SNAKE_CASE = round(val / multiple ) * multiple if max_val is not None and x > max_val: __SCREAMING_SNAKE_CASE = math.floor(val / multiple ) * multiple if x < min_val: __SCREAMING_SNAKE_CASE = math.ceil(val / multiple ) * multiple return x __SCREAMING_SNAKE_CASE = (output_size, output_size) if isinstance(a__ , a__ ) else output_size __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_image_size(a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output_size # determine new height and width __SCREAMING_SNAKE_CASE = output_height / input_height __SCREAMING_SNAKE_CASE = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __SCREAMING_SNAKE_CASE = scale_width else: # fit height __SCREAMING_SNAKE_CASE = scale_height __SCREAMING_SNAKE_CASE = constraint_to_multiple_of(scale_height * input_height , multiple=a__ ) __SCREAMING_SNAKE_CASE = constraint_to_multiple_of(scale_width * input_width , multiple=a__ ) return (new_height, new_width) class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : List[str] = ['''pixel_values'''] def __init__( self , _A = True , _A = None , _A = PILImageResampling.BILINEAR , _A = False , _A = 1 , _A = True , _A = 1 / 255 , _A = True , _A = None , _A = None , **_A , ): '''simple docstring''' super().__init__(**_A ) __SCREAMING_SNAKE_CASE = size if size is not None else {'height': 384, 'width': 384} __SCREAMING_SNAKE_CASE = get_size_dict(_A ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = keep_aspect_ratio __SCREAMING_SNAKE_CASE = ensure_multiple_of __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def _A ( self , _A , _A , _A = False , _A = 1 , _A = PILImageResampling.BICUBIC , _A = None , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size( _A , output_size=(size['height'], size['width']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def _A ( self , _A , _A , _A = None , **_A , ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def _A ( self , _A , _A , _A , _A = None , **_A , ): '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def _A ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(_A ) __SCREAMING_SNAKE_CASE = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __SCREAMING_SNAKE_CASE = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(_A ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(_A , _A ) for image in images] __SCREAMING_SNAKE_CASE = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A ) def _A ( self , _A , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_A ): __SCREAMING_SNAKE_CASE = target_sizes.numpy() __SCREAMING_SNAKE_CASE = [] for idx in range(len(_A ) ): __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_A ) __SCREAMING_SNAKE_CASE = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: __SCREAMING_SNAKE_CASE = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
257
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ =frozenset([] ) def __a ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , ) UpperCAmelCase__ : Tuple = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) UpperCAmelCase__ : Dict = CLIPTextModel(snake_case__ ) UpperCAmelCase__ : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase__ : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __a ( self : Dict , snake_case__ : List[str] , snake_case__ : Optional[int]=0 ): '''simple docstring''' # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCAmelCase__ : Any = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Dict = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((6_4, 6_4) ) UpperCAmelCase__ : str = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((6_4, 6_4) ) if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : Dict = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : str = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : List[str] = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = StableDiffusionInpaintPipeline(**snake_case__ ) UpperCAmelCase__ : Optional[int] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : Dict = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase__ : Dict = sd_pipe(**snake_case__ ).images UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase__ : str = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self : Optional[int] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : Tuple ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase__ : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase__ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) UpperCAmelCase__ : List[Any] = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase__ : Tuple = StableDiffusionInpaintPipeline.from_pretrained(snake_case__ , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase__ : Optional[int] = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase__ : int = torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) UpperCAmelCase__ : int = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase__ : List[str] = StableDiffusionInpaintPipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase__ : Optional[Any] = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase__ : List[str] = torch.manual_seed(0 ) UpperCAmelCase__ : Dict = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __a ( self : str ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase__ : Any = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase__ : Optional[Any] = PNDMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) UpperCAmelCase__ : Dict = StableDiffusionInpaintPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , scheduler=snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ : Union[str, Any] = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase__ : Dict = torch.manual_seed(0 ) UpperCAmelCase__ : int = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
298
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :int , a :Dict=False ) -> Optional[Any]: a = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('''head''' ): a = '''segformer.encoder.''' + key if key.startswith('''backbone''' ): a = key.replace('''backbone''' , '''segformer.encoder''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 a = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] a = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(a )-1}""" ) if "norm" in key: a = key.replace('''norm''' , '''layer_norm''' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 a = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )] a = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(a )-1}""" ) if "layer_norm1" in key: a = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: a = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 a = key[key.find('''block''' ) + len('''block''' )] a = key.replace(F"""block{idx}""" , F"""block.{int(a )-1}""" ) if "attn.q" in key: a = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: a = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: a = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: a = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: a = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: a = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: a = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) a = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 a = key[key.find('''linear_c''' ) + len('''linear_c''' )] a = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(a )-1}""" ) if key.startswith('''head''' ): a = key.replace('''head''' , '''classifier''' ) a = value return new_state_dict def _a ( a :List[str] , a :Union[str, Any] ) -> Tuple: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) a = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) a = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict a = kv_weight[ : config.hidden_sizes[i], : ] a = kv_bias[: config.hidden_sizes[i]] a = kv_weight[ config.hidden_sizes[i] :, : ] a = kv_bias[ config.hidden_sizes[i] : ] def _a ( ) -> Optional[Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return image @torch.no_grad() def _a ( a :Tuple , a :Any , a :int ) -> Any: a = SegformerConfig() a = False # set attributes based on model_name a = '''huggingface/label-files''' if "segformer" in model_name: a = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2] if "ade" in model_name: a = 150 a = '''ade20k-id2label.json''' a = (1, 150, 128, 128) elif "city" in model_name: a = 19 a = '''cityscapes-id2label.json''' a = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: a = True a = model_name[4:6] a = 1_000 a = '''imagenet-1k-id2label.json''' a = (1, 1_000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": a = [64, 128, 320, 512] a = 256 elif size == "b2": a = [64, 128, 320, 512] a = 768 a = [3, 4, 6, 3] elif size == "b3": a = [64, 128, 320, 512] a = 768 a = [3, 4, 18, 3] elif size == "b4": a = [64, 128, 320, 512] a = 768 a = [3, 8, 27, 3] elif size == "b5": a = [64, 128, 320, 512] a = 768 a = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) a = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a , align=a , do_random_crop=a ) # prepare image a = prepare_img() a = image_processor(images=a , return_tensors='''pt''' ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: a = torch.load(a , map_location=torch.device('''cpu''' ) ) else: a = torch.load(a , map_location=torch.device('''cpu''' ) )['''state_dict'''] # rename keys a = rename_keys(a , encoder_only=a ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a , a ) # create HuggingFace model and load state dict if encoder_only: a = False a = SegformerForImageClassification(a ) else: a = SegformerForSemanticSegmentation(a ) model.load_state_dict(a ) model.eval() # forward pass a = model(a ) a = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": a = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": a = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": a = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": a = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": a = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": a = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": a = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": a = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": a = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": a = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": a = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": a = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": a = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": a = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": a = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: a = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _SCREAMING_SNAKE_CASE : Any = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Dict = ["flax"] def __init__( self , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Dict = ["flax"] def __init__( self , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ) -> str: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : int = ["flax"] def __init__( self , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ) -> Any: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Dict = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : int = ["flax"] def __init__( self , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Any = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : str = ["flax"] def __init__( self , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Tuple = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] )
92
0
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json snake_case__ : Optional[Any] = '''sshleifer/mar_enro_6_3_student''' class snake_case_( a__ ): def lowerCamelCase__ ( self : List[Any] ): super().setUp() lowerCAmelCase : Optional[Any] = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=UpperCamelCase_ , ) lowerCAmelCase : List[Any] = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def lowerCamelCase__ ( self : Any ): MarianMTModel.from_pretrained(UpperCamelCase_ ) @slow @require_torch_gpu def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[str] = { '''$MAX_LEN''': 6_4, '''$BS''': 6_4, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script lowerCAmelCase : Tuple = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() lowerCAmelCase : Any = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase : Any = bash_script.replace(UpperCamelCase_ , str(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCAmelCase : List[Any] = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCAmelCase : Union[str, Any] = ['''finetune.py'''] + bash_script.split() + args with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): lowerCAmelCase : Dict = argparse.ArgumentParser() lowerCAmelCase : Dict = pl.Trainer.add_argparse_args(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = SummarizationModule.add_model_specific_args(UpperCamelCase_ , os.getcwd() ) lowerCAmelCase : List[Any] = parser.parse_args() lowerCAmelCase : Union[str, Any] = main(UpperCamelCase_ ) # Check metrics lowerCAmelCase : str = load_json(model.metrics_save_path ) lowerCAmelCase : Any = metrics['''val'''][0] lowerCAmelCase : Optional[Any] = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , UpperCamelCase_ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 1_7 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase : List[Any] = os.listdir(UpperCamelCase_ ) lowerCAmelCase : Any = [x for x in contents if x.endswith('''.ckpt''' )][0] lowerCAmelCase : Optional[int] = os.path.join(args.output_dir , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.load(UpperCamelCase_ , map_location='''cpu''' ) lowerCAmelCase : List[str] = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase : str = {os.path.basename(UpperCamelCase_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class snake_case_( a__ ): @timeout_decorator.timeout(6_0_0 ) @slow @require_torch_gpu def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Any = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' lowerCAmelCase : Any = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 1_2_8, '''$BS''': 1_6, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script lowerCAmelCase : Tuple = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) lowerCAmelCase : Union[str, Any] = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) lowerCAmelCase : Dict = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase : List[Any] = bash_script.replace(UpperCamelCase_ , str(UpperCamelCase_ ) ) lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : str = bash_script.replace('''--fp16''' , '''''' ) lowerCAmelCase : Optional[Any] = 6 lowerCAmelCase : Union[str, Any] = ( ['''distillation.py'''] + bash_script.split() + [ F'''--output_dir={output_dir}''', '''--gpus=1''', '''--learning_rate=1e-3''', F'''--num_train_epochs={epochs}''', '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() lowerCAmelCase : List[Any] = pl.Trainer.add_argparse_args(UpperCamelCase_ ) lowerCAmelCase : int = SummarizationDistiller.add_model_specific_args(UpperCamelCase_ , os.getcwd() ) lowerCAmelCase : int = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCAmelCase : int = distill_main(UpperCamelCase_ ) # Check metrics lowerCAmelCase : Dict = load_json(model.metrics_save_path ) lowerCAmelCase : Optional[int] = metrics['''val'''][0] lowerCAmelCase : str = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , UpperCamelCase_ ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase : Dict = os.listdir(UpperCamelCase_ ) lowerCAmelCase : List[str] = [x for x in contents if x.endswith('''.ckpt''' )][0] lowerCAmelCase : Dict = os.path.join(args.output_dir , UpperCamelCase_ ) lowerCAmelCase : Any = torch.load(UpperCamelCase_ , map_location='''cpu''' ) lowerCAmelCase : Dict = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase : Tuple = {os.path.basename(UpperCamelCase_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
60
from math import pi, sqrt, tan def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __lowerCamelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(UpperCamelCase__ , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __lowerCamelCase = (sidea + sidea + sidea) / 2 __lowerCamelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : float ) -> float: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print("\nSurface Areas of various geometric shapes: \n") print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
90
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets a__ : Any = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' a__ : Dict = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' a__ : Optional[int] = r''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCamelCase_ ( datasets.Metric): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE = 0.0 for i, j in zip(UpperCAmelCase__ , UpperCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCAmelCase__ , UpperCAmelCase__ ) else 0.0 __SCREAMING_SNAKE_CASE = n_correct / len(UpperCAmelCase__ ) return { "accuracy": accuracy, }
368
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if digit_amount > 0: return round(number - int(lowerCAmelCase_ ) , lowerCAmelCase_ ) return number - int(lowerCAmelCase_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
195
0
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class a ( unittest.TestCase ): def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase ) def UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__lowerCamelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def UpperCamelCase ( self : Dict ) -> int: lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(__lowerCamelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5e-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=__lowerCamelCase ) def accumulate_on_replica(__SCREAMING_SNAKE_CASE : Dict ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(__lowerCamelCase ) local_variables[0].assign(__lowerCamelCase ) local_variables[1].assign(__lowerCamelCase ) strategy.run(__lowerCamelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__lowerCamelCase ) def _check_local_values(__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __lowerCamelCase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , __lowerCamelCase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
183
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Dict = {'vocab_file': 'spiece.model'} __lowerCAmelCase : Optional[int] = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } __lowerCAmelCase : Dict = {'bert_for_seq_generation': 512} class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str="<s>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<::::>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[str] , ) -> None: a = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def __UpperCAmelCase ( self : Dict ) -> Dict: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: a = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Optional[Any]: a = self.__dict__.copy() a = None return state def __setstate__( self : Optional[Any] , __lowerCamelCase : Dict ) -> Optional[Any]: a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] ) -> int: return self.sp_model.piece_to_id(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ) -> Any: a = self.sp_model.IdToPiece(__lowerCamelCase ) return token def __UpperCAmelCase ( self : Any , __lowerCamelCase : Dict ) -> Any: a = [] a = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token a = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __UpperCAmelCase ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
107
0
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Tuple = '''▁''' A : int = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = BigBirdTokenizer a = BigBirdTokenizerFast a = True a = True def A ( self : Tuple): super().setUp() _A : Dict = self.tokenizer_class(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE) tokenizer.save_pretrained(self.tmpdirname) def A ( self : List[Any]): _A : Tuple = '<s>' _A : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) def A ( self : Tuple): _A : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<unk>') self.assertEqual(vocab_keys[1] , '<s>') self.assertEqual(vocab_keys[-1] , '[MASK]') self.assertEqual(len(SCREAMING_SNAKE_CASE) , 1004) def A ( self : List[str]): self.assertEqual(self.get_tokenizer().vocab_size , 1000) def A ( self : Union[str, Any]): if not self.test_rust_tokenizer: return _A : Tuple = self.get_tokenizer() _A : int = self.get_rust_tokenizer() _A : Optional[Any] = 'I was born in 92000, and this is falsé.' _A : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE) _A : Optional[int] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : str = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) _A : List[str] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : str = self.get_rust_tokenizer() _A : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE) _A : Tuple = rust_tokenizer.encode(SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def A ( self : Any): _A : Dict = BigBirdTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE) _A : int = tokenizer.tokenize('This is a test') self.assertListEqual(SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) , [285, 46, 10, 170, 382] , ) _A : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _A : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) self.assertListEqual( SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _A : List[str] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A ( self : List[Any]): return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') @slow def A ( self : Tuple): _A : Union[str, Any] = 'Hello World!' _A : Optional[int] = [65, 18536, 2260, 101, 66] self.assertListEqual(SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE)) @slow def A ( self : List[Any]): _A : Optional[int] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off _A : str = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE)) @require_torch @slow def A ( self : List[Any]): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _A : Any = list(self.big_tokenizer.get_vocab().keys())[:10] _A : Any = ' '.join(SCREAMING_SNAKE_CASE) _A : List[Any] = self.big_tokenizer.encode_plus(SCREAMING_SNAKE_CASE , return_tensors='pt' , return_token_type_ids=SCREAMING_SNAKE_CASE) _A : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=SCREAMING_SNAKE_CASE) _A : str = BigBirdConfig(attention_type='original_full') _A : List[str] = BigBirdModel(SCREAMING_SNAKE_CASE) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**SCREAMING_SNAKE_CASE) model(**SCREAMING_SNAKE_CASE) @slow def A ( self : Optional[Any]): _A : List[str] = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') _A : Tuple = tokenizer.decode(tokenizer('Paris is the [MASK].').input_ids) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]') @slow def A ( self : Optional[Any]): # fmt: off _A : List[str] = {'input_ids': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
227
'''simple docstring''' from __future__ import annotations class __lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple=None): _A : Any = data _A : Optional[Any] = None def __repr__( self : List[str]): _A : List[Any] = [] _A : Any = self while temp: string_rep.append(F'{temp.data}') _A : List[Any] = temp.next return "->".join(SCREAMING_SNAKE_CASE) def lowerCAmelCase__ ( lowerCamelCase : list ): if not elements_list: raise Exception('The Elements List is empty' ) _A : Union[str, Any] = Node(elements_list[0] ) for i in range(1 ,len(lowerCamelCase ) ): _A : Dict = Node(elements_list[i] ) _A : int = current.next return head def lowerCAmelCase__ ( lowerCamelCase : Node ): if head_node is not None and isinstance(lowerCamelCase ,lowerCamelCase ): print_reverse(head_node.next ) print(head_node.data ) def lowerCAmelCase__ ( ): from doctest import testmod testmod() _A : List[str] = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(lowerCamelCase ) print('Elements in Reverse:' ) print_reverse(lowerCamelCase ) if __name__ == "__main__": main()
227
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , snake_case_ : Tuple , snake_case_ : Dict=13 , snake_case_ : Optional[Any]=7 , snake_case_ : List[Any]=True , snake_case_ : int=True , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]=99 , snake_case_ : Any=32 , snake_case_ : List[Any]=5 , snake_case_ : Union[str, Any]=4 , snake_case_ : Any=37 , snake_case_ : int="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : str=0.1 , snake_case_ : str=512 , snake_case_ : int=16 , snake_case_ : Dict=2 , snake_case_ : Dict=0.02 , snake_case_ : List[Any]=4 , ): snake_case__ : List[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Tuple = seq_length snake_case__ : Dict = is_training snake_case__ : List[Any] = use_attention_mask snake_case__ : Optional[int] = use_token_type_ids snake_case__ : Union[str, Any] = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Tuple = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : Any = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : int = num_choices def lowerCamelCase ( self : Any ): snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : int = None if self.use_attention_mask: snake_case__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : str = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase ( self : str ): snake_case__ : Tuple = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = config_and_inputs snake_case__ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = True lowercase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase ( self : int ): for model_class_name in self.all_model_classes: snake_case__ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=snake_case_ ) snake_case__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case__ : Dict = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case__ : List[str] = model(snake_case_ )[0] snake_case__ : Union[str, Any] = 50_000 snake_case__ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , snake_case_ ) snake_case__ : Tuple = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) )
35
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' A : Any = IFPipeline A : int = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} A : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS A : Dict = PipelineTesterMixin.required_optional_params - {'latents'} def _lowerCAmelCase ( self ) -> Optional[Any]: return self._get_dummy_components() def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Tuple: if str(snake_case__ ).startswith("mps" ): snake_case_ : Tuple = torch.manual_seed(snake_case__ ) else: snake_case_ : Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case_ : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _lowerCAmelCase ( self ) -> Any: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCAmelCase ( self ) -> int: super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCAmelCase ( self ) -> Tuple: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCAmelCase ( self ) -> str: self._test_save_load_local() def _lowerCAmelCase ( self ) -> Any: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCAmelCase ( self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> int: snake_case_ : List[Any] = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) snake_case_ : Any = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) snake_case_ : List[Any] = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() snake_case_ : List[str] = None snake_case_ : Tuple = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img snake_case_ : List[str] = IFImgaImgPipeline(**pipe_a.components ) snake_case_ : int = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting snake_case_ : int = IFInpaintingPipeline(**pipe_a.components ) snake_case_ : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: _start_torch_memory_measurement() snake_case_ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) snake_case_ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 snake_case_ : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() snake_case_ : int = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case__ ) snake_case_ : List[Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) snake_case_ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case_ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: _start_torch_memory_measurement() snake_case_ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case__ ) snake_case_ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) snake_case_ : Optional[Any] = output.images[0] assert image.shape == (64, 64, 3) snake_case_ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() snake_case_ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(snake_case__ ) snake_case_ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case__ ) snake_case_ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) snake_case_ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case_ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: _start_torch_memory_measurement() snake_case_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case__ ) snake_case_ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(snake_case__ ) snake_case_ : str = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ : Any = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) snake_case_ : Optional[Any] = output.images[0] assert image.shape == (64, 64, 3) snake_case_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 snake_case_ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() snake_case_ : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case__ ) snake_case_ : Optional[Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(snake_case__ ) snake_case_ : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(snake_case__ ) snake_case_ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) snake_case_ : List[str] = output.images[0] assert image.shape == (256, 256, 3) snake_case_ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case_ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def lowerCAmelCase__ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
353
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=4 , ) -> List[str]: snake_case_ : Dict = parent snake_case_ : List[Any] = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : Tuple = is_training snake_case_ : List[str] = use_attention_mask snake_case_ : Union[str, Any] = use_token_type_ids snake_case_ : Optional[Any] = use_labels snake_case_ : Tuple = vocab_size snake_case_ : Dict = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : str = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Optional[Any] = type_vocab_size snake_case_ : Union[str, Any] = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : List[Any] = num_choices def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : str = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Any = None if self.use_token_type_ids: snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : int = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : str = True snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : List[str] = True A : List[str] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : List[str] = FlaxBertModelTester(self ) @slow def _lowerCAmelCase ( self ) -> Dict: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. snake_case_ : int = FlaxBertModel.from_pretrained("bert-base-cased" ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
36
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_2 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=0 , __lowerCAmelCase=None , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = projection_dim lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = scope lowerCamelCase__ = bos_token_id def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCamelCase__ = input_mask.numpy() lowerCamelCase__ , lowerCamelCase__ = input_mask.shape lowerCamelCase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__lowerCAmelCase ): lowerCamelCase__ = 1 lowerCamelCase__ = 0 lowerCamelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFBlipTextModel(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , training=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (TFBlipTextModel,) if is_tf_available() else () lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = BlipTextModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFBlipTextModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=__lowerCAmelCase )
209
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """Speech2TextFeatureExtractor""" lowerCAmelCase_ = """Speech2TextTokenizer""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCamelCase__ = kwargs.pop('''raw_speech''' ) else: lowerCamelCase__ = kwargs.pop('''audio''' , __lowerCAmelCase ) lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) lowerCamelCase__ = kwargs.pop('''text''' , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = args[0] lowerCamelCase__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCamelCase__ = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ = encodings['''input_ids'''] return inputs def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @contextmanager def __lowerCamelCase ( self ): '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCamelCase__ = True lowerCamelCase__ = self.tokenizer yield lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False
209
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Union[List[PIL.Image.Image], np.ndarray] __lowerCamelCase : Optional[List[bool]] __lowerCamelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
276
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __a :int ) -> int: """simple docstring""" A__ = prime_factors(__a ) if is_square_free(__a ): return -1 if len(__a ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
276
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __lowercase ( a__ ) -> Optional[int]: __SCREAMING_SNAKE_CASE = np.inf def set_batch_size(a__ ) -> None: nonlocal batch_size if isinstance(a__ , a__ ): __SCREAMING_SNAKE_CASE = min(a__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(a__ , a__ ): __SCREAMING_SNAKE_CASE = min(a__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(a__ , a__ ) and feature.dtype == "binary": __SCREAMING_SNAKE_CASE = min(a__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(a__ , a__ ) return None if batch_size is np.inf else batch_size class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A = None , _A = None , _A = None , _A = False , _A = False , _A = None , **_A , ): '''simple docstring''' super().__init__( _A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , ) __SCREAMING_SNAKE_CASE = path_or_paths if isinstance(_A , _A ) else {self.split: path_or_paths} __SCREAMING_SNAKE_CASE = _PACKAGED_DATASETS_MODULES['parquet'][1] __SCREAMING_SNAKE_CASE = Parquet( cache_dir=_A , data_files=_A , features=_A , hash=_A , **_A , ) def _A ( self ): '''simple docstring''' if self.streaming: __SCREAMING_SNAKE_CASE = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , ) __SCREAMING_SNAKE_CASE = self.builder.as_dataset( split=self.split , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _A , _A , _A = None , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = path_or_buf __SCREAMING_SNAKE_CASE = batch_size or get_writer_batch_size(dataset.features ) __SCREAMING_SNAKE_CASE = parquet_writer_kwargs def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __SCREAMING_SNAKE_CASE = self._write(file_obj=_A , batch_size=_A , **self.parquet_writer_kwargs ) else: __SCREAMING_SNAKE_CASE = self._write(file_obj=self.path_or_buf , batch_size=_A , **self.parquet_writer_kwargs ) return written def _A ( self , _A , _A , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = parquet_writer_kwargs.pop('path_or_buf' , _A ) __SCREAMING_SNAKE_CASE = self.dataset.features.arrow_schema __SCREAMING_SNAKE_CASE = pq.ParquetWriter(_A , schema=_A , **_A ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _A ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __SCREAMING_SNAKE_CASE = query_table( table=self.dataset._data , key=slice(_A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_A ) written += batch.nbytes writer.close() return written
257
def __lowercase ( a__ , a__ ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
257
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any]=13 , SCREAMING_SNAKE_CASE : Tuple=30 , SCREAMING_SNAKE_CASE : Dict=2 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : List[Any]=32 , SCREAMING_SNAKE_CASE : int=5 , SCREAMING_SNAKE_CASE : Optional[Any]=4 , SCREAMING_SNAKE_CASE : Dict=37 , SCREAMING_SNAKE_CASE : Dict="gelu" , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : Tuple=10 , SCREAMING_SNAKE_CASE : Dict=0.02 , SCREAMING_SNAKE_CASE : int=None , ): _A : int = parent _A : Tuple = batch_size _A : Union[str, Any] = image_size _A : List[str] = patch_size _A : Optional[Any] = num_channels _A : Dict = is_training _A : Union[str, Any] = use_labels _A : str = hidden_size _A : Tuple = num_hidden_layers _A : Tuple = num_attention_heads _A : Tuple = intermediate_size _A : Union[str, Any] = hidden_act _A : Dict = hidden_dropout_prob _A : int = attention_probs_dropout_prob _A : str = type_sequence_label_size _A : List[str] = initializer_range _A : int = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : List[str] = (image_size // patch_size) ** 2 _A : int = num_patches + 1 def A ( self : List[str]): _A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : List[Any] = None if self.use_labels: _A : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[Any] = self.get_config() return config, pixel_values, labels def A ( self : List[str]): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A ( self : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict): _A : str = ViTMSNModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Union[str, Any] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A ( self : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int]): _A : str = self.type_sequence_label_size _A : Union[str, Any] = ViTMSNForImageClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : int = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}') print('Labels: {labels}') self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _A : int = 1 _A : List[Any] = ViTMSNForImageClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _A : str = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A ( self : int): _A : Dict = self.prepare_config_and_inputs() _A , _A , _A : int = config_and_inputs _A : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () a = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) a = False a = False a = False a = False def A ( self : Union[str, Any]): _A : Optional[Any] = ViTMSNModelTester(self) _A : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37) def A ( self : Optional[Any]): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds') def A ( self : Tuple): pass def A ( self : str): _A , _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = model_class(SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear)) def A ( self : int): _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Dict = model_class(SCREAMING_SNAKE_CASE) _A : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Any = [*signature.parameters.keys()] _A : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any]): _A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE) @slow def A ( self : str): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Tuple = ViTMSNModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def lowerCAmelCase__ ( ): _A : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-msn-small') if is_vision_available() else None @slow def A ( self : Optional[Any]): torch.manual_seed(2) _A : Any = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small').to(SCREAMING_SNAKE_CASE) _A : Dict = self.default_image_processor _A : Any = prepare_img() _A : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt').to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _A : int = model(**SCREAMING_SNAKE_CASE) # verify the logits _A : int = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE) _A : str = torch.tensor([-0.0803, -0.4454, -0.2375]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4))
227
'''simple docstring''' A : Dict = '''Alexander Joslin''' import operator as op from .stack import Stack def lowerCAmelCase__ ( lowerCamelCase : str ): _A : Dict = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A : Stack[int] = Stack() _A : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase ) elif i == ")": # RULE 4 _A : List[str] = operator_stack.peek() operator_stack.pop() _A : Dict = operand_stack.peek() operand_stack.pop() _A : Optional[int] = operand_stack.peek() operand_stack.pop() _A : Dict = operators[opr](lowerCamelCase ,lowerCamelCase ) operand_stack.push(lowerCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A : Dict = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
227
1
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def snake_case_ ( A_ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Tuple = np.max(_outputs, axis=-1, keepdims=A_ ) _lowerCamelCase : str = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=A_ ) class __snake_case ( _lowercase): snake_case__ : Tuple = "sigmoid" snake_case__ : str = "softmax" snake_case__ : Tuple = "none" @add_end_docstrings( _lowercase , R"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class __snake_case ( _lowercase): snake_case__ : Dict = False snake_case__ : List[str] = ClassificationFunction.NONE def __init__( self : List[str] , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[str]="" , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Any = tokenizer_kwargs _lowerCamelCase : List[Any] = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: _lowerCamelCase : str = self.model.config.return_all_scores if isinstance(__lowerCAmelCase , __lowerCAmelCase ) or top_k is None: _lowerCamelCase : Tuple = top_k _lowerCamelCase : List[str] = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , __lowerCAmelCase , ) if return_all_scores: _lowerCamelCase : Dict = None else: _lowerCamelCase : Any = 1 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : str = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : int = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Tuple , *__lowerCAmelCase : int , **__lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = super().__call__(*__lowerCAmelCase , **__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Dict = '''top_k''' not in kwargs if isinstance(args[0] , __lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.framework if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] , __lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" return self.model(**__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : int=1 , __lowerCAmelCase : Dict=True ): """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Optional[int] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : Optional[int] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: _lowerCamelCase : List[str] = self.model.config.function_to_apply else: _lowerCamelCase : List[Any] = ClassificationFunction.NONE _lowerCamelCase : Union[str, Any] = model_outputs['''logits'''][0] _lowerCamelCase : Dict = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : Dict = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Tuple = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Tuple = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] , reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Tuple = dict_scores[:top_k] return dict_scores
72
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __A : List[Any] = True except ImportError: __A : int = False __A : str = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_ ( A__ : Namespace ): '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @staticmethod def __lowercase ( lowerCamelCase : ArgumentParser ) -> int: lowerCAmelCase_ : Optional[int] = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=lowerCamelCase , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=lowerCamelCase , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=lowerCamelCase ) def __init__( self : List[str] , lowerCamelCase : bool , lowerCamelCase : str , lowerCamelCase : Any=None , *lowerCamelCase : List[str] ) -> Optional[Any]: lowerCAmelCase_ : int = testing lowerCAmelCase_ : Union[str, Any] = testing_file lowerCAmelCase_ : Tuple = path def __lowercase ( self : Tuple ) -> int: warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCAmelCase_ : int = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(lowerCamelCase ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) lowerCAmelCase_ : List[Any] = ( Path(lowerCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCAmelCase_ : Dict = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase ) ) else: with open(self._testing_file , """r""" ) as configuration_file: lowerCAmelCase_ : Tuple = json.load(lowerCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase , extra_context=lowerCamelCase , ) lowerCAmelCase_ : List[str] = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: lowerCAmelCase_ : Tuple = json.load(lowerCamelCase ) lowerCAmelCase_ : str = configuration["""lowercase_modelname"""] lowerCAmelCase_ : List[str] = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(F'{directory}/configuration.json' ) lowerCAmelCase_ : Dict = """PyTorch""" in generate_tensorflow_pytorch_and_flax lowerCAmelCase_ : Optional[int] = """TensorFlow""" in generate_tensorflow_pytorch_and_flax lowerCAmelCase_ : List[str] = """Flax""" in generate_tensorflow_pytorch_and_flax lowerCAmelCase_ : Union[str, Any] = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=lowerCamelCase ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , """w""" ): pass shutil.move( F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , ) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(lowerCamelCase : Any ): with open(lowerCamelCase , """r""" ) as f: lowerCAmelCase_ : List[str] = f.readlines() with open(lowerCamelCase , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : List[str] ): # Create temp file lowerCAmelCase_, lowerCAmelCase_ : int = mkstemp() lowerCAmelCase_ : List[Any] = False with fdopen(lowerCamelCase , """w""" ) as new_file: with open(lowerCamelCase ) as old_file: for line in old_file: new_file.write(lowerCamelCase ) if line_to_copy_below in line: lowerCAmelCase_ : List[str] = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase , lowerCamelCase ) # Remove original file remove(lowerCamelCase ) # Move new file move(lowerCamelCase , lowerCamelCase ) def skip_units(lowerCamelCase : Optional[int] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCamelCase : Any ): with open(lowerCamelCase ) as datafile: lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : str = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCAmelCase_ : Dict = line.split("""\"""" )[1] lowerCAmelCase_ : int = skip_units(lowerCamelCase ) elif "# Below: " in line and "##" not in line: lowerCAmelCase_ : Any = line.split("""\"""" )[1] lowerCAmelCase_ : Tuple = skip_units(lowerCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Dict = [] elif "# Replace with" in line and "##" not in line: lowerCAmelCase_ : int = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase ) remove(lowerCamelCase ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(lowerCamelCase )
120
0
import functools from typing import Any def snake_case (__lowercase , __lowercase ) -> bool: '''simple docstring''' if not isinstance(__lowercase , __lowercase ) or len(__lowercase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__lowercase , __lowercase ) or not all( isinstance(__lowercase , __lowercase ) and len(__lowercase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie _snake_case : dict[str, Any] = {} _snake_case : Any = "WORD_KEEPER" for word in words: _snake_case : str = trie for c in word: if c not in trie_node: _snake_case : List[Any] = {} _snake_case : Dict = trie_node[c] _snake_case : Any = True _snake_case : Union[str, Any] = len(__lowercase ) # Dynamic programming method @functools.cache def is_breakable(__lowercase ) -> bool: if index == len_string: return True _snake_case : str = trie for i in range(__lowercase , __lowercase ): _snake_case : Any = trie_node.get(string[i] , __lowercase ) if trie_node is None: return False if trie_node.get(__lowercase , __lowercase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
284
import logging from transformers import PretrainedConfig __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : int = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class lowercase_ ( __snake_case ): _lowerCamelCase = 'bertabs' def __init__( self , lowercase_=30_522 , lowercase_=512 , lowercase_=6 , lowercase_=512 , lowercase_=8 , lowercase_=512 , lowercase_=0.2 , lowercase_=6 , lowercase_=768 , lowercase_=8 , lowercase_=2_048 , lowercase_=0.2 , **lowercase_ , ): super().__init__(**lowercase_ ) _snake_case : List[Any] = vocab_size _snake_case : int = max_pos _snake_case : Tuple = enc_layers _snake_case : Optional[Any] = enc_hidden_size _snake_case : Union[str, Any] = enc_heads _snake_case : str = enc_ff_size _snake_case : Any = enc_dropout _snake_case : Tuple = dec_layers _snake_case : Optional[Any] = dec_hidden_size _snake_case : Dict = dec_heads _snake_case : str = dec_ff_size _snake_case : List[str] = dec_dropout
284
1
import math def lowerCAmelCase__ ( a__: int ) -> bool: '''simple docstring''' _UpperCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def lowerCAmelCase__ ( a__: float = 1 / 1_2_3_4_5 ) -> int: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 3 while True: _UpperCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): _UpperCAmelCase = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
329
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w ) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : str = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'image_id': 39769, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify masks _UpperCAmelCase = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
329
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :str = logging.get_logger(__name__) class _A ( __lowercase ): UpperCamelCase__ : Optional[Any] = '''encoder-decoder''' UpperCamelCase__ : List[str] = True def __init__( self : Any , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __a = kwargs.pop('''encoder''') __a = encoder_config.pop('''model_type''') __a = kwargs.pop('''decoder''') __a = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig __a = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) __a = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) __a = True @classmethod def _lowerCamelCase ( cls : Union[str, Any] , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : PretrainedConfig , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') __a = True __a = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = copy.deepcopy(self.__dict__) __a = self.encoder.to_dict() __a = self.decoder.to_dict() __a = self.__class__.model_type return output
361
def __snake_case ( _UpperCAmelCase = 1000000 ): __a = limit + 1 __a = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __a = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'{solution() = }')
131
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Any , A : int ) -> None: lowercase_ : List[str] = value lowercase_ : Node | None = None lowercase_ : Node | None = None class _UpperCAmelCase : def __init__( self : Optional[int] , A : Node ) -> None: lowercase_ : Optional[Any] = tree def A ( self : Any , A : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
33
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _SCREAMING_SNAKE_CASE ( ctypes.Structure ): # _fields is a specific attr expected by ctypes lowerCAmelCase__ = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def lowerCamelCase_ ( ): if os.name == "nt": lowerCamelCase_ = CursorInfo() lowerCamelCase_ = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) lowerCamelCase_ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def lowerCamelCase_ ( ): if os.name == "nt": lowerCamelCase_ = CursorInfo() lowerCamelCase_ = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) lowerCamelCase_ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def lowerCamelCase_ ( ): try: hide_cursor() yield finally: show_cursor()
47
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase_ ( lowerCamelCase__ ): if is_torch_version("<" , "2.0.0" ) or not hasattr(lowerCamelCase__ , "_dynamo" ): return False return isinstance(lowerCamelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = True ): lowerCamelCase_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCamelCase_ = is_compiled_module(lowerCamelCase__ ) if is_compiled: lowerCamelCase_ = model lowerCamelCase_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = model.module if not keep_fpaa_wrapper: lowerCamelCase_ = getattr(lowerCamelCase__ , "forward" ) lowerCamelCase_ = model.__dict__.pop("_original_forward" , lowerCamelCase__ ) if original_forward is not None: while hasattr(lowerCamelCase__ , "__wrapped__" ): lowerCamelCase_ = forward.__wrapped__ if forward == original_forward: break lowerCamelCase_ = forward if getattr(lowerCamelCase__ , "_converted_to_transformer_engine" , lowerCamelCase__ ): convert_model(lowerCamelCase__ , to_transformer_engine=lowerCamelCase__ ) if is_compiled: lowerCamelCase_ = model lowerCamelCase_ = compiled_model return model def lowerCamelCase_ ( ): PartialState().wait_for_everyone() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCamelCase__ , lowerCamelCase__ ) elif PartialState().local_process_index == 0: torch.save(lowerCamelCase__ , lowerCamelCase__ ) @contextmanager def lowerCamelCase_ ( **lowerCamelCase__ ): for key, value in kwargs.items(): lowerCamelCase_ = str(lowerCamelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase_ ( lowerCamelCase__ ): if not hasattr(lowerCamelCase__ , "__qualname__" ) and not hasattr(lowerCamelCase__ , "__name__" ): lowerCamelCase_ = getattr(lowerCamelCase__ , "__class__" , lowerCamelCase__ ) if hasattr(lowerCamelCase__ , "__qualname__" ): return obj.__qualname__ if hasattr(lowerCamelCase__ , "__name__" ): return obj.__name__ return str(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key, value in source.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = destination.setdefault(lowerCamelCase__ , {} ) merge_dicts(lowerCamelCase__ , lowerCamelCase__ ) else: lowerCamelCase_ = value return destination def lowerCamelCase_ ( lowerCamelCase__ = None ): if port is None: lowerCamelCase_ = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
47
1
import pprint import requests a__ = '''https://zenquotes.io/api''' def __UpperCAmelCase ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def __UpperCAmelCase ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
235
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=False , _a=True , _a=False , _a=False , _a=1_9 , _a=3_2 , _a=5 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> Union[str, Any]: _a : Optional[Any] = parent _a : Union[str, Any] = batch_size _a : List[Any] = seq_length _a : Dict = is_training _a : int = use_input_mask _a : str = use_token_type_ids _a : Any = use_labels _a : List[Any] = vocab_size _a : Any = hidden_size _a : int = num_hidden_layers _a : str = num_attention_heads _a : Dict = intermediate_size _a : List[str] = hidden_act _a : Optional[Any] = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : int = max_position_embeddings _a : Tuple = type_vocab_size _a : str = type_sequence_label_size _a : Any = initializer_range _a : Union[str, Any] = num_labels _a : Dict = num_choices _a : Union[str, Any] = scope def __lowercase ( self ) -> List[Any]: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict = None if self.use_input_mask: _a : int = random_attention_mask([self.batch_size, self.seq_length] ) _a : List[Any] = None _a : Tuple = None _a : Any = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _a : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self ) -> str: _a : Optional[int] = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_a , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def __lowercase ( self , _a , _a , _a , _a , _a , _a ) -> str: _a : Union[str, Any] = EsmForProteinFolding(config=_a ).float() model.to(_a ) model.eval() _a : str = model(_a , attention_mask=_a ) _a : Union[str, Any] = model(_a ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def __lowercase ( self ) -> str: _a : List[str] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Optional[Any] = config_and_inputs _a : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = False UpperCAmelCase__ : Any = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = () UpperCAmelCase__ : int = {} if is_torch_available() else {} UpperCAmelCase__ : Optional[int] = False def __lowercase ( self ) -> List[Any]: _a : Optional[int] = EsmFoldModelTester(self ) _a : Dict = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def __lowercase ( self ) -> List[str]: self.config_tester.run_common_tests() def __lowercase ( self ) -> str: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @unittest.skip('''Does not support attention outputs''' ) def __lowercase ( self ) -> int: pass @unittest.skip def __lowercase ( self ) -> List[str]: pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowercase ( self ) -> int: pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def __lowercase ( self ) -> int: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> str: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Any: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMFold only has one output format.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip('''ESMFold does not support input chunking.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowercase ( self ) -> List[Any]: pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def __lowercase ( self ) -> Union[str, Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass @require_torch class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @slow def __lowercase ( self ) -> Optional[int]: _a : Dict = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() _a : Tuple = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) _a : Optional[Any] = model(_a )['''positions'''] _a : Union[str, Any] = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _a , atol=1e-4 ) )
235
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Any = ["""input_features""", """is_longer"""] def __init__( self , __lowercase=64 , __lowercase=48_000 , __lowercase=480 , __lowercase=10 , __lowercase=1_024 , __lowercase=0.0 , __lowercase=False , __lowercase = 0 , __lowercase = 14_000 , __lowercase = None , __lowercase = "fusion" , __lowercase = "repeatpad" , **__lowercase , ) -> int: super().__init__( feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) __UpperCamelCase :Union[str, Any] = top_db __UpperCamelCase :Union[str, Any] = truncation __UpperCamelCase :List[str] = padding __UpperCamelCase :Dict = fft_window_size __UpperCamelCase :str = (fft_window_size >> 1) + 1 __UpperCamelCase :Union[str, Any] = hop_length __UpperCamelCase :List[Any] = max_length_s __UpperCamelCase :Union[str, Any] = max_length_s * sampling_rate __UpperCamelCase :Any = sampling_rate __UpperCamelCase :Tuple = frequency_min __UpperCamelCase :str = frequency_max __UpperCamelCase :Optional[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm=__lowercase , mel_scale='''htk''' , ) __UpperCamelCase :str = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm='''slaney''' , mel_scale='''slaney''' , ) def UpperCamelCase__ ( self) -> Dict[str, Any]: __UpperCamelCase :str = copy.deepcopy(self.__dict__) __UpperCamelCase :Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> np.ndarray: __UpperCamelCase :Optional[Any] = spectrogram( __lowercase , window_function(self.fft_window_size , '''hann''') , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__lowercase , log_mel='''dB''' , ) return log_mel_spectrogram.T def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> List[str]: __UpperCamelCase :Union[str, Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase :Union[str, Any] = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase :int = [0] # randomly choose index for each part __UpperCamelCase :str = np.random.choice(ranges[0]) __UpperCamelCase :Optional[Any] = np.random.choice(ranges[1]) __UpperCamelCase :List[Any] = np.random.choice(ranges[2]) __UpperCamelCase :Tuple = mel[idx_front : idx_front + chunk_frames, :] __UpperCamelCase :List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCamelCase :Any = mel[idx_back : idx_back + chunk_frames, :] __UpperCamelCase :int = torch.tensor(mel[None, None, :]) __UpperCamelCase :Tuple = torch.nn.functional.interpolate( __lowercase , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=__lowercase) __UpperCamelCase :Optional[Any] = mel_shrink[0][0].numpy() __UpperCamelCase :Optional[int] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCamelCase :List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCamelCase :Tuple = len(__lowercase) - max_length __UpperCamelCase :List[Any] = np.random.randint(0 , overflow + 1) __UpperCamelCase :Any = waveform[idx : idx + max_length] __UpperCamelCase :Tuple = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney)[None, :] elif truncation == "fusion": __UpperCamelCase :str = self._np_extract_fbank_features(__lowercase , self.mel_filters) __UpperCamelCase :int = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCamelCase :str = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCamelCase :Union[str, Any] = np.stack([mel, mel, mel, mel] , axis=0) __UpperCamelCase :Optional[Any] = False else: __UpperCamelCase :Dict = self._random_mel_fusion(__lowercase , __lowercase , __lowercase) __UpperCamelCase :Tuple = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""") else: __UpperCamelCase :Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCamelCase :Dict = int(max_length / len(__lowercase)) __UpperCamelCase :Any = np.stack(np.tile(__lowercase , n_repeat + 1))[:max_length] if padding == "repeatpad": __UpperCamelCase :int = int(max_length / len(__lowercase)) __UpperCamelCase :Union[str, Any] = np.stack(np.tile(__lowercase , __lowercase)) __UpperCamelCase :Union[str, Any] = np.pad(__lowercase , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0) if truncation == "fusion": __UpperCamelCase :List[str] = self._np_extract_fbank_features(__lowercase , self.mel_filters) __UpperCamelCase :Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: __UpperCamelCase :str = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , **__lowercase , ) -> BatchFeature: __UpperCamelCase :Optional[int] = truncation if truncation is not None else self.truncation __UpperCamelCase :str = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') __UpperCamelCase :Optional[Any] = isinstance(__lowercase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""") __UpperCamelCase :Optional[Any] = is_batched_numpy or ( isinstance(__lowercase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __UpperCamelCase :List[Any] = [np.asarray(__lowercase , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(__lowercase , np.ndarray): __UpperCamelCase :Dict = np.asarray(__lowercase , dtype=np.floataa) elif isinstance(__lowercase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __UpperCamelCase :Union[str, Any] = raw_speech.astype(np.floataa) # always return batch if not is_batched: __UpperCamelCase :List[Any] = [np.asarray(__lowercase)] # convert to mel spectrogram, truncate and pad if needed. __UpperCamelCase :Optional[int] = [ self._get_input_mel(__lowercase , max_length if max_length else self.nb_max_samples , __lowercase , __lowercase) for waveform in raw_speech ] __UpperCamelCase :List[Any] = [] __UpperCamelCase :str = [] for mel, longer in padded_inputs: input_mel.append(__lowercase) is_longer.append(__lowercase) if truncation == "fusion" and sum(__lowercase) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCamelCase :Tuple = np.random.randint(0 , len(__lowercase)) __UpperCamelCase :Any = True if isinstance(input_mel[0] , __lowercase): __UpperCamelCase :Dict = [np.asarray(__lowercase , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool __UpperCamelCase :Dict = [[longer] for longer in is_longer] __UpperCamelCase :Optional[Any] = {'''input_features''': input_mel, '''is_longer''': is_longer} __UpperCamelCase :Dict = BatchFeature(__lowercase) if return_tensors is not None: __UpperCamelCase :int = input_features.convert_to_tensors(__lowercase) return input_features
105
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
105
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowercase__ :Optional[int] = logging.get_logger(__name__) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' # initialize config if "resnet-50" in model_name: lowercase = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: lowercase = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) lowercase = DetrConfig(use_timm_backbone=lowerCAmelCase__ , backbone_config=lowerCAmelCase__ ) # set label attributes lowercase = '''panoptic''' in model_name if is_panoptic: lowercase = 250 else: lowercase = 91 lowercase = '''huggingface/label-files''' lowercase = '''coco-detection-id2label.json''' lowercase = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' # here we list all keys to be renamed (original name on the left, our name on the right) lowercase = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = state_dict.pop(lowerCAmelCase__ ) lowercase = val def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=False ): '''simple docstring''' lowercase = '''''' if is_panoptic: lowercase = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) lowercase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase = in_proj_weight[:256, :] lowercase = in_proj_bias[:256] lowercase = in_proj_weight[256:512, :] lowercase = in_proj_bias[256:512] lowercase = in_proj_weight[-256:, :] lowercase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) lowercase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase = in_proj_weight[:256, :] lowercase = in_proj_bias[:256] lowercase = in_proj_weight[256:512, :] lowercase = in_proj_bias[256:512] lowercase = in_proj_weight[-256:, :] lowercase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowercase = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) lowercase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase = in_proj_weight_cross_attn[:256, :] lowercase = in_proj_bias_cross_attn[:256] lowercase = in_proj_weight_cross_attn[256:512, :] lowercase = in_proj_bias_cross_attn[256:512] lowercase = in_proj_weight_cross_attn[-256:, :] lowercase = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ): '''simple docstring''' lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False ): '''simple docstring''' lowercase = get_detr_config(lowerCAmelCase__ ) # load original model from torch hub lowercase = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f'Converting model {model_name}...' ) lowercase = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=lowerCAmelCase__ ).eval() lowercase = detr.state_dict() # rename keys for src, dest in create_rename_keys(lowerCAmelCase__ ): if is_panoptic: lowercase = '''detr.''' + src rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase__ , is_panoptic=lowerCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowercase = state_dict.pop(lowerCAmelCase__ ) lowercase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase = state_dict.pop(lowerCAmelCase__ ) lowercase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowercase = state_dict.pop(lowerCAmelCase__ ) lowercase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase = state_dict.pop(lowerCAmelCase__ ) lowercase = val # finally, create HuggingFace model and load state dict lowercase = DetrForSegmentation(lowerCAmelCase__ ) if is_panoptic else DetrForObjectDetection(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # verify our conversion on an image lowercase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowercase = DetrImageProcessor(format=lowerCAmelCase__ ) lowercase = processor(images=prepare_img() , return_tensors='''pt''' ) lowercase = encoding['''pixel_values'''] lowercase = detr(lowerCAmelCase__ ) lowercase = model(lowerCAmelCase__ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": lowercase__ :str = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") lowercase__ :Tuple = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
101
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowercase__ =True except ImportError: lowercase__ =False lowercase__ =logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCamelCase ( lowerCAmelCase__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCamelCase__ ( __lowercase ): @staticmethod def lowerCAmelCase (snake_case_ : ArgumentParser ): __a : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=snake_case_ , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=snake_case_ , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=snake_case_ ) def __init__(self : Dict , snake_case_ : bool , snake_case_ : str , snake_case_ : Dict=None , *snake_case_ : Optional[Any] ): __a : Union[str, Any] = testing __a : List[Any] = testing_file __a : Any = path def lowerCAmelCase (self : int ): warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __a : Union[str, Any] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:2_2]] if len(snake_case_ ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) __a : Union[str, Any] = ( Path(snake_case_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __a : Union[str, Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(snake_case_ ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: __a : List[Any] = json.load(snake_case_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=snake_case_ , extra_context=snake_case_ , ) __a : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:2_2]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: __a : Optional[Any] = json.load(snake_case_ ) __a : str = configuration['''lowercase_modelname'''] __a : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"{directory}/configuration.json" ) __a : Any = '''PyTorch''' in generate_tensorflow_pytorch_and_flax __a : Dict = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax __a : Optional[int] = '''Flax''' in generate_tensorflow_pytorch_and_flax __a : Dict = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(snake_case_ , exist_ok=snake_case_ ) os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=snake_case_ ) # Tests require submodules as they have parent imports with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , '''w''' ): pass shutil.move( f"{directory}/__init__.py" , f"{model_dir}/__init__.py" , ) shutil.move( f"{directory}/configuration_{lowercase_model_name}.py" , f"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(snake_case_ : Union[str, Any] ): with open(snake_case_ , '''r''' ) as f: __a : Union[str, Any] = f.readlines() with open(snake_case_ , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(snake_case_ ) if output_pytorch: if not self._testing: remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_{lowercase_model_name}.py" , f"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_tf_{lowercase_model_name}.py" , f"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_tf_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py" ) if output_flax: if not self._testing: remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_flax_{lowercase_model_name}.py" , f"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_flax_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/{lowercase_model_name}.md" , f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( f"{directory}/tokenization_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/tokenization_fast_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(snake_case_ : str , snake_case_ : str , snake_case_ : List[str] ): # Create temp file __a , __a : Tuple = mkstemp() __a : Optional[Any] = False with fdopen(snake_case_ , '''w''' ) as new_file: with open(snake_case_ ) as old_file: for line in old_file: new_file.write(snake_case_ ) if line_to_copy_below in line: __a : Tuple = True for line_to_copy in lines_to_copy: new_file.write(snake_case_ ) if not line_found: raise ValueError(f"Line {line_to_copy_below} was not found in file." ) # Copy the file permissions from the old file to the new file copymode(snake_case_ , snake_case_ ) # Remove original file remove(snake_case_ ) # Move new file move(snake_case_ , snake_case_ ) def skip_units(snake_case_ : Any ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(snake_case_ : int ): with open(snake_case_ ) as datafile: __a : List[Any] = [] __a : int = False __a : Tuple = False for line in datafile: if "# To replace in: " in line and "##" not in line: __a : Optional[Any] = line.split('''"''' )[1] __a : Dict = skip_units(snake_case_ ) elif "# Below: " in line and "##" not in line: __a : str = line.split('''"''' )[1] __a : Any = skip_units(snake_case_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(snake_case_ , snake_case_ , snake_case_ ) __a : str = [] elif "# Replace with" in line and "##" not in line: __a : Optional[int] = [] elif "##" not in line: lines_to_copy.append(snake_case_ ) remove(snake_case_ ) replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py" ) os.rmdir(snake_case_ )
216
0
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _UpperCamelCase = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, } class lowerCamelCase__ : def __init__( self ,A = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) UpperCAmelCase = primes[group]["""prime"""] UpperCAmelCase = primes[group]["""generator"""] UpperCAmelCase = int(hexlify(urandom(32 ) ) ,base=16 ) def _UpperCamelCase ( self ): return hex(self.__private_key )[2:] def _UpperCamelCase ( self ): UpperCAmelCase = pow(self.generator ,self.__private_key ,self.prime ) return hex(A )[2:] def _UpperCamelCase ( self ,A ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(A ,(self.prime - 1) // 2 ,self.prime ) == 1 ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = int(A ,base=16 ) if not self.is_valid_public_key(A ): raise ValueError("""Invalid public key""" ) UpperCAmelCase = pow(A ,self.__private_key ,self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def _UpperCamelCase ( A ,A ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(A ,(prime - 1) // 2 ,A ) == 1 ) @staticmethod def _UpperCamelCase ( A ,A ,A = 14 ): UpperCAmelCase = int(A ,base=16 ) UpperCAmelCase = int(A ,base=16 ) UpperCAmelCase = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(A ,A ): raise ValueError("""Invalid public key""" ) UpperCAmelCase = pow(A ,A ,A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
234
"""simple docstring""" def _a ( _snake_case = 6008_5147_5143 ): """simple docstring""" try: UpperCAmelCase = int(_snake_case ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) UpperCAmelCase = 1 UpperCAmelCase = 2 while i * i <= n: while n % i == 0: UpperCAmelCase = i n //= i i += 1 if n > 1: UpperCAmelCase = n return int(_snake_case ) if __name__ == "__main__": print(F"""{solution() = }""")
234
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__(self : List[Any] , a__ : Optional[int] , a__ : Optional[int]=13 , a__ : List[Any]=7 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : List[Any]=True , a__ : Optional[Any]=True , a__ : Optional[int]=99 , a__ : Optional[Any]=32 , a__ : List[str]=5 , a__ : Any=4 , a__ : str=37 , a__ : Optional[int]="gelu" , a__ : Optional[Any]=0.1 , a__ : Dict=0.1 , a__ : Any=512 , a__ : Union[str, Any]=16 , a__ : Any=2 , a__ : Optional[int]=0.0_2 , a__ : Optional[int]=4 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_attention_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_choices def a (self : Union[str, Any] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_attention_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a (self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a (self : Dict ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = True __snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Any = True A_ : Optional[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a (self : Dict ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormModelTester(self ) @slow def a (self : List[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def a (self : str ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __snake_case = model(a__ )[0] __snake_case = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , a__ ) # compare the actual values for a slice. __snake_case = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) ) @slow def a (self : Any ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __snake_case = model(a__ )[0] # compare the actual values for a slice. __snake_case = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
24
from __future__ import annotations import bisect def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' if hi < 0: _lowerCAmelCase : int = len(_lowerCamelCase ) while lo < hi: _lowerCAmelCase : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _lowerCAmelCase : Union[str, Any] = mid + 1 else: _lowerCAmelCase : str = mid return lo def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' if hi < 0: _lowerCAmelCase : str = len(_lowerCamelCase ) while lo < hi: _lowerCAmelCase : Tuple = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _lowerCAmelCase : Dict = mid + 1 else: _lowerCAmelCase : str = mid return lo def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 0 _lowerCAmelCase : Union[str, Any] = len(_lowerCamelCase ) - 1 while left <= right: _lowerCAmelCase : int = left + (right - left) // 2 _lowerCAmelCase : int = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _lowerCAmelCase : str = midpoint - 1 else: _lowerCAmelCase : Any = midpoint + 1 return None def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = bisect.bisect_left(_lowerCamelCase , _lowerCamelCase ) if index != len(_lowerCamelCase ) and sorted_collection[index] == item: return index return None def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if right < left: return None _lowerCAmelCase : Optional[int] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , midpoint + 1 , _lowerCamelCase ) if __name__ == "__main__": _snake_case = input("Enter numbers separated by comma:\n").strip() _snake_case = sorted(int(item) for item in user_input.split(",")) _snake_case = int(input("Enter a single number to be found in the list:\n")) _snake_case = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
36
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' if openai_config_file == "": UpperCamelCase__ = OpenAIGPTConfig() else: UpperCamelCase__ = OpenAIGPTConfig.from_json_file(_UpperCamelCase ) UpperCamelCase__ = OpenAIGPTModel(_UpperCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model UpperCamelCase__ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCamelCase__ = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , _UpperCamelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowercase: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __lowercase: int = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ZeroShotClassificationPipeline( model=UpperCAmelCase , tokenizer=UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # No kwarg _UpperCAmelCase = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier(UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=UpperCAmelCase , ) self.run_entailment_id(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
39
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = 42 __A = None def a( A : Optional[Any] , A : Any=0.999 , A : Dict="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) a = [] for i in range(A ): a = i / num_diffusion_timesteps a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A ) / alpha_bar_fn(A ) , A ) ) return torch.tensor(A , dtype=torch.floataa ) class _lowercase ( lowerCAmelCase, lowerCAmelCase ): """simple docstring""" __A = 1 @register_to_config def __init__(self , lowerCamelCase_ = 1000 , lowerCamelCase_ = 0.0001 , lowerCamelCase_ = 0.02 , lowerCamelCase_ = "linear" , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = True , lowerCamelCase_ = 0 , lowerCamelCase_ = "epsilon" , lowerCamelCase_ = 1.0 , **lowerCamelCase_ , ): """simple docstring""" if kwargs.get("set_alpha_to_one" , lowerCamelCase_ ) is not None: a = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) a = kwargs["set_alpha_to_one"] if trained_betas is not None: a = torch.tensor(lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": a = torch.linspace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a = betas_for_alpha_bar(lowerCamelCase_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) a = 1.0 - self.betas a = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. a = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution a = 1.0 # setable values a = None a = torch.from_numpy(np.arange(0 , lowerCamelCase_ ).copy().astype(np.intaa ) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" return sample def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) a = num_inference_steps a = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a = (np.arange(0 , lowerCamelCase_ ) * step_ratio).round().copy().astype(np.intaa ) a = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) self.timesteps += self.config.steps_offset def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0.0 , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , ): """simple docstring""" a = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process a = self.alphas_cumprod[timestep] a = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) a = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 a = model_output elif self.config.prediction_type == "sample": a = model_output a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output a = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: a = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase_ , pred_original_sample=lowerCamelCase_ ) def __len__(self ): """simple docstring""" return self.config.num_train_timesteps
227
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : int = {'vocab_file': 'spiece.model'} __A : Union[str, Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } __A : List[Any] = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict = ['input_ids', 'attention_mask'] lowercase : List[int] = [] def __init__( self :List[str] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any="<unk>" ,_UpperCamelCase :Tuple="<s>" ,_UpperCamelCase :int="</s>" ,_UpperCamelCase :Optional[Any]="<pad>" ,_UpperCamelCase :List[str]="[SEP]" ,_UpperCamelCase :str="[MASK]" ,_UpperCamelCase :int="[CLS]" ,_UpperCamelCase :Optional[Dict[str, Any]] = None ,**_UpperCamelCase :Optional[Any] ,): snake_case_ : Dict = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else bos_token snake_case_ : List[Any] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else eos_token snake_case_ : str = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else unk_token snake_case_ : Optional[int] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else pad_token snake_case_ : Optional[int] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else cls_token snake_case_ : int = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[int] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else mask_token snake_case_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,mask_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCamelCase ,) snake_case_ : Union[str, Any] = vocab_file snake_case_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def a__ ( self :Union[str, Any] ): return self.sp_model.get_piece_size() def a__ ( self :List[str] ): snake_case_ : Any = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[Any] ): snake_case_ : str = self.__dict__.copy() snake_case_ : Tuple = None return state def __setstate__( self :Tuple ,_UpperCamelCase :Tuple ): snake_case_ : Tuple = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self :int ,_UpperCamelCase :str ): return self.sp_model.encode(_UpperCamelCase ,out_type=_UpperCamelCase ) def a__ ( self :Any ,_UpperCamelCase :Union[str, Any] ): return self.sp_model.piece_to_id(_UpperCamelCase ) def a__ ( self :str ,_UpperCamelCase :Tuple ): snake_case_ : List[str] = self.sp_model.IdToPiece(_UpperCamelCase ) return token def a__ ( self :Any ,_UpperCamelCase :List[Any] ): snake_case_ : Union[str, Any] = [] snake_case_ : Optional[Any] = """""" snake_case_ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ : Optional[int] = True snake_case_ : int = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ : Any = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def a__ ( self :Optional[Any] ,_UpperCamelCase :List[int] ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = None ,_UpperCamelCase :bool = True ,**_UpperCamelCase :str ,): snake_case_ : Optional[Any] = kwargs.pop("""use_source_tokenizer""" ,_UpperCamelCase ) snake_case_ : Optional[Any] = self.convert_ids_to_tokens(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ : List[str] = [] snake_case_ : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ : List[Any] = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ : List[Any] = re.sub(R""" (\[(MASK|SEP)\])""" ,R"""\1""" ,""" """.join(_UpperCamelCase ) ) else: snake_case_ : str = """""".join(_UpperCamelCase ) snake_case_ : List[str] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ : Tuple = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def a__ ( self :str ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Any = os.path.join( _UpperCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase ,"""wb""" ) as fi: snake_case_ : int = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def a__ ( self :Tuple ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] snake_case_ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self :List[str] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ,_UpperCamelCase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase ,token_ids_a=_UpperCamelCase ,already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def a__ ( self :Any ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : List[str] = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ): '''simple docstring''' # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : Optional[Any] = np.asarray(weights[0] ) snake_case_ : int = np.asarray(weights[1] ) snake_case_ : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : List[Any] = np.asarray(weights[0] ) snake_case_ : Optional[int] = np.asarray(weights[1] ) snake_case_ : Union[str, Any] = np.asarray(weights[2] ) snake_case_ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' # layernorm 1 snake_case_ : str = weights[0][0][0] snake_case_ : int = np.asarray(layer_norm_a[0] ) snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # lsh weights + output snake_case_ : Tuple = weights[0][1] if len(lowerCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) else: set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) # intermediate weighs snake_case_ : str = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase_ ) == 4: snake_case_ : List[Any] = intermediate_weights[2] # layernorm 2 snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] ) snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # intermediate dense snake_case_ : Any = np.asarray(intermediate_weights[1][0] ) snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) # intermediate out snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] ) snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ): '''simple docstring''' # reformer model snake_case_ : Dict = torch_model.reformer # word embeds snake_case_ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , ) if isinstance(weights[3] , lowerCamelCase_ ): snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) ) snake_case_ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # output layer norm snake_case_ : Optional[Any] = np.asarray(weights[7][0] ) snake_case_ : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # output embeddings snake_case_ : Optional[int] = np.asarray(weights[9][0] ) snake_case_ : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # Initialise PyTorch model snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""] set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
8
1
'''simple docstring''' import re def a ( lowerCamelCase__ ): '''simple docstring''' return [char.split() for char in re.split(r"""[^ a-z A-Z 0-9 \s]""" , str_ )] def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' try: A_ : List[Any] = split_input(lowerCamelCase__ ) if upper: A_ : Tuple = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: A_ : Optional[int] = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a ( lowerCamelCase__ ): '''simple docstring''' return to_simple_case(lowerCamelCase__ ) def a ( lowerCamelCase__ ): '''simple docstring''' try: A_ : Tuple = to_simple_case(lowerCamelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """_""" ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """-""" ) if __name__ == "__main__": __import__('''doctest''').testmod()
206
'''simple docstring''' import re def a ( lowerCamelCase__ ): '''simple docstring''' return [char.split() for char in re.split(r"""[^ a-z A-Z 0-9 \s]""" , str_ )] def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' try: A_ : List[Any] = split_input(lowerCamelCase__ ) if upper: A_ : Tuple = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: A_ : Optional[int] = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a ( lowerCamelCase__ ): '''simple docstring''' return to_simple_case(lowerCamelCase__ ) def a ( lowerCamelCase__ ): '''simple docstring''' try: A_ : Tuple = to_simple_case(lowerCamelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """_""" ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , """-""" ) if __name__ == "__main__": __import__('''doctest''').testmod()
206
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _UpperCamelCase = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class lowercase : '''simple docstring''' def __init__(self , __a = 14 ) -> Optional[int]: """simple docstring""" if group not in primes: raise ValueError('Unsupported Group' ) UpperCAmelCase__ = primes[group]['prime'] UpperCAmelCase__ = primes[group]['generator'] UpperCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" return hex(self.__private_key )[2:] def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = pow(self.generator , self.__private_key , self.prime ) return hex(_UpperCAmelCase )[2:] def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(_UpperCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = int(_UpperCAmelCase , base=16 ) if not self.is_valid_public_key(_UpperCAmelCase ): raise ValueError('Invalid public key' ) UpperCAmelCase__ = pow(_UpperCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest() @staticmethod def UpperCamelCase__ (__a , __a ) -> Dict: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(_UpperCAmelCase , (prime - 1) // 2 , _UpperCAmelCase ) == 1 ) @staticmethod def UpperCamelCase__ (__a , __a , __a = 14 ) -> Tuple: """simple docstring""" UpperCAmelCase__ = int(_UpperCAmelCase , base=16 ) UpperCAmelCase__ = int(_UpperCAmelCase , base=16 ) UpperCAmelCase__ = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('Invalid public key' ) UpperCAmelCase__ = pow(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
369
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
0
'''simple docstring''' import sys def UpperCamelCase_ ( snake_case_ : int ) -> List[Any]: '''simple docstring''' __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = [[0 for x in range(snake_case_ )] for x in range(snake_case_ )] __lowerCAmelCase = [[0 for x in range(snake_case_ )] for x in range(snake_case_ )] for chain_length in range(2 , snake_case_ ): for a in range(1 , n - chain_length + 1 ): __lowerCAmelCase = a + chain_length - 1 __lowerCAmelCase = sys.maxsize for c in range(snake_case_ , snake_case_ ): __lowerCAmelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowerCAmelCase = cost __lowerCAmelCase = c return matrix, sol def UpperCamelCase_ ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : int ) -> Optional[int]: '''simple docstring''' if i == j: print("""A""" + str(snake_case_ ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(snake_case_ , snake_case_ , optimal_solution[i][j] ) print_optiomal_solution(snake_case_ , optimal_solution[i][j] + 1 , snake_case_ ) print(""")""" , end=""" """ ) def UpperCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = [30, 35, 15, 5, 10, 20, 25] __lowerCAmelCase = len(snake_case_ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowerCAmelCase , __lowerCAmelCase = matrix_chain_order(snake_case_ ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(snake_case_ , 1 , n - 1 ) if __name__ == "__main__": main()
229
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _A : Optional[Any] = 16 _A : Union[str, Any] = 32 def UpperCamelCase_ ( snake_case_ : List[str] ) -> str: '''simple docstring''' return int(x / 2**20 ) class _lowercase : '''simple docstring''' def __enter__( self : List[Any] ) -> int: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowerCAmelCase = torch.cuda.memory_allocated() return self def __exit__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: gc.collect() torch.cuda.empty_cache() __lowerCAmelCase = torch.cuda.memory_allocated() __lowerCAmelCase = torch.cuda.max_memory_allocated() __lowerCAmelCase = bamb(self.end - self.begin ) __lowerCAmelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCamelCase_ ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" , snake_case_ : int = 3_20 , snake_case_ : int = 1_60 , ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = AutoTokenizer.from_pretrained(snake_case_ ) __lowerCAmelCase = load_dataset( """glue""" , """mrpc""" , split={"""train""": f"""train[:{n_train}]""", """validation""": f"""validation[:{n_val}]"""} ) def tokenize_function(snake_case_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Tuple ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["""lr"""] __lowerCAmelCase = int(config["""num_epochs"""] ) __lowerCAmelCase = int(config["""seed"""] ) __lowerCAmelCase = int(config["""batch_size"""] ) __lowerCAmelCase = args.model_name_or_path set_seed(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(snake_case_ , snake_case_ , snake_case_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __lowerCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCAmelCase = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCAmelCase = 1 __lowerCAmelCase = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __lowerCAmelCase = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCAmelCase = 0 # Now we train the model __lowerCAmelCase = {} for epoch in range(snake_case_ , snake_case_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case_ ): __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowerCAmelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(snake_case_ , snake_case_ ) def UpperCamelCase_ ( ) -> Any: '''simple docstring''' __lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=snake_case_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case_ , ) parser.add_argument( """--output_dir""" , type=snake_case_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=snake_case_ , default=snake_case_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=snake_case_ , default=3_20 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=snake_case_ , default=1_60 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case_ , default=1 , help="""Number of train epochs.""" , ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
229
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase : Union[str, Any] = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
import numpy as np def lowerCAmelCase__ ( _a : np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
36
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Optional[Any] =StableDiffusionDiffEditPipeline UpperCamelCase__ : str =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} UpperCamelCase__ : Optional[Any] =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} UpperCamelCase__ : Dict =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ : Any =frozenset([] ) def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Dict =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase__ , ) __UpperCamelCase : List[str] =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) __UpperCamelCase : Union[str, Any] =DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase__ , set_alpha_to_zero=lowerCamelCase__ , ) torch.manual_seed(0 ) __UpperCamelCase : Optional[int] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCamelCase : Tuple =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __UpperCamelCase : Any =CLIPTextModel(lowerCamelCase__ ) __UpperCamelCase : int =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase : Union[str, Any] ={ 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : int =floats_tensor((1, 16, 16) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : Any =floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : Any =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Optional[int] =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Dict ={ 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : Tuple =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : Optional[Any] =Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ) if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : List[Any] =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Any =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Optional[int] ={ 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : str =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : int =Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ) if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : Any =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : int =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Optional[int] ={ 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def __lowercase ( self ): """simple docstring""" if not hasattr(self.pipeline_class , '_optional_components' ): return __UpperCamelCase : Optional[Any] =self.get_dummy_components() __UpperCamelCase : List[str] =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __UpperCamelCase : Union[str, Any] =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : List[Any] =pipe(**lowerCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : Tuple =self.pipeline_class.from_pretrained(lowerCamelCase__ ) pipe_loaded.to(lowerCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase__ , lowerCamelCase__ ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) __UpperCamelCase : str =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =pipe_loaded(**lowerCamelCase__ )[0] __UpperCamelCase : Tuple =np.abs(output - output_loaded ).max() self.assertLess(lowerCamelCase__ , 1E-4 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any ='cpu' __UpperCamelCase : Union[str, Any] =self.get_dummy_components() __UpperCamelCase : Any =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : int =self.get_dummy_mask_inputs(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =pipe.generate_mask(**lowerCamelCase__ ) __UpperCamelCase : int =mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __UpperCamelCase : Tuple =np.array([0] * 9 ) __UpperCamelCase : str =np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int ='cpu' __UpperCamelCase : Union[str, Any] =self.get_dummy_components() __UpperCamelCase : Optional[Any] =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Dict =self.get_dummy_inversion_inputs(lowerCamelCase__ ) __UpperCamelCase : List[Any] =pipe.invert(**lowerCamelCase__ ).images __UpperCamelCase : Optional[Any] =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __UpperCamelCase : List[str] =np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) __UpperCamelCase : int =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1E-3 ) def __lowercase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] ='cpu' __UpperCamelCase : int =self.get_dummy_components() __UpperCamelCase : str ={'beta_start': 0.00_085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} __UpperCamelCase : str =DPMSolverMultistepScheduler(**lowerCamelCase__ ) __UpperCamelCase : Dict =DPMSolverMultistepInverseScheduler(**lowerCamelCase__ ) __UpperCamelCase : Any =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Tuple =self.get_dummy_inversion_inputs(lowerCamelCase__ ) __UpperCamelCase : str =pipe.invert(**lowerCamelCase__ ).images __UpperCamelCase : List[Any] =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __UpperCamelCase : List[str] =np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) __UpperCamelCase : Optional[Any] =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1E-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __lowercase ( cls ): """simple docstring""" __UpperCamelCase : Optional[int] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) __UpperCamelCase : Union[str, Any] =raw_image.convert('RGB' ).resize((768, 768) ) __UpperCamelCase : List[Any] =raw_image def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =torch.manual_seed(0 ) __UpperCamelCase : Dict =StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) __UpperCamelCase : List[str] =DDIMScheduler.from_config(pipe.scheduler.config ) __UpperCamelCase : List[str] =DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : List[str] ='a bowl of fruit' __UpperCamelCase : Dict ='a bowl of pears' __UpperCamelCase : Tuple =pipe.generate_mask( image=self.raw_image , source_prompt=lowerCamelCase__ , target_prompt=lowerCamelCase__ , generator=lowerCamelCase__ , ) __UpperCamelCase : int =pipe.invert( prompt=lowerCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCamelCase__ ).latents __UpperCamelCase : Dict =pipe( prompt=lowerCamelCase__ , mask_image=lowerCamelCase__ , image_latents=lowerCamelCase__ , generator=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , inpaint_strength=0.7 , output_type='numpy' , ).images[0] __UpperCamelCase : str =( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =torch.manual_seed(0 ) __UpperCamelCase : List[Any] =StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) __UpperCamelCase : Optional[Any] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __UpperCamelCase : Optional[int] =DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] ='a bowl of fruit' __UpperCamelCase : int ='a bowl of pears' __UpperCamelCase : str =pipe.generate_mask( image=self.raw_image , source_prompt=lowerCamelCase__ , target_prompt=lowerCamelCase__ , generator=lowerCamelCase__ , ) __UpperCamelCase : List[str] =pipe.invert( prompt=lowerCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCamelCase__ , num_inference_steps=25 , ).latents __UpperCamelCase : List[str] =pipe( prompt=lowerCamelCase__ , mask_image=lowerCamelCase__ , image_latents=lowerCamelCase__ , generator=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] __UpperCamelCase : Tuple =( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
71
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def a_ ( __snake_case : Any ) -> int: """simple docstring""" lowerCamelCase_ =checkpoints.load_tax_checkpoint(__snake_case ) lowerCamelCase_ =flatten_dict(__snake_case ) return flax_params def a_ ( __snake_case : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ ={ '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowerCamelCase_ ={ '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCamelCase_ ='''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCamelCase_ =new_key.replace(__snake_case , __snake_case ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCamelCase_ =new_key.replace(__snake_case , __snake_case ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCamelCase_ =re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , __snake_case ) lowerCamelCase_ =new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCamelCase_ =re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , __snake_case ) lowerCamelCase_ =flax_dict[key] lowerCamelCase_ ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCamelCase_ =torch.from_numpy(converted_dict[key].T ) else: lowerCamelCase_ =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Any=False , __snake_case : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_flax_param(__snake_case ) if not use_large: lowerCamelCase_ =PixaStructVisionConfig() lowerCamelCase_ =PixaStructTextConfig() else: lowerCamelCase_ =PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCamelCase_ =PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowerCamelCase_ =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__snake_case ) lowerCamelCase_ =PixaStructForConditionalGeneration(__snake_case ) lowerCamelCase_ =rename_and_convert_flax_params(__snake_case ) model.load_state_dict(__snake_case ) lowerCamelCase_ =AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowerCamelCase_ =PixaStructImageProcessor() lowerCamelCase_ =PixaStructProcessor(image_processor=__snake_case , tokenizer=__snake_case ) if use_large: lowerCamelCase_ =4096 lowerCamelCase_ =True # mkdir if needed os.makedirs(__snake_case , exist_ok=__snake_case ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) print('''Model saved in {}'''.format(__snake_case ) ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") a_ : Tuple = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
75
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _SCREAMING_SNAKE_CASE = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def SCREAMING_SNAKE_CASE__ ( __a=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=snake_case_ ) ) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = None __magic_name__: List[Any] = None def UpperCAmelCase_ ( self : int , _A : Dict , _A : Any ) -> List[str]: """simple docstring""" with TemporaryDirectory() as tmp_dir: snake_case_ : str = dataset_module_factory(_A , cache_dir=_A ) snake_case_ : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=_A ) snake_case_ : DatasetBuilder = builder_cls( cache_dir=_A , config_name=_A , hash=dataset_module.hash , ) snake_case_ : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_A ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) snake_case_ : str = cached_path(_A , cache_dir=_A ) self.assertTrue(os.path.exists(_A ) ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[int] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' snake_case_ : Any = dataset_module_factory('wikipedia' , cache_dir=__a ) snake_case_ : Union[str, Any] = import_main_class(dataset_module.module_path ) snake_case_ : DatasetBuilder = builder_cls( cache_dir=__a , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam snake_case_ : int = None builder_instance.download_and_prepare() snake_case_ : List[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : int = dataset_module_factory('wikipedia' , cache_dir=__a ) snake_case_ : Optional[int] = import_main_class(dataset_module.module_path , dataset=__a ) snake_case_ : DatasetBuilder = builder_cls( cache_dir=__a , config_name='20220301.frr' , hash=dataset_module.hash , ) snake_case_ : Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(__a , __a ) assert "train" in ds assert isinstance(ds['train'] , __a ) assert next(iter(ds['train'] ) )
88
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
47
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Any=False ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =OmegaConf.load(_UpperCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_UpperCamelCase ) ) ) return config def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Union[str, Any]=None ) -> Optional[Any]: """simple docstring""" if conf_path is None: _SCREAMING_SNAKE_CASE ='./model_checkpoints/vqgan_only.yaml' _SCREAMING_SNAKE_CASE =load_config(_UpperCamelCase , display=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =VQModel(**config.model.params ) if ckpt_path is None: _SCREAMING_SNAKE_CASE ='./model_checkpoints/vqgan_only.pt' _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) if ".ckpt" in ckpt_path: _SCREAMING_SNAKE_CASE =sd['state_dict'] model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) model.to(_UpperCamelCase ) del sd return model def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : int ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =model.encode(_UpperCamelCase ) print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _SCREAMING_SNAKE_CASE =model.decode(_UpperCamelCase ) return xrec def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str]=False ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =string.rsplit('.' , 1 ) if reload: _SCREAMING_SNAKE_CASE =importlib.import_module(_UpperCamelCase ) importlib.reload(_UpperCamelCase ) return getattr(importlib.import_module(_UpperCamelCase , package=_UpperCamelCase ) , cls ) def _lowerCAmelCase ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=True , _UpperCamelCase : int=True ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =instantiate_from_config(_UpperCamelCase ) if sd is not None: model.load_state_dict(_UpperCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" if ckpt: _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location='cpu' ) _SCREAMING_SNAKE_CASE =pl_sd['global_step'] print(f"loaded model from global step {global_step}." ) else: _SCREAMING_SNAKE_CASE ={'state_dict': None} _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =load_model_from_config(config.model , pl_sd['state_dict'] , gpu=_UpperCamelCase , eval_mode=_UpperCamelCase )['model'] return model, global_step
47
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : Tuple = head.next, head while fast and fast.next: lowerCAmelCase : List[str] = fast.next.next lowerCAmelCase : Dict = slow.next lowerCAmelCase : Any = slow.next lowerCAmelCase : int = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : Optional[int] = None while second: lowerCAmelCase : Union[str, Any] = second.next lowerCAmelCase : Any = node lowerCAmelCase : Any = second lowerCAmelCase : Union[str, Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : List[str] = node.next lowerCAmelCase : List[str] = head.next return True def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : str = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : str = [slow.val] while slow.next: lowerCAmelCase : Optional[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Any = cur.next return True def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if not head or not head.next: return True lowerCAmelCase : Any = {} lowerCAmelCase : Optional[Any] = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : int = [pos] lowerCAmelCase : Union[str, Any] = head.next pos += 1 lowerCAmelCase : Optional[Any] = pos - 1 lowerCAmelCase : Union[str, Any] = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE ) % 2 != 0: middle += 1 else: lowerCAmelCase : Any = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
133
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowerCAmelCase__ = get_logger() lowerCAmelCase__ = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ): """simple docstring""" super().__init__(features=snake_case__ ) import jax from jaxlib.xla_client import Device if isinstance(snake_case__ , snake_case__ ): raise ValueError( f"""Expected {device} to be a `str` not {type(snake_case__ )}, as `jaxlib.xla_extension.Device` """ "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) lowerCAmelCase : List[str] = device if isinstance(snake_case__ , snake_case__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase : Optional[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) lowerCAmelCase : Dict = str(jax.devices()[0] ) lowerCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def lowercase__ ( ): """simple docstring""" import jax return {str(snake_case__ ): device for device in jax.devices()} def lowercase__ ( self , snake_case__ ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(snake_case__ , snake_case__ ) and column: if all( isinstance(snake_case__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(snake_case__ , axis=0 ) return column def lowercase__ ( self , snake_case__ ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(snake_case__ , (str, bytes, type(snake_case__ )) ): return value elif isinstance(snake_case__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase : Tuple = {} if isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCAmelCase : List[Any] = {"dtype": jnp.intaa} else: lowerCAmelCase : Optional[Any] = {"dtype": jnp.intaa} elif isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(snake_case__ , PIL.Image.Image ): lowerCAmelCase : Dict = np.asarray(snake_case__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase : str = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(snake_case__ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowercase__ ( self , snake_case__ ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(snake_case__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(snake_case__ , "__array__" ) and not isinstance(snake_case__ , jax.Array ): lowerCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(snake_case__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) elif isinstance(snake_case__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) return self._tensorize(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" return map_nested(self._recursive_tensorize , snake_case__ , map_list=snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = self.numpy_arrow_extractor().extract_row(snake_case__ ) lowerCAmelCase : Tuple = self.python_features_decoder.decode_row(snake_case__ ) return self.recursive_tensorize(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_column(snake_case__ ) lowerCAmelCase : Dict = self.python_features_decoder.decode_column(snake_case__ , pa_table.column_names[0] ) lowerCAmelCase : Optional[Any] = self.recursive_tensorize(snake_case__ ) lowerCAmelCase : Dict = self._consolidate(snake_case__ ) return column def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.numpy_arrow_extractor().extract_batch(snake_case__ ) lowerCAmelCase : str = self.python_features_decoder.decode_batch(snake_case__ ) lowerCAmelCase : Tuple = self.recursive_tensorize(snake_case__ ) for column_name in batch: lowerCAmelCase : Optional[int] = self._consolidate(batch[column_name] ) return batch
133
1
from __future__ import annotations class __snake_case : def __init__( self : List[Any] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = order # a_{0} ... a_{k} UpperCAmelCase_ = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCAmelCase_ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCAmelCase_ = [0.0] * self.order # y[n-1] ... y[n-k] UpperCAmelCase_ = [0.0] * self.order def lowerCamelCase ( self : Tuple , _snake_case : list[float] , _snake_case : list[float]): """simple docstring""" if len(_snake_case) < self.order: UpperCAmelCase_ = [1.0, *a_coeffs] if len(_snake_case) != self.order + 1: UpperCAmelCase_ = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_snake_case)}""" ) raise ValueError(_snake_case) if len(_snake_case) != self.order + 1: UpperCAmelCase_ = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_snake_case)}""" ) raise ValueError(_snake_case) UpperCAmelCase_ = a_coeffs UpperCAmelCase_ = b_coeffs def lowerCamelCase ( self : List[Any] , _snake_case : float): """simple docstring""" UpperCAmelCase_ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCAmelCase_ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCAmelCase_ = self.input_history[:-1] UpperCAmelCase_ = self.output_history[:-1] UpperCAmelCase_ = sample UpperCAmelCase_ = result return result
51
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
0
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__UpperCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
161
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , a_ : Any , a_ : Any=None , a_ : int=None , a_ : str=None , a_ : Optional[int]="resnet50" , a_ : str=3 , a_ : str=32 , a_ : Union[str, Any]=3 , a_ : Tuple=True , a_ : List[str]=True , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Dict = out_indices if out_indices is not None else [4] lowerCAmelCase_ : int = stage_names lowerCAmelCase_ : Optional[Any] = out_features lowerCAmelCase_ : Tuple = backbone lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : Tuple = image_size lowerCAmelCase_ : List[Any] = num_channels lowerCAmelCase_ : Optional[int] = use_pretrained_backbone lowerCAmelCase_ : List[Any] = is_training def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values def lowerCamelCase ( self : Dict ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCamelCase ( self : Union[str, Any] , a_ : str , a_ : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = TimmBackbone(config=a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : int = model(a_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = config_and_inputs lowerCAmelCase_ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCamelCase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () a_ : int = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ : Union[str, Any] = False a_ : str = False a_ : List[Any] = False a_ : Dict = False def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Union[str, Any] = TimmBackboneModelTester(self ) lowerCAmelCase_ : List[str] = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def lowerCamelCase ( self : Dict ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = "resnet18" lowerCAmelCase_ : List[Any] = "microsoft/resnet-18" lowerCAmelCase_ : Tuple = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ ) lowerCAmelCase_ : str = AutoBackbone.from_pretrained(a_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase_ : Dict = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ , out_indices=[1, 2, 3] ) lowerCAmelCase_ : Any = AutoBackbone.from_pretrained(a_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowerCamelCase ( self : List[Any] ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCamelCase ( self : Any ): pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : str ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCamelCase ( self : Any ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCamelCase ( self : List[str] ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowerCamelCase ( self : int ): pass @unittest.skip("Safetensors is not supported by timm." ) def lowerCamelCase ( self : Union[str, Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(a_ ) lowerCAmelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : str = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase_ : int = self.all_model_classes[0] lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) lowerCAmelCase_ : Union[str, Any] = self._prepare_for_class(a_ , a_ ) lowerCAmelCase_ : str = model(**a_ ) lowerCAmelCase_ : Any = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase_ : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase_ : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCamelCase ( self : str ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Dict = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Tuple = model(**a_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase_ : Optional[int] = copy.deepcopy(a_ ) lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : Any = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : int = model(**a_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase_ : str = copy.deepcopy(a_ ) lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Optional[Any] = model(**a_ )
161
1