code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = BlenderbotSmallTokenizer _UpperCAmelCase :str = False def _snake_case ( self ): super().setUp() lowercase__: int = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] lowercase__: List[Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: List[Any] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] lowercase__: List[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} lowercase__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''adapt act apte''' lowercase__: Any = '''adapt act apte''' return input_text, output_text def _snake_case ( self ): lowercase__: str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt act apte''' lowercase__: Tuple = ['''adapt''', '''act''', '''ap@@''', '''te'''] lowercase__: Tuple = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowercase__: Optional[int] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] lowercase__: Dict = '''I am a small frog.''' lowercase__: Any = tok([src_text] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )['''input_ids'''] lowercase__: Optional[int] = tok.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _snake_case ( self ): lowercase__: Optional[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) lowercase__: Dict = '''I am a small frog .''' lowercase__: Tuple = '''.''' lowercase__: List[Any] = tok(_UpperCAmelCase )['''input_ids'''] lowercase__: Union[str, Any] = tok(_UpperCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
177
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 5_1_2, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = VOCAB_FILES_NAMES _UpperCAmelCase :str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :str = RetriBertTokenizer _UpperCAmelCase :List[str] = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__: Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCAmelCase ) != tokenize_chinese_chars ): lowercase__: str = getattr(_UpperCAmelCase , normalizer_state.pop('''type''' ) ) lowercase__: Optional[Any] = do_lower_case lowercase__: Tuple = strip_accents lowercase__: str = tokenize_chinese_chars lowercase__: Union[str, Any] = normalizer_class(**_UpperCAmelCase ) lowercase__: List[str] = do_lower_case def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None ): lowercase__: Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Optional[int] = [self.sep_token_id] lowercase__: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: List[str] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
177
1
'''simple docstring''' import mpmath # for roots of unity import numpy as np class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :List[Any] = list(poly_a or [0] )[:] UpperCamelCase__ :str = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCamelCase__ :List[str] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCamelCase__ :Union[str, Any] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCamelCase__ :str = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCamelCase__ :Any = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCamelCase__ :int = self.__multiply() def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[str] = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCamelCase_ ) <= 1: return dft[0] # UpperCamelCase__ :List[str] = self.c_max_length // 2 while next_ncol > 0: UpperCamelCase__ :List[Any] = [[] for i in range(UpperCamelCase_ )] UpperCamelCase__ :Dict = self.root**next_ncol # First half of next step UpperCamelCase__ :Tuple = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCamelCase__ :Tuple = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCamelCase__ :Tuple = new_dft UpperCamelCase__ :List[Any] = next_ncol // 2 return dft[0] def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.__dft('''A''' ) UpperCamelCase__ :Dict = self.__dft('''B''' ) UpperCamelCase__ :int = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCamelCase__ :Tuple = 2 while next_ncol <= self.c_max_length: UpperCamelCase__ :Union[str, Any] = [[] for i in range(UpperCamelCase_ )] UpperCamelCase__ :Tuple = self.root ** (next_ncol // 2) UpperCamelCase__ :int = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCamelCase__ :Any = new_inverse_c next_ncol *= 2 # Unpack UpperCamelCase__ :Optional[int] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): '''simple docstring''' UpperCamelCase__ :str = '''A = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCamelCase__ :Dict = '''B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCamelCase__ :List[Any] = '''A*B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
219
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase__ :Union[str, Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(__a ) # Let's go UpperCamelCase__ :Optional[int] = parser.parse_args() if not hasattr(__a , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase__ :Optional[int] = args.func(__a ) service.run() if __name__ == "__main__": main()
219
1
import re def a ( _UpperCAmelCase : str ): '''simple docstring''' return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )] def a ( _UpperCAmelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a ( _UpperCAmelCase : str , _UpperCAmelCase : bool , _UpperCAmelCase : str ): '''simple docstring''' try: __UpperCAmelCase : Optional[Any] = split_input(_UpperCAmelCase ) if upper: __UpperCAmelCase : List[Any] = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __UpperCAmelCase : Optional[int] = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a ( _UpperCAmelCase : str ): '''simple docstring''' return to_simple_case(_UpperCAmelCase ) def a ( _UpperCAmelCase : str ): '''simple docstring''' try: __UpperCAmelCase : Union[str, Any] = to_simple_case(_UpperCAmelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a ( _UpperCAmelCase : str , _UpperCAmelCase : bool ): '''simple docstring''' return to_complex_case(_UpperCAmelCase , _UpperCAmelCase , '''_''' ) def a ( _UpperCAmelCase : str , _UpperCAmelCase : bool ): '''simple docstring''' return to_complex_case(_UpperCAmelCase , _UpperCAmelCase , '''-''' ) if __name__ == "__main__": __import__("doctest").testmod()
226
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __A =getLogger(__name__) def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 8 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : Any="val" , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Any=False , _UpperCAmelCase : Union[str, Any]="summarization" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Dict = None , _UpperCAmelCase : Dict="" , **_UpperCAmelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Any = str(_UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = Path(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(_UpperCAmelCase ) __UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).cuda() if fpaa: __UpperCAmelCase : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(_UpperCAmelCase , _UpperCAmelCase ) # update config with task specific params __UpperCAmelCase : List[str] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __UpperCAmelCase : Any = num_return_sequences __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: __UpperCAmelCase : Optional[Any] = tokenizer.model_max_length if prefix is None: __UpperCAmelCase : str = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __UpperCAmelCase : Union[str, Any] = SeqaSeqDataset( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , max_target_length=10_24 , type_path=_UpperCAmelCase , n_obs=_UpperCAmelCase , prefix=_UpperCAmelCase , **_UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __UpperCAmelCase : str = ds.make_sortish_sampler(_UpperCAmelCase , distributed=_UpperCAmelCase , add_extra_examples=_UpperCAmelCase , shuffle=_UpperCAmelCase ) __UpperCAmelCase : List[Any] = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn ) __UpperCAmelCase : List[Any] = [] for batch in tqdm(_UpperCAmelCase ): __UpperCAmelCase : str = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=_UpperCAmelCase , num_beams=_UpperCAmelCase , **_UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) __UpperCAmelCase : List[str] = batch['''ids'''] if num_return_sequences > 1: __UpperCAmelCase : Any = chunks(_UpperCAmelCase , _UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_UpperCAmelCase ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return results, sampler.num_replicas def a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=_UpperCAmelCase , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=_UpperCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=_UpperCAmelCase , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=_UpperCAmelCase , default=_UpperCAmelCase ) parser.add_argument( '''--type_path''' , type=_UpperCAmelCase , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=_UpperCAmelCase , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_UpperCAmelCase , default=8 , required=_UpperCAmelCase , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=_UpperCAmelCase , default=1 , required=_UpperCAmelCase , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=_UpperCAmelCase , default=6_00 , required=_UpperCAmelCase , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument('''--tgt_lang''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument( '''--prefix''' , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __UpperCAmelCase : Any = time.time() __UpperCAmelCase , __UpperCAmelCase : Any = parser.parse_known_args() __UpperCAmelCase : List[Any] = parse_numeric_n_bool_cl_kwargs(_UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) __UpperCAmelCase : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) # this handles locking. __UpperCAmelCase : int = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __UpperCAmelCase : List[Any] = {} if args.src_lang is not None: __UpperCAmelCase : List[str] = args.src_lang if args.tgt_lang is not None: __UpperCAmelCase : List[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : int = eval_data_dir( args.data_dir , _UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_UpperCAmelCase , **_UpperCAmelCase , ) if args.local_rank <= 0: __UpperCAmelCase : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=_UpperCAmelCase ) __UpperCAmelCase : List[str] = gather_results_from_each_node(_UpperCAmelCase , _UpperCAmelCase , args.sync_timeout ) __UpperCAmelCase : List[Any] = combine_partial_results(_UpperCAmelCase ) if args.num_return_sequences > 1: __UpperCAmelCase : int = save_dir.joinpath('''pseudolabel_results.json''' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return __UpperCAmelCase : str = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(_UpperCAmelCase ) as f: __UpperCAmelCase : int = [x.rstrip() for x in f.readlines()][: len(_UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt __UpperCAmelCase : Optional[Any] = '''translation''' in args.task __UpperCAmelCase : Optional[int] = calculate_bleu if calc_bleu else calculate_rouge __UpperCAmelCase : Union[str, Any] = '''bleu''' if calc_bleu else '''rouge''' __UpperCAmelCase : Dict = score_fn(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = len(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = time.time() - start_time __UpperCAmelCase : List[str] = round(runtime / metrics['''n_obs'''] , 4 ) __UpperCAmelCase : List[str] = num_replicas # TODO(@stas00): add whatever metadata to metrics __UpperCAmelCase : List[Any] = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase ) print(_UpperCAmelCase ) write_txt_file(_UpperCAmelCase , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(_UpperCAmelCase , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(_UpperCAmelCase ) def a ( _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] for partial_result in partial_results: records.extend(_UpperCAmelCase ) __UpperCAmelCase : List[str] = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["id"] ) __UpperCAmelCase : Union[str, Any] = [x['''pred'''] for x in records] return preds def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = time.time() logger.info('''waiting for all nodes to finish''' ) __UpperCAmelCase : Any = None while (time.time() - start_wait) < timeout: __UpperCAmelCase : List[Any] = list(save_dir.glob('''rank_*.json''' ) ) if len(_UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved __UpperCAmelCase : Union[str, Any] = lmap(_UpperCAmelCase , _UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
226
1
"""simple docstring""" from itertools import permutations def _A (__a ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _A (__a = 10 ) -> int: """simple docstring""" return sum( int(''''''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(f'''{solution() = }''')
352
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) SCREAMING_SNAKE_CASE_ : Dict = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , lowercase_) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowercase_ : str): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : List[Any]): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : str): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] SCREAMING_SNAKE_CASE_ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) processor_slow.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_) SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) processor_fast.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowercase_) self.assertIsInstance(processor_fast.tokenizer , lowercase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowercase_) self.assertIsInstance(processor_fast.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''') SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor(do_normalize=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=lowercase_) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = image_processor(lowercase_ , return_tensors='''np''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowercase_ , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Dict = processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
318
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['image_processor'] _snake_case = 'SamImageProcessor' def __init__( self , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.image_processor __UpperCamelCase = -10 __UpperCamelCase = self.image_processor.size['''longest_edge'''] def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> BatchEncoding: '''simple docstring''' __UpperCamelCase = self.image_processor( SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # pop arguments that are not used in the foward but used nevertheless __UpperCamelCase = encoding_image_processor['''original_sizes'''] if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): # Checks if Torch or TF tensor __UpperCamelCase = original_sizes.numpy() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._check_and_preprocess_points( input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = self._normalize_and_convert( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , ) return encoding_image_processor def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="pt" , )-> Union[str, Any]: '''simple docstring''' if input_points is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] ) for point in input_points ] else: __UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for point, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __UpperCamelCase , __UpperCamelCase = self._pad_points_and_labels(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) if input_labels is not None: __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box in input_boxes ] else: __UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if return_tensors == "pt": __UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __UpperCamelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __UpperCamelCase = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __UpperCamelCase = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": __UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __UpperCamelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __UpperCamelCase = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __UpperCamelCase = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": __UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __UpperCamelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __UpperCamelCase = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __UpperCamelCase = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = max([point.shape[0] for point in input_points] ) __UpperCamelCase = [] for i, point in enumerate(SCREAMING_SNAKE_CASE_ ): if point.shape[0] != expected_nb_points: __UpperCamelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __UpperCamelCase = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = processed_input_points return input_points, input_labels def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False )-> np.ndarray: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = original_size __UpperCamelCase , __UpperCamelCase = self.image_processor._get_preprocess_shape(SCREAMING_SNAKE_CASE_ , longest_edge=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = deepcopy(SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) if is_bounding_box: __UpperCamelCase = coords.reshape(-1 , 2 , 2 ) __UpperCamelCase = coords[..., 0] * (new_w / old_w) __UpperCamelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __UpperCamelCase = coords.reshape(-1 , 4 ) return coords def A__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> List[str]: '''simple docstring''' if input_points is not None: if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): # Checks for TF or Torch tensor __UpperCamelCase = input_points.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_points[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Input points must be a list of list of floating points.''' ) __UpperCamelCase = [np.array(SCREAMING_SNAKE_CASE_ ) for input_point in input_points] else: __UpperCamelCase = None if input_labels is not None: if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): __UpperCamelCase = input_labels.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_labels[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Input labels must be a list of list integers.''' ) __UpperCamelCase = [np.array(SCREAMING_SNAKE_CASE_ ) for label in input_labels] else: __UpperCamelCase = None if input_boxes is not None: if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): __UpperCamelCase = input_boxes.numpy().tolist() if ( not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0] , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0][0] , SCREAMING_SNAKE_CASE_ ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) __UpperCamelCase = [np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) for box in input_boxes] else: __UpperCamelCase = None return input_points, input_labels, input_boxes @property def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(SCREAMING_SNAKE_CASE_ ) ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' return self.image_processor.post_process_masks(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
328
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
1
from collections.abc import Iterable from typing import Any class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[int] , lowerCamelCase_ : int | None = None ): """simple docstring""" UpperCamelCase = value UpperCamelCase = None # Added in order to delete a node easier UpperCamelCase = None UpperCamelCase = None def __repr__( self : Optional[Any] ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : Node | None = None ): """simple docstring""" UpperCamelCase = root def __str__( self : str ): """simple docstring""" return str(self.root ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Node , lowerCamelCase_ : Node | None ): """simple docstring""" if new_children is not None: # reset its kids UpperCamelCase = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCamelCase_ ): # If it is the right children UpperCamelCase = new_children else: UpperCamelCase = new_children else: UpperCamelCase = new_children def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Node ): """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return self.root is None def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = Node(lowerCamelCase_ ) # create a new Node if self.empty(): # if Tree is empty UpperCamelCase = new_node # set its root else: # Tree is not empty UpperCamelCase = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCamelCase = new_node # We insert the new node in a leaf break else: UpperCamelCase = parent_node.left else: if parent_node.right is None: UpperCamelCase = new_node break else: UpperCamelCase = parent_node.right UpperCamelCase = parent_node def lowerCamelCase_ ( self : List[str] , *lowerCamelCase_ : List[Any] ): """simple docstring""" for value in values: self.__insert(lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[int] ): """simple docstring""" if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: UpperCamelCase = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCamelCase = node.left if value < node.value else node.right return node def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Node | None = None ): """simple docstring""" if node is None: if self.root is None: return None UpperCamelCase = self.root if not self.empty(): while node.right is not None: UpperCamelCase = node.right return node def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Node | None = None ): """simple docstring""" if node is None: UpperCamelCase = self.root if self.root is None: return None if not self.empty(): UpperCamelCase = self.root while node.left is not None: UpperCamelCase = node.left return node def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.search(lowerCamelCase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCamelCase_ , lowerCamelCase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCamelCase_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCamelCase_ , node.left ) else: UpperCamelCase = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCamelCase = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Node | None ): """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple=None ): """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : list , lowerCamelCase_ : Node | None ): """simple docstring""" if node: self.inorder(lowerCamelCase_ , node.left ) arr.append(node.value ) self.inorder(lowerCamelCase_ , node.right ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : Node ): """simple docstring""" UpperCamelCase = [] self.inorder(lowerCamelCase_ , lowerCamelCase_ ) # append all values to list using inorder traversal return arr[k - 1] def lowercase( UpperCamelCase_ ) -> list[Node]: '''simple docstring''' UpperCamelCase = [] if curr_node is not None: UpperCamelCase = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowercase( ) -> None: '''simple docstring''' UpperCamelCase = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCamelCase = BinarySearchTree() for i in testlist: t.insert(UpperCamelCase_ ) # Prints all the elements of the list in order traversal print(UpperCamelCase_ ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn't exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn't exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(UpperCamelCase_ ) print(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
165
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = TypeVar("""DatasetType""", Dataset, IterableDataset) def lowercase( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(UpperCamelCase_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase_ ).__name__}.""" ) if i == 0: UpperCamelCase , UpperCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , stopping_strategy=UpperCamelCase_ ) else: return _interleave_iterable_datasets( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , stopping_strategy=UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(UpperCamelCase_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase_ ).__name__}.""" ) if i == 0: UpperCamelCase , UpperCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , axis=UpperCamelCase_ ) else: return _concatenate_iterable_datasets(UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , axis=UpperCamelCase_ )
165
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Dict = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Union[str, Any] = "detr" A__ : List[str] = ["past_key_values"] A__ : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Any , _snake_case : Optional[Any]=True , _snake_case : List[str]=None , _snake_case : str=3 , _snake_case : Tuple=100 , _snake_case : List[Any]=6 , _snake_case : Dict=2048 , _snake_case : List[Any]=8 , _snake_case : List[Any]=6 , _snake_case : Union[str, Any]=2048 , _snake_case : Optional[Any]=8 , _snake_case : Union[str, Any]=0.0 , _snake_case : Tuple=0.0 , _snake_case : Optional[Any]=True , _snake_case : Tuple="relu" , _snake_case : Dict=256 , _snake_case : List[Any]=0.1 , _snake_case : Optional[Any]=0.0 , _snake_case : List[Any]=0.0 , _snake_case : int=0.02 , _snake_case : int=1.0 , _snake_case : int=False , _snake_case : str="sine" , _snake_case : Any="resnet50" , _snake_case : Any=True , _snake_case : str=False , _snake_case : Optional[int]=1 , _snake_case : str=5 , _snake_case : Any=2 , _snake_case : Any=1 , _snake_case : Optional[Any]=1 , _snake_case : Optional[Any]=5 , _snake_case : List[Any]=2 , _snake_case : Union[str, Any]=0.1 , **_snake_case : Union[str, Any] , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowercase : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowercase : List[str] = backbone_config.get('''model_type''' ) __lowercase : Optional[int] = CONFIG_MAPPING[backbone_model_type] __lowercase : Union[str, Any] = config_class.from_dict(lowerCamelCase__ ) # set timm attributes to None __lowercase , __lowercase , __lowercase : Optional[Any] = None, None, None __lowercase : int = use_timm_backbone __lowercase : List[Any] = backbone_config __lowercase : Tuple = num_channels __lowercase : Dict = num_queries __lowercase : List[str] = d_model __lowercase : Tuple = encoder_ffn_dim __lowercase : Union[str, Any] = encoder_layers __lowercase : Any = encoder_attention_heads __lowercase : str = decoder_ffn_dim __lowercase : Optional[Any] = decoder_layers __lowercase : Optional[Any] = decoder_attention_heads __lowercase : Any = dropout __lowercase : Union[str, Any] = attention_dropout __lowercase : Union[str, Any] = activation_dropout __lowercase : Dict = activation_function __lowercase : List[Any] = init_std __lowercase : str = init_xavier_std __lowercase : str = encoder_layerdrop __lowercase : Tuple = decoder_layerdrop __lowercase : Optional[int] = encoder_layers __lowercase : Dict = auxiliary_loss __lowercase : List[Any] = position_embedding_type __lowercase : Any = backbone __lowercase : Dict = use_pretrained_backbone __lowercase : int = dilation # Hungarian matcher __lowercase : Dict = class_cost __lowercase : Optional[Any] = bbox_cost __lowercase : List[str] = giou_cost # Loss coefficients __lowercase : List[Any] = mask_loss_coefficient __lowercase : Optional[Any] = dice_loss_coefficient __lowercase : Dict = bbox_loss_coefficient __lowercase : Optional[int] = giou_loss_coefficient __lowercase : int = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def snake_case_ ( self : List[str] ): return self.encoder_attention_heads @property def snake_case_ ( self : str ): return self.d_model @classmethod def snake_case_ ( cls : Dict , _snake_case : PretrainedConfig , **_snake_case : str ): return cls(backbone_config=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case_ ( self : str ): __lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowercase : Union[str, Any] = self.backbone_config.to_dict() __lowercase : str = self.__class__.model_type return output class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Union[str, Any] = version.parse('''1.11''' ) @property def snake_case_ ( self : Tuple ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def snake_case_ ( self : Optional[Any] ): return 1E-5 @property def snake_case_ ( self : int ): return 12
156
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : List[str] = TextToVideoSDPipeline __snake_case : int = TEXT_TO_IMAGE_PARAMS __snake_case : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Dict = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") ,up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") ,cross_attention_dim=32 ,attention_head_dim=4 ,) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int=0 ) -> List[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """np""" SCREAMING_SNAKE_CASE = sd_pipe(**lowerCamelCase__ ).frames SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) SCREAMING_SNAKE_CASE = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) SCREAMING_SNAKE_CASE = """Spiderman is surfing""" SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=25 ,output_type="""pt""" ).frames SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) SCREAMING_SNAKE_CASE = """Spiderman is surfing""" SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type="""pt""" ).frames SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
296
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ : List[Any] =logging.get_logger(__name__) UpperCAmelCase__ : Dict ={'''vocab_file''': '''spiece.model'''} UpperCAmelCase__ : Dict ={ '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } UpperCAmelCase__ : List[str] ={ '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) UpperCAmelCase__ : Any =0 UpperCAmelCase__ : List[Any] =1 UpperCAmelCase__ : Union[str, Any] =2 UpperCAmelCase__ : Tuple =3 UpperCAmelCase__ : int =4 class __A ( a ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = """left""" def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<sep>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<cls>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=["<eop>", "<eod>"] , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token lowerCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase =3 lowerCamelCase =do_lower_case lowerCamelCase =remove_space lowerCamelCase =keep_accents lowerCamelCase =vocab_file lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def _snake_case ( self ): return len(self.sp_model ) def _snake_case ( self ): lowerCamelCase ={self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowerCamelCase =self.__dict__.copy() lowerCamelCase =None return state def __setstate__( self , UpperCAmelCase_ ): lowerCamelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase ={} lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , UpperCAmelCase_ ): if self.remove_space: lowerCamelCase =""" """.join(inputs.strip().split() ) else: lowerCamelCase =inputs lowerCamelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase =unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) lowerCamelCase ="""""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: lowerCamelCase =outputs.lower() return outputs def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =self.preprocess_text(UpperCAmelCase_ ) lowerCamelCase =self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) lowerCamelCase =[] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase =cur_pieces[1:] else: lowerCamelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def _snake_case ( self , UpperCAmelCase_ ): return self.sp_model.PieceToId(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): return self.sp_model.IdToPiece(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase ="""""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip() return out_string def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , **UpperCAmelCase_ , ): lowerCamelCase =kwargs.pop("""use_source_tokenizer""" , UpperCAmelCase_ ) lowerCamelCase =self.convert_ids_to_tokens(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase =[] lowerCamelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) lowerCamelCase =[] sub_texts.append(UpperCAmelCase_ ) else: current_sub_text.append(UpperCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase ="""""".join(UpperCAmelCase_ ) lowerCamelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase =self.clean_up_tokenization(UpperCAmelCase_ ) return clean_text else: return text def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase =os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: lowerCamelCase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
262
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _lowercase ( _UpperCAmelCase = "isbn/0140328726" ) -> dict: lowerCamelCase =olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: lowerCamelCase =F"""{olid} is not a valid Open Library olid""" raise ValueError(_UpperCAmelCase ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def _lowercase ( _UpperCAmelCase ) -> dict: lowerCamelCase ={ """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } lowerCamelCase ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowerCamelCase =[ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] lowerCamelCase =data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase =""", """.join(_UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCAmelCase__ : List[str] =input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(F"\nSearching Open Library for ISBN: {isbn}...\n") try: UpperCAmelCase__ : Dict =summarize_book(get_openlibrary_data(F"isbn/{isbn}")) print('''\n'''.join(F"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"Sorry, there are no results for ISBN: {isbn}.")
262
1
from math import ceil def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: __lowerCamelCase : Optional[Any] = list(range(0 , lowerCamelCase__ ) ) __lowerCamelCase : Optional[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCamelCase : Tuple = [] for i in device_map_blocks: if device_map_blocks.count(lowerCamelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCamelCase__ ) # Missing blocks __lowerCamelCase : Tuple = [i for i in blocks if i not in device_map_blocks] __lowerCamelCase : int = [i for i in device_map_blocks if i not in blocks] if len(lowerCamelCase__ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCamelCase__ ) ) if len(lowerCamelCase__ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCamelCase__ ) ) if len(lowerCamelCase__ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Dict = list(range(lowerCamelCase__ ) ) __lowerCamelCase : Union[str, Any] = int(ceil(n_layers / len(lowerCamelCase__ ) ) ) __lowerCamelCase : Tuple = [layers[i : i + n_blocks] for i in range(0 , lowerCamelCase__ , lowerCamelCase__ )] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) )
73
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _A = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( lowerCAmelCase ) -> Optional[int]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: if args.student_type == "roberta": UpperCAmelCase__ : Optional[Any] = False elif args.student_type == "gpt2": UpperCAmelCase__ : Optional[int] = False def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Any: if args.student_type == "roberta": UpperCAmelCase__ : Tuple = False def a__ ( ) -> int: UpperCAmelCase__ : Dict = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=lowerCAmelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=lowerCAmelCase , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=lowerCAmelCase , type=lowerCAmelCase , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=lowerCAmelCase , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=lowerCAmelCase , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=lowerCAmelCase , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=lowerCAmelCase , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=lowerCAmelCase , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=lowerCAmelCase , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=lowerCAmelCase , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=lowerCAmelCase , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=lowerCAmelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=lowerCAmelCase , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=lowerCAmelCase , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=lowerCAmelCase , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCAmelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=lowerCAmelCase , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=lowerCAmelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=lowerCAmelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=lowerCAmelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=lowerCAmelCase , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=lowerCAmelCase , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowerCAmelCase , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=lowerCAmelCase , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=lowerCAmelCase , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=lowerCAmelCase , default=5_00 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=lowerCAmelCase , default=40_00 , help="""Checkpoint interval.""" ) UpperCAmelCase__ : List[Any] = parser.parse_args() sanity_checks(lowerCAmelCase ) # ARGS # init_gpu_params(lowerCAmelCase ) set_seed(lowerCAmelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(lowerCAmelCase ) , lowerCAmelCase , indent=4 ) git_log(args.dump_path ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = MODEL_CLASSES[args.student_type] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase__ : List[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase__ : List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase__ : List[Any] = tokenizer.all_special_tokens.index(lowerCAmelCase ) UpperCAmelCase__ : Tuple = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) UpperCAmelCase__ : Any = special_tok_ids UpperCAmelCase__ : Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , """rb""" ) as fp: UpperCAmelCase__ : List[str] = pickle.load(lowerCAmelCase ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , """rb""" ) as fp: UpperCAmelCase__ : List[Any] = pickle.load(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.maximum(lowerCAmelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase__ : int = 0.0 # do not predict special tokens UpperCAmelCase__ : str = torch.from_numpy(lowerCAmelCase ) else: UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : str = LmSeqsDataset(params=lowerCAmelCase , data=lowerCAmelCase ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) UpperCAmelCase__ : List[str] = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase__ : List[Any] = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase__ : List[str] = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowerCAmelCase ) else: UpperCAmelCase__ : List[Any] = student_model_class(lowerCAmelCase ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info("""Student loaded.""" ) # TEACHER # UpperCAmelCase__ : str = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowerCAmelCase ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCAmelCase , lowerCAmelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCAmelCase , lowerCAmelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase__ : Optional[int] = Distiller( params=lowerCAmelCase , dataset=lowerCAmelCase , token_probs=lowerCAmelCase , student=lowerCAmelCase , teacher=lowerCAmelCase ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
171
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(a__ ) class _snake_case ( a__ ): def __init__( self : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) requires_backends(self , "decord" ) self.check_model_type(UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Any=None ): __lowerCamelCase : int = {} if frame_sampling_rate is not None: __lowerCamelCase : int = frame_sampling_rate if num_frames is not None: __lowerCamelCase : List[str] = num_frames __lowerCamelCase : Optional[Any] = {} if top_k is not None: __lowerCamelCase : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : int , UpperCAmelCase : Union[str, List[str]] , **UpperCAmelCase : Tuple ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=1 ): if num_frames is None: __lowerCamelCase : Optional[int] = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): __lowerCamelCase : Optional[int] = BytesIO(requests.get(UpperCAmelCase ).content ) __lowerCamelCase : Optional[Any] = VideoReader(UpperCAmelCase ) videoreader.seek(0 ) __lowerCamelCase : str = 0 __lowerCamelCase : int = num_frames * frame_sampling_rate - 1 __lowerCamelCase : Any = np.linspace(UpperCAmelCase , UpperCAmelCase , num=UpperCAmelCase , dtype=np.intaa ) __lowerCamelCase : List[str] = videoreader.get_batch(UpperCAmelCase ).asnumpy() __lowerCamelCase : Any = list(UpperCAmelCase ) __lowerCamelCase : Any = self.image_processor(UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : List[Any] ): __lowerCamelCase : Union[str, Any] = self.model(**UpperCAmelCase ) return model_outputs def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase : str = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase : Any = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase , __lowerCamelCase : int = probs.topk(UpperCAmelCase ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) __lowerCamelCase : Union[str, Any] = scores.tolist() __lowerCamelCase : List[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase , UpperCAmelCase )]
64
0
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , lowercase_ ).groups()[0] class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :List[str] , lowercase_ :Dict , lowercase_ :List[str]=None , lowercase_ :Optional[Any]=None ) -> Optional[int]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self :Optional[int] ) -> Optional[Any]: return len(self.file_names ) def __getitem__( self :int , lowercase_ :str ) -> List[str]: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowercase_ ) UpperCAmelCase = raw_image.convert('RGB' ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowercase_ ) UpperCAmelCase = extract_label(lowercase_ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase ( lowercase_ , lowercase_ ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['lr'] UpperCAmelCase = int(config['num_epochs'] ) UpperCAmelCase = int(config['seed'] ) UpperCAmelCase = int(config['batch_size'] ) UpperCAmelCase = config['image_size'] if not isinstance(lowercase_ , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(lowercase_ )[-1].split('.' )[0] accelerator.init_trackers(lowercase_ , lowercase_ ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , lowercase_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences UpperCAmelCase = [extract_label(lowercase_ ) for fname in file_names] UpperCAmelCase = list(set(lowercase_ ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(lowercase_ )} # Set the seed before splitting the data. np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(lowercase_ ) ) UpperCAmelCase = int(0.8 * len(lowercase_ ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(lowercase_ , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(lowercase_ ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model('resnet50d' , pretrained=lowercase_ , num_classes=len(lowercase_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=lowercase_ , max_lr=lowercase_ , epochs=lowercase_ , steps_per_epoch=len(lowercase_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(lowercase_ )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace('epoch_' , '' ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace('step_' , '' ) ) UpperCAmelCase = resume_step // len(lowercase_ ) resume_step -= starting_epoch * len(lowercase_ ) # Now we train the model for epoch in range(lowercase_ , lowercase_ ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(lowercase_ , lowercase_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['image'] - mean) / std UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = torch.nn.functional.cross_entropy(lowercase_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['image'] - mean) / std with torch.no_grad(): UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['label']) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(lowercase_ ), 'epoch': epoch, } , step=lowercase_ , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"""epoch_{epoch}""" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase ( ): UpperCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=lowercase_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=lowercase_ , default=lowercase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=lowercase_ , default=lowercase_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=lowercase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=lowercase_ , default=lowercase_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=lowercase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
78
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Dict , lowercase_ :str = "▁" , lowercase_ :bool = True , lowercase_ :Union[str, AddedToken] = "<unk>" , lowercase_ :Union[str, AddedToken] = "</s>" , lowercase_ :Union[str, AddedToken] = "<pad>" , ) -> str: UpperCAmelCase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } UpperCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase = token_dict['token'] UpperCAmelCase = Tokenizer(Unigram() ) UpperCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) UpperCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ), pre_tokenizers.Digits(individual_digits=lowercase_ ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase = decoders.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) UpperCAmelCase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Union[str, List[str]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Union[str, Any]: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [files] self._tokenizer.train(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :str , lowercase_ :Union[Iterator[str], Iterator[Iterator[str]]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Tuple: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) self._tokenizer.train_from_iterator(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = json.loads(self._tokenizer.to_str() ) UpperCAmelCase = self.special_tokens['unk']['id'] UpperCAmelCase = Tokenizer.from_str(json.dumps(lowercase_ ) )
78
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCAmelCase = logging.get_logger(__name__) class snake_case_ ( __lowercase ): A_ = ["pixel_values"] def __init__( self : List[str] , _snake_case : List[str] = True , _snake_case : Dict = None , _snake_case : List[Any] = PIL.Image.BICUBIC , _snake_case : Optional[int] = True , _snake_case : List[str] = None , _snake_case : Any = 1 / 255 , _snake_case : List[str] = True , _snake_case : Union[str, Any] = True , _snake_case : List[str] = None , _snake_case : Optional[Any] = None , **_snake_case : int , )->None: '''simple docstring''' super().__init__(**_a ) __lowerCAmelCase : Dict = size if size is not None else {'''height''': 256, '''width''': 256} __lowerCAmelCase : int = get_size_dict(_a ) __lowerCAmelCase : Tuple = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCAmelCase : Dict = get_size_dict(_a , param_name="""crop_size""" ) __lowerCAmelCase : Union[str, Any] = do_resize __lowerCAmelCase : Any = size __lowerCAmelCase : List[Any] = resample __lowerCAmelCase : List[Any] = do_center_crop __lowerCAmelCase : Union[str, Any] = crop_size __lowerCAmelCase : str = do_rescale __lowerCAmelCase : Union[str, Any] = rescale_factor __lowerCAmelCase : int = do_normalize __lowerCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self : List[str] , _snake_case : Dict , _snake_case : str , _snake_case : List[str] = PIL.Image.BICUBIC , _snake_case : List[Any] = None , **_snake_case : Any , )->np.ndarray: '''simple docstring''' __lowerCAmelCase : List[Any] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _a , size=(size["""height"""], size["""width"""]) , resample=_a , data_format=_a , **_a ) def UpperCAmelCase__ ( self : Dict , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[Any] = None , **_snake_case : Union[str, Any] , )->np.ndarray: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a ) def UpperCAmelCase__ ( self : int , _snake_case : List[str] , _snake_case : Tuple , _snake_case : List[str] = None , **_snake_case : List[str] , )->List[Any]: '''simple docstring''' return rescale(_a , scale=_a , data_format=_a , **_a ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Tuple = None , **_snake_case : int , )->np.ndarray: '''simple docstring''' return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def UpperCAmelCase__ ( self : int , _snake_case : List[str] , _snake_case : Any = None , _snake_case : Tuple = None , _snake_case : Optional[int]=None , _snake_case : Optional[Any] = None , _snake_case : List[Any] = None , _snake_case : Optional[int] = None , _snake_case : Any = None , _snake_case : List[str] = None , _snake_case : List[Any] = None , _snake_case : List[Any] = None , _snake_case : str = None , _snake_case : str = ChannelDimension.FIRST , **_snake_case : Tuple , )->PIL.Image.Image: '''simple docstring''' __lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : int = resample if resample is not None else self.resample __lowerCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase : Tuple = image_std if image_std is not None else self.image_std __lowerCAmelCase : Any = size if size is not None else self.size __lowerCAmelCase : str = get_size_dict(_a ) __lowerCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase : int = get_size_dict(_a , param_name="""crop_size""" ) __lowerCAmelCase : Union[str, Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowerCAmelCase : Dict = [to_numpy_array(_a ) for image in images] if do_resize: __lowerCAmelCase : Optional[int] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: __lowerCAmelCase : Optional[Any] = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: __lowerCAmelCase : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: __lowerCAmelCase : Dict = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] __lowerCAmelCase : Tuple = [to_channel_dimension_format(_a , _a ) for image in images] __lowerCAmelCase : Dict = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
365
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 512, } _UpperCAmelCase = logging.get_logger(__name__) class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any]="<pad>" , _snake_case : int="</s>" , _snake_case : Any="<unk>" , _snake_case : Union[str, Any]="<mask_2>" , _snake_case : Any="<mask_1>" , _snake_case : Optional[int]=None , _snake_case : List[str]=103 , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : Optional[int] , )->None: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = offset if additional_special_tokens is not None: if not isinstance(_snake_case , _snake_case ): raise TypeError( F'''additional_special_tokens should be of type {type(_snake_case )}, but is''' F''' {type(_snake_case )}''' ) __lowerCAmelCase : List[str] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(_snake_case ) , self.offset - 1 ) ] if len(set(_snake_case ) ) != len(_snake_case ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __lowerCAmelCase : Dict = additional_special_tokens_extended else: __lowerCAmelCase : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] __lowerCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , mask_token=_snake_case , pad_token=_snake_case , mask_token_sent=_snake_case , offset=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __lowerCAmelCase : Optional[Any] = mask_token_sent __lowerCAmelCase : Any = vocab_file __lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # add special tokens to encoder dict __lowerCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase__ ( self : str )->int: '''simple docstring''' return len(self.sp_model ) + self.offset def UpperCAmelCase__ ( self : Dict )->Dict[str, int]: '''simple docstring''' __lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] )->str: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.__dict__.copy() __lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self : Any , _snake_case : str )->Any: '''simple docstring''' __lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase : Any = {} __lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Dict , _snake_case : str )->List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCAmelCase__ ( self : Tuple , _snake_case : str )->int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __lowerCAmelCase : Any = self.sp_model.piece_to_id(_snake_case ) return sp_id + self.offset def UpperCAmelCase__ ( self : List[Any] , _snake_case : int )->str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __lowerCAmelCase : Optional[int] = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : Optional[int] )->List[str]: '''simple docstring''' __lowerCAmelCase : Any = [] __lowerCAmelCase : Dict = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token __lowerCAmelCase : int = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCAmelCase__ ( self : Optional[int] , _snake_case : Dict=False )->int: '''simple docstring''' return 1 def UpperCAmelCase__ ( self : Tuple , _snake_case : Tuple )->str: '''simple docstring''' __lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase__ ( self : List[str] , _snake_case : List , _snake_case : Optional[List] = None , _snake_case : bool = False )->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_snake_case ) elif token_ids_a is None: return self._special_token_mask(_snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase__ ( self : Any , _snake_case : Union[str, Any] , _snake_case : Tuple=None )->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Any , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : Optional[int] = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , """wb""" ) as fi: __lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
232
0
import pytest lowerCAmelCase_ = '''__dummy_dataset1__''' lowerCAmelCase_ = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def __SCREAMING_SNAKE_CASE (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __SCREAMING_SNAKE_CASE (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = dataset_loading_script_name snake_case_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=SCREAMING_SNAKE_CASE__ ) snake_case_ = script_dir / F'''{script_name}.py''' with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ )
8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE : str = "summarizer" SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Optional[int] = ["text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def snake_case__( self : str , _UpperCamelCase : int ) ->Optional[int]: return self.pre_processor(_UpperCamelCase , return_tensors='''pt''' , truncation=_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[int] ) ->Tuple: return self.model.generate(**_UpperCamelCase )[0] def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->Any: return self.pre_processor.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
8
1
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Any ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , UpperCamelCase__ ) _UpperCAmelCase : Tuple = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: _UpperCAmelCase : Union[str, Any] = dataset_size < in_memory_max_size else: _UpperCAmelCase : Dict = False _UpperCAmelCase : Any = is_small_dataset(UpperCamelCase__ ) assert result == expected
365
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =42 a__ =None # Automatically constructed a__ ="dict" a__ =None a__ =field(default='''Translation''' ,init=a ,repr=a ) def __call__( self ) -> List[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCAmelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =None a__ =None a__ =None # Automatically constructed a__ ="dict" a__ =None a__ =field(default='''TranslationVariableLanguages''' ,init=a ,repr=a ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : int = sorted(set(self.languages ) ) if self.languages else None _UpperCAmelCase : List[str] = len(self.languages ) if self.languages else None def __call__( self ) -> str: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def __lowerCAmelCase ( self , A ) -> List[Any]: _UpperCAmelCase : List[str] = set(self.languages ) if self.languages and set(A ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(A ) - lang_set ) )}) are not in valid set ({", ".join(A )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(A , A ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = zip(*sorted(A ) ) return {"language": languages, "translation": translations} def __lowerCAmelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
68
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : str = (PNDMScheduler,) lowerCamelCase_ : Tuple = (("""num_inference_steps""", 5_0),) def _lowercase ( self , **UpperCamelCase__ ) -> Dict: lowerCamelCase : Optional[Any] = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**UpperCamelCase__ ) return config def _lowercase ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> List[Any]: lowerCamelCase : List[Any] = dict(self.forward_default_kwargs ) lowerCamelCase : Optional[Any] = kwargs.pop("num_inference_steps" , UpperCamelCase__ ) lowerCamelCase : List[str] = self.dummy_sample lowerCamelCase : List[str] = 0.1 * sample lowerCamelCase : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCamelCase : str = self.get_scheduler_config(**UpperCamelCase__ ) lowerCamelCase : List[Any] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals lowerCamelCase : Optional[int] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals lowerCamelCase : List[str] = dummy_past_residuals[:] lowerCamelCase : Optional[Any] = scheduler.step_prk(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample lowerCamelCase : Dict = new_scheduler.step_prk(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCamelCase : str = scheduler.step_plms(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample lowerCamelCase : Optional[int] = new_scheduler.step_plms(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self ) -> Optional[int]: pass def _lowercase ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : str = dict(self.forward_default_kwargs ) lowerCamelCase : Dict = kwargs.pop("num_inference_steps" , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = self.dummy_sample lowerCamelCase : Optional[Any] = 0.1 * sample lowerCamelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCamelCase : Tuple = self.get_scheduler_config() lowerCamelCase : List[str] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase : int = dummy_past_residuals[:] lowerCamelCase : List[str] = scheduler.step_prk(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample lowerCamelCase : Optional[Any] = new_scheduler.step_prk(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCamelCase : Tuple = scheduler.step_plms(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample lowerCamelCase : Tuple = new_scheduler.step_plms(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self , **UpperCamelCase__ ) -> List[str]: lowerCamelCase : Any = self.scheduler_classes[0] lowerCamelCase : Tuple = self.get_scheduler_config(**UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = scheduler_class(**UpperCamelCase__ ) lowerCamelCase : int = 10 lowerCamelCase : str = self.dummy_model() lowerCamelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCamelCase : List[str] = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = scheduler.step_prk(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCamelCase : List[str] = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = scheduler.step_plms(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def _lowercase ( self ) -> str: lowerCamelCase : Optional[Any] = dict(self.forward_default_kwargs ) lowerCamelCase : List[Any] = kwargs.pop("num_inference_steps" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: lowerCamelCase : List[Any] = self.get_scheduler_config() lowerCamelCase : Dict = scheduler_class(**UpperCamelCase__ ) lowerCamelCase : str = self.dummy_sample lowerCamelCase : Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , "set_timesteps" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , "set_timesteps" ): lowerCamelCase : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCamelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCamelCase : Union[str, Any] = dummy_past_residuals[:] lowerCamelCase : Any = scheduler.step_prk(UpperCamelCase__ , 0 , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample lowerCamelCase : Dict = scheduler.step_prk(UpperCamelCase__ , 1 , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCamelCase : Tuple = scheduler.step_plms(UpperCamelCase__ , 0 , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample lowerCamelCase : Any = scheduler.step_plms(UpperCamelCase__ , 1 , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase ( self ) -> int: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def _lowercase ( self ) -> Tuple: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase__ ) lowerCamelCase : int = self.scheduler_classes[0] lowerCamelCase : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) lowerCamelCase : List[str] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def _lowercase ( self ) -> Tuple: for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def _lowercase ( self ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def _lowercase ( self ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def _lowercase ( self ) -> Any: for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCamelCase__ ) def _lowercase ( self ) -> Any: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ ) def _lowercase ( self ) -> Tuple: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowerCamelCase : Dict = 27 for scheduler_class in self.scheduler_classes: lowerCamelCase : Optional[int] = self.dummy_sample lowerCamelCase : Optional[Any] = 0.1 * sample lowerCamelCase : Optional[Any] = self.get_scheduler_config() lowerCamelCase : List[str] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCamelCase : Dict = scheduler.step_prk(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample def _lowercase ( self ) -> str: with self.assertRaises(UpperCamelCase__ ): lowerCamelCase : Optional[Any] = self.scheduler_classes[0] lowerCamelCase : int = self.get_scheduler_config() lowerCamelCase : int = scheduler_class(**UpperCamelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Dict = self.full_loop() lowerCamelCase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def _lowercase ( self ) -> Dict: lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) lowerCamelCase : Optional[int] = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : int = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def _lowercase ( self ) -> Optional[int]: # We specify different beta, so that the first alpha is 0.99 lowerCamelCase : Optional[Any] = self.full_loop(set_alpha_to_one=UpperCamelCase__ , beta_start=0.01 ) lowerCamelCase : Dict = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : List[str] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def _lowercase ( self ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=UpperCamelCase__ , beta_start=0.01 ) lowerCamelCase : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Optional[int] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
48
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __UpperCamelCase : int = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): # save results if os.path.exists(A_ ): if os.path.exists(os.path.join(A_ , '''config.json''' ) ) and os.path.isfile( os.path.join(A_ , '''config.json''' ) ): os.remove(os.path.join(A_ , '''config.json''' ) ) if os.path.exists(os.path.join(A_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(A_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(A_ , '''pytorch_model.bin''' ) ) else: os.makedirs(A_ ) model.save_pretrained(A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_=False ): lowerCAmelCase__ : Optional[Any] = 2 if unlogit: lowerCAmelCase__ : Union[str, Any] = torch.pow(A_ , A_ ) lowerCAmelCase__ : Optional[Any] = p * torch.log(A_ ) lowerCAmelCase__ : List[Any] = 0 return -plogp.sum(dim=-1 ) def __SCREAMING_SNAKE_CASE ( A_ ): logger.info('''lv, h >\t''' + '''\t'''.join(f'{x + 1}' for x in range(len(A_ ) ) ) ) for row in range(len(A_ ) ): if tensor.dtype != torch.long: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:d}' for x in tensor[row].cpu().data ) ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_=True , A_=True , A_=None , A_=False ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase__ : Dict = torch.zeros(A_ , A_ ).to(args.device ) lowerCAmelCase__ : int = torch.zeros(A_ , A_ ).to(args.device ) if head_mask is None: lowerCAmelCase__ : Union[str, Any] = torch.ones(A_ , A_ ).to(args.device ) head_mask.requires_grad_(requires_grad=A_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(A_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase__ : Any = tuple(t.to(args.device ) for t in inputs ) ((lowerCAmelCase__) ,) : List[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase__ : Any = model(A_ , labels=A_ , head_mask=A_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(A_ ): lowerCAmelCase__ : Dict = entropy(attn.detach() , A_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(A_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase__ : Any = 2 lowerCAmelCase__ : Dict = torch.pow(torch.pow(A_ , A_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: lowerCAmelCase__ : List[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(A_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(A_ ) logger.info('''Head ranked by importance scores''' ) lowerCAmelCase__ : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase__ : Optional[int] = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase__ : int = head_ranks.view_as(A_ ) print_ad_tensor(A_ ) return attn_entropy, head_importance, total_loss def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = compute_heads_importance(A_ , A_ , A_ , compute_entropy=A_ ) lowerCAmelCase__ : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , A_ , original_score * args.masking_threshold ) lowerCAmelCase__ : Union[str, Any] = torch.ones_like(A_ ) lowerCAmelCase__ : List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase__ : int = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase__ : Union[str, Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase__ : str = float('''Inf''' ) lowerCAmelCase__ : List[Any] = head_importance.view(-1 ).sort()[1] if len(A_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowerCAmelCase__ : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase__ : int = new_head_mask.view(-1 ) lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Union[str, Any] = new_head_mask.view_as(A_ ) lowerCAmelCase__ : Tuple = new_head_mask.clone().detach() print_ad_tensor(A_ ) # Compute metric and head importance again lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , head_mask=A_ ) lowerCAmelCase__ : Tuple = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , A_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('''Final head mask''' ) print_ad_tensor(A_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Optional[Any] = datetime.now() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ ) lowerCAmelCase__ : Optional[Any] = 1 / loss lowerCAmelCase__ : Tuple = datetime.now() - before_time lowerCAmelCase__ : int = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A_ ) ) } for k, v in heads_to_prune.items(): if isinstance(A_ , A_ ): lowerCAmelCase__ : int = [ v, ] assert sum(len(A_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(A_ ) lowerCAmelCase__ : List[Any] = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : Any = datetime.now() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : int = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ , actually_pruned=A_ , ) lowerCAmelCase__ : int = 1 / loss lowerCAmelCase__ : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , A_ , A_ , pruned_num_params / original_num_params * 1_00 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , A_ , A_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 ) save_model(A_ , args.output_dir ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=A_ , type=A_ , required=A_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=A_ , type=A_ , required=A_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=A_ , type=A_ , required=A_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=A_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=A_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=A_ , type=A_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=A_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=A_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=A_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=A_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=A_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=A_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=A_ , default=42 ) parser.add_argument('''--local_rank''' , type=A_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' ) lowerCAmelCase__ : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase__ : Union[str, Any] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowerCAmelCase__ : str = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase__ : Dict = torch.device('''cuda''' , args.local_rank ) lowerCAmelCase__ : Union[str, Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase__ : List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase__ : Dict = nn.parallel.DistributedDataParallel( A_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A_ ) elif args.n_gpu > 1: lowerCAmelCase__ : List[Any] = nn.DataParallel(A_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=A_ ) torch.save(A_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , A_ ) # Prepare dataset lowerCAmelCase__ : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase__ : Union[str, Any] = (torch.from_numpy(A_ ),) lowerCAmelCase__ : Tuple = TensorDataset(*A_ ) lowerCAmelCase__ : Optional[int] = RandomSampler(A_ ) lowerCAmelCase__ : Dict = DataLoader(A_ , sampler=A_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(A_ , A_ , A_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase__ : Tuple = mask_heads(A_ , A_ , A_ ) prune_heads(A_ , A_ , A_ , A_ ) if __name__ == "__main__": main()
106
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCAmelCase: Optional[int] = ['small', 'medium', 'large'] lowerCAmelCase: Dict = 'lm_head.decoder.weight' lowerCAmelCase: Tuple = 'lm_head.weight' def lowerCamelCase__ ( _A , _A ): a : Dict = torch.load(_A ) a : Optional[Any] = d.pop(_A ) os.makedirs(_A , exist_ok=_A ) torch.save(_A , os.path.join(_A , _A ) ) if __name__ == "__main__": lowerCAmelCase: str = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) lowerCAmelCase: str = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCAmelCase: Any = os.path.join(args.dialogpt_path, F"{MODEL}_ft.pkl") lowerCAmelCase: Tuple = F"./DialoGPT-{MODEL}" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
370
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowerCAmelCase: Optional[int] = parser.parse_args() lowerCAmelCase: List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase: Optional[Any] = CLIPImageProcessor() lowerCAmelCase: Tuple = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowerCAmelCase: List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
96
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = """lilt""" def __init__( self , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=None , __UpperCamelCase=4 , __UpperCamelCase=1_0_2_4 , **__UpperCamelCase , ): """simple docstring""" super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = classifier_dropout UpperCamelCase_ = channel_shrink_ratio UpperCamelCase_ = max_ad_position_embeddings
122
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 2_5_5 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_pad def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = self.size["""shortest_edge"""] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : str = YolosImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = YolosImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCamelCase_ = image_processing_a.pad(__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase_ = image_processing_a(__UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them UpperCamelCase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} UpperCamelCase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase_ = YolosImageProcessor(format="""coco_panoptic""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks UpperCamelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
122
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCAmelCase__ = 25_6047 lowerCAmelCase__ = 25_6145 @require_sentencepiece @require_tokenizers class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = NllbTokenizer SCREAMING_SNAKE_CASE : Dict = NllbTokenizerFast SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : str = {} def SCREAMING_SNAKE_CASE ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing __lowercase = NllbTokenizer(lowercase__ ,keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = NllbTokenizer(lowercase__ ,keep_accents=lowercase__ ) __lowercase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase__ ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) ,[value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] ,) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) __lowercase = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ ,[ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] ,) __lowercase = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) __lowercase = self.tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(lowercase__ ) __lowercase = tokenizer_p.save_pretrained(lowercase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowercase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowercase__ ,lowercase__ ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(lowercase__ ) __lowercase = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ ,lowercase__ ) ) shutil.rmtree(lowercase__ ) # Save tokenizer rust, legacy_format=True __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(lowercase__ ,legacy_format=lowercase__ ) __lowercase = tokenizer_p.save_pretrained(lowercase__ ) # Checks it save with the same files self.assertSequenceEqual(lowercase__ ,lowercase__ ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(lowercase__ ) __lowercase = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ ,lowercase__ ) ) shutil.rmtree(lowercase__ ) # Save tokenizer rust, legacy_format=False __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(lowercase__ ,legacy_format=lowercase__ ) __lowercase = tokenizer_p.save_pretrained(lowercase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(lowercase__ ) __lowercase = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ ,lowercase__ ) ) shutil.rmtree(lowercase__ ) @require_torch def SCREAMING_SNAKE_CASE ( self : int ): if not self.test_seqaseq: return __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. __lowercase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] __lowercase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: __lowercase = tokenizer.prepare_seqaseq_batch( src_texts=lowercase__ ,tgt_texts=lowercase__ ,max_length=3 ,max_target_length=1_0 ,return_tensors='''pt''' ,src_lang='''eng_Latn''' ,tgt_lang='''ron_Latn''' ,) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,1_0 ) # max_target_length will default to max_length if not specified __lowercase = tokenizer.prepare_seqaseq_batch( lowercase__ ,tgt_texts=lowercase__ ,max_length=3 ,return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,3 ) __lowercase = tokenizer.prepare_seqaseq_batch( src_texts=lowercase__ ,max_length=3 ,max_target_length=1_0 ,return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] ,3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] ,3 ) self.assertNotIn('''decoder_input_ids''' ,lowercase__ ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE ( self : Any ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = [AddedToken('''<special>''' ,lstrip=lowercase__ )] __lowercase = self.rust_tokenizer_class.from_pretrained( lowercase__ ,additional_special_tokens=lowercase__ ,**lowercase__ ) __lowercase = tokenizer_r.encode('''Hey this is a <special> token''' ) __lowercase = tokenizer_r.encode('''<special>''' ,add_special_tokens=lowercase__ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __lowercase = self.rust_tokenizer_class.from_pretrained( lowercase__ ,additional_special_tokens=lowercase__ ,**lowercase__ ,) __lowercase = self.tokenizer_class.from_pretrained( lowercase__ ,additional_special_tokens=lowercase__ ,**lowercase__ ) __lowercase = tokenizer_p.encode('''Hey this is a <special> token''' ) __lowercase = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(lowercase__ ,lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE : Optional[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE : List[str] = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def SCREAMING_SNAKE_CASE ( cls : str ): __lowercase = NllbTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='''eng_Latn''' ,tgt_lang='''ron_Latn''' ) __lowercase = 1 return cls def SCREAMING_SNAKE_CASE ( self : List[Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] ,2_5_6_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] ,2_5_6_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] ,2_5_6_0_5_7 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.assertIn(lowercase__ ,self.tokenizer.all_special_ids ) # fmt: off __lowercase = [RO_CODE, 4_2_5_4, 9_8_0_6_8, 1_1_2_9_2_3, 3_9_0_7_2, 3_9_0_9, 7_1_3, 1_0_2_7_6_7, 2_6, 1_7_3_1_4, 3_5_6_4_2, 1_4_6_8_3, 3_3_1_1_8, 2_0_2_2, 6_6_9_8_7, 2, 2_5_6_0_4_7] # fmt: on __lowercase = self.tokenizer.decode(lowercase__ ,skip_special_tokens=lowercase__ ) __lowercase = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.assertNotIn(self.tokenizer.eos_token ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] ,lowercase__ ) __lowercase = 1_0 __lowercase = self.tokenizer(lowercase__ ,max_length=lowercase__ ,truncation=lowercase__ ).input_ids[0] self.assertEqual(ids[-1] ,2 ) self.assertEqual(ids[0] ,lowercase__ ) self.assertEqual(len(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) ,[2_5_6_2_0_3, 3] ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = tempfile.mkdtemp() __lowercase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase__ ) __lowercase = NllbTokenizer.from_pretrained(lowercase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,lowercase__ ) @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=lowercase__ ,truncation=lowercase__ ,max_length=len(self.expected_src_tokens ) ,return_tensors='''pt''' ,) __lowercase = shift_tokens_right( batch['''labels'''] ,self.tokenizer.pad_token_id ,self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(lowercase__ ,lowercase__ ) self.assertEqual((2, 1_5) ,batch.input_ids.shape ) self.assertEqual((2, 1_5) ,batch.attention_mask.shape ) __lowercase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,lowercase__ ) self.assertEqual(lowercase__ ,batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.tokenizer(self.src_text ,padding=lowercase__ ,truncation=lowercase__ ,max_length=3 ,return_tensors='''pt''' ) __lowercase = self.tokenizer( text_target=self.tgt_text ,padding=lowercase__ ,truncation=lowercase__ ,max_length=1_0 ,return_tensors='''pt''' ) __lowercase = targets['''input_ids'''] __lowercase = shift_tokens_right( lowercase__ ,self.tokenizer.pad_token_id ,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] ,) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,1_0 ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.tokenizer._build_translation_inputs( '''A test''' ,return_tensors='''pt''' ,src_lang='''eng_Latn''' ,tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(lowercase__ ) ,{ # A, test, EOS, en_XX '''input_ids''': [[2_5_6_0_4_7, 7_0, 7_3_5_6, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_6_0_5_7, } ,) @require_torch def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = True __lowercase = self.tokenizer( '''UN Chief says there is no military solution in Syria''' ,src_lang='''eng_Latn''' ,tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids ,[1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2, 2_5_6_0_4_7] ) __lowercase = False __lowercase = self.tokenizer( '''UN Chief says there is no military solution in Syria''' ,src_lang='''eng_Latn''' ,tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids ,[2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2] )
367
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'luke' def __init__( self : int ,lowercase__ : Tuple=5_0_2_6_7 ,lowercase__ : str=5_0_0_0_0_0 ,lowercase__ : Union[str, Any]=7_6_8 ,lowercase__ : Any=2_5_6 ,lowercase__ : int=1_2 ,lowercase__ : Dict=1_2 ,lowercase__ : List[Any]=3_0_7_2 ,lowercase__ : Dict="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : List[Any]=5_1_2 ,lowercase__ : Tuple=2 ,lowercase__ : Any=0.0_2 ,lowercase__ : Tuple=1e-1_2 ,lowercase__ : Optional[int]=True ,lowercase__ : Optional[int]=None ,lowercase__ : Tuple=1 ,lowercase__ : int=0 ,lowercase__ : Tuple=2 ,**lowercase__ : Dict ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = entity_vocab_size __lowercase = hidden_size __lowercase = entity_emb_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = use_entity_aware_attention __lowercase = classifier_dropout
52
0
"""simple docstring""" from itertools import product def __A ( a_ :Tuple , a_ :int) -> list[int]: __a : int = sides_number __a : Tuple = max_face_number * dice_number __a : int = [0] * (max_total + 1) __a : Tuple = 1 __a : Dict = range(_lowercase , max_face_number + 1) for dice_numbers in product(_lowercase , repeat=_lowercase): __a : Optional[Any] = sum(_lowercase) totals_frequencies[total] += 1 return totals_frequencies def __A ( ) -> float: __a : Optional[Any] = total_frequency_distribution( sides_number=4 , dice_number=9) __a : Tuple = total_frequency_distribution( sides_number=6 , dice_number=6) __a : List[Any] = 0 __a : Tuple = 9 __a : Dict = 4 * 9 __a : Any = 6 for peter_total in range(_lowercase , max_peter_total + 1): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total]) __a : str = (4**9) * (6**6) __a : List[str] = peter_wins_count / total_games_number __a : Dict = round(_lowercase , ndigits=7) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
160
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
from scipy.stats import pearsonr import datasets lowerCAmelCase__ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' lowerCAmelCase__ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' lowerCAmelCase__ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self : List[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def __snake_case ( self : List[Any] , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[str]=False): '''simple docstring''' if return_pvalue: lowerCAmelCase__ = pearsonr(lowercase__ , lowercase__) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase__ , lowercase__)[0])}
366
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowerCAmelCase__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = {} with open(lowerCAmelCase__ , 'r' ) as file: for line_number, line in enumerate(lowerCAmelCase__ ): lowerCAmelCase__ = line.strip() if line: lowerCAmelCase__ = line.split() lowerCAmelCase__ = line_number lowerCAmelCase__ = words[0] lowerCAmelCase__ = value return result def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split('.' ): lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase__ ): lowerCAmelCase__ = PARAM_MAPPING[full_name.split('.' )[-1]] lowerCAmelCase__ = 'param' if weight_type is not None and weight_type != "param": lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": lowerCAmelCase__ = hf_pointer for attribute in hf_param_name.split('.' ): lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = shape_pointer.shape # let's reduce dimension lowerCAmelCase__ = value[0] else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase__ ): lowerCAmelCase__ = PARAM_MAPPING[full_name.split('.' )[-1]] lowerCAmelCase__ = 'param' if weight_type is not None and weight_type != "param": lowerCAmelCase__ = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCAmelCase__ = '.'.join([key, hf_param_name] ) else: lowerCAmelCase__ = key lowerCAmelCase__ = value if 'lm_head' in full_key else value[0] lowerCAmelCase__ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): lowerCAmelCase__ = False for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCAmelCase__ )[0].split('.' )[-2] lowerCAmelCase__ = mapped_key.replace('*' , lowerCAmelCase__ ) if "weight_g" in name: lowerCAmelCase__ = 'weight_g' elif "weight_v" in name: lowerCAmelCase__ = 'weight_v' elif "bias" in name: lowerCAmelCase__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = 'weight' else: lowerCAmelCase__ = None if hf_dict is not None: rename_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return is_used return is_used def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) lowerCAmelCase__ = True else: lowerCAmelCase__ = load_wavaveca_layer(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = full_name.split('conv_layers.' )[-1] lowerCAmelCase__ = name.split('.' ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=False ): if config_path is not None: lowerCAmelCase__ = WavaVecaConfig.from_pretrained(lowerCAmelCase__ ) else: lowerCAmelCase__ = WavaVecaConfig() if is_seq_class: lowerCAmelCase__ = read_txt_into_dict(lowerCAmelCase__ ) lowerCAmelCase__ = idalabel lowerCAmelCase__ = WavaVecaForSequenceClassification(lowerCAmelCase__ ) lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) feature_extractor.save_pretrained(lowerCAmelCase__ ) elif is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(lowerCAmelCase__ , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase__ , ) lowerCAmelCase__ = True if config.feat_extract_norm == 'layer' else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase__ = WavaVecaForCTC(lowerCAmelCase__ ) else: lowerCAmelCase__ = WavaVecaForPreTraining(lowerCAmelCase__ ) if is_finetuned or is_seq_class: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCAmelCase__ = argparse.Namespace(task='audio_pretraining' ) lowerCAmelCase__ = fairseq.tasks.setup_task(lowerCAmelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
119
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase__ ( ): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase__ ( ): """simple docstring""" __a = """mock-s3-bucket""" __a = f"s3://{mock_bucket}" __a = extract_path_from_uri(_SCREAMING_SNAKE_CASE ) assert dataset_path.startswith("""s3://""" ) is False __a = """./local/path""" __a = extract_path_from_uri(_SCREAMING_SNAKE_CASE ) assert dataset_path == new_dataset_path def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = is_remote_filesystem(_SCREAMING_SNAKE_CASE ) assert is_remote is True __a = fsspec.filesystem("""file""" ) __a = is_remote_filesystem(_SCREAMING_SNAKE_CASE ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} __a = input_paths[compression_fs_class.protocol] if input_path is None: __a = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_SCREAMING_SNAKE_CASE ) __a = fsspec.filesystem(compression_fs_class.protocol , fo=_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = os.path.basename(_SCREAMING_SNAKE_CASE ) __a = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f, open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" __a = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} __a = compressed_file_paths[protocol] __a = """dataset.jsonl""" __a = f"{protocol}://{member_file_path}::{compressed_file_path}" __a , *__a = fsspec.get_fs_token_paths(_SCREAMING_SNAKE_CASE ) assert fs.isfile(_SCREAMING_SNAKE_CASE ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = hf_api.dataset_info(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) __a = HfFileSystem(repo_info=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(_SCREAMING_SNAKE_CASE ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def lowerCAmelCase__ ( ): """simple docstring""" __a = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , clobber=_SCREAMING_SNAKE_CASE ) with pytest.warns(_SCREAMING_SNAKE_CASE ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_SCREAMING_SNAKE_CASE ) == 1 assert ( str(warning_info[0].message ) == f"A filesystem protocol was already set for {protocol} and will be overwritten." )
302
from __future__ import annotations lowerCamelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ): '''simple docstring''' __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __a = vertex queue.append(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__lowercase ) if target_vertex_parent is None: __a = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
302
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class snake_case__(unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any=7 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : Any=18 , SCREAMING_SNAKE_CASE : List[str]=30 , SCREAMING_SNAKE_CASE : Tuple=400 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Optional[int]=[0.48_145_466, 0.4_578_275, 0.40_821_073] , SCREAMING_SNAKE_CASE : Dict=[0.26_862_954, 0.26_130_258, 0.27_577_711] , SCREAMING_SNAKE_CASE : Tuple=True , ): lowercase__ : Dict = size if size is not None else {"height": 224, "width": 224} lowercase__ : str = crop_size if crop_size is not None else {"height": 18, "width": 18} lowercase__ : int = parent lowercase__ : str = batch_size lowercase__ : Dict = num_channels lowercase__ : Tuple = image_size lowercase__ : Dict = min_resolution lowercase__ : Optional[Any] = max_resolution lowercase__ : Optional[Any] = do_resize lowercase__ : int = size lowercase__ : Dict = do_center_crop lowercase__ : Union[str, Any] = crop_size lowercase__ : int = do_normalize lowercase__ : Tuple = image_mean lowercase__ : Any = image_std lowercase__ : List[Any] = do_convert_rgb def snake_case ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Optional[Any]=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowercase__ : Tuple = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowercase__ : List[Any] = [] for i in range(self.batch_size ): lowercase__ , lowercase__ : Optional[Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowercase__ : Optional[int] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] if torchify: lowercase__ : Any = [torch.from_numpy(SCREAMING_SNAKE_CASE ) for x in image_inputs] return image_inputs @require_torch @require_vision class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ChineseCLIPImageProcessor if is_vision_available() else None def snake_case ( self : Tuple ): lowercase__ : Optional[Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=SCREAMING_SNAKE_CASE ) @property def snake_case ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : Optional[int] ): lowercase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_convert_rgb" ) ) def snake_case ( self : str ): lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def snake_case ( self : Union[str, Any] ): pass def snake_case ( self : Union[str, Any] ): # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : str = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowercase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase__ : List[Any] = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def snake_case ( self : int ): # Initialize image_processing lowercase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowercase__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase__ : Dict = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def snake_case ( self : Any ): # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowercase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase__ : Union[str, Any] = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ChineseCLIPImageProcessor if is_vision_available() else None def snake_case ( self : Union[str, Any] ): lowercase__ : Optional[Any] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = 3 @property def snake_case ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : Tuple ): lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_convert_rgb" ) ) def snake_case ( self : Dict ): pass def snake_case ( self : Optional[int] ): # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowercase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase__ : Dict = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
121
def __lowerCamelCase ( lowerCamelCase__ = 1_000 ): """simple docstring""" lowercase__ , lowercase__ : int = 1, 1 lowercase__ : List[Any] = [] for i in range(1 , n + 1 ): lowercase__ : Dict = prev_numerator + 2 * prev_denominator lowercase__ : Tuple = prev_numerator + prev_denominator if len(str(lowerCamelCase__ ) ) > len(str(lowerCamelCase__ ) ): result.append(lowerCamelCase__ ) lowercase__ : int = numerator lowercase__ : int = denominator return len(lowerCamelCase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
121
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''Speech2TextFeatureExtractor''' snake_case = '''Speech2TextTokenizer''' def __init__( self : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) _A = self.feature_extractor _A = False def __call__( self : Tuple , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Tuple ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _A = kwargs.pop("raw_speech" ) else: _A = kwargs.pop("audio" , __UpperCAmelCase ) _A = kwargs.pop("sampling_rate" , __UpperCAmelCase ) _A = kwargs.pop("text" , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: _A = args[0] _A = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _A = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: _A = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: _A = encodings["input_ids"] return inputs def lowerCAmelCase ( self : List[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Any , *__UpperCAmelCase : Any , **__UpperCAmelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @contextmanager def lowerCAmelCase ( self : str ): '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _A = True _A = self.tokenizer yield _A = self.feature_extractor _A = False
79
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[str] = "mobilenet_v2" def __init__( self, __magic_name__=3, __magic_name__=224, __magic_name__=1.0, __magic_name__=8, __magic_name__=8, __magic_name__=6, __magic_name__=32, __magic_name__=True, __magic_name__=True, __magic_name__="relu6", __magic_name__=True, __magic_name__=0.8, __magic_name__=0.02, __magic_name__=0.001, __magic_name__=255, **__magic_name__, ) -> List[Any]: """simple docstring""" super().__init__(**__magic_name__ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) UpperCamelCase__ : Union[str, Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : int = depth_multiplier UpperCamelCase__ : Tuple = depth_divisible_by UpperCamelCase__ : List[str] = min_depth UpperCamelCase__ : Optional[int] = expand_ratio UpperCamelCase__ : Optional[int] = output_stride UpperCamelCase__ : Tuple = first_layer_is_expansion UpperCamelCase__ : Union[str, Any] = finegrained_output UpperCamelCase__ : str = hidden_act UpperCamelCase__ : Optional[Any] = tf_padding UpperCamelCase__ : Optional[int] = classifier_dropout_prob UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Union[str, Any] = layer_norm_eps UpperCamelCase__ : Tuple = semantic_loss_ignore_index class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Union[str, Any] = version.parse("1.11" ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def UpperCamelCase__ ( self ) -> float: """simple docstring""" return 1E-4
201
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowercase = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowercase = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowercase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowercase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = VOCAB_FILES_NAMES _lowercase : Tuple = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Any = VOCAB_FILES_NAMES _lowercase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowercase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowercase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowercase = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ : '''simple docstring''' def __call__( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: _lowerCAmelCase = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) _lowerCAmelCase = titles if not isinstance(_lowercase , _lowercase ) else [titles] _lowerCAmelCase = texts if not isinstance(_lowercase , _lowercase ) else [texts] _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( F'There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.' ) _lowerCAmelCase = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )["""input_ids"""] _lowerCAmelCase = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )["""input_ids"""] _lowerCAmelCase = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: _lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = 16 , _lowercase = 64 , _lowercase = 4 , ): """simple docstring""" _lowerCAmelCase = reader_input["""input_ids"""] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = reader_output[:3] _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) _lowerCAmelCase = [] for doc_id in sorted_docs: _lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , ): """simple docstring""" _lowerCAmelCase = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) _lowerCAmelCase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) _lowerCAmelCase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : str = READER_PRETRAINED_VOCAB_FILES_MAP _lowercase : List[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[Any] = READER_PRETRAINED_INIT_CONFIGURATION _lowercase : int = ['''input_ids''', '''attention_mask''']
363
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''convbert''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=768 , _lowercase=2 , _lowercase=9 , _lowercase=1 , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = embedding_size _lowerCAmelCase = head_ratio _lowerCAmelCase = conv_kernel_size _lowerCAmelCase = num_groups _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
229
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): """simple docstring""" def lowercase__ ( self , snake_case__ ): """simple docstring""" with open(__lowercase , encoding="utf-8" ) as input_file: lowerCAmelCase : Tuple = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) lowerCAmelCase : Tuple = input_file.read() lowerCAmelCase : Any = regexp.search(__lowercase ) return match def lowercase__ ( self , snake_case__ ): """simple docstring""" with open(__lowercase , encoding="utf-8" ) as input_file: lowerCAmelCase : Optional[int] = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) lowerCAmelCase : Union[str, Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCAmelCase : Optional[int] = regexp.finditer(__lowercase ) lowerCAmelCase : Any = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = Path("./datasets" ) lowerCAmelCase : List[Any] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowercase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = Path("./datasets" ) lowerCAmelCase : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowercase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
108
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _UpperCAmelCase : Optional[Any] =NewType("""DataClass""", Any) _UpperCAmelCase : Dict =NewType("""DataClassType""", Any) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowerCAmelCase ( lowerCAmelCase_ )-> Callable[[str], Any]: lowerCAmelCase_ : str = {str(lowerCAmelCase_ ): choice for choice in choices} return lambda lowerCAmelCase_ : str_to_choice.get(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( *, lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = dataclasses.MISSING , lowerCAmelCase_ = dataclasses.MISSING , lowerCAmelCase_ = None , **lowerCAmelCase_ , )-> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase_ : Dict = {} if aliases is not None: lowerCAmelCase_ : str = aliases if help is not None: lowerCAmelCase_ : Tuple = help return dataclasses.field(metadata=lowerCAmelCase_ , default=lowerCAmelCase_ , default_factory=lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Iterable[DataClassType] def __init__( self , __lowercase , **__lowercase ) -> List[str]: # To make the default appear when using --help if "formatter_class" not in kwargs: lowerCAmelCase_ : Optional[int] = ArgumentDefaultsHelpFormatter super().__init__(**__lowercase ) if dataclasses.is_dataclass(__lowercase ): lowerCAmelCase_ : Union[str, Any] = [dataclass_types] lowerCAmelCase_ : List[Any] = list(__lowercase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowercase ) @staticmethod def lowercase_ ( __lowercase , __lowercase ) -> Union[str, Any]: lowerCAmelCase_ : Optional[Any] = f"""--{field.name}""" lowerCAmelCase_ : Tuple = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowercase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) lowerCAmelCase_ : List[str] = kwargs.pop('''aliases''' , [] ) if isinstance(__lowercase , __lowercase ): lowerCAmelCase_ : Optional[Any] = [aliases] lowerCAmelCase_ : Any = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__lowercase , '''UnionType''' ) and isinstance(__lowercase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowercase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(__lowercase ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase_ : List[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase_ : Dict = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase_ : str = ( field.type.__args__[0] if isinstance(__lowercase , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase_ : List[Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase_ : Dict = {} if origin_type is Literal or (isinstance(field.type , __lowercase ) and issubclass(field.type , __lowercase )): if origin_type is Literal: lowerCAmelCase_ : Optional[Any] = field.type.__args__ else: lowerCAmelCase_ : int = [x.value for x in field.type] lowerCAmelCase_ : str = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: lowerCAmelCase_ : str = field.default else: lowerCAmelCase_ : Tuple = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase_ : Tuple = copy(__lowercase ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase_ : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase_ : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase_ : List[str] = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase_ : int = '''?''' # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase_ : List[Any] = True elif isclass(__lowercase ) and issubclass(__lowercase , __lowercase ): lowerCAmelCase_ : Union[str, Any] = field.type.__args__[0] lowerCAmelCase_ : Dict = '''+''' if field.default_factory is not dataclasses.MISSING: lowerCAmelCase_ : Any = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase_ : Optional[int] = True else: lowerCAmelCase_ : List[Any] = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase_ : Dict = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase_ : List[Any] = field.default_factory() else: lowerCAmelCase_ : int = True parser.add_argument(__lowercase , *__lowercase , **__lowercase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase_ : Any = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__lowercase ) def lowercase_ ( self , __lowercase ) -> List[Any]: if hasattr(__lowercase , '''_argument_group_name''' ): lowerCAmelCase_ : str = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase_ : Dict = self try: lowerCAmelCase_ : Dict[str, type] = get_type_hints(__lowercase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__lowercase ): lowerCAmelCase_ : Any = '''.'''.join(map(__lowercase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__lowercase ): if not field.init: continue lowerCAmelCase_ : Optional[int] = type_hints[field.name] self._parse_dataclass_field(__lowercase , __lowercase ) def lowercase_ ( self , __lowercase=None , __lowercase=False , __lowercase=True , __lowercase=None , __lowercase=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase_ : str = [] if args_filename: args_files.append(Path(__lowercase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase_ : str = ArgumentParser() args_file_parser.add_argument(__lowercase , type=__lowercase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = args_file_parser.parse_known_args(args=__lowercase ) lowerCAmelCase_ : int = vars(__lowercase ).get(args_file_flag.lstrip('''-''' ) , __lowercase ) if cmd_args_file_paths: args_files.extend([Path(__lowercase ) for p in cmd_args_file_paths] ) lowerCAmelCase_ : Dict = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase_ : Any = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.parse_known_args(args=__lowercase ) lowerCAmelCase_ : Any = [] for dtype in self.dataclass_types: lowerCAmelCase_ : str = {f.name for f in dataclasses.fields(__lowercase ) if f.init} lowerCAmelCase_ : str = {k: v for k, v in vars(__lowercase ).items() if k in keys} for k in keys: delattr(__lowercase , __lowercase ) lowerCAmelCase_ : Optional[int] = dtype(**__lowercase ) outputs.append(__lowercase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowercase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: lowerCAmelCase_ : int = set(args.keys() ) lowerCAmelCase_ : str = [] for dtype in self.dataclass_types: lowerCAmelCase_ : int = {f.name for f in dataclasses.fields(__lowercase ) if f.init} lowerCAmelCase_ : List[str] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase_ : List[str] = dtype(**__lowercase ) outputs.append(__lowercase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(__lowercase )}""" ) return tuple(__lowercase ) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: with open(Path(__lowercase ) , encoding='''utf-8''' ) as open_json_file: lowerCAmelCase_ : Dict = json.loads(open_json_file.read() ) lowerCAmelCase_ : str = self.parse_dict(__lowercase , allow_extra_keys=__lowercase ) return tuple(__lowercase ) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: lowerCAmelCase_ : Optional[Any] = self.parse_dict(yaml.safe_load(Path(__lowercase ).read_text() ) , allow_extra_keys=__lowercase ) return tuple(__lowercase )
262
0
def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError('Input value must be a \'int\' type' ) return bin(lowercase__ ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
365
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
71
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Any = data _lowerCamelCase : Node | None = None class lowerCAmelCase__ : '''simple docstring''' def __init__( self ): _lowerCamelCase : str = None _lowerCamelCase : str = None def __iter__( self ): _lowerCamelCase : List[str] = self.head while self.head: yield node.data _lowerCamelCase : Optional[int] = node.next if node == self.head: break def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join(str(lowercase ) for item in iter(self ) ) def A_ ( self , lowercase ): self.insert_nth(len(self ) , lowercase ) def A_ ( self , lowercase ): self.insert_nth(0 , lowercase ) def A_ ( self , lowercase , lowercase ): if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) _lowerCamelCase : List[Any] = Node(lowercase ) if self.head is None: _lowerCamelCase : str = new_node # first node points itself _lowerCamelCase : Union[str, Any] = new_node elif index == 0: # insert at head _lowerCamelCase : List[str] = self.head _lowerCamelCase : str = new_node else: _lowerCamelCase : Union[str, Any] = self.head for _ in range(index - 1 ): _lowerCamelCase : List[Any] = temp.next _lowerCamelCase : Union[str, Any] = temp.next _lowerCamelCase : List[str] = new_node if index == len(self ) - 1: # insert at tail _lowerCamelCase : Any = new_node def A_ ( self ): return self.delete_nth(0 ) def A_ ( self ): return self.delete_nth(len(self ) - 1 ) def A_ ( self , lowercase = 0 ): if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) _lowerCamelCase : Any = self.head if self.head == self.tail: # just one node _lowerCamelCase : List[str] = None elif index == 0: # delete head node _lowerCamelCase : List[str] = self.tail.next.next _lowerCamelCase : Optional[int] = self.head.next else: _lowerCamelCase : Dict = self.head for _ in range(index - 1 ): _lowerCamelCase : List[Any] = temp.next _lowerCamelCase : int = temp.next _lowerCamelCase : Optional[int] = temp.next.next if index == len(self ) - 1: # delete at tail _lowerCamelCase : List[Any] = temp return delete_node.data def A_ ( self ): return len(self ) == 0 def _snake_case ( ): _lowerCamelCase : Union[str, Any] = CircularLinkedList() assert len(lowercase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowercase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowercase__ ) == i circular_linked_list.insert_nth(lowercase__ , i + 1 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
96
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowerCamelCase_ = ''' Human: <<task>> Assistant: ''' lowerCamelCase_ = '''huggingface-tools/default-prompts''' lowerCamelCase_ = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def UpperCamelCase( lowercase_ , lowercase_ , lowercase_="run" ) -> List[str]: '''simple docstring''' if prompt_or_repo_id is None: snake_case_ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , lowercase_ ) is not None: return prompt_or_repo_id snake_case_ = cached_file( lowercase_ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(lowercase_ , """r""" , encoding="""utf-8""" ) as f: return f.read()
34
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCamelCase( lowercase_ ) -> Any: '''simple docstring''' return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def UpperCamelCase( ) -> str: '''simple docstring''' snake_case_ = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=lowercase_ ) snake_case_ = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowercase_ ) EnvironmentCommand.register_subcommand(lowercase_ ) TestCommand.register_subcommand(lowercase_ ) RunBeamCommand.register_subcommand(lowercase_ ) DummyDataCommand.register_subcommand(lowercase_ ) # Parse args snake_case_ , snake_case_ = parser.parse_known_args() if not hasattr(lowercase_ , """func""" ): parser.print_help() exit(1 ) snake_case_ = parse_unknown_args(lowercase_ ) # Run snake_case_ = args.func(lowercase_ , **lowercase_ ) service.run() if __name__ == "__main__": main()
34
1
'''simple docstring''' from math import pow, sqrt def __a ( *UpperCAmelCase ) ->bool: """simple docstring""" A = len(UpperCAmelCase ) > 0 and all(value > 0.0 for value in values ) return result def __a ( UpperCAmelCase , UpperCAmelCase ) ->float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCAmelCase , UpperCAmelCase ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
258
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Union[str, Any] ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) A = model A = kwargs.get("""model_save_dir""" , _lowerCAmelCase ) A = kwargs.get("""latest_model_name""" , _lowerCAmelCase ) def __call__(self : Tuple , **_lowerCAmelCase : Optional[Any] ): A = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def A (_lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) A = """CPUExecutionProvider""" return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def A (self : List[str] , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : List[str] ): A = file_name if file_name is not None else ONNX_WEIGHTS_NAME A = self.model_save_dir.joinpath(self.latest_model_name ) A = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): A = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def A (self : Tuple , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : str , ): if os.path.isfile(_lowerCAmelCase ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def A (cls : str , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Union[bool, str, None]] = None , _lowerCAmelCase : Optional[Union[str, None]] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional["ort.SessionOptions"] = None , **_lowerCAmelCase : Optional[int] , ): A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): A = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) A = Path(_lowerCAmelCase ) # load model from hub else: # download model A = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) A = Path(_lowerCAmelCase ).parent A = Path(_lowerCAmelCase ).name A = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def A (cls : str , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : str , ): A = None if len(str(_lowerCAmelCase ).split("""@""" ) ) == 2: A , A = model_id.split("""@""" ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
258
1
from __future__ import annotations def snake_case_ ( snake_case , snake_case ) -> list[int]: lowercase__: Tuple = 0 lowercase__: str = len(snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__: str = i + 1 else: lowercase__: Dict = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
288
from collections import deque from math import floor from random import random from time import time class __a : def __init__( self ) -> Dict: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase__: int = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): lowercase__: Union[str, Any] = [] def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' if s == d: return [] lowercase__: Tuple = [] lowercase__: Tuple = [] if s == -2: lowercase__: Any = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[int] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if c == -1: lowercase__: int = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Dict: '''simple docstring''' lowercase__: int = deque() lowercase__: Dict = [] if s == -2: lowercase__: Optional[int] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = [] lowercase__: str = [] if s == -2: lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: List[Any] = s lowercase__: Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Dict = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: lowercase__: int = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[Any] = [] lowercase__: int = [] lowercase__: List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Union[str, Any] = [] lowercase__: List[str] = s lowercase__: Dict = False lowercase__: Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: List[Any] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Any = True if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Union[str, Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: int = s lowercase__: str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Any = [] lowercase__: int = [] lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Optional[int] = -2 lowercase__: List[Any] = [] lowercase__: List[str] = s lowercase__: List[Any] = False lowercase__: str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Optional[Any] = True if len(lowerCAmelCase__ ) != 0: lowercase__: Any = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Dict = s lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Dict: '''simple docstring''' lowercase__: Union[str, Any] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Optional[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[str]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin class __a : def __init__( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> List[Any]: '''simple docstring''' # check if the u exists if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase__: str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase__: Union[str, Any] = [[w, u]] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if s == d: return [] lowercase__: str = [] lowercase__: int = [] if s == -2: lowercase__: Tuple = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: lowercase__: Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = deque() lowercase__: List[Any] = [] if s == -2: lowercase__: str = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: str = [] lowercase__: Dict = [] lowercase__: Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Dict = [] lowercase__: List[Any] = s lowercase__: Union[str, Any] = False lowercase__: List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: str = True if len(lowerCAmelCase__ ) != 0: lowercase__: Dict = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: int = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Tuple = s lowercase__: List[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = [] lowercase__: Optional[int] = [] lowercase__: Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Tuple = -2 lowercase__: Any = [] lowercase__: int = s lowercase__: Optional[int] = False lowercase__: List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Any = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: List[str] = True if len(lowerCAmelCase__ ) != 0: lowercase__: List[str] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Optional[Any] = s lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin
288
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : List[Any] = logging.get_logger(__name__) __A : Dict = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class __A ( _a , _a ): lowerCAmelCase_ : str = "focalnet" def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple=224 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[int]=96 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Any=[192, 384, 768, 768] , UpperCAmelCase_ : Optional[int]=[2, 2, 6, 2] , UpperCAmelCase_ : int=[2, 2, 2, 2] , UpperCAmelCase_ : int=[3, 3, 3, 3] , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Optional[int]=4.0 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Dict=1E-4 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : List[Any]=1E-5 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : List[str] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : List[str] = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Any = embed_dim lowerCAmelCase : str = use_conv_embed lowerCAmelCase : str = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : Dict = focal_levels lowerCAmelCase : List[Any] = focal_windows lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : List[Any] = mlp_ratio lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = drop_path_rate lowerCAmelCase : str = use_layerscale lowerCAmelCase : Optional[int] = layerscale_value lowerCAmelCase : Any = use_post_layernorm lowerCAmelCase : Optional[Any] = use_post_layernorm_in_modulation lowerCAmelCase : List[str] = normalize_modulator lowerCAmelCase : int = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : int = encoder_stride lowerCAmelCase : Dict = ['stem'] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
138
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[Any] = "mgp-str" def __init__( self , a=[3_2, 1_2_8] , a=4 , a=3 , a=2_7 , a=3_8 , a=5_0_2_5_7 , a=3_0_5_2_2 , a=7_6_8 , a=1_2 , a=1_2 , a=4.0 , a=True , a=False , a=1e-5 , a=0.0 , a=0.0 , a=0.0 , a=False , a=0.02 , **a , ) -> Tuple: super().__init__(**a ) lowercase__ : int = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = max_token_length lowercase__ : Dict = num_character_labels lowercase__ : Optional[int] = num_bpe_labels lowercase__ : Dict = num_wordpiece_labels lowercase__ : Tuple = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : Dict = mlp_ratio lowercase__ : Optional[int] = distilled lowercase__ : Optional[int] = layer_norm_eps lowercase__ : Optional[int] = drop_rate lowercase__ : List[str] = qkv_bias lowercase__ : Optional[int] = attn_drop_rate lowercase__ : Any = drop_path_rate lowercase__ : List[Any] = output_aa_attentions lowercase__ : Tuple = initializer_range
77
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase: Any = logging.get_logger(__name__) lowerCAmelCase: Union[str, Any] = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class a__( lowerCamelCase__ ): lowercase__ = """altclip_text_model""" def __init__( self : List[Any] , __snake_case : Tuple=25_00_02 , __snake_case : List[Any]=10_24 , __snake_case : Union[str, Any]=24 , __snake_case : str=16 , __snake_case : str=40_96 , __snake_case : Optional[Any]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : List[str]=5_14 , __snake_case : Tuple=1 , __snake_case : Any=0.02 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=1e-0_5 , __snake_case : Dict=1 , __snake_case : int=0 , __snake_case : Any=2 , __snake_case : Optional[Any]="absolute" , __snake_case : Optional[Any]=True , __snake_case : List[str]=7_68 , **__snake_case : Any , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) a : int = vocab_size a : Tuple = hidden_size a : List[Any] = num_hidden_layers a : int = num_attention_heads a : List[Any] = hidden_act a : str = intermediate_size a : Union[str, Any] = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : Union[str, Any] = max_position_embeddings a : Union[str, Any] = type_vocab_size a : int = initializer_range a : Union[str, Any] = initializer_factor a : Dict = layer_norm_eps a : List[str] = position_embedding_type a : Any = use_cache a : Optional[Any] = project_dim class a__( lowerCamelCase__ ): lowercase__ = """altclip_vision_model""" def __init__( self : Union[str, Any] , __snake_case : Any=7_68 , __snake_case : str=30_72 , __snake_case : Tuple=5_12 , __snake_case : int=12 , __snake_case : Any=12 , __snake_case : List[Any]=3 , __snake_case : Optional[int]=2_24 , __snake_case : str=32 , __snake_case : Union[str, Any]="quick_gelu" , __snake_case : Any=1e-5 , __snake_case : Tuple=0.0 , __snake_case : Union[str, Any]=0.02 , __snake_case : List[str]=1.0 , **__snake_case : Union[str, Any] , ): super().__init__(**__snake_case ) a : str = hidden_size a : Tuple = intermediate_size a : Any = projection_dim a : List[str] = num_hidden_layers a : Optional[Any] = num_attention_heads a : List[str] = num_channels a : List[str] = patch_size a : int = image_size a : Union[str, Any] = initializer_range a : Tuple = initializer_factor a : Union[str, Any] = attention_dropout a : List[str] = layer_norm_eps a : int = hidden_act @classmethod def lowercase_ ( cls : int , __snake_case : Union[str, os.PathLike] , **__snake_case : Dict ): cls._set_token_in_kwargs(__snake_case ) a , a : Optional[Any] = cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type' ) == "altclip": a : int = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__snake_case , **__snake_case ) class a__( lowerCamelCase__ ): lowercase__ = """altclip""" lowercase__ = True def __init__( self : str , __snake_case : Optional[int]=None , __snake_case : Optional[int]=None , __snake_case : Tuple=7_68 , __snake_case : Any=2.6592 , **__snake_case : List[Any] ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). a : Optional[int] = kwargs.pop('text_config_dict' , __snake_case ) a : Dict = kwargs.pop('vision_config_dict' , __snake_case ) super().__init__(**__snake_case ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: a : List[Any] = {} # This is the complete result when using `text_config_dict`. a : Union[str, Any] = AltCLIPTextConfig(**__snake_case ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: a : List[str] = ( F"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ F"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: a : Any = ( F"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ F"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(__snake_case ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: a : Optional[int] = {} # This is the complete result when using `vision_config_dict`. a : Optional[int] = AltCLIPVisionConfig(**__snake_case ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: a : Optional[int] = { str(__snake_case ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: a : List[str] = ( F"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ F"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: a : Optional[Any] = ( F"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ F"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(__snake_case ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: a : List[Any] = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' ) if vision_config is None: a : str = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' ) a : Any = AltCLIPTextConfig(**__snake_case ) a : List[Any] = AltCLIPVisionConfig(**__snake_case ) a : str = projection_dim a : int = logit_scale_init_value a : Optional[Any] = 1.0 @classmethod def lowercase_ ( cls : Any , __snake_case : AltCLIPTextConfig , __snake_case : AltCLIPVisionConfig , **__snake_case : str ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__snake_case ) def lowercase_ ( self : Optional[Any] ): a : Dict = copy.deepcopy(self.__dict__ ) a : Union[str, Any] = self.text_config.to_dict() a : Union[str, Any] = self.vision_config.to_dict() a : Union[str, Any] = self.__class__.model_type return output
96
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = CycleDiffusionPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } lowercase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Any ): torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) a : str = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=10_00 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) a : List[str] = CLIPTextModel(__snake_case ) a : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self : Optional[int] , __snake_case : Dict , __snake_case : Any=0 ): a : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) a : Optional[Any] = image / 2 + 0.5 if str(__snake_case ).startswith('mps' ): a : List[str] = torch.manual_seed(__snake_case ) else: a : Union[str, Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : List[Any] = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase_ ( self : Optional[int] ): a : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : int = self.get_dummy_components() a : str = CycleDiffusionPipeline(**__snake_case ) a : List[str] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : Dict = self.get_dummy_inputs(__snake_case ) a : Union[str, Any] = pipe(**__snake_case ) a : List[Any] = output.images a : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a : Tuple = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowercase_ ( self : int ): a : List[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(__snake_case , 'half' ): a : Any = module.half() a : Tuple = CycleDiffusionPipeline(**__snake_case ) a : Any = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : str = self.get_dummy_inputs(__snake_case ) a : int = pipe(**__snake_case ) a : Optional[int] = output.images a : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a : int = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase_ ( self : List[Any] ): return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def lowercase_ ( self : Dict ): return super().test_inference_batch_single_identical() @skip_mps def lowercase_ ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowercase_ ( self : Dict ): return super().test_save_load_optional_components() @skip_mps def lowercase_ ( self : List[Any] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[int] ): a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) a : List[str] = init_image.resize((5_12, 5_12) ) a : Dict = 'CompVis/stable-diffusion-v1-4' a : List[str] = DDIMScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) a : Any = CycleDiffusionPipeline.from_pretrained( __snake_case , scheduler=__snake_case , safety_checker=__snake_case , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a : Union[str, Any] = 'A black colored car' a : Optional[Any] = 'A blue colored car' a : int = torch.manual_seed(0 ) a : Optional[Any] = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='np' , ) a : Dict = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def lowercase_ ( self : int ): a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) a : str = init_image.resize((5_12, 5_12) ) a : Optional[int] = 'CompVis/stable-diffusion-v1-4' a : Union[str, Any] = DDIMScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) a : str = CycleDiffusionPipeline.from_pretrained(__snake_case , scheduler=__snake_case , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a : Tuple = 'A black colored car' a : Tuple = 'A blue colored car' a : List[str] = torch.manual_seed(0 ) a : str = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='np' , ) a : Tuple = output.images assert np.abs(image - expected_image ).max() < 2e-2
96
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __a = 256_047 __a = 256_145 @require_sentencepiece @require_tokenizers class A__ ( __snake_case , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Dict = NllbTokenizer UpperCamelCase_ : List[str] = NllbTokenizerFast UpperCamelCase_ : Any = True UpperCamelCase_ : str = True UpperCamelCase_ : str = {} def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : str = NllbTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = NllbTokenizer(A_ , keep_accents=A_ ) _UpperCAmelCase : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(A_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _UpperCAmelCase : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(A_ , **A_ ) _UpperCAmelCase : Dict = tempfile.mkdtemp() _UpperCAmelCase : List[Any] = tokenizer_r.save_pretrained(A_ ) _UpperCAmelCase : int = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) _UpperCAmelCase : int = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way _UpperCAmelCase : Any = tokenizer_r.from_pretrained(A_ ) _UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=True _UpperCAmelCase : str = tempfile.mkdtemp() _UpperCAmelCase : Union[str, Any] = tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) _UpperCAmelCase : Dict = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way _UpperCAmelCase : Dict = tokenizer_r.from_pretrained(A_ ) _UpperCAmelCase : Dict = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=False _UpperCAmelCase : int = tempfile.mkdtemp() _UpperCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) _UpperCAmelCase : List[Any] = tokenizer_p.save_pretrained(A_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCAmelCase : Optional[int] = tokenizer_r.from_pretrained(A_ ) _UpperCAmelCase : Dict = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) @require_torch def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" if not self.test_seqaseq: return _UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. _UpperCAmelCase : int = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] _UpperCAmelCase : Dict = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: _UpperCAmelCase : List[str] = tokenizer.prepare_seqaseq_batch( src_texts=A_ , tgt_texts=A_ , max_length=3 , max_target_length=1_0 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 1_0 ) # max_target_length will default to max_length if not specified _UpperCAmelCase : Union[str, Any] = tokenizer.prepare_seqaseq_batch( A_ , tgt_texts=A_ , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) _UpperCAmelCase : str = tokenizer.prepare_seqaseq_batch( src_texts=A_ , max_length=3 , max_target_length=1_0 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , A_ ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase : Dict = [AddedToken("<special>" , lstrip=A_ )] _UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( A_ , additional_special_tokens=A_ , **A_ ) _UpperCAmelCase : Union[str, Any] = tokenizer_r.encode("Hey this is a <special> token" ) _UpperCAmelCase : List[Any] = tokenizer_r.encode("<special>" , add_special_tokens=A_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: _UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( A_ , additional_special_tokens=A_ , **A_ , ) _UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained( A_ , additional_special_tokens=A_ , **A_ ) _UpperCAmelCase : List[str] = tokenizer_p.encode("Hey this is a <special> token" ) _UpperCAmelCase : Optional[int] = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = 'facebook/nllb-200-distilled-600M' UpperCamelCase_ : Optional[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] UpperCamelCase_ : Optional[int] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] UpperCamelCase_ : Any = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def _lowerCAmelCase ( cls : List[str] ) -> Dict: """simple docstring""" _UpperCAmelCase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) _UpperCAmelCase : int = 1 return cls def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 2_5_6_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 2_5_6_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 2_5_6_0_5_7 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A_ ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.assertIn(A_ , self.tokenizer.all_special_ids ) # fmt: off _UpperCAmelCase : str = [RO_CODE, 4_2_5_4, 9_8_0_6_8, 1_1_2_9_2_3, 3_9_0_7_2, 3_9_0_9, 7_1_3, 1_0_2_7_6_7, 2_6, 1_7_3_1_4, 3_5_6_4_2, 1_4_6_8_3, 3_3_1_1_8, 2_0_2_2, 6_6_9_8_7, 2, 2_5_6_0_4_7] # fmt: on _UpperCAmelCase : Optional[Any] = self.tokenizer.decode(A_ , skip_special_tokens=A_ ) _UpperCAmelCase : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ ) self.assertNotIn(self.tokenizer.eos_token , A_ ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ["this is gunna be a long sentence " * 2_0] assert isinstance(src_text[0] , A_ ) _UpperCAmelCase : str = 1_0 _UpperCAmelCase : Dict = self.tokenizer(A_ , max_length=A_ , truncation=A_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , A_ ) self.assertEqual(len(A_ ) , A_ ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [2_5_6_2_0_3, 3] ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() _UpperCAmelCase : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A_ ) _UpperCAmelCase : List[str] = NllbTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A_ ) @require_torch def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) _UpperCAmelCase : Optional[Any] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 1_5) , batch.input_ids.shape ) self.assertEqual((2, 1_5) , batch.attention_mask.shape ) _UpperCAmelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A_ ) self.assertEqual(A_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.tokenizer(self.src_text , padding=A_ , truncation=A_ , max_length=3 , return_tensors="pt" ) _UpperCAmelCase : List[Any] = self.tokenizer( text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=1_0 , return_tensors="pt" ) _UpperCAmelCase : str = targets["input_ids"] _UpperCAmelCase : List[Any] = shift_tokens_right( A_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(A_ ) , { # A, test, EOS, en_XX "input_ids": [[2_5_6_0_4_7, 7_0, 7_3_5_6, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 2_5_6_0_5_7, } , ) @require_torch def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = True _UpperCAmelCase : List[Any] = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2, 2_5_6_0_4_7] ) _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : List[Any] = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2] )
145
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Any = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class A__ ( __snake_case ): _UpperCAmelCase :Dict = 'bart' _UpperCAmelCase :str = ['past_key_values'] _UpperCAmelCase :Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A_=5_0265 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=3 , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , **A_ , ): '''simple docstring''' UpperCamelCase : int = vocab_size UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Any = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = encoder_attention_heads UpperCamelCase : Optional[int] = decoder_ffn_dim UpperCamelCase : List[str] = decoder_layers UpperCamelCase : Optional[int] = decoder_attention_heads UpperCamelCase : int = dropout UpperCamelCase : int = attention_dropout UpperCamelCase : Tuple = activation_dropout UpperCamelCase : Tuple = activation_function UpperCamelCase : int = init_std UpperCamelCase : List[Any] = encoder_layerdrop UpperCamelCase : List[str] = decoder_layerdrop UpperCamelCase : Dict = classifier_dropout UpperCamelCase : Optional[int] = use_cache UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , A_ ): UpperCamelCase : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." ) class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase : List[str] = {0: "batch"} UpperCamelCase : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCamelCase : Dict = {0: "batch", 1: "decoder_sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(A_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase : Optional[int] = self.num_layers for i in range(A_ ): UpperCamelCase : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} else: UpperCamelCase : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Tuple = super().outputs else: UpperCamelCase : Dict = super(A_ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase : int = self.num_layers for i in range(A_ ): UpperCamelCase : int = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Tuple = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs UpperCamelCase : List[Any] = seq_length if not self.use_past else 1 UpperCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) UpperCamelCase : Optional[int] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase : List[Any] = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Optional[Any] = common_inputs["input_ids"].shape UpperCamelCase : List[Any] = common_inputs["decoder_input_ids"].shape[1] UpperCamelCase , UpperCamelCase : List[str] = self.num_attention_heads UpperCamelCase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : List[Any] = decoder_seq_length + 3 UpperCamelCase : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase : int = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(A_ , A_ )] , dim=1 ) UpperCamelCase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase : Union[str, Any] = self.num_layers UpperCamelCase : Any = min(A_ , A_ ) UpperCamelCase : List[str] = max(A_ , A_ ) - min_num_layers UpperCamelCase : Dict = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. UpperCamelCase : Optional[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase : Optional[Any] = seqlen + 2 UpperCamelCase , UpperCamelCase : List[Any] = self.num_layers UpperCamelCase , UpperCamelCase : Optional[int] = self.num_attention_heads UpperCamelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : Optional[Any] = common_inputs["attention_mask"].dtype UpperCamelCase : int = torch.cat( [common_inputs["attention_mask"], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) UpperCamelCase : Optional[Any] = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : Optional[Any] = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add(A_ ) UpperCamelCase : int = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase : Dict = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) elif self.task == "causal-lm": UpperCamelCase : List[str] = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: UpperCamelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[Any] = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: UpperCamelCase : Optional[Any] = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ )
52
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __UpperCAmelCase = logging.getLogger(__name__) __UpperCAmelCase = '''pytorch_model.bin''' @dataclasses.dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=a__ , metadata={"help": "A csv or a json file containing the validation data."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=a__ , metadata={"help": "The name of the task to train on."} , ) UpperCAmelCase__ : Optional[List[str]] = dataclasses.field( default=a__ , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=a__ , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=a__ , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=a__ , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=a__ , metadata={"help": "Random seed for initialization."} , ) def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Dict ) -> Optional[Any]: UpperCamelCase : int = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCamelCase : Optional[int] = dataset.filter(lambda snake_case__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCamelCase : List[str] = int(eval_result * len(snake_case__ ) ) print(snake_case__ ) UpperCamelCase : Union[str, Any] = dataset.sort('probability' , reverse=snake_case__ ) UpperCamelCase : int = dataset.select(range(snake_case__ ) ) UpperCamelCase : Any = dataset.remove_columns(['label', 'probability'] ) UpperCamelCase : int = dataset.rename_column('prediction' , 'label' ) UpperCamelCase : Any = dataset.map(lambda snake_case__ : {"label": idalabel[example["label"]]} ) UpperCamelCase : List[Any] = dataset.shuffle(seed=args.seed ) UpperCamelCase : Dict = os.path.join(snake_case__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(snake_case__ , index=snake_case__ ) else: dataset.to_json(snake_case__ ) def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Tuple , **snake_case__ : Union[str, Any] ) -> Any: UpperCamelCase : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCamelCase : List[str] = STModelArguments(model_name_or_path=snake_case__ ) UpperCamelCase : int = STDataArguments(train_file=snake_case__ , infer_file=snake_case__ ) UpperCamelCase : Dict = STTrainingArguments(output_dir=snake_case__ ) UpperCamelCase : Optional[Any] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(snake_case__ ).items(): setattr(snake_case__ , snake_case__ , snake_case__ ) for key, value in kwargs.items(): if hasattr(snake_case__ , snake_case__ ): setattr(snake_case__ , snake_case__ , snake_case__ ) # Sanity checks UpperCamelCase : int = {} UpperCamelCase : Optional[int] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCamelCase : int = args.train_file UpperCamelCase : Optional[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCamelCase : int = args.eval_file for key in data_files: UpperCamelCase : List[str] = data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: UpperCamelCase : List[Any] = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) UpperCamelCase : Dict = F"""{args.output_dir}/self-train_iter-{{}}""".format UpperCamelCase : Any = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) accelerator.wait_for_everyone() UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Tuple = 0 UpperCamelCase : str = False # Show the progress bar UpperCamelCase : List[str] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCamelCase : List[str] = data_dir_format(snake_case__ ) assert os.path.exists(snake_case__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCamelCase : List[Any] = os.path.join(snake_case__ , 'stage-1' ) UpperCamelCase : Optional[int] = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(snake_case__ , snake_case__ ): arguments_dict.update({key: value} ) UpperCamelCase : Any = os.path.join(snake_case__ , 'best-checkpoint' , snake_case__ ) if os.path.exists(snake_case__ ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , snake_case__ , snake_case__ , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , snake_case__ ) finetune(**snake_case__ ) accelerator.wait_for_everyone() assert os.path.exists(snake_case__ ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , snake_case__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCamelCase : Tuple = os.path.join(snake_case__ , 'best-checkpoint' ) UpperCamelCase : str = os.path.join(snake_case__ , 'stage-2' ) # Update arguments_dict UpperCamelCase : str = model_path UpperCamelCase : Tuple = data_files['train'] UpperCamelCase : int = current_output_dir UpperCamelCase : Dict = os.path.join(snake_case__ , 'best-checkpoint' , snake_case__ ) if os.path.exists(snake_case__ ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , snake_case__ , snake_case__ , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , snake_case__ ) finetune(**snake_case__ ) accelerator.wait_for_everyone() assert os.path.exists(snake_case__ ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , snake_case__ ) UpperCamelCase : int = iteration UpperCamelCase : Any = data_dir_format(iteration + 1 ) UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(os.path.join(snake_case__ , 'best-checkpoint' ) ) UpperCamelCase : Union[str, Any] = config.idalabel UpperCamelCase : str = os.path.join(snake_case__ , 'eval_results_best-checkpoint.json' ) UpperCamelCase : List[Any] = os.path.join(snake_case__ , 'test_results_best-checkpoint.json' ) assert os.path.exists(snake_case__ ) with open(snake_case__ , 'r' ) as f: UpperCamelCase : Tuple = float(json.load(snake_case__ )[args.eval_metric] ) UpperCamelCase : Union[str, Any] = os.path.join(snake_case__ , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(snake_case__ ) # Loading the dataset from local csv or json files. UpperCamelCase : Tuple = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] UpperCamelCase : Optional[Any] = load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(snake_case__ , exist_ok=snake_case__ ) shutil.copy(snake_case__ , os.path.join(snake_case__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(snake_case__ ): shutil.copy(snake_case__ , os.path.join(snake_case__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) accelerator.wait_for_everyone() UpperCamelCase : Tuple = os.path.join(snake_case__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCamelCase : Optional[Any] = eval_result if best_iteration is None: UpperCamelCase : Dict = new_iteration UpperCamelCase : List[str] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCamelCase : Tuple = new_iteration UpperCamelCase : List[Any] = new_eval_result UpperCamelCase : str = 0 else: if new_eval_result == best_eval_result: UpperCamelCase : Any = new_iteration UpperCamelCase : Tuple = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCamelCase : Tuple = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , snake_case__ ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , snake_case__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(snake_case__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(snake_case__ , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , snake_case__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(snake_case__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(snake_case__ , 'eval_results_best-iteration.json' ) , )
103
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' UpperCamelCase : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) return image def UpperCamelCase ( snake_case__ : int ) -> List[Any]: UpperCamelCase : Optional[int] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[int] ) -> Optional[int]: UpperCamelCase : Dict = dct.pop(snake_case__ ) UpperCamelCase : str = val def UpperCamelCase ( snake_case__ : str , snake_case__ : Union[str, Any] ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase : Optional[Any] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) UpperCamelCase : int = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict UpperCamelCase : int = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) UpperCamelCase : Tuple = qkv_bias def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[Any] ) -> Dict: UpperCamelCase : str = 364 if 'coco' in model_name else 224 UpperCamelCase : Union[str, Any] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase : List[Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase : int = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: UpperCamelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase : int = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() UpperCamelCase : Any = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCamelCase ( snake_case__ : int , snake_case__ : Dict=None , snake_case__ : int=False ) -> List[Any]: UpperCamelCase : str = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) UpperCamelCase : int = tokenizer('\n' , add_special_tokens=snake_case__ ).input_ids[0] UpperCamelCase , UpperCamelCase : Union[str, Any] = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) UpperCamelCase : Dict = BlipaForConditionalGeneration(snake_case__ ).eval() UpperCamelCase : Optional[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } UpperCamelCase , UpperCamelCase : Optional[Any] = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCamelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print('Done!' ) # update state dict keys UpperCamelCase : List[Any] = original_model.state_dict() UpperCamelCase : Tuple = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase : Optional[Any] = state_dict.pop(snake_case__ ) if key.startswith('Qformer.bert' ): UpperCamelCase : List[str] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCamelCase : Tuple = key.replace('self' , 'attention' ) if "opt_proj" in key: UpperCamelCase : Union[str, Any] = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: UpperCamelCase : Optional[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): UpperCamelCase : Dict = key.replace('opt' , 'language' ) if key.startswith('t5' ): UpperCamelCase : Dict = key.replace('t5' , 'language' ) UpperCamelCase : Optional[int] = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) UpperCamelCase , UpperCamelCase : Any = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase : List[str] = load_demo_image() UpperCamelCase : str = vis_processors['eval'](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) UpperCamelCase : Any = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(snake_case__ ) # create processor UpperCamelCase : Optional[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=snake_case__ , image_std=snake_case__ ) UpperCamelCase : Any = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCamelCase : Optional[int] = processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase : Tuple = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits UpperCamelCase : str = hf_model(snake_case__ , snake_case__ ).logits else: UpperCamelCase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits UpperCamelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase : Optional[int] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase : List[str] = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase : Union[str, Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=snake_case__ ) else: # cast to same type UpperCamelCase : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) UpperCamelCase : Optional[int] = '' UpperCamelCase : Union[str, Any] = tokenizer(snake_case__ , return_tensors='pt' ).input_ids.to(snake_case__ ) UpperCamelCase : str = original_model.generate({'image': original_pixel_values} ) UpperCamelCase : str = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , snake_case__ ) UpperCamelCase : Optional[int] = input_ids.shape[1] UpperCamelCase : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) UpperCamelCase : Dict = [text.strip() for text in output_text] print('HF generation:' , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
103
1
'''simple docstring''' import os import sys import unittest _A : List[str] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _A : Dict =os.path.join(git_repo_path, '''src''', '''transformers''') _A : Dict =''' {0} = None ''' _A : Dict =''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' _A : List[str] =''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: str ): lowerCamelCase__ : int = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(UpperCamelCase__ , """tokenizers""" ) lowerCamelCase__ : Tuple = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(UpperCamelCase__ , """tensorflow_text""" ) lowerCamelCase__ : Dict = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tokenizers""" ) lowerCamelCase__ : Union[str, Any] = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tensorflow_text""" ) lowerCamelCase__ : str = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tokenizers_and_vision""" ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Tuple = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , UpperCamelCase__ ) self.assertIn("""tensorflow_text""" , UpperCamelCase__ ) self.assertIn("""sentencepiece_and_tokenizers""" , UpperCamelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Tuple = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(UpperCamelCase__ , """\nCONSTANT = None\n""" ) lowerCamelCase__ : List[str] = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( UpperCamelCase__ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) lowerCamelCase__ : List[str] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ lowerCamelCase__ : int = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ lowerCamelCase__ : Any = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , UpperCamelCase__ )
41
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ): '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[int]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : List[Any] = {} if prompt is not None: SCREAMING_SNAKE_CASE : List[Any] = prompt if generate_kwargs is not None: SCREAMING_SNAKE_CASE : Optional[int] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: SCREAMING_SNAKE_CASE : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) SCREAMING_SNAKE_CASE : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ : Any ): '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.model_type if model_type == "git": SCREAMING_SNAKE_CASE : Dict = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : str = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids SCREAMING_SNAKE_CASE : Optional[int] = [self.tokenizer.cls_token_id] + input_ids SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: SCREAMING_SNAKE_CASE : Optional[Any] = None return model_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowerCamelCase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): SCREAMING_SNAKE_CASE : List[str] = None if generate_kwargs is None: SCREAMING_SNAKE_CASE : int = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. SCREAMING_SNAKE_CASE : Tuple = model_inputs.pop(self.model.main_input_name ) SCREAMING_SNAKE_CASE : Any = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for output_ids in model_outputs: SCREAMING_SNAKE_CASE : List[Any] = { """generated_text""": self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
323
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): UpperCAmelCase_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Union[str, Any]=37 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : str=512 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Union[str, Any]=None , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope UpperCAmelCase_ = embedding_size def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = TFMobileBertModel(config=_UpperCAmelCase ) UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase_ = model(_UpperCAmelCase ) UpperCAmelCase_ = [input_ids, input_mask] UpperCAmelCase_ = model(_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = TFMobileBertForMaskedLM(config=_UpperCAmelCase ) UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = TFMobileBertForNextSentencePrediction(config=_UpperCAmelCase ) UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = TFMobileBertForPreTraining(config=_UpperCAmelCase ) UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFMobileBertForSequenceClassification(config=_UpperCAmelCase ) UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = TFMobileBertForMultipleChoice(config=_UpperCAmelCase ) UpperCAmelCase_ = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFMobileBertForTokenClassification(config=_UpperCAmelCase ) UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = TFMobileBertForQuestionAnswering(config=_UpperCAmelCase ) UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = TFMobileBertModelTest.TFMobileBertModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def lowercase__ ( self : str ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) @slow def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: UpperCAmelCase_ = TFMobileBertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) UpperCAmelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = [1, 6, 30522] self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
241
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowerCamelCase = TypeVar("""_T""") class lowercase__ ( Generic[_T] ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Iterable[_T] | None = None ) -> None: '''simple docstring''' UpperCAmelCase_ = list(iterable or [] ) UpperCAmelCase_ = [] def __len__( self : Optional[int] ) -> int: '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : Optional[Any] ) -> str: '''simple docstring''' return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : _T ) -> None: '''simple docstring''' self._stacka.append(_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> _T: '''simple docstring''' UpperCAmelCase_ = self._stacka.pop UpperCAmelCase_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
241
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =sum(A_ ) create_state_space_tree(A_ , A_ , A_ , A_ , A_ , A_ ) return result def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" if sum(A_ ) > max_sum or (remaining_nums_sum + sum(A_ )) < max_sum: return if sum(A_ ) == max_sum: result.append(A_ ) return for index in range(A_ , len(A_ ) ): create_state_space_tree( A_ , A_ , index + 1 , [*path, nums[index]] , A_ , remaining_nums_sum - nums[index] , ) lowerCamelCase : Tuple = [3, 3_4, 4, 1_2, 5, 2] lowerCamelCase : Tuple = 9 lowerCamelCase : Optional[int] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
47
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : List[Any] = 16 __lowerCAmelCase : Any = 32 def a__ ( A_, A_, A_, A_, A_ = 16 ): '''simple docstring''' __magic_name__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __magic_name__ = DatasetDict( { """train""": dataset["""train"""].select(A_ ), """validation""": dataset["""train"""].select(A_ ), """test""": dataset["""validation"""], } ) def tokenize_function(A_ ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=A_, max_length=A_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ = datasets.map( A_, batched=A_, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(A_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ = 16 elif accelerator.mixed_precision != "no": __magic_name__ = 8 else: __magic_name__ = None return tokenizer.pad( A_, padding="""longest""", max_length=A_, pad_to_multiple_of=A_, return_tensors="""pt""", ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets["""train"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) __magic_name__ = DataLoader( tokenized_datasets["""validation"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) __magic_name__ = DataLoader( tokenized_datasets["""test"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = [] # Download the dataset __magic_name__ = load_dataset("""glue""", """mrpc""" ) # Create our splits __magic_name__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator __magic_name__ = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config["""lr"""] __magic_name__ = int(config["""num_epochs"""] ) __magic_name__ = int(config["""seed"""] ) __magic_name__ = int(config["""batch_size"""] ) __magic_name__ = evaluate.load("""glue""", """mrpc""" ) # If the batch size is too big we use gradient accumulation __magic_name__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __magic_name__ = batch_size // MAX_GPU_BATCH_SIZE __magic_name__ = MAX_GPU_BATCH_SIZE set_seed(A_ ) # New Code # # Create our folds: __magic_name__ = kfold.split(np.zeros(datasets["""train"""].num_rows ), datasets["""train"""]["""label"""] ) __magic_name__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A_ ): __magic_name__ , __magic_name__ , __magic_name__ = get_fold_dataloaders( A_, A_, A_, A_, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=A_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ = model.to(accelerator.device ) # Instantiate optimizer __magic_name__ = AdamW(params=model.parameters(), lr=A_ ) # Instantiate scheduler __magic_name__ = get_linear_schedule_with_warmup( optimizer=A_, num_warmup_steps=100, num_training_steps=(len(A_ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( A_, A_, A_, A_, A_ ) # Now we train the model for epoch in range(A_ ): model.train() for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __magic_name__ = model(**A_ ) __magic_name__ = outputs.loss __magic_name__ = loss / gradient_accumulation_steps accelerator.backward(A_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits.argmax(dim=-1 ) __magic_name__ , __magic_name__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=A_, references=A_, ) __magic_name__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''', A_ ) # New Code # # We also run predictions on the test set at the very end __magic_name__ = [] for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits __magic_name__ , __magic_name__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A_, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: __magic_name__ = torch.cat(A_, dim=0 ) __magic_name__ = torch.stack(A_, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) __magic_name__ = metric.compute(predictions=A_, references=A_ ) accelerator.print("""Average test metrics from all folds:""", A_ ) def a__ ( ): '''simple docstring''' __magic_name__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=A_, default=A_, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""", type=A_, default=3, help="""The number of splits to perform across the dataset""" ) __magic_name__ = parser.parse_args() __magic_name__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(A_, A_ ) if __name__ == "__main__": main()
88
0
from math import factorial def snake_case_ ( snake_case , snake_case ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(snake_case ) // (factorial(snake_case ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( '''If a class of 40 students must be arranged into groups of''', F'''4 for group projects, there are {combinations(40, 4)} ways''', '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', F'''are {combinations(10, 3)} ways that first, second and''', '''third place can be awarded.''', )
288
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def snake_case_ ( snake_case = 3 ) -> qiskit.result.counts.Counts: if isinstance(snake_case , snake_case ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(snake_case ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) lowercase__: str = QuantumRegister(snake_case , 'qr' ) lowercase__: str = ClassicalRegister(snake_case , 'cr' ) lowercase__: List[Any] = QuantumCircuit(snake_case , snake_case ) lowercase__: int = number_of_qubits for i in range(snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case , snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case , snake_case ) # simulate with 10000 shots lowercase__: str = Aer.get_backend('qasm_simulator' ) lowercase__: Union[str, Any] = execute(snake_case , snake_case , shots=1_00_00 ) return job.result().get_counts(snake_case ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
288
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _lowercase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): a__ : Dict = 10_000 a__ : Dict = None a__ : Optional[Any] = None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): a__ : Any = ParquetConfig def a ( self : str ): return datasets.DatasetInfo(features=self.config.features ) def a ( self : Optional[Any] , _lowercase : Dict ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): __UpperCAmelCase = data_files if isinstance(_A , _A ): __UpperCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCAmelCase = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): __UpperCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCAmelCase = [dl_manager.iter_files(_A ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_A ): with open(_A , '''rb''' ) as f: __UpperCAmelCase = datasets.Features.from_arrow_schema(pq.read_schema(_A ) ) break splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'''files''': files} ) ) return splits def a ( self : Optional[Any] , _lowercase : pa.Table ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCAmelCase = table_cast(_A , self.info.features.arrow_schema ) return pa_table def a ( self : Optional[int] , _lowercase : Optional[Any] ): __UpperCAmelCase = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A , '''rb''' ) as f: __UpperCAmelCase = pq.ParquetFile(_A ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __UpperCAmelCase = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(_A ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_A )}: {e}''' ) raise
332
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __A : def __init__( self ): lowerCamelCase ="""""" lowerCamelCase ="""""" lowerCamelCase =[] lowerCamelCase =0 lowerCamelCase =256 lowerCamelCase =0 lowerCamelCase =0 lowerCamelCase =0 lowerCamelCase =0 def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =cva.imread(UpperCAmelCase_ , 0 ) lowerCamelCase =copy.deepcopy(self.img ) lowerCamelCase , lowerCamelCase , lowerCamelCase =plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCamelCase =np.sum(UpperCAmelCase_ ) for i in range(len(UpperCAmelCase_ ) ): lowerCamelCase =x[i] / self.k self.sk += prk lowerCamelCase =(self.L - 1) * self.sk if self.rem != 0: lowerCamelCase =int(last % last ) lowerCamelCase =int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(UpperCAmelCase_ ) lowerCamelCase =int(np.ma.count(self.img ) / self.img[1].size ) lowerCamelCase =self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCamelCase =self.img[j][i] if num != self.last_list[num]: lowerCamelCase =self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _snake_case ( self ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _snake_case ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCAmelCase__ : Dict =os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') UpperCAmelCase__ : List[Any] =ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
262
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
262
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ : Tuple = logging.get_logger(__name__) def _A (lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' _a = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: _a = 10_24 _a = 40_96 _a = 24 _a = 16 _a = [5, 11, 17, 23] _a = [2_56, 5_12, 10_24, 10_24] _a = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: _a = 7_68 _a = [1, 1, 1, 0.5] _a = [2_56, 5_12, 7_68, 7_68] _a = 1_50 _a = 16 _a = (1, 3_84, 3_84) _a = False _a = 'project' if "ade" in checkpoint_url: _a = True _a = 7_68 _a = [1, 1, 1, 0.5] _a = 1_50 _a = 16 _a = 'huggingface/label-files' _a = 'ade20k-id2label.json' _a = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) ) , 'r' ) ) _a = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} _a = [1, 1_50, 4_80, 4_80] return config, expected_shape def _A (lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' _a = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def _A (lowerCAmelCase__ :Dict ) -> Optional[int]: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _a = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _a = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _a = name.replace('patch_embed' , '' ) if "pos_embed" in name: _a = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _a = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _a = name.replace('proj' , 'projection' ) if "blocks" in name: _a = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _a = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _a = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: _a = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: _a = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _a = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _a = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _a = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _a = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _a = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _a = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _a = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _a = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: _a = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _a = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _a = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _a = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _a = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _a = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _a = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _a = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _a = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _a = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _a = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _a = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _a = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _a = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _a = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _a = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _a = name.replace('pretrained' , 'dpt' ) if "bn" in name: _a = name.replace('bn' , 'batch_norm' ) if "head" in name: _a = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _a = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _a = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: _a = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: _a = name.replace('..' , '.' ) if "stem.conv" in name: _a = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _a = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: _a = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: _a = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: _a = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: _a = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: _a = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) _a = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _a = in_proj_weight[: config.hidden_size, :] _a = in_proj_bias[: config.hidden_size] _a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a = in_proj_weight[ -config.hidden_size :, : ] _a = in_proj_bias[-config.hidden_size :] def _A () -> Dict: '''simple docstring''' _a = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def _A (lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _a , _a = get_dpt_config(lowerCAmelCase__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _a = torch.load(lowerCAmelCase__ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(lowerCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): _a = state_dict.pop(lowerCAmelCase__ ) _a = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model _a = DPTForSemanticSegmentation(lowerCAmelCase__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # Check outputs on an image _a = 4_80 if 'ade' in checkpoint_url else 3_84 _a = DPTImageProcessor(size=lowerCAmelCase__ ) _a = prepare_img() _a = image_processor(lowerCAmelCase__ , return_tensors='pt' ) # forward pass _a = model(**lowerCAmelCase__ ).logits if 'ade' in checkpoint_url else model(**lowerCAmelCase__ ).predicted_depth if show_prediction: _a = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=lowerCAmelCase__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": a_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) a_ : Union[str, Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
168
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
168
1
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : List[str] = "Hello world! cécé herlolip" def A (__A : str , __A : str , __A : bool ) -> str: """simple docstring""" UpperCAmelCase_ = FairseqRobertaModel.from_pretrained(__A ) roberta.eval() # disable dropout UpperCAmelCase_ = roberta.model.encoder.sentence_encoder UpperCAmelCase_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , __A ) UpperCAmelCase_ = XLMRobertaXLForSequenceClassification(__A ) if classification_head else XLMRobertaXLForMaskedLM(__A ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase_ = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase_ = roberta_sent_encoder.embed_positions.weight UpperCAmelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase_ = roberta_sent_encoder.layer_norm.weight UpperCAmelCase_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase_ = model.roberta.encoder.layer[i] UpperCAmelCase_ = roberta_sent_encoder.layers[i] UpperCAmelCase_ = layer.attention UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase_ = roberta_layer.self_attn.q_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.q_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.k_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.k_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.v_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase_ = roberta_layer.self_attn.out_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase_ = roberta_layer.final_layer_norm.weight UpperCAmelCase_ = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # output UpperCAmelCase_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].dense.weight UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].dense.bias UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].out_proj.weight UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase_ = roberta.encode(__A ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase_ = model(__A )[0] if classification_head: UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''](roberta.extract_features(__A ) ) else: UpperCAmelCase_ = roberta.model(__A )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 UpperCAmelCase_ = torch.allclose(__A , __A , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(__A ).mkdir(parents=__A , exist_ok=__A ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) snake_case_ : str = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
353
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer A =logging.get_logger(__name__) A ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A ={ 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } A ={ 'yjernite/retribert-base-uncased': 5_12, } A ={ 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _a ( __a ): __a : List[str] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Dict = PRETRAINED_INIT_CONFIGURATION __a : int = RetriBertTokenizer __a : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase : int=None , lowercase : Dict=None , lowercase : Dict=True , lowercase : Optional[Any]="[UNK]" , lowercase : Any="[SEP]" , lowercase : List[str]="[PAD]" , lowercase : Dict="[CLS]" , lowercase : List[Any]="[MASK]" , lowercase : Optional[int]=True , lowercase : Dict=None , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowercase ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(lowercase , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**lowercase ) UpperCAmelCase = do_lower_case def A ( self : str , lowercase : Optional[int] , lowercase : int=None ): '''simple docstring''' UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[str] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : int , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' UpperCAmelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
34
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowercase = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ lowercase = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ lowercase = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def A_ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def A_ ( self : Optional[int] , _a : str , _a : str , _a : str=4 , _a : List[Any]=False ): UpperCamelCase__ = compute_bleu( reference_corpus=_a , translation_corpus=_a , max_order=_a , smooth=_a ) ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
35
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_ ( UpperCamelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''', UpperCamelCase__, ) if isinstance(UpperCamelCase__, torch.Tensor ): return image elif isinstance(UpperCamelCase__, PIL.Image.Image ): UpperCamelCase__ = [image] if isinstance(image[0], PIL.Image.Image ): UpperCamelCase__ , UpperCamelCase__ = image[0].size UpperCamelCase__ , UpperCamelCase__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCamelCase__ = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCamelCase__ = np.concatenate(UpperCamelCase__, axis=0 ) UpperCamelCase__ = np.array(UpperCamelCase__ ).astype(np.floataa ) / 255.0 UpperCamelCase__ = image.transpose(0, 3, 1, 2 ) UpperCamelCase__ = 2.0 * image - 1.0 UpperCamelCase__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(image[0], torch.Tensor ): UpperCamelCase__ = torch.cat(UpperCamelCase__, dim=0 ) return image def lowerCamelCase_ ( UpperCamelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' if isinstance(UpperCamelCase__, torch.Tensor ): return mask elif isinstance(UpperCamelCase__, PIL.Image.Image ): UpperCamelCase__ = [mask] if isinstance(mask[0], PIL.Image.Image ): UpperCamelCase__ , UpperCamelCase__ = mask[0].size UpperCamelCase__ , UpperCamelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase__ = [np.array(m.convert('''L''' ).resize((w, h), resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] UpperCamelCase__ = np.concatenate(UpperCamelCase__, axis=0 ) UpperCamelCase__ = mask.astype(np.floataa ) / 255.0 UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(mask[0], torch.Tensor ): UpperCamelCase__ = torch.cat(UpperCamelCase__, dim=0 ) return mask class __lowercase ( A ): '''simple docstring''' _A : UNetaDModel _A : RePaintScheduler def __init__( self : Tuple , _a : Any , _a : Tuple ): super().__init__() self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self : Optional[int] , _a : Union[torch.Tensor, PIL.Image.Image] , _a : Union[torch.Tensor, PIL.Image.Image] , _a : int = 250 , _a : float = 0.0 , _a : int = 10 , _a : int = 10 , _a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a : Optional[str] = "pil" , _a : bool = True , ): UpperCamelCase__ = image UpperCamelCase__ = _preprocess_image(_a ) UpperCamelCase__ = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase__ = _preprocess_mask(_a ) UpperCamelCase__ = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_a , _a ) and len(_a ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_a )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase__ = original_image.shape UpperCamelCase__ = randn_tensor(_a , generator=_a , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_a , _a , _a , self.device ) UpperCamelCase__ = eta UpperCamelCase__ = self.scheduler.timesteps[0] + 1 UpperCamelCase__ = generator[0] if isinstance(_a , _a ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCamelCase__ = self.unet(_a , _a ).sample # compute previous image: x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(_a , _a , _a , _a , _a , _a ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCamelCase__ = self.scheduler.undo_step(_a , _a , _a ) UpperCamelCase__ = t UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
35
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
106
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def snake_case_ ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
200
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class A__ ( __snake_case , __snake_case ): _UpperCAmelCase :Union[str, Any] = 'nat' _UpperCAmelCase :Tuple = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , A_=4 , A_=3 , A_=64 , A_=[3, 4, 6, 5] , A_=[2, 4, 8, 16] , A_=7 , A_=3.0 , A_=True , A_=0.0 , A_=0.0 , A_=0.1 , A_="gelu" , A_=0.02 , A_=1e-5 , A_=0.0 , A_=None , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Any = patch_size UpperCamelCase : Dict = num_channels UpperCamelCase : Dict = embed_dim UpperCamelCase : Optional[int] = depths UpperCamelCase : List[str] = len(A_ ) UpperCamelCase : Dict = num_heads UpperCamelCase : Optional[int] = kernel_size UpperCamelCase : Optional[int] = mlp_ratio UpperCamelCase : Dict = qkv_bias UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = drop_path_rate UpperCamelCase : Dict = hidden_act UpperCamelCase : str = layer_norm_eps UpperCamelCase : int = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase : Optional[int] = int(embed_dim * 2 ** (len(A_ ) - 1) ) UpperCamelCase : List[str] = layer_scale_init_value UpperCamelCase : Tuple = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(A_ ) + 1 )] UpperCamelCase , UpperCamelCase : Dict = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
140
from pathlib import Path import numpy as np from PIL import Image def A_ ( _lowerCAmelCase ) -> np.ndarray: UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def A_ ( _lowerCAmelCase ) -> np.ndarray: return (gray > 127) & (gray <= 255) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> np.ndarray: UpperCamelCase : Dict = np.zeros_like(_lowerCAmelCase ) UpperCamelCase : List[str] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCamelCase : Tuple = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCamelCase : List[str] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCamelCase : int = int(summation > 0 ) return output if __name__ == "__main__": # read original image __lowerCamelCase : int = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" __lowerCamelCase : Tuple = np.array(Image.open(lena_path)) # kernel to be applied __lowerCamelCase : Optional[Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __lowerCamelCase : Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __lowerCamelCase : Any = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
140
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case =logging.get_logger(__name__) __snake_case ={ """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class UpperCAmelCase_ ( __lowercase , __lowercase ): lowerCamelCase : Any = '''resnet''' lowerCamelCase : Optional[Any] = ['''basic''', '''bottleneck'''] def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : int=6_4 , UpperCAmelCase__ : List[Any]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , UpperCAmelCase__ : Dict=[3, 4, 6, 3] , UpperCAmelCase__ : List[Any]="bottleneck" , UpperCAmelCase__ : Dict="relu" , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : List[str] , ) -> List[str]: super().__init__(**UpperCAmelCase__ ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) lowerCAmelCase = num_channels lowerCAmelCase = embedding_size lowerCAmelCase = hidden_sizes lowerCAmelCase = depths lowerCAmelCase = layer_type lowerCAmelCase = hidden_act lowerCAmelCase = downsample_in_first_stage lowerCAmelCase = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] lowerCAmelCase , lowerCAmelCase = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Any = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self : Optional[Any] ) -> float: return 1E-3
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """ctrl""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase=246534 , lowercase=256 , lowercase=1280 , lowercase=8192 , lowercase=48 , lowercase=16 , lowercase=0.1 , lowercase=0.1 , lowercase=1E-6 , lowercase=0.02 , lowercase=True , **lowercase , ): _lowerCamelCase : Any = vocab_size _lowerCamelCase : Dict = n_positions _lowerCamelCase : Optional[int] = n_embd _lowerCamelCase : str = n_layer _lowerCamelCase : Union[str, Any] = n_head _lowerCamelCase : Any = dff _lowerCamelCase : int = resid_pdrop _lowerCamelCase : Dict = embd_pdrop _lowerCamelCase : Union[str, Any] = layer_norm_epsilon _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : str = use_cache super().__init__(**lowercase )
96
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __lowerCAmelCase = False class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase (self ) -> Optional[Any]: _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = """A painting of a squirrel eating a burger """ _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase ) _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = generator.manual_seed(0 ) _snake_case = pipe( prompt=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase (self ) -> List[Any]: _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = """A painting of a squirrel eating a burger """ _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images _snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
270
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( __snake_case , __snake_case ): '''simple docstring''' lowerCAmelCase_ = "nat" lowerCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=64 , UpperCAmelCase=[3, 4, 6, 5] , UpperCAmelCase=[2, 4, 8, 16] , UpperCAmelCase=7 , UpperCAmelCase=3.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> str: super().__init__(**UpperCAmelCase ) _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(UpperCAmelCase ) _snake_case = num_heads _snake_case = kernel_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = layer_norm_eps _snake_case = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) _snake_case = layer_scale_init_value _snake_case = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase ) + 1 )] _snake_case, _snake_case = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
270
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ,**__UpperCamelCase : int ): lowerCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) lowerCAmelCase_ : int = AutoModelForSeqaSeqLM.from_config(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) AutoTokenizer.from_pretrained(__UpperCamelCase ).save_pretrained(__UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
103
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A__ : Union[str, Any] = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(UpperCamelCase_ ) class __snake_case ( UpperCamelCase_ ): _a = '''rag''' _a = True def __init__( self : str , A_ : List[Any]=None , A_ : str=True , A_ : Tuple=None , A_ : Union[str, Any]=None , A_ : List[str]=None , A_ : List[str]=None , A_ : List[Any]=None , A_ : Union[str, Any]=" / " , A_ : Tuple=" // " , A_ : Any=5 , A_ : Optional[Any]=3_0_0 , A_ : Tuple=7_6_8 , A_ : Union[str, Any]=8 , A_ : Dict="wiki_dpr" , A_ : Optional[Any]="train" , A_ : Dict="compressed" , A_ : Optional[int]=None , A_ : List[str]=None , A_ : str=False , A_ : Dict=False , A_ : Dict=0.0 , A_ : List[str]=True , A_ : List[str]=False , A_ : List[Any]=False , A_ : Any=False , A_ : Optional[int]=True , A_ : int=None , **A_ : List[str] , ): super().__init__( bos_token_id=A_ , pad_token_id=A_ , eos_token_id=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , is_encoder_decoder=A_ , prefix=A_ , vocab_size=A_ , **A_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCAmelCase_ : List[str] = kwargs.pop('''question_encoder''') lowerCAmelCase_ : Tuple = question_encoder_config.pop('''model_type''') lowerCAmelCase_ : Tuple = kwargs.pop('''generator''') lowerCAmelCase_ : Dict = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig lowerCAmelCase_ : Union[str, Any] = AutoConfig.for_model(A_ , **A_) lowerCAmelCase_ : int = AutoConfig.for_model(A_ , **A_) lowerCAmelCase_ : List[Any] = reduce_loss lowerCAmelCase_ : Optional[Any] = label_smoothing lowerCAmelCase_ : Union[str, Any] = exclude_bos_score lowerCAmelCase_ : List[Any] = do_marginalize lowerCAmelCase_ : int = title_sep lowerCAmelCase_ : Optional[int] = doc_sep lowerCAmelCase_ : List[str] = n_docs lowerCAmelCase_ : int = max_combined_length lowerCAmelCase_ : Union[str, Any] = dataset lowerCAmelCase_ : int = dataset_split lowerCAmelCase_ : Dict = index_name lowerCAmelCase_ : Union[str, Any] = retrieval_vector_size lowerCAmelCase_ : Optional[Any] = retrieval_batch_size lowerCAmelCase_ : List[str] = passages_path lowerCAmelCase_ : Any = index_path lowerCAmelCase_ : int = use_dummy_dataset lowerCAmelCase_ : Tuple = output_retrieved lowerCAmelCase_ : List[Any] = do_deduplication lowerCAmelCase_ : Union[str, Any] = use_cache if self.forced_eos_token_id is None: lowerCAmelCase_ : List[Any] = getattr(self.generator , '''forced_eos_token_id''' , A_) @classmethod def UpperCAmelCase__ ( cls : str , A_ : PretrainedConfig , A_ : PretrainedConfig , **A_ : Any): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : str = copy.deepcopy(self.__dict__) lowerCAmelCase_ : Tuple = self.question_encoder.to_dict() lowerCAmelCase_ : Dict = self.generator.to_dict() lowerCAmelCase_ : str = self.__class__.model_type return output
103
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis UpperCAmelCase : Tuple = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] UpperCAmelCase : str = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(_lowercase , 1 ): if n < _p: # then we have our last prime to check UpperCAmelCase : int = primes[:idx] break UpperCAmelCase : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: UpperCAmelCase : str = False for r in range(_lowercase ): UpperCAmelCase : Any = pow(_lowercase , d * 2**r , _lowercase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): UpperCAmelCase : Any = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCamelCase ( ) -> None: assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
350
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class A__ ( unittest.TestCase): def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __lowerCAmelCase : Optional[Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = 'sshleifer/tiny-gpt2' __lowerCAmelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Tuple = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : int = 'sgugger/tiny-distilbert-classification' __lowerCAmelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) __lowerCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) __lowerCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = 'sshleifer/tiny-gpt2' __lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : Any = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) __lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = 'patrickvonplaten/t5-tiny-random' __lowerCAmelCase : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) __lowerCAmelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'env.csv' ) , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Tuple = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'env.csv' ) ).exists() ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(_SCREAMING_SNAKE_CASE ): self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'sequential' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'cumulative' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'current' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , 'log.txt' ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'log.txt' ) ).exists() )
182
0
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case__ (unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) a = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCAmelCase ( self : List[str] ) -> Any: a = self.dummy_uncond_unet a = KarrasVeScheduler() a = KarrasVePipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = torch.manual_seed(0 ) a = pipe(num_inference_steps=2 , generator=__lowerCamelCase , output_type="numpy" ).images a = torch.manual_seed(0 ) a = pipe(num_inference_steps=2 , generator=__lowerCamelCase , output_type="numpy" , return_dict=__lowerCamelCase )[0] a = image[0, -3:, -3:, -1] a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: a = "google/ncsnpp-celebahq-256" a = UNetaDModel.from_pretrained(__lowerCamelCase ) a = KarrasVeScheduler() a = KarrasVePipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = torch.manual_seed(0 ) a = pipe(num_inference_steps=20 , generator=__lowerCamelCase , output_type="numpy" ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) a = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
107
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case : """simple docstring""" @staticmethod def __lowerCAmelCase ( *lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Union[str, Any] ): pass def a_ ( lowerCamelCase ): UpperCAmelCase__ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def a_ ( lowerCamelCase ): UpperCAmelCase__ = np.array(lowerCamelCase ) UpperCAmelCase__ = npimg.shape return {"hash": hashimage(lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" snake_case__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : str ): UpperCAmelCase__ = MaskGenerationPipeline(model=lowerCamelCase__ ,image_processor=lowerCamelCase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str ): pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def __lowerCAmelCase ( self : Optional[Any] ): pass @slow @require_torch def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = pipeline('mask-generation' ,model='facebook/sam-vit-huge' ) UpperCAmelCase__ = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase__ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase__ ,decimals=4 ) ,[ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_8_7_1} ] ,) # fmt: on @require_torch @slow def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = 'facebook/sam-vit-huge' UpperCAmelCase__ = pipeline('mask-generation' ,model=lowerCamelCase__ ) UpperCAmelCase__ = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,pred_iou_thresh=1 ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase__ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase__ ,decimals=4 ) ,[ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, ] ,)
98
0
"""simple docstring""" import re def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(__lowerCAmelCase , __lowerCAmelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
371
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = (16, 32, 96, 2_56) lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) _snake_case : int = [] for i in range(len(self.block_out_channels ) - 1 ): _snake_case : int = self.block_out_channels[i] _snake_case : Tuple = self.block_out_channels[i + 1] _snake_case : Dict = nn.Conv( a_, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(a_ ) _snake_case : List[Any] = nn.Conv( a_, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(a_ ) _snake_case : Any = blocks _snake_case : Optional[Any] = nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self: Optional[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : int = self.conv_in(a_ ) _snake_case : Optional[int] = nn.silu(a_ ) for block in self.blocks: _snake_case : Tuple = block(a_ ) _snake_case : int = nn.silu(a_ ) _snake_case : Optional[int] = self.conv_out(a_ ) return embedding @flax_register_to_config class lowercase( nn.Module , __a , __a ): '''simple docstring''' lowercase__ = 32 lowercase__ = 4 lowercase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase__ = False lowercase__ = (3_20, 6_40, 12_80, 12_80) lowercase__ = 2 lowercase__ = 8 lowercase__ = None lowercase__ = 12_80 lowercase__ = 0.0 lowercase__ = False lowercase__ = jnp.floataa lowercase__ = True lowercase__ = 0 lowercase__ = "rgb" lowercase__ = (16, 32, 96, 2_56) def UpperCamelCase_ ( self: int, a_: jax.random.KeyArray ): '''simple docstring''' _snake_case : str = (1, self.in_channels, self.sample_size, self.sample_size) _snake_case : Optional[Any] = jnp.zeros(a_, dtype=jnp.floataa ) _snake_case : List[str] = jnp.ones((1,), dtype=jnp.intaa ) _snake_case : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa ) _snake_case : Any = (1, 3, self.sample_size * 8, self.sample_size * 8) _snake_case : Optional[int] = jnp.zeros(a_, dtype=jnp.floataa ) _snake_case , _snake_case : Tuple = jax.random.split(a_ ) _snake_case : str = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(a_, a_, a_, a_, a_ )["params"] def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[int] = self.block_out_channels _snake_case : Optional[int] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _snake_case : int = self.num_attention_heads or self.attention_head_dim # input _snake_case : Union[str, Any] = nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time _snake_case : int = FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift ) _snake_case : Any = FlaxTimestepEmbedding(a_, dtype=self.dtype ) _snake_case : Optional[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) _snake_case : List[str] = self.only_cross_attention if isinstance(a_, a_ ): _snake_case : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(a_, a_ ): _snake_case : Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down _snake_case : List[str] = [] _snake_case : Tuple = [] _snake_case : int = block_out_channels[0] _snake_case : Optional[Any] = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(a_ ) for i, down_block_type in enumerate(self.down_block_types ): _snake_case : List[Any] = output_channel _snake_case : Any = block_out_channels[i] _snake_case : List[str] = i == len(a_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _snake_case : Optional[int] = FlaxCrossAttnDownBlockaD( in_channels=a_, out_channels=a_, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: _snake_case : List[Any] = FlaxDownBlockaD( in_channels=a_, out_channels=a_, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(a_ ) for _ in range(self.layers_per_block ): _snake_case : List[Any] = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(a_ ) if not is_final_block: _snake_case : List[Any] = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(a_ ) _snake_case : str = down_blocks _snake_case : Union[str, Any] = controlnet_down_blocks # mid _snake_case : Tuple = block_out_channels[-1] _snake_case : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=a_, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) _snake_case : Tuple = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self: str, a_: Any, a_: Tuple, a_: Any, a_: int, a_: float = 1.0, a_: bool = True, a_: bool = False, ): '''simple docstring''' _snake_case : Dict = self.controlnet_conditioning_channel_order if channel_order == "bgr": _snake_case : List[Any] = jnp.flip(a_, axis=1 ) # 1. time if not isinstance(a_, jnp.ndarray ): _snake_case : Any = jnp.array([timesteps], dtype=jnp.intaa ) elif isinstance(a_, jnp.ndarray ) and len(timesteps.shape ) == 0: _snake_case : Union[str, Any] = timesteps.astype(dtype=jnp.floataa ) _snake_case : List[str] = jnp.expand_dims(a_, 0 ) _snake_case : List[str] = self.time_proj(a_ ) _snake_case : str = self.time_embedding(a_ ) # 2. pre-process _snake_case : List[str] = jnp.transpose(a_, (0, 2, 3, 1) ) _snake_case : List[Any] = self.conv_in(a_ ) _snake_case : Union[str, Any] = jnp.transpose(a_, (0, 2, 3, 1) ) _snake_case : Any = self.controlnet_cond_embedding(a_ ) sample += controlnet_cond # 3. down _snake_case : List[str] = (sample,) for down_block in self.down_blocks: if isinstance(a_, a_ ): _snake_case , _snake_case : Optional[Any] = down_block(a_, a_, a_, deterministic=not train ) else: _snake_case , _snake_case : Dict = down_block(a_, a_, deterministic=not train ) down_block_res_samples += res_samples # 4. mid _snake_case : Dict = self.mid_block(a_, a_, a_, deterministic=not train ) # 5. contronet blocks _snake_case : Tuple = () for down_block_res_sample, controlnet_block in zip(a_, self.controlnet_down_blocks ): _snake_case : Any = controlnet_block(a_ ) controlnet_down_block_res_samples += (down_block_res_sample,) _snake_case : List[Any] = controlnet_down_block_res_samples _snake_case : int = self.controlnet_mid_block(a_ ) # 6. scaling _snake_case : int = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=a_, mid_block_res_sample=a_ )
132
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """decision_transformer""" UpperCamelCase_ = ["""past_key_values"""] UpperCamelCase_ = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , UpperCamelCase__ : int=17 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Optional[int]=128 , UpperCamelCase__ : List[str]=4096 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Tuple=1 , UpperCamelCase__ : List[str]=1024 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Tuple="relu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : List[Any]=1E-5 , UpperCamelCase__ : Tuple=0.02 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=5_0256 , UpperCamelCase__ : str=5_0256 , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : List[str]=False , **UpperCamelCase__ : List[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = state_dim SCREAMING_SNAKE_CASE : List[Any] = act_dim SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : str = max_ep_len SCREAMING_SNAKE_CASE : int = action_tanh SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = n_positions SCREAMING_SNAKE_CASE : Optional[Any] = n_layer SCREAMING_SNAKE_CASE : str = n_head SCREAMING_SNAKE_CASE : Union[str, Any] = n_inner SCREAMING_SNAKE_CASE : List[Any] = activation_function SCREAMING_SNAKE_CASE : str = resid_pdrop SCREAMING_SNAKE_CASE : List[str] = embd_pdrop SCREAMING_SNAKE_CASE : Union[str, Any] = attn_pdrop SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = scale_attn_weights SCREAMING_SNAKE_CASE : Dict = use_cache SCREAMING_SNAKE_CASE : str = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : Union[str, Any] = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[Any] = bos_token_id SCREAMING_SNAKE_CASE : Tuple = eos_token_id super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
182
from math import ceil def A ( _lowercase = 1_001 ): SCREAMING_SNAKE_CASE : Any = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * i + 1 SCREAMING_SNAKE_CASE : int = 2 * i SCREAMING_SNAKE_CASE : List[str] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCamelCase : Dict = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
182
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self , a__ , a__=13 , a__=32 , a__=3 , a__=4 , a__=[10, 20, 30, 40] , a__=[2, 2, 3, 2] , a__=True , a__=True , a__=37 , a__="gelu" , a__=10 , a__=0.0_2 , a__=["stage2", "stage3", "stage4"] , a__=[2, 3, 4] , a__=None , ): _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Optional[Any] = num_stages _lowerCAmelCase : int = hidden_sizes _lowerCAmelCase : Optional[Any] = depths _lowerCAmelCase : Any = is_training _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Optional[Any] = num_labels _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : Optional[int] = out_features _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : str = scope def __A ( self ): _lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def __A ( self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : int = ConvNextVaModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = ConvNextVaForImageClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Any = ConvNextVaBackbone(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCAmelCase : List[str] = None _lowerCAmelCase : int = ConvNextVaBackbone(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase : Union[str, Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict def __A ( self ): _lowerCAmelCase : int = self.prepare_config_and_inputs() _lowerCAmelCase : Optional[Any] = config_and_inputs _lowerCAmelCase : int = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _UpperCamelCase : Optional[Any] = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[int] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[Any] = False def __A ( self ): _lowerCAmelCase : Optional[Any] = ConvNextVaModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __A ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ): return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __A ( self ): pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __A ( self ): pass def __A ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCAmelCase : Tuple = True if model_class.__name__ in [ *get_values(a__ ), *get_values(a__ ), ]: continue _lowerCAmelCase : Optional[Any] = model_class(a__ ) model.to(a__ ) model.train() _lowerCAmelCase : str = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _lowerCAmelCase : Optional[int] = model(**a__ ).loss loss.backward() def __A ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCAmelCase : int = False _lowerCAmelCase : List[Any] = True if ( model_class.__name__ in [*get_values(a__ ), *get_values(a__ )] or not model_class.supports_gradient_checkpointing ): continue _lowerCAmelCase : Tuple = model_class(a__ ) model.to(a__ ) model.gradient_checkpointing_enable() model.train() _lowerCAmelCase : Dict = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _lowerCAmelCase : Optional[int] = model(**a__ ).loss loss.backward() def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(a__ ) _lowerCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] _lowerCAmelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): def check_hidden_states_output(a__ , a__ , a__ ): _lowerCAmelCase : Tuple = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Tuple = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : List[str] = True check_hidden_states_output(a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def __A ( self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Dict = ConvNextVaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def __A ( self ): return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : str = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a__ ) _lowerCAmelCase : int = self.default_image_processor _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : Dict = preprocessor(images=a__ , return_tensors="""pt""" ).to(a__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(**a__ ) # verify the logits _lowerCAmelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : int = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
360
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _a : Optional[int] = 'bert-base-cased' _a : Optional[Any] = 'google/pegasus-xsum' _a : Union[str, Any] = [' Sam ate lunch today.', 'Sams lunch ingredients.'] _a : int = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] _a : Union[str, Any] = 'patrickvonplaten/t5-tiny-random' _a : Tuple = 'sshleifer/bart-tiny-random' _a : str = 'sshleifer/tiny-mbart' _a : Optional[int] = 'sshleifer/tiny-marian-en-de' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Path ,_lowerCamelCase : list ) -> str: _lowerCAmelCase : List[Any] = """\n""".join(_lowerCamelCase ) Path(_lowerCamelCase ).open("""w""" ).writelines(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Union[str, Any]: for split in ["train", "val", "test"]: _dump_articles(os.path.join(_lowerCamelCase ,f"{split}.source" ) ,_lowerCamelCase ) _dump_articles(os.path.join(_lowerCamelCase ,f"{split}.target" ) ,_lowerCamelCase ) return tmp_dir class __A ( SCREAMING_SNAKE_CASE_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __A ( self , a__ ): _lowerCAmelCase : str = AutoTokenizer.from_pretrained(a__ ) _lowerCAmelCase : Any = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCAmelCase : Union[str, Any] = max(len(tokenizer.encode(a__ ) ) for a in ARTICLES ) _lowerCAmelCase : Optional[int] = max(len(tokenizer.encode(a__ ) ) for a in SUMMARIES ) _lowerCAmelCase : str = 4 _lowerCAmelCase : Optional[int] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _lowerCAmelCase , _lowerCAmelCase : Optional[int] = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. _lowerCAmelCase : Optional[int] = SeqaSeqDataset( a__ , data_dir=a__ , type_path="""train""" , max_source_length=a__ , max_target_length=a__ , src_lang=a__ , tgt_lang=a__ , ) _lowerCAmelCase : int = DataLoader(a__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(a__ , a__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _lowerCAmelCase : Any = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __A ( self , a__ ): _lowerCAmelCase : Any = AutoTokenizer.from_pretrained(a__ ) _lowerCAmelCase : Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCAmelCase : Optional[int] = max(len(tokenizer.encode(a__ ) ) for a in ARTICLES ) _lowerCAmelCase : Any = max(len(tokenizer.encode(a__ ) ) for a in SUMMARIES ) _lowerCAmelCase : int = 4 _lowerCAmelCase : List[str] = LegacySeqaSeqDataset( a__ , data_dir=a__ , type_path="""train""" , max_source_length=20 , max_target_length=a__ , ) _lowerCAmelCase : List[Any] = DataLoader(a__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __A ( self ): _lowerCAmelCase : Any = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) _lowerCAmelCase : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _lowerCAmelCase : List[Any] = tmp_dir.joinpath("""train.source""" ).open().readlines() _lowerCAmelCase : str = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(a__ , a__ , 128 , a__ ) _lowerCAmelCase : List[Any] = {x.name for x in tmp_dir.iterdir()} _lowerCAmelCase : Tuple = {x.name for x in save_dir.iterdir()} _lowerCAmelCase : Union[str, Any] = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(a__ ) < len(a__ ) assert len(a__ ) == 1 assert len(packed_examples[0] ) == sum(len(a__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def __A ( self ): if not FAIRSEQ_AVAILABLE: return _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = self._get_dataset(max_len=64 ) _lowerCAmelCase : Optional[int] = 64 _lowerCAmelCase : str = ds.make_dynamic_sampler(a__ , required_batch_size_multiple=a__ ) _lowerCAmelCase : int = [len(a__ ) for x in batch_sampler] assert len(set(a__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(a__ ) == len(a__ ) # no dropped or added examples _lowerCAmelCase : List[str] = DataLoader(a__ , batch_sampler=a__ , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[int] = [] for batch in data_loader: _lowerCAmelCase : int = batch["""input_ids"""].shape _lowerCAmelCase : Union[str, Any] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _lowerCAmelCase : List[str] = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(a__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(a__ ) assert num_src_per_batch[0] == max(a__ ) if failures: raise AssertionError(F"too many tokens in {len(a__ )} batches" ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = self._get_dataset(max_len=512 ) _lowerCAmelCase : int = 2 _lowerCAmelCase : List[str] = ds.make_sortish_sampler(a__ , shuffle=a__ ) _lowerCAmelCase : Dict = DataLoader(a__ , batch_size=a__ , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCAmelCase : int = DataLoader(a__ , batch_size=a__ , collate_fn=ds.collate_fn , num_workers=2 , sampler=a__ ) _lowerCAmelCase : int = tokenizer.pad_token_id def count_pad_tokens(a__ , a__="input_ids" ): return [batch[k].eq(a__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(a__ , k="""labels""" ) ) < sum(count_pad_tokens(a__ , k="""labels""" ) ) assert sum(count_pad_tokens(a__ ) ) < sum(count_pad_tokens(a__ ) ) assert len(a__ ) == len(a__ ) def __A ( self , a__=1000 , a__=128 ): if os.getenv("""USE_REAL_DATA""" , a__ ): _lowerCAmelCase : List[str] = """examples/seq2seq/wmt_en_ro""" _lowerCAmelCase : str = max_len * 2 * 64 if not Path(a__ ).joinpath("""train.len""" ).exists(): save_len_file(a__ , a__ ) else: _lowerCAmelCase : List[str] = """examples/seq2seq/test_data/wmt_en_ro""" _lowerCAmelCase : Dict = max_len * 4 save_len_file(a__ , a__ ) _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(a__ ) _lowerCAmelCase : Dict = SeqaSeqDataset( a__ , data_dir=a__ , type_path="""train""" , max_source_length=a__ , max_target_length=a__ , n_obs=a__ , ) return ds, max_tokens, tokenizer def __A ( self ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self._get_dataset() _lowerCAmelCase : Any = set(DistributedSortishSampler(a__ , 256 , num_replicas=2 , rank=0 , add_extra_examples=a__ ) ) _lowerCAmelCase : Optional[int] = set(DistributedSortishSampler(a__ , 256 , num_replicas=2 , rank=1 , add_extra_examples=a__ ) ) assert idsa.intersection(a__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __A ( self , a__ ): _lowerCAmelCase : int = AutoTokenizer.from_pretrained(a__ , use_fast=a__ ) if tok_name == MBART_TINY: _lowerCAmelCase : Dict = SeqaSeqDataset( a__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) _lowerCAmelCase : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _lowerCAmelCase : List[Any] = SeqaSeqDataset( a__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) _lowerCAmelCase : Tuple = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(a__ ) == 1 if tok_name == BART_TINY else len(a__ ) == 0
126
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class __magic_name__ ( _UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = "fnet" def __init__( self , _a=32_000 , _a=768 , _a=12 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-1_2 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowerCamelCase = vocab_size lowerCamelCase = max_position_embeddings lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = initializer_range lowerCamelCase = type_vocab_size lowerCamelCase = layer_norm_eps lowerCamelCase = use_tpu_fourier_optimizations lowerCamelCase = tpu_short_seq_length
291
from typing import Union import fire import torch from tqdm import tqdm def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "cpu" , SCREAMING_SNAKE_CASE__ : Union[str, None] = None ) -> None: '''simple docstring''' A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) A__ = v.half() if save_path is None: # overwrite src_path A__ = src_path torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": fire.Fire(convert)
7
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __A : Union[str, Any] = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
'''simple docstring''' def __snake_case( _lowerCAmelCase = 1_000 ) -> int: return sum(e for e in range(3 , _lowerCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
35
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : Dict = SwinConfig() snake_case__ : Optional[Any] = swin_name.split("""_""" ) snake_case__ : Any = name_split[1] snake_case__ : List[Any] = int(name_split[4] ) snake_case__ : int = int(name_split[3][-1] ) if model_size == "tiny": snake_case__ : List[Any] = 96 snake_case__ : int = (2, 2, 6, 2) snake_case__ : int = (3, 6, 12, 24) elif model_size == "small": snake_case__ : Union[str, Any] = 96 snake_case__ : Optional[Any] = (2, 2, 18, 2) snake_case__ : str = (3, 6, 12, 24) elif model_size == "base": snake_case__ : Dict = 128 snake_case__ : str = (2, 2, 18, 2) snake_case__ : Dict = (4, 8, 16, 32) else: snake_case__ : List[str] = 192 snake_case__ : str = (2, 2, 18, 2) snake_case__ : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: snake_case__ : str = 21_841 else: snake_case__ : List[str] = 1_000 snake_case__ : int = """huggingface/label-files""" snake_case__ : Any = """imagenet-1k-id2label.json""" snake_case__ : List[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : Dict = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Optional[int] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : List[Any] = img_size snake_case__ : Dict = num_classes snake_case__ : Dict = embed_dim snake_case__ : Optional[int] = depths snake_case__ : int = num_heads snake_case__ : Optional[int] = window_size return config def __snake_case( _lowerCAmelCase ) -> Dict: if "patch_embed.proj" in name: snake_case__ : List[str] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case__ : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: snake_case__ : str = """encoder.""" + name if "attn.proj" in name: snake_case__ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case__ : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case__ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case__ : Union[str, Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": snake_case__ : Tuple = """layernorm.weight""" if name == "norm.bias": snake_case__ : Union[str, Any] = """layernorm.bias""" if "head" in name: snake_case__ : Optional[int] = name.replace("""head""" , """classifier""" ) else: snake_case__ : List[str] = """swin.""" + name return name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case__ : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: snake_case__ : Dict = key.split(""".""" ) snake_case__ : Optional[int] = int(key_split[1] ) snake_case__ : Union[str, Any] = int(key_split[3] ) snake_case__ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ : Optional[Any] = val[:dim, :] snake_case__ : Tuple = val[ dim : dim * 2, : ] snake_case__ : Dict = val[-dim:, :] else: snake_case__ : Tuple = val[ :dim ] snake_case__ : int = val[ dim : dim * 2 ] snake_case__ : int = val[ -dim: ] else: snake_case__ : Union[str, Any] = val return orig_state_dict def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() snake_case__ : Optional[int] = get_swin_config(_lowerCAmelCase ) snake_case__ : Optional[Any] = SwinForImageClassification(_lowerCAmelCase ) model.eval() snake_case__ : str = convert_state_dict(timm_model.state_dict() , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) snake_case__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Dict = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) snake_case__ : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) snake_case__ : Optional[int] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) snake_case__ : Optional[Any] = timm_model(inputs["""pixel_values"""] ) snake_case__ : str = model(**_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print(f"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
35
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : List[Any] = PNDMScheduler() SCREAMING_SNAKE_CASE : str = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' , return_dict=_lowerCamelCase )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : str = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = PNDMScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pndm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
1
lowerCAmelCase__ = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase__ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
68
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
from collections import defaultdict def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[str] = first_str.lower().strip() __lowerCamelCase : Any = second_str.lower().strip() # Remove whitespace __lowerCamelCase : str = first_str.replace(' ' , '' ) __lowerCamelCase : Dict = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): return False # Default values for count should be 0 __lowerCamelCase : defaultdict[str, int] = defaultdict(SCREAMING_SNAKE_CASE__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(SCREAMING_SNAKE_CASE__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowercase_ = input('Enter the first string ').strip() lowercase_ = input('Enter the second string ').strip() lowercase_ = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
194
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['ConvNextFeatureExtractor'] lowercase_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
194
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: if n == 1 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return 0 elif n == 2: return 1 else: lowerCamelCase__ : List[str] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 2 while digits < n: index += 1 lowerCamelCase__ : Union[str, Any] = len(str(fibonacci(_UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 1000 ) -> int: return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
50
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCAmelCase = re.compile(r"""\s+""") def UpperCAmelCase_ (__a : Any ): """simple docstring""" return {"hash": hashlib.mda(re.sub(__a , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[str] = [len(__a ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__a ), "line_max": max(__a )} def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Union[str, Any] = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def UpperCAmelCase_ (__a : Optional[int] , __a : Any ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def UpperCAmelCase_ (__a : int , __a : Union[str, Any]=5 ): """simple docstring""" _a : Optional[int] = ['auto-generated', 'autogenerated', 'automatically generated'] _a : List[str] = example['content'].splitlines() for _, line in zip(range(__a ) , __a ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCAmelCase_ (__a : List[str] , __a : Dict=5 , __a : Tuple=0.05 ): """simple docstring""" _a : Optional[int] = ['unit tests', 'test file', 'configuration file'] _a : int = example['content'].splitlines() _a : int = 0 _a : Dict = 0 # first test for _, line in zip(range(__a ) , __a ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _a : int = example['content'].count('\n' ) _a : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" _a : List[str] = ['def ', 'class ', 'for ', 'while '] _a : str = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCAmelCase_ (__a : int , __a : Any=4 ): """simple docstring""" _a : List[str] = example['content'].splitlines() _a : Dict = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Optional[Any] = tokenizer(example['content'] , truncation=__a )['input_ids'] _a : Optional[int] = len(example['content'] ) / len(__a ) return {"ratio": ratio} def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = {} results.update(get_hash(__a ) ) results.update(line_stats(__a ) ) results.update(alpha_stats(__a ) ) results.update(char_token_ratio(__a ) ) results.update(is_autogenerated(__a ) ) results.update(is_config_or_test(__a ) ) results.update(has_no_keywords(__a ) ) results.update(has_few_assignments(__a ) ) return results def UpperCAmelCase_ (__a : Any , __a : Any , __a : str ): """simple docstring""" if not check_uniques(__a , __a ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCAmelCase_ (__a : Union[str, Any] ): """simple docstring""" with open(__a , 'rb' ) as f_in: with gzip.open(str(__a ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__a , __a ) os.unlink(__a ) # Settings __lowerCAmelCase = HfArgumentParser(PreprocessingArguments) __lowerCAmelCase = parser.parse_args() if args.num_workers is None: __lowerCAmelCase = multiprocessing.cpu_count() __lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCAmelCase = time.time() __lowerCAmelCase = load_dataset(args.dataset_name, split="""train""") print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCAmelCase = time.time() __lowerCAmelCase = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCAmelCase = set(ds.unique("""hash""")) __lowerCAmelCase = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCAmelCase = time.time() __lowerCAmelCase = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCAmelCase = time.time() __lowerCAmelCase , __lowerCAmelCase = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCAmelCase = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) __lowerCAmelCase = output_dir / """data""" data_dir.mkdir(exist_ok=True) __lowerCAmelCase = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCAmelCase = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCAmelCase = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
271
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCamelCase_ (__A ): __magic_name__ = '''beit''' def __init__( self : str , lowerCAmelCase_ : Optional[int]=8_192 , lowerCAmelCase_ : Tuple=768 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : Dict=12 , lowerCAmelCase_ : Optional[Any]=3_072 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0_2 , lowerCAmelCase_ : List[Any]=1e-12 , lowerCAmelCase_ : List[Any]=224 , lowerCAmelCase_ : List[Any]=16 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Tuple=[3, 5, 7, 11] , lowerCAmelCase_ : Any=[1, 2, 3, 6] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Any=0.4 , lowerCAmelCase_ : Optional[int]=256 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Optional[int]=255 , **lowerCAmelCase_ : Optional[Any] , ) -> Tuple: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : str = use_mask_token UpperCAmelCase_ : Union[str, Any] = use_absolute_position_embeddings UpperCAmelCase_ : List[Any] = use_relative_position_bias UpperCAmelCase_ : str = use_shared_relative_position_bias UpperCAmelCase_ : Optional[Any] = layer_scale_init_value UpperCAmelCase_ : str = drop_path_rate UpperCAmelCase_ : str = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase_ : int = out_indices UpperCAmelCase_ : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase_ : Dict = use_auxiliary_head UpperCAmelCase_ : Any = auxiliary_loss_weight UpperCAmelCase_ : Any = auxiliary_channels UpperCAmelCase_ : int = auxiliary_num_convs UpperCAmelCase_ : Any = auxiliary_concat_input UpperCAmelCase_ : Dict = semantic_loss_ignore_index class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: return 1e-4
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class UpperCamelCase_ (__A ): __magic_name__ = '''table-transformer''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[Any]=100 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : List[Any]=2_048 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : List[Any]=2_048 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]="relu" , lowerCAmelCase_ : List[Any]=256 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=0.0_2 , lowerCAmelCase_ : Any=1.0 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Dict="sine" , lowerCAmelCase_ : Optional[Any]="resnet50" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=0.1 , **lowerCAmelCase_ : Dict , ) -> Union[str, Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Dict = backbone_config.get("model_type" ) UpperCAmelCase_ : str = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowerCAmelCase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Optional[Any] = num_queries UpperCAmelCase_ : List[str] = d_model UpperCAmelCase_ : Union[str, Any] = encoder_ffn_dim UpperCAmelCase_ : Optional[Any] = encoder_layers UpperCAmelCase_ : List[str] = encoder_attention_heads UpperCAmelCase_ : int = decoder_ffn_dim UpperCAmelCase_ : int = decoder_layers UpperCAmelCase_ : Optional[int] = decoder_attention_heads UpperCAmelCase_ : List[str] = dropout UpperCAmelCase_ : Dict = attention_dropout UpperCAmelCase_ : Union[str, Any] = activation_dropout UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : int = init_std UpperCAmelCase_ : Any = init_xavier_std UpperCAmelCase_ : Union[str, Any] = encoder_layerdrop UpperCAmelCase_ : Dict = decoder_layerdrop UpperCAmelCase_ : Union[str, Any] = encoder_layers UpperCAmelCase_ : Any = auxiliary_loss UpperCAmelCase_ : List[str] = position_embedding_type UpperCAmelCase_ : Dict = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Tuple = dilation # Hungarian matcher UpperCAmelCase_ : Optional[Any] = class_cost UpperCAmelCase_ : List[Any] = bbox_cost UpperCAmelCase_ : Optional[int] = giou_cost # Loss coefficients UpperCAmelCase_ : Optional[int] = mask_loss_coefficient UpperCAmelCase_ : List[str] = dice_loss_coefficient UpperCAmelCase_ : Union[str, Any] = bbox_loss_coefficient UpperCAmelCase_ : Union[str, Any] = giou_loss_coefficient UpperCAmelCase_ : Dict = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.d_model class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> float: return 1e-5 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 12
253
0
"""simple docstring""" from __future__ import annotations import queue class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = data SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Dict = None def lowercase_ ( ): print("""\n********Press N to stop entering at any point of time********\n""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = input("""Enter the value of the root node: """ ).strip().lower() SCREAMING_SNAKE_CASE__ : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE__ : int = TreeNode(int(_snake_case ) ) q.put(_snake_case ) while not q.empty(): SCREAMING_SNAKE_CASE__ : Dict = q.get() SCREAMING_SNAKE_CASE__ : Any = f'''Enter the left node of {node_found.data}: ''' SCREAMING_SNAKE_CASE__ : List[Any] = input(_snake_case ).strip().lower() or """n""" if check == "n": return tree_node SCREAMING_SNAKE_CASE__ : Union[str, Any] = TreeNode(int(_snake_case ) ) SCREAMING_SNAKE_CASE__ : List[Any] = left_node q.put(_snake_case ) SCREAMING_SNAKE_CASE__ : int = f'''Enter the right node of {node_found.data}: ''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = input(_snake_case ).strip().lower() or """n""" if check == "n": return tree_node SCREAMING_SNAKE_CASE__ : Any = TreeNode(int(_snake_case ) ) SCREAMING_SNAKE_CASE__ : str = right_node q.put(_snake_case ) raise def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return print(node.data ,end=""",""" ) pre_order(node.left ) pre_order(node.right ) def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return in_order(node.left ) print(node.data ,end=""",""" ) in_order(node.right ) def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=""",""" ) def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return SCREAMING_SNAKE_CASE__ : queue.Queue = queue.Queue() q.put(_snake_case ) while not q.empty(): SCREAMING_SNAKE_CASE__ : int = q.get() print(node_dequeued.data ,end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return SCREAMING_SNAKE_CASE__ : queue.Queue = queue.Queue() q.put(_snake_case ) while not q.empty(): SCREAMING_SNAKE_CASE__ : int = [] while not q.empty(): SCREAMING_SNAKE_CASE__ : List[Any] = q.get() print(node_dequeued.data ,end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_snake_case ) def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return SCREAMING_SNAKE_CASE__ : list[TreeNode] = [] SCREAMING_SNAKE_CASE__ : str = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=""",""" ) stack.append(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE__ : Tuple = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE__ : Dict = n.right def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return SCREAMING_SNAKE_CASE__ : list[TreeNode] = [] SCREAMING_SNAKE_CASE__ : Dict = node while n or stack: while n: stack.append(_snake_case ) SCREAMING_SNAKE_CASE__ : str = n.left SCREAMING_SNAKE_CASE__ : int = stack.pop() print(n.data ,end=""",""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = n.right def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = [], [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = node stacka.append(_snake_case ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE__ : Optional[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_snake_case ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=""",""" ) def lowercase_ ( _snake_case = "" ,_snake_case=50 ,_snake_case="*" ): if not s: return "\n" + width * char SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = divmod(width - len(_snake_case ) - 2 ,2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) UpperCAmelCase__ : TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 5_0 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
25
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __UpperCAmelCase : Tuple = logging.get_logger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *A : Union[str, Any] , **A : Optional[int] ): warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , A , ) super().__init__(*A , **A )
111
0
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins lowercase__ = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Any: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: '''simple docstring''' snake_case : Dict = tmp_path_factory.getbasetemp() / '''cache''' snake_case : Optional[Any] = test_hf_cache_home / '''datasets''' snake_case : int = test_hf_cache_home / '''metrics''' snake_case : Tuple = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(SCREAMING_SNAKE_CASE__ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(SCREAMING_SNAKE_CASE__ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(SCREAMING_SNAKE_CASE__ ) ) snake_case : List[Any] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE__ ) ) snake_case : int = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE__ ) ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ , scope='''session''' ) def _UpperCamelCase ( ) -> Dict: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , SCREAMING_SNAKE_CASE__ )
83
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = """efficientnet""" def __init__( self : str , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 600 , UpperCamelCase__ : float = 2.0 , UpperCamelCase__ : float = 3.1 , UpperCamelCase__ : int = 8 , UpperCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase__ : List[int] = [] , UpperCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase__ : float = 0.25 , UpperCamelCase__ : str = "swish" , UpperCamelCase__ : int = 2560 , UpperCamelCase__ : str = "mean" , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 0.001 , UpperCamelCase__ : float = 0.99 , UpperCamelCase__ : float = 0.5 , UpperCamelCase__ : float = 0.2 , **UpperCamelCase__ : Any , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) snake_case : Dict = num_channels snake_case : List[Any] = image_size snake_case : Any = width_coefficient snake_case : int = depth_coefficient snake_case : List[str] = depth_divisor snake_case : Tuple = kernel_sizes snake_case : Optional[Any] = in_channels snake_case : Optional[Any] = out_channels snake_case : Dict = depthwise_padding snake_case : Optional[Any] = strides snake_case : List[str] = num_block_repeats snake_case : Any = expand_ratios snake_case : Any = squeeze_expansion_ratio snake_case : Optional[Any] = hidden_act snake_case : Optional[int] = hidden_dim snake_case : Dict = pooling_type snake_case : Any = initializer_range snake_case : Optional[Any] = batch_norm_eps snake_case : Tuple = batch_norm_momentum snake_case : Any = dropout_rate snake_case : str = drop_connect_rate snake_case : Dict = sum(UpperCamelCase__ ) * 4 class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = version.parse("""1.11""" ) @property def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase ( self : Tuple ) -> float: """simple docstring""" return 1e-5
83
1
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate snake_case_ : List[str] = trt.Logger(trt.Logger.WARNING) snake_case_ : Tuple = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) snake_case_ : str = logging.getLogger(__name__) snake_case_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) snake_case_ : Dict = parser.parse_args() if args.tokenizer_name: snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) snake_case_ : int = args.per_device_eval_batch_size snake_case_ : Union[str, Any] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties snake_case_ : str = True snake_case_ : Tuple = 'temp_engine/bert-fp32.engine' if args.fpaa: snake_case_ : Tuple = 'temp_engine/bert-fp16.engine' if args.inta: snake_case_ : Dict = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') snake_case_ : Tuple = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network snake_case_ : Dict = [network.get_input(i) for i in range(network.num_inputs)] snake_case_ : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: snake_case_ : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) snake_case_ : Any = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) snake_case_ : Optional[int] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = np.asarray(inputs['input_ids'] , dtype=np.intaa ) _UpperCamelCase : List[str] = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) _UpperCamelCase : Optional[Any] = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , UpperCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , UpperCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , UpperCAmelCase_ ) # start time _UpperCamelCase : List[str] = time.time() # Run inference context.execute_async( bindings=[int(UpperCAmelCase_ ) for d_inp in d_inputs] + [int(UpperCAmelCase_ ), int(UpperCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) cuda.memcpy_dtoh_async(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time _UpperCamelCase : str = time.time() _UpperCamelCase : Any = end_time - start_time _UpperCamelCase : Tuple = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. snake_case_ : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case_ : int = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. snake_case_ : Optional[Any] = raw_datasets['validation'].column_names snake_case_ : Tuple = 'question' if 'question' in column_names else column_names[0] snake_case_ : Tuple = 'context' if 'context' in column_names else column_names[1] snake_case_ : Optional[Any] = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). snake_case_ : Optional[Any] = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case_ : Optional[int] = min(args.max_seq_length, tokenizer.model_max_length) def A__ ( UpperCAmelCase_ ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace _UpperCamelCase : Optional[int] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _UpperCamelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=UpperCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _UpperCamelCase : Any = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _UpperCamelCase : Optional[int] = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _UpperCamelCase : List[str] = tokenized_examples.sequence_ids(UpperCAmelCase_ ) _UpperCamelCase : List[str] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _UpperCamelCase : Any = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _UpperCamelCase : List[str] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples snake_case_ : Any = raw_datasets['validation'] # Validation Feature Creation snake_case_ : List[str] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) snake_case_ : Dict = default_data_collator snake_case_ : str = eval_dataset.remove_columns(['example_id', 'offset_mapping']) snake_case_ : Tuple = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. _UpperCamelCase : Dict = postprocess_qa_predictions( examples=UpperCAmelCase_ , features=UpperCAmelCase_ , predictions=UpperCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=UpperCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _UpperCamelCase : List[Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: _UpperCamelCase : Any = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] _UpperCamelCase : List[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=UpperCAmelCase_ , label_ids=UpperCAmelCase_ ) snake_case_ : Union[str, Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def A__ ( UpperCAmelCase_ ): return trt.volume(engine.get_binding_shape(UpperCAmelCase_ ) ) * engine.get_binding_dtype(UpperCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. snake_case_ : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer snake_case_ : List[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) snake_case_ : List[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) snake_case_ : Union[str, Any] = cuda.mem_alloc(h_outputa.nbytes) snake_case_ : List[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. snake_case_ : Optional[Any] = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F""" Num examples = {len(eval_dataset)}""") logger.info(F""" Batch size = {args.per_device_eval_batch_size}""") snake_case_ : List[Any] = 0.0 snake_case_ : List[str] = 0 snake_case_ : str = timeit.default_timer() snake_case_ : Union[str, Any] = None for step, batch in enumerate(eval_dataloader): snake_case_ , snake_case_ : Any = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 snake_case_ , snake_case_ : List[Any] = outputs snake_case_ : Optional[Any] = torch.tensor(start_logits) snake_case_ : Optional[Any] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered snake_case_ : List[str] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) snake_case_ : Tuple = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) snake_case_ : int = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) snake_case_ : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: snake_case_ : int = nested_truncate(all_preds, len(eval_dataset)) snake_case_ : List[str] = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1000)) logger.info('Total Number of Inference = %d', niter) snake_case_ : List[str] = post_processing_function(eval_examples, eval_dataset, all_preds) snake_case_ : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"""Evaluation metrics: {eval_metric}""")
83
'''simple docstring''' import os from datetime import datetime as dt from github import Github snake_case_ : Any = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def A__ ( ): _UpperCamelCase : Tuple = Github(os.environ['GITHUB_TOKEN'] ) _UpperCamelCase : List[Any] = g.get_repo('huggingface/diffusers' ) _UpperCamelCase : List[Any] = repo.get_issues(state='open' ) for issue in open_issues: _UpperCamelCase : Dict = sorted(issue.get_comments() , key=lambda UpperCAmelCase_ : i.created_at , reverse=UpperCAmelCase_ ) _UpperCamelCase : List[str] = comments[0] if len(UpperCAmelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
83
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowercase = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ lowercase = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ lowercase = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple ): '''simple docstring''' return float((preds == labels).mean() ) def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : Dict ): '''simple docstring''' UpperCamelCase__ = simple_accuracy(UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = float(fa_score(y_true=UpperCamelCase__, y_pred=UpperCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = np.array(UpperCamelCase__ ) UpperCamelCase__ = np.array(UpperCamelCase__ ) UpperCamelCase__ = en_sentvecs.shape[0] # mean centering UpperCamelCase__ = en_sentvecs - np.mean(UpperCamelCase__, axis=0 ) UpperCamelCase__ = in_sentvecs - np.mean(UpperCamelCase__, axis=0 ) UpperCamelCase__ = cdist(UpperCamelCase__, UpperCamelCase__, '''cosine''' ) UpperCamelCase__ = np.array(range(UpperCamelCase__ ) ) UpperCamelCase__ = sim.argsort(axis=1 )[:, :10] UpperCamelCase__ = np.any(preds == actual[:, None], axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def A_ ( self : Optional[Any] ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def A_ ( self : str , _a : Dict , _a : Tuple ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_a , _a )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_a , _a ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
35
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' _A : Any = '''maskformer''' _A : Any = {'''hidden_size''': '''mask_feature_size'''} _A : List[str] = ['''resnet''', '''swin'''] _A : Tuple = ['''detr'''] def __init__( self : Optional[Any] , _a : int = 256 , _a : int = 256 , _a : float = 0.1 , _a : bool = False , _a : Optional[Dict] = None , _a : Optional[Dict] = None , _a : float = 0.02 , _a : float = 1.0 , _a : float = 1.0 , _a : float = 1.0 , _a : float = 20.0 , _a : Optional[bool] = None , **_a : List[str] , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCamelCase__ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): UpperCamelCase__ = backbone_config.pop('''model_type''' ) UpperCamelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCamelCase__ = DetrConfig() else: # verify that the decoder is supported UpperCamelCase__ = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {",".join(self.decoders_supported )}""" ) if isinstance(_a , _a ): UpperCamelCase__ = CONFIG_MAPPING[decoder_type] UpperCamelCase__ = config_class.from_dict(_a ) UpperCamelCase__ = backbone_config UpperCamelCase__ = decoder_config # main feature dimension for the model UpperCamelCase__ = fpn_feature_size UpperCamelCase__ = mask_feature_size # initializer UpperCamelCase__ = init_std UpperCamelCase__ = init_xavier_std # Hungarian matcher && loss UpperCamelCase__ = cross_entropy_weight UpperCamelCase__ = dice_weight UpperCamelCase__ = mask_weight UpperCamelCase__ = use_auxiliary_loss UpperCamelCase__ = no_object_weight UpperCamelCase__ = output_auxiliary_logits UpperCamelCase__ = self.decoder_config.encoder_attention_heads UpperCamelCase__ = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def A_ ( cls : Tuple , _a : PretrainedConfig , _a : PretrainedConfig , **_a : str ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def A_ ( self : str ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.backbone_config.to_dict() UpperCamelCase__ = self.decoder_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
35
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class a_ (_a , _a , _a , unittest.TestCase ): __lowerCAmelCase : Any = StableDiffusionControlNetImgaImgPipeline __lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __lowerCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) __lowerCAmelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) _lowerCAmelCase : str = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) _lowerCAmelCase : Tuple = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _lowerCAmelCase : Any = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _lowerCAmelCase : Any = CLIPTextModel(snake_case_ ) _lowerCAmelCase : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase : Optional[Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __UpperCamelCase ( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith("""mps""" ): _lowerCAmelCase : List[Any] = torch.manual_seed(snake_case_ ) else: _lowerCAmelCase : Dict = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : str = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ) _lowerCAmelCase : Optional[Any] = floats_tensor(control_image.shape , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : str = Image.fromarray(np.uinta(snake_case_ ) ).convert("""RGB""" ).resize((6_4, 6_4) ) _lowerCAmelCase : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __UpperCamelCase ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __UpperCamelCase ( self ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = StableDiffusionControlNetImgaImgPipeline __lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase : Any = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __UpperCamelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(snake_case_ ): if isinstance(snake_case_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _lowerCAmelCase : int = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(snake_case_ ) torch.manual_seed(0 ) _lowerCAmelCase : Dict = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(snake_case_ ) torch.manual_seed(0 ) _lowerCAmelCase : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _lowerCAmelCase : Dict = CLIPTextModel(snake_case_ ) _lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase : str = MultiControlNetModel([controlneta, controlneta] ) _lowerCAmelCase : Optional[Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __UpperCamelCase ( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith("""mps""" ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case_ ) else: _lowerCAmelCase : Optional[int] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _lowerCAmelCase : Any = 2 _lowerCAmelCase : Dict = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ), ] _lowerCAmelCase : Any = floats_tensor(control_image[0].shape , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _lowerCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Optional[int] = Image.fromarray(np.uinta(snake_case_ ) ).convert("""RGB""" ).resize((6_4, 6_4) ) _lowerCAmelCase : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : List[str] = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) _lowerCAmelCase : str = 10.0 _lowerCAmelCase : int = 4 _lowerCAmelCase : Any = self.get_dummy_inputs(snake_case_ ) _lowerCAmelCase : List[Any] = steps _lowerCAmelCase : Optional[int] = scale _lowerCAmelCase : Optional[Any] = pipe(**snake_case_ )[0] _lowerCAmelCase : List[str] = self.get_dummy_inputs(snake_case_ ) _lowerCAmelCase : List[str] = steps _lowerCAmelCase : Union[str, Any] = scale _lowerCAmelCase : Any = pipe(**snake_case_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _lowerCAmelCase : str = self.get_dummy_inputs(snake_case_ ) _lowerCAmelCase : Tuple = steps _lowerCAmelCase : Any = scale _lowerCAmelCase : Optional[Any] = pipe(**snake_case_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(snake_case_ ) _lowerCAmelCase : str = steps _lowerCAmelCase : Optional[Any] = scale _lowerCAmelCase : int = pipe(**snake_case_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __UpperCamelCase ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __UpperCamelCase ( self ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(snake_case_ ) except NotImplementedError: pass @slow @require_torch_gpu class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): _lowerCAmelCase : Any = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _lowerCAmelCase : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=snake_case_ , controlnet=snake_case_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case_ ) _lowerCAmelCase : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase : str = """evil space-punk bird""" _lowerCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((5_1_2, 5_1_2) ) _lowerCAmelCase : List[str] = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((5_1_2, 5_1_2) ) _lowerCAmelCase : Optional[Any] = pipe( snake_case_ , snake_case_ , control_image=snake_case_ , generator=snake_case_ , output_type="""np""" , num_inference_steps=5_0 , strength=0.6 , ) _lowerCAmelCase : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
309
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
1
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE = "bart" SCREAMING_SNAKE_CASE = True @st.cache(allow_output_mutation=lowercase_ ) def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: if LOAD_DENSE_INDEX: A__ = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) A__ = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) A__ = qar_model.eval() else: A__, A__ = (None, None) if MODEL_TYPE == "bart": A__ = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) A__ = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) A__ = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) A__ = sas_model.eval() else: A__, A__ = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowercase_ ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: if LOAD_DENSE_INDEX: A__ = faiss.StandardGpuResources() A__ = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] A__ = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 1_28) , ) A__ = faiss.IndexFlatIP(1_28 ) A__ = faiss.index_cpu_to_gpu(lowercase_ , 1 , lowercase_ ) wikiaab_gpu_index_flat.add(lowercase_ ) # TODO fix for larger GPU else: A__, A__ = (None, None) A__ = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowercase_ ) def _SCREAMING_SNAKE_CASE ( ) -> Any: A__ = datasets.load_dataset("eli5" , name="LFQA_reddit" ) A__ = elia["train_eli5"] A__ = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 1_28) ) A__ = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(lowercase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = load_indexes() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = load_models() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = load_train_data() def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=10 ) -> Any: A__ = embed_questions_for_retrieval([question] , lowercase_ , lowercase_ ) A__, A__ = eli5_train_q_index.search(lowercase_ , lowercase_ ) A__ = [elia_train[int(lowercase_ )] for i in I[0]] return nn_examples def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_="wiki40b" , lowercase_="dense" , lowercase_=10 ) -> Any: if source == "none": A__, A__ = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": A__, A__ = query_qa_dense_index( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: A__, A__ = query_es_index( lowercase_ , lowercase_ , index_name="english_wiki40b_snippets_100w" , n_results=lowercase_ , ) A__ = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] A__ = "question: {} context: {}".format(lowercase_ , lowercase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowercase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowercase_ : None), } ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=64 , lowercase_=2_56 , lowercase_=False , lowercase_=2 , lowercase_=0.9_5 , lowercase_=0.8 ) -> List[Any]: with torch.no_grad(): A__ = qa_sas_generate( lowercase_ , lowercase_ , lowercase_ , num_answers=1 , num_beams=lowercase_ , min_len=lowercase_ , max_len=lowercase_ , do_sample=lowercase_ , temp=lowercase_ , top_p=lowercase_ , top_k=lowercase_ , max_input_length=10_24 , device="cuda:0" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE = action_list.index(action_st) SCREAMING_SNAKE_CASE = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE = "wiki40b" SCREAMING_SNAKE_CASE = "dense" SCREAMING_SNAKE_CASE = "beam" SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 64 SCREAMING_SNAKE_CASE = 256 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE = None # start main text SCREAMING_SNAKE_CASE = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE = support_list[:10] SCREAMING_SNAKE_CASE = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE = sec_titles.split(" & ") SCREAMING_SNAKE_CASE = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE = find_nearest_training(question) SCREAMING_SNAKE_CASE = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
230
"""simple docstring""" SCREAMING_SNAKE_CASE = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" SCREAMING_SNAKE_CASE = [{"type": "code", "content": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
230
1
from collections import defaultdict def __magic_name__ ( __a : str , __a : str ): '''simple docstring''' UpperCamelCase__ = first_str.lower().strip() UpperCamelCase__ = second_str.lower().strip() # Remove whitespace UpperCamelCase__ = first_str.replace(""" """ , """""" ) UpperCamelCase__ = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(a_ ) != len(a_ ): return False # Default values for count should be 0 UpperCamelCase__ = defaultdict(a_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(a_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase_ = input('''Enter the first string ''').strip() lowerCamelCase_ = input('''Enter the second string ''').strip() lowerCamelCase_ = check_anagrams(input_a, input_b) print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
244
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
145
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowerCamelCase__ ( a__ : Optional[int] ) -> Any: UpperCamelCase_ = SwinvaConfig() UpperCamelCase_ = swinva_name.split("""_""" ) UpperCamelCase_ = name_split[1] if "to" in name_split[3]: UpperCamelCase_ = int(name_split[3][-3:] ) else: UpperCamelCase_ = int(name_split[3] ) if "to" in name_split[2]: UpperCamelCase_ = int(name_split[2][-2:] ) else: UpperCamelCase_ = int(name_split[2][6:] ) if model_size == "tiny": UpperCamelCase_ = 96 UpperCamelCase_ = (2, 2, 6, 2) UpperCamelCase_ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase_ = 96 UpperCamelCase_ = (2, 2, 18, 2) UpperCamelCase_ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase_ = 128 UpperCamelCase_ = (2, 2, 18, 2) UpperCamelCase_ = (4, 8, 16, 32) else: UpperCamelCase_ = 192 UpperCamelCase_ = (2, 2, 18, 2) UpperCamelCase_ = (6, 12, 24, 48) if "to" in swinva_name: UpperCamelCase_ = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): UpperCamelCase_ = 2_1841 UpperCamelCase_ = """huggingface/label-files""" UpperCamelCase_ = """imagenet-22k-id2label.json""" UpperCamelCase_ = json.load(open(hf_hub_download(a__ , a__ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase_ = {int(a__ ): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} else: UpperCamelCase_ = 1000 UpperCamelCase_ = """huggingface/label-files""" UpperCamelCase_ = """imagenet-1k-id2label.json""" UpperCamelCase_ = json.load(open(hf_hub_download(a__ , a__ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase_ = {int(a__ ): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} UpperCamelCase_ = img_size UpperCamelCase_ = num_classes UpperCamelCase_ = embed_dim UpperCamelCase_ = depths UpperCamelCase_ = num_heads UpperCamelCase_ = window_size return config def lowerCamelCase__ ( a__ : List[str] ) -> Union[str, Any]: if "patch_embed.proj" in name: UpperCamelCase_ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCamelCase_ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: UpperCamelCase_ = """encoder.""" + name if "attn.proj" in name: UpperCamelCase_ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCamelCase_ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCamelCase_ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase_ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCamelCase_ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase_ = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: UpperCamelCase_ = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: UpperCamelCase_ = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: UpperCamelCase_ = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: UpperCamelCase_ = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": UpperCamelCase_ = """layernorm.weight""" if name == "norm.bias": UpperCamelCase_ = """layernorm.bias""" if "head" in name: UpperCamelCase_ = name.replace("""head""" , """classifier""" ) else: UpperCamelCase_ = """swinv2.""" + name return name def lowerCamelCase__ ( a__ : List[Any] , a__ : List[Any] ) -> int: for key in orig_state_dict.copy().keys(): UpperCamelCase_ = orig_state_dict.pop(a__ ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase_ = key.split(""".""" ) UpperCamelCase_ = int(key_split[1] ) UpperCamelCase_ = int(key_split[3] ) UpperCamelCase_ = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase_ = val[:dim, :] UpperCamelCase_ = val[dim : dim * 2, :] UpperCamelCase_ = val[-dim:, :] else: UpperCamelCase_ = val[:dim] UpperCamelCase_ = val[ dim : dim * 2 ] UpperCamelCase_ = val[-dim:] else: UpperCamelCase_ = val return orig_state_dict def lowerCamelCase__ ( a__ : Optional[Any] , a__ : Tuple ) -> Dict: UpperCamelCase_ = timm.create_model(a__ , pretrained=a__ ) timm_model.eval() UpperCamelCase_ = get_swinva_config(a__ ) UpperCamelCase_ = SwinvaForImageClassification(a__ ) model.eval() UpperCamelCase_ = convert_state_dict(timm_model.state_dict() , a__ ) model.load_state_dict(a__ ) UpperCamelCase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase_ = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) UpperCamelCase_ = Image.open(requests.get(a__ , stream=a__ ).raw ) UpperCamelCase_ = image_processor(images=a__ , return_tensors="""pt""" ) UpperCamelCase_ = timm_model(inputs["""pixel_values"""] ) UpperCamelCase_ = model(**a__ ).logits assert torch.allclose(a__ , a__ , atol=1e-3 ) print(f'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) model.push_to_hub( repo_path_or_name=Path(a__ , a__ ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _A = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
261
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _A = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _A = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _A = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } _A = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } _A = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } _A = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } _A = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } _A = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } _A = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = VOCAB_FILES_NAMES A__ : List[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[str] = VOCAB_FILES_NAMES A__ : str = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ : Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _A = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) _A = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) _A = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(__SCREAMING_SNAKE_CASE ) class lowercase_ : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: UpperCamelCase_ = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) UpperCamelCase_ = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] UpperCamelCase_ = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] UpperCamelCase_ = len(__UpperCamelCase ) UpperCamelCase_ = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( f'''There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.''' ) UpperCamelCase_ = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["""input_ids"""] UpperCamelCase_ = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["""input_ids"""] UpperCamelCase_ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: UpperCamelCase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCamelCase_ = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1_6 , __UpperCamelCase = 6_4 , __UpperCamelCase = 4 , ): """simple docstring""" UpperCamelCase_ = reader_input["""input_ids"""] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = reader_output[:3] UpperCamelCase_ = len(__UpperCamelCase ) UpperCamelCase_ = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) UpperCamelCase_ = [] for doc_id in sorted_docs: UpperCamelCase_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCamelCase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCamelCase_ = sequence_ids.index(self.pad_token_id ) else: UpperCamelCase_ = len(__UpperCamelCase ) UpperCamelCase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCamelCase_ = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) UpperCamelCase_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) UpperCamelCase_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): A__ : str = VOCAB_FILES_NAMES A__ : List[str] = READER_PRETRAINED_VOCAB_FILES_MAP A__ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[str] = READER_PRETRAINED_INIT_CONFIGURATION A__ : Tuple = ["""input_ids""", """attention_mask"""]
261
1
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCAmelCase__ = None UpperCAmelCase__ = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCAmelCase__ = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class lowerCAmelCase__ : __a = True __a = None # Automatically constructed __a = """PIL.Image.Image""" __a = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) __a = field(default="""Image""" , init=lowercase_ , repr=lowercase_ ) def __call__( self : Dict ): return self.pa_type def lowercase ( self : Optional[Any] , _lowerCamelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(__UpperCamelCase , __UpperCamelCase ): _snake_case = np.array(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): return {"path": value, "bytes": None} elif isinstance(__UpperCamelCase , __UpperCamelCase ): return {"path": None, "bytes": value} elif isinstance(__UpperCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__UpperCamelCase ) elif isinstance(__UpperCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__UpperCamelCase ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowercase ( self : Dict , _lowerCamelCase : dict , _lowerCamelCase : List[str]=None ): if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: _snake_case = {} _snake_case , _snake_case = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(__UpperCamelCase ): _snake_case = PIL.Image.open(__UpperCamelCase ) else: _snake_case = path.split('''::''' )[-1] try: _snake_case = string_to_dict(__UpperCamelCase , config.HUB_DATASETS_URL )['''repo_id'''] _snake_case = token_per_repo_id.get(__UpperCamelCase ) except ValueError: _snake_case = None with xopen(__UpperCamelCase , '''rb''' , use_auth_token=__UpperCamelCase ) as f: _snake_case = BytesIO(f.read() ) _snake_case = PIL.Image.open(bytes_ ) else: _snake_case = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase ( self : Optional[int] ): from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): _snake_case = pa.array([None] * len(__UpperCamelCase ) , type=pa.binary() ) _snake_case = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _snake_case = pa.array([None] * len(__UpperCamelCase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: _snake_case = storage.field('''bytes''' ) else: _snake_case = pa.array([None] * len(__UpperCamelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: _snake_case = storage.field('''path''' ) else: _snake_case = pa.array([None] * len(__UpperCamelCase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _snake_case = pa.array( [encode_np_array(np.array(__UpperCamelCase ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _snake_case = pa.array([None] * len(__UpperCamelCase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(__UpperCamelCase , self.pa_type ) def lowercase ( self : str , _lowerCamelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_lowerCamelCase : List[str] ): with xopen(__UpperCamelCase , '''rb''' ) as f: _snake_case = f.read() return bytes_ _snake_case = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _snake_case = pa.array( [os.path.basename(__UpperCamelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) _snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(__UpperCamelCase , self.pa_type ) def _UpperCAmelCase ( ) -> str: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _snake_case = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _UpperCAmelCase ( __lowerCamelCase : Any ) -> Union[str, Any]: _snake_case = BytesIO() if image.format in list_image_compression_formats(): _snake_case = image.format else: _snake_case = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(__lowerCamelCase , format=__lowerCamelCase ) return buffer.getvalue() def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Optional[int]: if hasattr(__lowerCamelCase , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__lowerCamelCase )} def _UpperCAmelCase ( __lowerCamelCase : Any ) -> List[Any]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) _snake_case = array.dtype _snake_case = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER _snake_case = dtype.kind _snake_case = dtype.itemsize _snake_case = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _snake_case = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _snake_case = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _snake_case = dtype_byteorder + dtype_kind + str(__lowerCamelCase ) _snake_case = np.dtype(__lowerCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) _snake_case = PIL.Image.fromarray(array.astype(__lowerCamelCase ) ) return {"path": None, "bytes": image_to_bytes(__lowerCamelCase )} def _UpperCAmelCase ( __lowerCamelCase : str ) -> Optional[int]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: _snake_case , _snake_case = first_non_null_value(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__lowerCamelCase , np.ndarray ): _snake_case = no_op_if_value_is_null(__lowerCamelCase ) return [obj_to_image_dict_func(__lowerCamelCase ) for obj in objs] elif isinstance(__lowerCamelCase , PIL.Image.Image ): _snake_case = no_op_if_value_is_null(__lowerCamelCase ) return [obj_to_image_dict_func(__lowerCamelCase ) for obj in objs] else: return objs else: return objs
288
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _UpperCAmelCase ( lowercase_ , unittest.TestCase ): UpperCamelCase = RoFormerTokenizer UpperCamelCase = RoFormerTokenizerFast UpperCamelCase = True UpperCamelCase = True def lowerCamelCase ( self :List[str] ): super().setUp() def lowerCamelCase ( self :int , **__UpperCamelCase :List[Any] ): return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **__UpperCamelCase ) def lowerCamelCase ( self :Tuple , **__UpperCamelCase :Optional[int] ): return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **__UpperCamelCase ) def lowerCamelCase ( self :Any ): A = "永和服装饰品有限公司,今天天气非常好" A = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def lowerCamelCase ( self :int ): A = self.get_tokenizer() A, A = self.get_chinese_input_output_texts() A = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , output_text.split() ) A = tokens + [tokenizer.unk_token] A = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def lowerCamelCase ( self :str ): A = self.get_rust_tokenizer() A, A = self.get_chinese_input_output_texts() A = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , output_text.split() ) A = tokens + [tokenizer.unk_token] A = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def lowerCamelCase ( self :Any ): pass def lowerCamelCase ( self :Tuple ): pass def lowerCamelCase ( self :List[str] ): pass
292
0
import argparse from collections import defaultdict import yaml UpperCamelCase_ = '''docs/source/en/_toctree.yml''' def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = defaultdict(_a ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase_ : List[str] = [key for key, value in counts.items() if value > 1] UpperCAmelCase_ : List[str] = [] for duplicate_key in duplicates: UpperCAmelCase_ : Union[str, Any] = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(_a ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(_a , key=lambda _a : s["title"].lower() ) def lowerCamelCase_ ( _a : Optional[Any]=False ): '''simple docstring''' with open(_a , encoding="""utf-8""" ) as f: UpperCAmelCase_ : Tuple = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase_ : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase_ : Optional[Any] = content[api_idx]["""sections"""] # Then to the model doc UpperCAmelCase_ : int = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase_ : int = api_doc[model_idx]["""sections"""] UpperCAmelCase_ : Union[str, Any] = [(idx, section) for idx, section in enumerate(_a ) if """sections""" in section] UpperCAmelCase_ : Any = False for idx, modality_doc in modalities_docs: UpperCAmelCase_ : int = modality_doc["""sections"""] UpperCAmelCase_ : Optional[int] = clean_model_doc_toc(_a ) if old_modality_doc != new_modality_doc: UpperCAmelCase_ : Optional[int] = True if overwrite: UpperCAmelCase_ : Dict = new_modality_doc if diff: if overwrite: UpperCAmelCase_ : Optional[int] = model_doc UpperCAmelCase_ : List[Any] = api_doc with open(_a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(_a , allow_unicode=_a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCamelCase_ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
351
from scipy.stats import spearmanr import datasets UpperCamelCase_ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' UpperCamelCase_ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' UpperCamelCase_ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): '''simple docstring''' def A__ ( self: int ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) ,reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] ,) def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str]=False ) -> Dict: UpperCAmelCase_ : List[str] = spearmanr(lowerCamelCase_ ,lowerCamelCase_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
59
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , lowercase=True , lowercase=1 / 255 , lowercase=True , ) -> Dict: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_pad def SCREAMING_SNAKE_CASE_( self ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=False ) -> str: if not batched: lowerCamelCase_ = image_inputs[0] if isinstance(lowercase , Image.Image ): lowerCamelCase_ , lowerCamelCase_ = image.size else: lowerCamelCase_ , lowerCamelCase_ = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ = int(self.size["shortest_edge"] * h / w ) lowerCamelCase_ = self.size["shortest_edge"] elif w > h: lowerCamelCase_ = self.size["shortest_edge"] lowerCamelCase_ = int(self.size["shortest_edge"] * w / h ) else: lowerCamelCase_ = self.size["shortest_edge"] lowerCamelCase_ = self.size["shortest_edge"] else: lowerCamelCase_ = [] for image in image_inputs: lowerCamelCase_ , lowerCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ = max(lowercase , key=lambda lowercase : item[0] )[0] lowerCamelCase_ = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = DeformableDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "image_mean" ) ) self.assertTrue(hasattr(lowercase , "image_std" ) ) self.assertTrue(hasattr(lowercase , "do_normalize" ) ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "do_rescale" ) ) self.assertTrue(hasattr(lowercase , "do_pad" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , lowercase ) lowerCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: pass def SCREAMING_SNAKE_CASE_( self ) -> List[str]: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) lowerCamelCase_ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_( self ) -> Any: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(lowercase , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(lowercase , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: # prepare image and target lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {"image_id": 39769, "annotations": target} # encode them lowerCamelCase_ = DeformableDetrImageProcessor() lowerCamelCase_ = image_processing(images=lowercase , annotations=lowercase , return_tensors="pt" ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowercase ) lowerCamelCase_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowercase , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowercase ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowercase ) lowerCamelCase_ = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowercase , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowercase ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowercase ) ) # verify class_labels lowerCamelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowercase ) ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowercase ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowercase ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: # prepare image, target and masks_path lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} lowerCamelCase_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCamelCase_ = DeformableDetrImageProcessor(format="coco_panoptic" ) lowerCamelCase_ = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors="pt" ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowercase ) lowerCamelCase_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowercase , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowercase ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowercase ) lowerCamelCase_ = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowercase , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowercase ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowercase ) ) # verify class_labels lowerCamelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowercase ) ) # verify masks lowerCamelCase_ = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowercase ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowercase ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowercase ) )
19
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __A ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __A =concatenate_datasets __A =DownloadConfig __A =DownloadManager __A =DownloadMode __A =DownloadConfig __A =DownloadMode __A =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
1
'''simple docstring''' import os import sys __lowercase = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __lowercase = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE__( *_UpperCamelCase : Tuple , **_UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' return AutoConfig.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE__( *_UpperCamelCase : List[str] , **_UpperCamelCase : Tuple ) -> Optional[int]: '''simple docstring''' return AutoTokenizer.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE__( *_UpperCamelCase : List[Any] , **_UpperCamelCase : Any ) -> int: '''simple docstring''' return AutoModel.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE__( *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE__( *_UpperCamelCase : List[str] , **_UpperCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE__( *_UpperCamelCase : List[Any] , **_UpperCamelCase : List[Any] ) -> Dict: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE__( *_UpperCamelCase : Dict , **_UpperCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*_UpperCamelCase , **_UpperCamelCase )
362
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=1_0_0 , UpperCAmelCase__ : str=1_3 , UpperCAmelCase__ : Dict=3_0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=3_2 , UpperCAmelCase__ : List[str]=5 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Optional[int]=1_0 , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : Tuple=3 , ) -> Dict: lowerCAmelCase = parent lowerCAmelCase = vocab_size lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase = (image_size // patch_size) ** 2 lowerCAmelCase = num_patches + 1 def __UpperCAmelCase ( self : List[Any] ) -> List[str]: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int ) -> str: lowerCAmelCase = FlaxBeitModel(config=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] ) -> Any: lowerCAmelCase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ) -> Optional[int]: lowerCAmelCase = self.type_sequence_label_size lowerCAmelCase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase = 1 lowerCAmelCase = FlaxBeitForImageClassification(UpperCAmelCase__ ) lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase = model(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> str: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __UpperCAmelCase ( self : Any ) -> None: lowerCAmelCase = FlaxBeitModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(UpperCAmelCase__ ) lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[int] ): return model(pixel_values=UpperCAmelCase__ , **UpperCAmelCase__ ) with self.subTest('JIT Enabled' ): lowerCAmelCase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : str ) -> Optional[Any]: for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) lowerCAmelCase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : str ) -> str: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def __UpperCAmelCase ( self : Dict ) -> int: lowerCAmelCase = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='np' ).pixel_values # prepare bool_masked_pos lowerCAmelCase = np.ones((1, 1_9_6) , dtype=UpperCAmelCase__ ) # forward pass lowerCAmelCase = model(pixel_values=UpperCAmelCase__ , bool_masked_pos=UpperCAmelCase__ ) lowerCAmelCase = outputs.logits # verify the logits lowerCAmelCase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape , UpperCAmelCase__ ) lowerCAmelCase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , UpperCAmelCase__ , atol=1E-2 ) ) @slow def __UpperCAmelCase ( self : Any ) -> List[str]: lowerCAmelCase = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='np' ) # forward pass lowerCAmelCase = model(**UpperCAmelCase__ ) lowerCAmelCase = outputs.logits # verify the logits lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(logits.shape , UpperCAmelCase__ ) lowerCAmelCase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) lowerCAmelCase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : int ) -> str: lowerCAmelCase = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='np' ) # forward pass lowerCAmelCase = model(**UpperCAmelCase__ ) lowerCAmelCase = outputs.logits # verify the logits lowerCAmelCase = (1, 2_1_8_4_1) self.assertEqual(logits.shape , UpperCAmelCase__ ) lowerCAmelCase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) lowerCAmelCase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase__ )
4
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int | float: """simple docstring""" if len(__snake_case ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(__snake_case ) or left < -len(__snake_case ) or right >= len(__snake_case ) or right < -len(__snake_case ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] _UpperCamelCase = (left + right) >> 1 # the middle _UpperCamelCase = find_max(__snake_case, __snake_case, __snake_case ) # find max in range[left, mid] _UpperCamelCase = find_max(__snake_case, mid + 1, __snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
194
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase_ = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def SCREAMING_SNAKE_CASE_ ( ) -> str: _SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(__A ) ) _SCREAMING_SNAKE_CASE = os.path.join(__A , "words.txt" ) _SCREAMING_SNAKE_CASE = "" with open(__A ) as f: _SCREAMING_SNAKE_CASE = f.readline() _SCREAMING_SNAKE_CASE = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(__A ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__A ) if __name__ == "__main__": print(solution())
359
'''simple docstring''' from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ ( __A : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) _SCREAMING_SNAKE_CASE = nums[0] for i in range(1 , len(__A ) ): _SCREAMING_SNAKE_CASE = nums[i] _SCREAMING_SNAKE_CASE = max(__A , ans + num , __A ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase_ = int(input('Enter number of elements : ').strip()) lowerCamelCase_ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
111
0
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
264
"""simple docstring""" import sys lowercase__ : Dict = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __lowercase ( _a ): snake_case_ : List[Any] = 1 for digit in s: product *= int(_a ) return product def __lowercase ( _a = N ): snake_case_ : Optional[int] = -sys.maxsize - 1 snake_case_ : str = n[:13] snake_case_ : List[Any] = 13 while cur_index < len(_a ) - 13: if int(n[cur_index] ) >= int(substr[0] ): snake_case_ : int = substr[1:] + n[cur_index] cur_index += 1 else: snake_case_ : Optional[Any] = max(_a , str_eval(_a ) ) snake_case_ : Any = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
264
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE_ ( _a ): __magic_name__: str = """Salesforce/blip-image-captioning-base""" __magic_name__: List[str] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) __magic_name__: Dict = """image_captioner""" __magic_name__: Union[str, Any] = AutoModelForVisionaSeq __magic_name__: Optional[Any] = ["""image"""] __magic_name__: Union[str, Any] = ["""text"""] def __init__( self : Any , *_A : str , **_A : List[str] ) -> int: """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self : Tuple , _A : "Image" ) -> List[Any]: """simple docstring""" return self.pre_processor(images=__lowerCamelCase , return_tensors='pt' ) def UpperCAmelCase_ ( self : Any , _A : Any ) -> List[str]: """simple docstring""" return self.model.generate(**__lowerCamelCase ) def UpperCAmelCase_ ( self : Optional[int] , _A : Tuple ) -> Optional[Any]: """simple docstring""" return self.pre_processor.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )[0].strip()
368
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = u for i in range(1 , __a ): snake_case_ : Optional[Any] = temp * (u - i) return temp def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = int(input('enter the numbers of values: ' ) ) snake_case_ : list[list[float]] = [] for _ in range(__a ): y.append([] ) for i in range(__a ): for j in range(__a ): y[i].append(__a ) snake_case_ : str = 0 print('enter the values of parameters in a list: ' ) snake_case_ : int = list(map(__a , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__a ): snake_case_ : Union[str, Any] = float(input() ) snake_case_ : int = int(input('enter the value to interpolate: ' ) ) snake_case_ : List[Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __a ): for j in range(n - i ): snake_case_ : int = y[j + 1][i - 1] - y[j][i - 1] snake_case_ : str = y[0][0] for i in range(1 , __a ): summ += (ucal(__a , __a ) * y[0][i]) / math.factorial(__a ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
88
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = KandinskyVaaPriorPipeline UpperCamelCase_ = ["""prompt"""] UpperCamelCase_ = ["""prompt""", """negative_prompt"""] UpperCamelCase_ = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] UpperCamelCase_ = False @property def __A ( self : int ): '''simple docstring''' return 32 @property def __A ( self : Optional[int] ): '''simple docstring''' return 32 @property def __A ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim @property def __A ( self : List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def __A ( self : str ): '''simple docstring''' return 100 @property def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __A ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def __A ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } SCREAMING_SNAKE_CASE : Union[str, Any] = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) SCREAMING_SNAKE_CASE : Dict = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior SCREAMING_SNAKE_CASE : List[Any] = self.dummy_image_encoder SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_tokenizer SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) SCREAMING_SNAKE_CASE : List[Any] = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __A ( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any]=0 ): '''simple docstring''' if str(UpperCamelCase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = '''cpu''' SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.image_embeds SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -10:] SCREAMING_SNAKE_CASE : Optional[int] = image_from_tuple[0, -10:] assert image.shape == (1, 32) SCREAMING_SNAKE_CASE : Tuple = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch_device == '''cpu''' SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' SCREAMING_SNAKE_CASE : int = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
182
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """nllb-moe""" UpperCamelCase_ = ["""past_key_values"""] UpperCamelCase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , UpperCamelCase__ : List[str]=12_8112 , UpperCamelCase__ : str=1024 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Union[str, Any]=4096 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Dict=16 , UpperCamelCase__ : Any=0.05 , UpperCamelCase__ : Any=0.05 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]="relu" , UpperCamelCase__ : Union[str, Any]=1024 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Any="float32" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Tuple=128 , UpperCamelCase__ : Tuple=64 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Dict=0.001 , UpperCamelCase__ : Optional[Any]=0.001 , UpperCamelCase__ : Optional[Any]="all" , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : List[Any]=1.0 , UpperCamelCase__ : str=0.2 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : Tuple=False , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : int = d_model SCREAMING_SNAKE_CASE : Any = encoder_ffn_dim SCREAMING_SNAKE_CASE : List[Any] = encoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = decoder_ffn_dim SCREAMING_SNAKE_CASE : Dict = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout SCREAMING_SNAKE_CASE : List[Any] = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = init_std SCREAMING_SNAKE_CASE : int = encoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : Any = use_cache SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : List[str] = router_z_loss_coef SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef SCREAMING_SNAKE_CASE : int = decoder_sparse_step SCREAMING_SNAKE_CASE : Optional[int] = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : int = expert_capacity SCREAMING_SNAKE_CASE : Any = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) SCREAMING_SNAKE_CASE : str = router_dtype SCREAMING_SNAKE_CASE : List[Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : str = second_expert_policy SCREAMING_SNAKE_CASE : Optional[Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Optional[Any] = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[int] = moe_token_dropout SCREAMING_SNAKE_CASE : Optional[int] = output_router_logits super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
182
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : int = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() _UpperCAmelCase : str = dict(zip(_A , range(len(_A ) ) ) ) _UpperCAmelCase : List[Any] = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } _UpperCAmelCase : Dict = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6_0_0_0, 'return_attention_mask': False, 'do_normalize': True, } _UpperCAmelCase : List[str] = tempfile.mkdtemp() _UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub _UpperCAmelCase : str = 'hf-internal-testing/ngram-beam-search-decoder' def __lowerCAmelCase ( self , **A ) -> Optional[int]: _UpperCAmelCase : Tuple = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self , **A ) -> Optional[int]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self , **A ) -> Union[str, Any]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def __lowerCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Dict = self.get_tokenizer() _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : Union[str, Any] = self.get_decoder() _UpperCAmelCase : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : int = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : int = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _UpperCAmelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Tuple = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Dict = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : List[Any] = self.get_decoder() _UpperCAmelCase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : int = floats_list((3, 1_0_0_0) ) _UpperCAmelCase : Tuple = feature_extractor(_A , return_tensors='''np''' ) _UpperCAmelCase : Optional[Any] = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : List[str] = self.get_tokenizer() _UpperCAmelCase : str = self.get_decoder() _UpperCAmelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Any = 'This is a test string' _UpperCAmelCase : Any = processor(text=_A ) _UpperCAmelCase : str = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self , A=(2, 1_0, 1_6) , A=7_7 ) -> List[str]: np.random.seed(_A ) return np.random.rand(*_A ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Dict = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Tuple = self.get_decoder() _UpperCAmelCase : str = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Any = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) _UpperCAmelCase : Optional[int] = processor.decode(_A ) _UpperCAmelCase : Dict = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __lowerCAmelCase ( self , A ) -> Any: _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : List[Any] = self.get_decoder() _UpperCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _UpperCAmelCase : Tuple = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: _UpperCAmelCase : Any = processor.batch_decode(_A , _A ) _UpperCAmelCase : Any = list(_A ) with get_context('''fork''' ).Pool() as p: _UpperCAmelCase : Dict = decoder.decode_beams_batch(_A , _A ) _UpperCAmelCase : List[str] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Dict = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = self.get_decoder() _UpperCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : List[str] = self._get_dummy_logits() _UpperCAmelCase : int = 1_5 _UpperCAmelCase : str = -20.0 _UpperCAmelCase : Dict = -4.0 _UpperCAmelCase : Tuple = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) _UpperCAmelCase : str = decoded_processor_out.text _UpperCAmelCase : int = list(_A ) with get_context('''fork''' ).Pool() as pool: _UpperCAmelCase : Dict = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) _UpperCAmelCase : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] _UpperCAmelCase : str = [d[0][2] for d in decoded_decoder_out] _UpperCAmelCase : Dict = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _A , atol=1E-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , _A , atol=1E-3 ) ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : str = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[int] = self._get_dummy_logits() _UpperCAmelCase : List[Any] = 2.0 _UpperCAmelCase : List[Any] = 5.0 _UpperCAmelCase : List[Any] = -20.0 _UpperCAmelCase : List[str] = True _UpperCAmelCase : Tuple = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) _UpperCAmelCase : Dict = decoded_processor_out.text _UpperCAmelCase : str = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: _UpperCAmelCase : List[str] = decoder.decode_beams_batch( _A , _A , ) _UpperCAmelCase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) _UpperCAmelCase : int = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _A ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _UpperCAmelCase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : int = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _UpperCAmelCase : Optional[int] = os.listdir(_A ) _UpperCAmelCase : Tuple = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _UpperCAmelCase : int = WavaVecaProcessorWithLM.from_pretrained(_A ) _UpperCAmelCase : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Tuple = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _UpperCAmelCase : Any = os.listdir(_A ) _UpperCAmelCase : Dict = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Tuple = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _UpperCAmelCase : Dict = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _UpperCAmelCase : Optional[Any] = floats_list((3, 1_0_0_0) ) _UpperCAmelCase : Dict = processor_wavaveca(_A , return_tensors='''np''' ) _UpperCAmelCase : Any = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _UpperCAmelCase : List[str] = self._get_dummy_logits() _UpperCAmelCase : List[Any] = processor_wavaveca.batch_decode(_A ) _UpperCAmelCase : List[Any] = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : List[Any] = self.get_feature_extractor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = self.get_decoder() _UpperCAmelCase : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __lowerCAmelCase ( A , A ) -> str: _UpperCAmelCase : Tuple = [d[key] for d in offsets] return retrieved_list def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _UpperCAmelCase : List[Any] = self._get_dummy_logits()[0] _UpperCAmelCase : List[Any] = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _UpperCAmelCase : Any = self._get_dummy_logits() _UpperCAmelCase : Any = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch _UpperCAmelCase : Optional[Any] = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) _UpperCAmelCase : Tuple = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) _UpperCAmelCase : int = iter(_A ) _UpperCAmelCase : Optional[int] = next(_A ) _UpperCAmelCase : Optional[int] = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _UpperCAmelCase : Optional[int] = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _UpperCAmelCase : Optional[int] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(_A ).logits.cpu().numpy() _UpperCAmelCase : Union[str, Any] = processor.decode(logits[0] , output_word_offsets=_A ) _UpperCAmelCase : List[str] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _UpperCAmelCase : Dict = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] _UpperCAmelCase : Optional[Any] = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times _UpperCAmelCase : Tuple = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) _UpperCAmelCase : List[Any] = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off _UpperCAmelCase : List[Any] = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) _UpperCAmelCase : str = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) )
356
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase :int = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''xlm''' a__ ={ '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , A=3_0_1_4_5 , A=2_0_4_8 , A=1_2 , A=1_6 , A=0.1 , A=0.1 , A=True , A=False , A=False , A=False , A=1 , A=True , A=5_1_2 , A=2_0_4_8**-0.5 , A=1E-12 , A=0.02 , A=0 , A=1 , A=2 , A=3 , A=5 , A=True , A="first" , A=True , A=None , A=True , A=0.1 , A=5 , A=5 , A=0 , A=0 , A=2 , A=0 , **A , ) -> Tuple: _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Tuple = emb_dim _UpperCAmelCase : Optional[Any] = n_layers _UpperCAmelCase : Optional[Any] = n_heads _UpperCAmelCase : Dict = dropout _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : Optional[Any] = gelu_activation _UpperCAmelCase : str = sinusoidal_embeddings _UpperCAmelCase : Any = causal _UpperCAmelCase : Optional[int] = asm _UpperCAmelCase : List[str] = n_langs _UpperCAmelCase : int = use_lang_emb _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Any = bos_index _UpperCAmelCase : Optional[Any] = eos_index _UpperCAmelCase : List[str] = pad_index _UpperCAmelCase : Optional[int] = unk_index _UpperCAmelCase : Dict = mask_index _UpperCAmelCase : Any = is_encoder _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : List[Any] = embed_init_std _UpperCAmelCase : Union[str, Any] = init_std _UpperCAmelCase : List[str] = summary_type _UpperCAmelCase : Dict = summary_use_proj _UpperCAmelCase : str = summary_activation _UpperCAmelCase : Union[str, Any] = summary_proj_to_labels _UpperCAmelCase : Tuple = summary_first_dropout _UpperCAmelCase : List[str] = start_n_top _UpperCAmelCase : Tuple = end_n_top _UpperCAmelCase : List[str] = mask_token_id _UpperCAmelCase : Optional[int] = lang_id if "n_words" in kwargs: _UpperCAmelCase : Tuple = kwargs['''n_words'''] super().__init__(pad_token_id=A , bos_token_id=A , **A ) class _UpperCAmelCase ( a ): '''simple docstring''' @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCAmelCase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
68
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __a = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
'''simple docstring''' def __snake_case( _lowerCAmelCase = 1_000 ) -> int: return sum(e for e in range(3 , _lowerCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
35
1
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __UpperCAmelCase = get_logger(__name__) __UpperCAmelCase = R''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class a__ : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self , lowerCamelCase_ , lowerCamelCase_ ) -> jnp.ndarray: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a__ : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self , lowerCamelCase_ , lowerCamelCase_ ) -> jnp.ndarray: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a__ ( a__ ): '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) -> jnp.ndarray: for processor in self: lowerCAmelCase__ = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) lowerCAmelCase__ = processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) else: lowerCAmelCase__ = processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return scores class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Union[str, Any]: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) lowerCAmelCase__ = temperature def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> jnp.ndarray: lowerCAmelCase__ = scores / self.temperature return scores class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ = -float('''Inf''' ) , lowerCamelCase_ = 1 ) -> Optional[int]: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) lowerCAmelCase__ = top_p lowerCAmelCase__ = filter_value lowerCAmelCase__ = min_tokens_to_keep def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> jnp.ndarray: lowerCAmelCase__ , lowerCAmelCase__ = lax.top_k(lowerCamelCase_ , scores.shape[-1] ) lowerCAmelCase__ = jnp.full_like(lowerCamelCase_ , self.filter_value ) lowerCAmelCase__ = jax.nn.softmax(lowerCamelCase_ , axis=-1 ).cumsum(axis=-1 ) lowerCAmelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well lowerCAmelCase__ = jnp.roll(lowerCamelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase_ ) # min tokens to keep lowerCAmelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase_ ) lowerCAmelCase__ = jnp.where(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = jax.lax.sort_key_val(lowerCamelCase_ , lowerCamelCase_ )[-1] return next_scores class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ = -float('''Inf''' ) , lowerCamelCase_ = 1 ) -> str: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) lowerCAmelCase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = filter_value def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> jnp.ndarray: lowerCAmelCase__ , lowerCAmelCase__ = scores.shape lowerCAmelCase__ = jnp.full(batch_size * vocab_size , self.filter_value ) lowerCAmelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check lowerCAmelCase__ , lowerCAmelCase__ = lax.top_k(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = jnp.broadcast_to((jnp.arange(lowerCamelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowerCAmelCase__ = topk_scores.flatten() lowerCAmelCase__ = topk_indices.flatten() + shift lowerCAmelCase__ = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase_ ) lowerCAmelCase__ = next_scores_flat.reshape(lowerCamelCase_ , lowerCamelCase_ ) return next_scores class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = bos_token_id def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> jnp.ndarray: lowerCAmelCase__ = jnp.full(scores.shape , -float('''inf''' ) ) lowerCAmelCase__ = 1 - jnp.bool_(cur_len - 1 ) lowerCAmelCase__ = jnp.where(lowerCamelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCamelCase_ ) return scores class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = max_length lowerCAmelCase__ = eos_token_id def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> jnp.ndarray: lowerCAmelCase__ = jnp.full(scores.shape , -float('''inf''' ) ) lowerCAmelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowerCAmelCase__ = jnp.where(lowerCamelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCamelCase_ ) return scores class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) lowerCAmelCase__ = min_length lowerCAmelCase__ = eos_token_id def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied lowerCAmelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowerCAmelCase__ = jnp.where(lowerCamelCase_ , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , lowerCamelCase_ ) return scores class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: lowerCAmelCase__ = list(lowerCamelCase_ ) lowerCAmelCase__ = begin_index def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: lowerCAmelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) lowerCAmelCase__ = jnp.where(lowerCamelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , lowerCamelCase_ ) return scores class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[Any]: lowerCAmelCase__ = list(lowerCamelCase_ ) def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> jnp.ndarray: lowerCAmelCase__ = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> List[Any]: lowerCAmelCase__ = dict(lowerCamelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowerCAmelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowerCAmelCase__ = force_token_array.at[index].set(lowerCamelCase_ ) lowerCAmelCase__ = jnp.intaa(lowerCamelCase_ ) def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> jnp.ndarray: def _force_token(lowerCamelCase_ ): lowerCAmelCase__ = scores.shape[0] lowerCAmelCase__ = self.force_token_array[generation_idx] lowerCAmelCase__ = jnp.ones_like(lowerCamelCase_ , dtype=scores.dtype ) * -float('''inf''' ) lowerCAmelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowerCAmelCase__ = lax.dynamic_update_slice(lowerCamelCase_ , lowerCamelCase_ , (0, current_token) ) return new_scores lowerCAmelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCamelCase_ ) , lambda: scores , ) , ) return scores class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: lowerCAmelCase__ = generate_config.eos_token_id lowerCAmelCase__ = generate_config.no_timestamps_token_id lowerCAmelCase__ = generate_config.no_timestamps_token_id + 1 lowerCAmelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase_ , '''max_initial_timestamp_index''' ): lowerCAmelCase__ = generate_config.max_initial_timestamp_index else: lowerCAmelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: lowerCAmelCase__ = model_config.vocab_size def __call__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: # suppress <|notimestamps|> which is handled by without_timestamps lowerCAmelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCamelCase_ , ) lowerCAmelCase__ = jnp.where((cur_len - self.begin_index) < 2 , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCamelCase_ , lowerCamelCase_ , ) return jnp.where( lowerCamelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , lowerCamelCase_ , ) lowerCAmelCase__ = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = jnp.where(cur_len == self.begin_index , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCamelCase_ , ) lowerCAmelCase__ = self.timestamp_begin + self.max_initial_timestamp_index lowerCAmelCase__ = jnp.where( lowerCamelCase_ , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , lowerCamelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp lowerCAmelCase__ = jax.nn.log_softmax(lowerCamelCase_ , axis=-1 ) def handle_cumulative_probs(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowerCAmelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , lowerCamelCase_ , ) lowerCAmelCase__ = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ , lowerCamelCase_ ) return scores
365
'''simple docstring''' import argparse import json import subprocess def _snake_case ( A , A ) -> Tuple: lowerCAmelCase__ = [] lowerCAmelCase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) lowerCAmelCase__ = subprocess.run(A , shell=A , stdout=subprocess.PIPE ) lowerCAmelCase__ = output.stdout.decode('''utf-8''' ) lowerCAmelCase__ = json.loads(A ) lowerCAmelCase__ = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(A ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(A ) ) if len(A ) > 0: lowerCAmelCase__ = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def _snake_case ( A ) -> Optional[Any]: return values.split(''',''' ) __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) __UpperCAmelCase = parser.parse_args() get_runner_status(args.target_runners, args.token)
228
0
import operator def lowerCAmelCase_ (lowerCAmelCase__: list , lowerCAmelCase__: bool = False , lowerCAmelCase__: list | None = None ): """simple docstring""" UpperCAmelCase_: Optional[int] = operator.lt if reverse else operator.gt UpperCAmelCase_: str = solution or [] if not arr: return solution UpperCAmelCase_: Optional[int] = [arr.pop(0 )] for i, item in enumerate(lowerCAmelCase__ ): if _operator(lowerCAmelCase__ , sublist[-1] ): sublist.append(lowerCAmelCase__ ) arr.pop(lowerCAmelCase__ ) # merging sublist into solution list if not solution: solution.extend(lowerCAmelCase__ ) else: while sublist: UpperCAmelCase_: Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(lowerCAmelCase__ ): if not _operator(lowerCAmelCase__ , lowerCAmelCase__ ): solution.insert(lowerCAmelCase__ , lowerCAmelCase__ ) break else: solution.append(lowerCAmelCase__ ) strand_sort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
147
from __future__ import annotations from typing import Any class _a : def __init__(self, SCREAMING_SNAKE_CASE_ = 6 ) -> None: UpperCAmelCase_: Node | None = None UpperCAmelCase_: Node | None = None self.create_linked_list(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCAmelCase_: Optional[Any] = Node() UpperCAmelCase_: Optional[Any] = current_node UpperCAmelCase_: List[str] = current_node UpperCAmelCase_: List[Any] = current_node for _ in range(1, SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Optional[int] = Node() UpperCAmelCase_: Dict = current_node UpperCAmelCase_: Any = previous_node UpperCAmelCase_: Tuple = current_node UpperCAmelCase_: Optional[Any] = self.front UpperCAmelCase_: Any = previous_node def __snake_case (self ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __snake_case (self ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCAmelCase_: Optional[int] = self.rear.next if self.rear: UpperCAmelCase_: Any = data def __snake_case (self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCAmelCase_: Union[str, Any] = self.front.data UpperCAmelCase_: Any = None return data UpperCAmelCase_: str = self.front UpperCAmelCase_: Union[str, Any] = old_front.next UpperCAmelCase_: int = old_front.data UpperCAmelCase_: Any = None return data def __snake_case (self ) -> None: if self.is_empty(): raise Exception("""Empty Queue""" ) def __snake_case (self ) -> None: if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class _a : def __init__(self ) -> None: UpperCAmelCase_: Any | None = None UpperCAmelCase_: Node | None = None UpperCAmelCase_: Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
147
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowerCamelCase : Optional[Any] = StableDiffusionXLImgaImgPipeline __lowerCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __lowerCamelCase : Dict = PipelineTesterMixin.required_optional_params - {"""latents"""} __lowerCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCamelCase : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case_ ( self): torch.manual_seed(0) lowercase__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=a , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowercase__ : Tuple = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0) lowercase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) lowercase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , ) lowercase__ : Optional[int] = CLIPTextModel(a) lowercase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=a) lowercase__ : Tuple = CLIPTextModelWithProjection(a) lowercase__ : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=a) lowercase__ : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case_ ( self , a , a=0): lowercase__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(a)).to(a) lowercase__ : Union[str, Any] = image / 2 + 0.5 if str(a).startswith('mps'): lowercase__ : List[Any] = torch.manual_seed(a) else: lowercase__ : Any = torch.Generator(device=a).manual_seed(a) lowercase__ : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def snake_case_ ( self): lowercase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase__ : Dict = self.get_dummy_components() lowercase__ : List[Any] = StableDiffusionXLImgaImgPipeline(**a) lowercase__ : Dict = sd_pipe.to(a) sd_pipe.set_progress_bar_config(disable=a) lowercase__ : Optional[Any] = self.get_dummy_inputs(a) lowercase__ : Optional[int] = sd_pipe(**a).images lowercase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Union[str, Any] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def snake_case_ ( self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def snake_case_ ( self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) def snake_case_ ( self): pass def snake_case_ ( self): lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : Dict = StableDiffusionXLImgaImgPipeline(**a) lowercase__ : Dict = sd_pipe.to(a) lowercase__ : Tuple = sd_pipe.to(a) sd_pipe.set_progress_bar_config(disable=a) # forward without prompt embeds lowercase__ : Any = self.get_dummy_inputs(a) lowercase__ : Union[str, Any] = 3 * ['this is a negative prompt'] lowercase__ : int = negative_prompt lowercase__ : List[str] = 3 * [inputs['prompt']] lowercase__ : str = sd_pipe(**a) lowercase__ : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowercase__ : Tuple = self.get_dummy_inputs(a) lowercase__ : int = 3 * ['this is a negative prompt'] lowercase__ : List[Any] = 3 * [inputs.pop('prompt')] ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : List[Any] = sd_pipe.encode_prompt(a , negative_prompt=a) lowercase__ : Dict = sd_pipe( **a , prompt_embeds=a , negative_prompt_embeds=a , pooled_prompt_embeds=a , negative_pooled_prompt_embeds=a , ) lowercase__ : Any = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1e-4 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): def snake_case_ ( self): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , a , a="cpu" , a=torch.floataa , a=0): lowercase__ : Optional[int] = torch.Generator(device=a).manual_seed(a) lowercase__ : Optional[Any] = np.random.RandomState(a).standard_normal((1, 4, 64, 64)) lowercase__ : Optional[Any] = torch.from_numpy(a).to(device=a , dtype=a) lowercase__ : Any = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case_ ( self): lowercase__ : int = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base') pipe.to(a) pipe.set_progress_bar_config(disable=a) lowercase__ : str = self.get_inputs(a) lowercase__ : int = pipe(**a).images lowercase__ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ : Optional[int] = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506]) assert np.abs(image_slice - expected_slice).max() < 7e-3
366
from __future__ import annotations import math def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : int = str(SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = [n] for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if len(str(SCREAMING_SNAKE_CASE_ ) ) > 3: if not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[-3:] ) ) or not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[:3] ) ): return False return True def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 11 ): '''simple docstring''' lowercase__ : list[int] = [] lowercase__ : Tuple = 13 while len(SCREAMING_SNAKE_CASE_ ) != count: if validate(SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = list_truncated_nums(SCREAMING_SNAKE_CASE_ ) if all(is_prime(SCREAMING_SNAKE_CASE_ ) for i in list_nums ): list_truncated_primes.append(SCREAMING_SNAKE_CASE_ ) num += 2 return list_truncated_primes def snake_case__ ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
216
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ = (('''num_inference_steps''', 50),) def lowerCamelCase_ ( self : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCamelCase_ ) return config def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any]=0 , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : int = kwargs.pop("""num_inference_steps""" , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.dummy_sample SCREAMING_SNAKE_CASE : Optional[Any] = 0.1 * sample SCREAMING_SNAKE_CASE : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : Optional[int] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : int = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : Tuple = scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Tuple = new_scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step_plms(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : List[str] = new_scheduler.step_plms(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Tuple=0 , **lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop("""num_inference_steps""" , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.dummy_sample SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample SCREAMING_SNAKE_CASE : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : str = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE : str = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : str = scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : List[str] = new_scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE : List[Any] = scheduler.step_plms(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = new_scheduler.step_plms(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase_ ( self : Dict , **lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : str = self.get_scheduler_config(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = 10 SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.prk_timesteps ): SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step_plms(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("""num_inference_steps""" , lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , """set_timesteps""" ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , """set_timesteps""" ): SCREAMING_SNAKE_CASE : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE : Optional[int] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : List[str] = scheduler.step_prk(lowerCamelCase_ , 0 , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Any = scheduler.step_prk(lowerCamelCase_ , 1 , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE : Dict = scheduler.step_plms(lowerCamelCase_ , 0 , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step_plms(lowerCamelCase_ , 1 , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def lowerCamelCase_ ( self : str ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase_ , beta_end=lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample SCREAMING_SNAKE_CASE : Tuple = 0.1 * sample SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): SCREAMING_SNAKE_CASE : Any = scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class(**lowerCamelCase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.full_loop() SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1e-2 assert abs(result_mean.item() - 0.2_580 ) < 1e-3 def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.full_loop(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1e-2 assert abs(result_mean.item() - 0.0_878 ) < 1e-3 def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.full_loop(set_alpha_to_one=lowerCamelCase_ , beta_start=0.01 ) SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1e-2 assert abs(result_mean.item() - 0.2_995 ) < 1e-3 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.full_loop(set_alpha_to_one=lowerCamelCase_ , beta_start=0.01 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1e-2 assert abs(result_mean.item() - 0.2_434 ) < 1e-3
323
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Dict=2_24 , lowerCamelCase_ : List[Any]=30 , lowerCamelCase_ : Union[str, Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Dict = min_resolution SCREAMING_SNAKE_CASE : List[str] = max_resolution SCREAMING_SNAKE_CASE : str = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : List[Any] = image_mean SCREAMING_SNAKE_CASE : str = image_std def lowerCamelCase_ ( self : Any ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ViTImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = EfficientFormerImageProcessorTester(self ) @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
323
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'data2vec-text' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
11
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
11
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __A ) -> list[int]: # This function is recursive _snake_case = len(__A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _snake_case = array[0] _snake_case = False _snake_case = 1 _snake_case = [] while not is_found and i < array_length: if array[i] < pivot: _snake_case = True _snake_case = [element for element in array[i:] if element >= array[i]] _snake_case = longest_subsequence(__A ) if len(__A ) > len(__A ): _snake_case = temp_array else: i += 1 _snake_case = [element for element in array[1:] if element >= pivot] _snake_case = [pivot, *longest_subsequence(__A )] if len(__A ) > len(__A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
42
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : List[Any] = """layoutlmv3""" def __init__( self : Optional[int] , _lowerCamelCase : str=5_02_65 , _lowerCamelCase : Any=7_68 , _lowerCamelCase : int=12 , _lowerCamelCase : str=12 , _lowerCamelCase : int=30_72 , _lowerCamelCase : List[Any]="gelu" , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : str=0.1 , _lowerCamelCase : Any=5_12 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Union[str, Any]=1 , _lowerCamelCase : Any=0 , _lowerCamelCase : int=2 , _lowerCamelCase : Union[str, Any]=10_24 , _lowerCamelCase : Dict=1_28 , _lowerCamelCase : int=1_28 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : int=32 , _lowerCamelCase : int=1_28 , _lowerCamelCase : Tuple=64 , _lowerCamelCase : List[Any]=2_56 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : List[str]=True , _lowerCamelCase : Tuple=2_24 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Dict=16 , _lowerCamelCase : Any=None , **_lowerCamelCase : List[str] , ): """simple docstring""" super().__init__( vocab_size=_lowerCamelCase , hidden_size=_lowerCamelCase , num_hidden_layers=_lowerCamelCase , num_attention_heads=_lowerCamelCase , intermediate_size=_lowerCamelCase , hidden_act=_lowerCamelCase , hidden_dropout_prob=_lowerCamelCase , attention_probs_dropout_prob=_lowerCamelCase , max_position_embeddings=_lowerCamelCase , type_vocab_size=_lowerCamelCase , initializer_range=_lowerCamelCase , layer_norm_eps=_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) A_ : List[Any] = max_ad_position_embeddings A_ : List[str] = coordinate_size A_ : Tuple = shape_size A_ : Optional[Any] = has_relative_attention_bias A_ : Any = rel_pos_bins A_ : str = max_rel_pos A_ : Optional[int] = has_spatial_attention_bias A_ : int = rel_ad_pos_bins A_ : Tuple = max_rel_ad_pos A_ : int = text_embed A_ : List[Any] = visual_embed A_ : str = input_size A_ : Dict = num_channels A_ : Optional[int] = patch_size A_ : Dict = classifier_dropout class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[Any] = version.parse("""1.12""") @property def a_ ( self : Tuple ): """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def a_ ( self : int ): """simple docstring""" return 1E-5 @property def a_ ( self : Optional[int] ): """simple docstring""" return 12 def a_ ( self : Optional[int] , _lowerCamelCase : "ProcessorMixin" , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional["TensorType"] = None , _lowerCamelCase : int = 3 , _lowerCamelCase : int = 40 , _lowerCamelCase : int = 40 , ): """simple docstring""" setattr(processor.image_processor , '''apply_ocr''' , _lowerCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ : Tuple = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Tuple = processor.tokenizer.num_special_tokens_to_add(_lowerCamelCase ) A_ : List[Any] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence A_ : int = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes A_ : Optional[int] = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) A_ : str = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = dict( processor( _lowerCamelCase , text=_lowerCamelCase , boxes=_lowerCamelCase , return_tensors=_lowerCamelCase , ) ) return inputs
167
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _A = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def lowerCamelCase__ ( a__ : Optional[int] ) -> List[Any]: UpperCamelCase_ = {} state_dict.pop("""pixel_mean""" , a__ ) state_dict.pop("""pixel_std""" , a__ ) UpperCamelCase_ = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCamelCase_ = key.replace(a__ , a__ ) if re.match(a__ , a__ ): UpperCamelCase_ = int(re.match(a__ , a__ ).group(2 ) ) if layer_nb == 0: UpperCamelCase_ = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: UpperCamelCase_ = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: UpperCamelCase_ = key.replace("""layers.2""" , """proj_out""" ) UpperCamelCase_ = value UpperCamelCase_ = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def lowerCamelCase__ ( a__ : Dict , a__ : Dict , a__ : int , a__ : Tuple="ybelkada/segment-anything" ) -> Optional[int]: UpperCamelCase_ = hf_hub_download(a__ , f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: UpperCamelCase_ = SamConfig() elif "sam_vit_l" in model_name: UpperCamelCase_ = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) UpperCamelCase_ = SamConfig( vision_config=a__ , ) elif "sam_vit_h" in model_name: UpperCamelCase_ = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) UpperCamelCase_ = SamConfig( vision_config=a__ , ) UpperCamelCase_ = torch.load(a__ , map_location="""cpu""" ) UpperCamelCase_ = replace_keys(a__ ) UpperCamelCase_ = SamImageProcessor() UpperCamelCase_ = SamProcessor(image_processor=a__ ) UpperCamelCase_ = SamModel(a__ ) hf_model.load_state_dict(a__ ) UpperCamelCase_ = hf_model.to("""cuda""" ) UpperCamelCase_ = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' UpperCamelCase_ = Image.open(requests.get(a__ , stream=a__ ).raw ).convert("""RGB""" ) UpperCamelCase_ = [[[400, 650]]] UpperCamelCase_ = [[1]] UpperCamelCase_ = processor(images=np.array(a__ ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): UpperCamelCase_ = hf_model(**a__ ) UpperCamelCase_ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 UpperCamelCase_ = processor( images=np.array(a__ ) , input_points=a__ , input_labels=a__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): UpperCamelCase_ = hf_model(**a__ ) UpperCamelCase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 UpperCamelCase_ = ((75, 275, 1725, 850),) UpperCamelCase_ = processor(images=np.array(a__ ) , input_boxes=a__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): UpperCamelCase_ = hf_model(**a__ ) UpperCamelCase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. UpperCamelCase_ = [[[400, 650], [800, 650]]] UpperCamelCase_ = [[1, 1]] UpperCamelCase_ = processor( images=np.array(a__ ) , input_points=a__ , input_labels=a__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): UpperCamelCase_ = hf_model(**a__ ) UpperCamelCase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": _A = argparse.ArgumentParser() _A = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) _A = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
261
0
__A = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ __A = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __A = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
90
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , A : Dict , A : Dict=7 , A : Optional[int]=3 , A : Optional[int]=18 , A : Dict=30 , A : List[Any]=400 , A : Union[str, Any]=True , A : Tuple=None , A : List[Any]=True , A : int=None , A : Optional[int]=True , ): _UpperCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 20} _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : int = min_resolution _UpperCAmelCase : Optional[int] = max_resolution _UpperCAmelCase : List[str] = do_resize _UpperCAmelCase : Optional[Any] = size _UpperCAmelCase : Tuple = do_center_crop _UpperCAmelCase : Optional[int] = crop_size _UpperCAmelCase : Optional[Any] = do_flip_channel_order def _A ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Tuple = MobileViTImageProcessor if is_vision_available() else None def _A ( self : List[Any] ): _UpperCAmelCase : Any = MobileViTImageProcessingTester(self ) @property def _A ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Tuple ): _UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "size" ) ) self.assertTrue(hasattr(A , "do_center_crop" ) ) self.assertTrue(hasattr(A , "center_crop" ) ) self.assertTrue(hasattr(A , "do_flip_channel_order" ) ) def _A ( self : Any ): _UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) _UpperCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _A ( self : Any ): pass def _A ( self : Dict ): # Initialize image_processing _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : Union[str, Any] ): # Initialize image_processing _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : Any ): # Initialize image_processing _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Any = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
31
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = {'vocab_file': 'sentencepiece.bpe.model'} _A = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } _A = { 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off _A = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=None , A_=None , A_=None , A_ = None , A_=None , A_=False , **A_ , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =legacy_behaviour super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , tokenizer_file=A_ , src_lang=A_ , tgt_lang=A_ , additional_special_tokens=A_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A_ , **A_ , ) __UpperCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) __UpperCamelCase =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCamelCase ={'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCamelCase =1 __UpperCamelCase =len(self.sp_model ) __UpperCamelCase ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A_ ) } __UpperCamelCase ={v: k for k, v in self.lang_code_to_id.items()} __UpperCamelCase =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __UpperCamelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} __UpperCamelCase =list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __UpperCamelCase =src_lang if src_lang is not None else 'eng_Latn' __UpperCamelCase =self.lang_code_to_id[self._src_lang] __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> int: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None __UpperCamelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , A_ ) -> List[str]: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _a ( self ) -> Union[str, Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , A_ , A_ , A_ , A_ , **A_ ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , return_tensors=A_ , **A_ ) __UpperCamelCase =self.convert_tokens_to_ids(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCamelCase =self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a ( self , A_ ) -> List[str]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =''.join(A_ ).replace(A_ , ' ' ).strip() return out_string def _a ( self , A_ , A_ = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase =os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def _a ( self , A_ , A_ = "eng_Latn" , A_ = None , A_ = "fra_Latn" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self ) -> Optional[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.lang_code_to_id[src_lang] if self.legacy_behaviour: __UpperCamelCase =[] __UpperCamelCase =[self.eos_token_id, self.cur_lang_code] else: __UpperCamelCase =[self.cur_lang_code] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.lang_code_to_id[lang] if self.legacy_behaviour: __UpperCamelCase =[] __UpperCamelCase =[self.eos_token_id, self.cur_lang_code] else: __UpperCamelCase =[self.cur_lang_code] __UpperCamelCase =[self.eos_token_id]
117
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "realm" def __init__( self , A_=30522 , A_=768 , A_=128 , A_=12 , A_=12 , A_=8 , A_=3072 , A_="gelu_new" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1E-12 , A_=256 , A_=10 , A_=1E-3 , A_=5 , A_=320 , A_=13353718 , A_=5000 , A_=1 , A_=0 , A_=2 , **A_ , ) -> Dict: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) # Common config __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =hidden_size __UpperCamelCase =retriever_proj_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =num_candidates __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =type_vocab_size __UpperCamelCase =layer_norm_eps # Reader config __UpperCamelCase =span_hidden_size __UpperCamelCase =max_span_width __UpperCamelCase =reader_layer_norm_eps __UpperCamelCase =reader_beam_size __UpperCamelCase =reader_seq_len # Retrieval config __UpperCamelCase =num_block_records __UpperCamelCase =searcher_beam_size
117
1
"""simple docstring""" from math import loga def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
77
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = (DDIMParallelScheduler,) lowerCAmelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' __A : List[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**_UpperCAmelCase) return config def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' __A : List[str] = self.scheduler_classes[0] __A : int = self.get_scheduler_config(**_UpperCAmelCase) __A : Union[str, Any] = scheduler_class(**_UpperCAmelCase) __A ,__A : Optional[Any] = 10, 0.0 __A : Optional[Any] = self.dummy_model() __A : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase) for t in scheduler.timesteps: __A : Tuple = model(_UpperCAmelCase , _UpperCAmelCase) __A : Any = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase).prev_sample return sample def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase) __A : str = self.scheduler_classes[0] __A : List[Any] = self.get_scheduler_config(steps_offset=1) __A : str = scheduler_class(**_UpperCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1])) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.check_over_configs(thresholding=_UpperCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500]): self.check_over_forward(time_step=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=_UpperCAmelCase , eta=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.scheduler_classes[0] __A : Tuple = self.get_scheduler_config() __A : List[Any] = scheduler_class(**_UpperCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400) - 0.14771)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960) - 0.32460)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486) - 0.00979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998) - 0.02)) < 1e-5 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.scheduler_classes[0] __A : str = self.get_scheduler_config() __A : List[Any] = scheduler_class(**_UpperCAmelCase) __A ,__A : Dict = 10, 0.0 scheduler.set_timesteps(_UpperCAmelCase) __A : str = self.dummy_model() __A : Any = self.dummy_sample_deter __A : int = self.dummy_sample_deter + 0.1 __A : List[Any] = self.dummy_sample_deter - 0.1 __A : Optional[int] = samplea.shape[0] __A : List[str] = torch.stack([samplea, samplea, samplea] , dim=0) __A : int = torch.arange(_UpperCAmelCase)[0:3, None].repeat(1 , _UpperCAmelCase) __A : List[Any] = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) __A : Optional[int] = scheduler.batch_step_no_noise(_UpperCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , _UpperCAmelCase) __A : Any = torch.sum(torch.abs(_UpperCAmelCase)) __A : List[str] = torch.mean(torch.abs(_UpperCAmelCase)) assert abs(result_sum.item() - 1147.7904) < 1e-2 assert abs(result_mean.item() - 0.4982) < 1e-3 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.full_loop() __A : Optional[Any] = torch.sum(torch.abs(_UpperCAmelCase)) __A : Optional[Any] = torch.mean(torch.abs(_UpperCAmelCase)) assert abs(result_sum.item() - 172.0067) < 1e-2 assert abs(result_mean.item() - 0.223967) < 1e-3 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.full_loop(prediction_type='v_prediction') __A : Tuple = torch.sum(torch.abs(_UpperCAmelCase)) __A : List[str] = torch.mean(torch.abs(_UpperCAmelCase)) assert abs(result_sum.item() - 52.5302) < 1e-2 assert abs(result_mean.item() - 0.0684) < 1e-3 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01) __A : Union[str, Any] = torch.sum(torch.abs(_UpperCAmelCase)) __A : str = torch.mean(torch.abs(_UpperCAmelCase)) assert abs(result_sum.item() - 149.8295) < 1e-2 assert abs(result_mean.item() - 0.1951) < 1e-3 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01) __A : Optional[Any] = torch.sum(torch.abs(_UpperCAmelCase)) __A : Dict = torch.mean(torch.abs(_UpperCAmelCase)) assert abs(result_sum.item() - 149.0784) < 1e-2 assert abs(result_mean.item() - 0.1941) < 1e-3
190
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ : List[Any] = '''bert-base-cased''' lowercase__ : Union[str, Any] = '''google/pegasus-xsum''' lowercase__ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase__ : Optional[Any] = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase__ : str = '''patrickvonplaten/t5-tiny-random''' lowercase__ : List[str] = '''sshleifer/bart-tiny-random''' lowercase__ : List[str] = '''sshleifer/tiny-mbart''' lowercase__ : str = '''sshleifer/tiny-marian-en-de''' def _lowerCAmelCase ( __snake_case : Path , __snake_case : list ) -> str: __A : Any = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: for split in ["train", "val", "test"]: _dump_articles(os.path.join(__snake_case , f'{split}.source' ) , __snake_case ) _dump_articles(os.path.join(__snake_case , f'{split}.target' ) , __snake_case ) return tmp_dir class SCREAMING_SNAKE_CASE (a__ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : int = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : str = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Dict = 4 __A : Optional[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __A ,__A : Any = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __A : List[str] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , ) __A : Any = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(_UpperCAmelCase , _UpperCAmelCase) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __A : Optional[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : Tuple = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : Any = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Optional[int] = 4 __A : Any = LegacySeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=20 , max_target_length=_UpperCAmelCase , ) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25') __A : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __A : List[str] = tmp_dir.joinpath('train.source').open().readlines() __A : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(_UpperCAmelCase , _UpperCAmelCase , 128 , _UpperCAmelCase) __A : Dict = {x.name for x in tmp_dir.iterdir()} __A : Dict = {x.name for x in save_dir.iterdir()} __A : str = save_dir.joinpath('train.source').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_UpperCAmelCase) < len(_UpperCAmelCase) assert len(_UpperCAmelCase) == 1 assert len(packed_examples[0]) == sum(len(_UpperCAmelCase) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return __A ,__A ,__A : List[Any] = self._get_dataset(max_len=64) __A : Union[str, Any] = 64 __A : List[Any] = ds.make_dynamic_sampler(_UpperCAmelCase , required_batch_size_multiple=_UpperCAmelCase) __A : Union[str, Any] = [len(_UpperCAmelCase) for x in batch_sampler] assert len(set(_UpperCAmelCase)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_UpperCAmelCase) == len(_UpperCAmelCase) # no dropped or added examples __A : List[Any] = DataLoader(_UpperCAmelCase , batch_sampler=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Optional[int] = [] __A : Tuple = [] for batch in data_loader: __A : Optional[int] = batch['input_ids'].shape __A : Any = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __A : Tuple = np.product(batch['input_ids'].shape) num_src_per_batch.append(_UpperCAmelCase) if num_src_tokens > (max_tokens * 1.1): failures.append(_UpperCAmelCase) assert num_src_per_batch[0] == max(_UpperCAmelCase) if failures: raise AssertionError(F'too many tokens in {len(_UpperCAmelCase)} batches') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Optional[int] = self._get_dataset(max_len=512) __A : Optional[int] = 2 __A : Dict = ds.make_sortish_sampler(_UpperCAmelCase , shuffle=_UpperCAmelCase) __A : Tuple = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_UpperCAmelCase) __A : str = tokenizer.pad_token_id def count_pad_tokens(_UpperCAmelCase , _UpperCAmelCase="input_ids"): return [batch[k].eq(_UpperCAmelCase).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_UpperCAmelCase , k='labels')) < sum(count_pad_tokens(_UpperCAmelCase , k='labels')) assert sum(count_pad_tokens(_UpperCAmelCase)) < sum(count_pad_tokens(_UpperCAmelCase)) assert len(_UpperCAmelCase) == len(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=1000 , _UpperCAmelCase=128): '''simple docstring''' if os.getenv('USE_REAL_DATA' , _UpperCAmelCase): __A : Dict = 'examples/seq2seq/wmt_en_ro' __A : Any = max_len * 2 * 64 if not Path(_UpperCAmelCase).joinpath('train.len').exists(): save_len_file(_UpperCAmelCase , _UpperCAmelCase) else: __A : int = 'examples/seq2seq/test_data/wmt_en_ro' __A : Any = max_len * 4 save_len_file(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , n_obs=_UpperCAmelCase , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Tuple = self._get_dataset() __A : Optional[int] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=_UpperCAmelCase)) __A : List[str] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=_UpperCAmelCase)) assert idsa.intersection(_UpperCAmelCase) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase) if tok_name == MBART_TINY: __A : Dict = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __A : List[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __A : Any = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __A : List[str] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_UpperCAmelCase) == 1 if tok_name == BART_TINY else len(_UpperCAmelCase) == 0
190
1
from __future__ import annotations from functools import lru_cache from math import ceil _SCREAMING_SNAKE_CASE = 1_00 _SCREAMING_SNAKE_CASE = set(range(3, NUM_PRIMES, 2)) primes.add(2) _SCREAMING_SNAKE_CASE = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def SCREAMING_SNAKE_CASE__ ( __a ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} snake_case_ : set[int] = set() snake_case_ : int snake_case_ : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def SCREAMING_SNAKE_CASE__ ( __a = 50_00 ): for number_to_partition in range(1 , __a ): if len(partition(__a ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
327
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
1
def A ( _lowercase , _lowercase ): return int((input_a, input_a).count(1 ) != 0 ) def A ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
258
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """encodec""" def __init__( self : int , UpperCamelCase__ : Optional[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCamelCase__ : List[str]=2_4000 , UpperCamelCase__ : str=1 , UpperCamelCase__ : str=False , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=128 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Any=[8, 5, 4, 2] , UpperCamelCase__ : Optional[Any]="weight_norm" , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : int=7 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]="reflect" , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Tuple=1.0 , UpperCamelCase__ : Dict=1024 , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = target_bandwidths SCREAMING_SNAKE_CASE : int = sampling_rate SCREAMING_SNAKE_CASE : List[Any] = audio_channels SCREAMING_SNAKE_CASE : List[str] = normalize SCREAMING_SNAKE_CASE : Any = chunk_length_s SCREAMING_SNAKE_CASE : Optional[int] = overlap SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_filters SCREAMING_SNAKE_CASE : int = num_residual_layers SCREAMING_SNAKE_CASE : List[Any] = upsampling_ratios SCREAMING_SNAKE_CASE : Dict = norm_type SCREAMING_SNAKE_CASE : List[Any] = kernel_size SCREAMING_SNAKE_CASE : int = last_kernel_size SCREAMING_SNAKE_CASE : str = residual_kernel_size SCREAMING_SNAKE_CASE : int = dilation_growth_rate SCREAMING_SNAKE_CASE : List[Any] = use_causal_conv SCREAMING_SNAKE_CASE : List[Any] = pad_mode SCREAMING_SNAKE_CASE : str = compress SCREAMING_SNAKE_CASE : Dict = num_lstm_layers SCREAMING_SNAKE_CASE : List[str] = trim_right_ratio SCREAMING_SNAKE_CASE : Optional[int] = codebook_size SCREAMING_SNAKE_CASE : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : List[str] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**UpperCamelCase__ ) @property def __A ( self : List[str] ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __A ( self : Optional[Any] ): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
258
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : List[str] = TypeVar('''T''') class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" a = 42 # Cache store of keys a = 42 # References of the keys in cache a = 10 # Maximum capacity of cache def __init__( self : Union[str, Any] , __lowerCamelCase : int ) -> None: SCREAMING_SNAKE_CASE__ = deque() SCREAMING_SNAKE_CASE__ = set() if not n: SCREAMING_SNAKE_CASE__ = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: SCREAMING_SNAKE_CASE__ = n def lowercase_ ( self : Any , __lowerCamelCase : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: SCREAMING_SNAKE_CASE__ = self.dq_store.pop() self.key_reference.remove(__lowerCamelCase ) else: self.dq_store.remove(__lowerCamelCase ) self.dq_store.appendleft(__lowerCamelCase ) self.key_reference.add(__lowerCamelCase ) def lowercase_ ( self : Tuple ) -> None: for k in self.dq_store: print(__lowerCamelCase ) def __repr__( self : Any ) -> str: return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
314
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( snake_case__ , unittest.TestCase): """simple docstring""" a__ : Any = LongformerTokenizer a__ : Tuple = True a__ : Optional[int] = LongformerTokenizerFast a__ : str = True def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_= [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase_= dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) UpperCAmelCase_= ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase_= {"""unk_token""": """<unk>"""} UpperCAmelCase_= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__UpperCAmelCase : int ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **__UpperCAmelCase : Union[str, Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : Any ) -> int: UpperCAmelCase_= """lower newer""" UpperCAmelCase_= """lower newer""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_= self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCAmelCase_= tokenizer.tokenize(__UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= tokens + [tokenizer.unk_token] UpperCAmelCase_= [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: UpperCAmelCase_= self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__UpperCAmelCase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__UpperCAmelCase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase_= self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) UpperCAmelCase_= tokenizer.encode("""sequence builders""" , add_special_tokens=__UpperCAmelCase ) UpperCAmelCase_= tokenizer.encode("""multi-sequence build""" , add_special_tokens=__UpperCAmelCase ) UpperCAmelCase_= tokenizer.encode( """sequence builders""" , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) UpperCAmelCase_= tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) UpperCAmelCase_= tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) UpperCAmelCase_= tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= """Encode this sequence.""" UpperCAmelCase_= tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCAmelCase_= tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) UpperCAmelCase_= tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) UpperCAmelCase_= tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCAmelCase_= tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) UpperCAmelCase_= tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing spaces after special tokens UpperCAmelCase_= """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase )} ) # mask token has a left space UpperCAmelCase_= tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) UpperCAmelCase_= """Encode <mask> sequence""" UpperCAmelCase_= """Encode <mask>sequence""" UpperCAmelCase_= tokenizer.encode(__UpperCAmelCase ) UpperCAmelCase_= encoded.index(__UpperCAmelCase ) UpperCAmelCase_= tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= tokenizer.encode(__UpperCAmelCase ) UpperCAmelCase_= encoded.index(__UpperCAmelCase ) UpperCAmelCase_= tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: pass def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_= self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_= self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_= """A, <mask> AllenNLP sentence.""" UpperCAmelCase_= tokenizer_r.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) UpperCAmelCase_= tokenizer_p.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCAmelCase_= tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCAmelCase_= tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( __UpperCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __UpperCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase_= self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) UpperCAmelCase_= json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase_= json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __UpperCAmelCase ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __UpperCAmelCase ) self.assertEqual(post_processor_state["""trim_offsets"""] , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_= """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase_= F"""{text_of_1_token} {text_of_1_token}""" UpperCAmelCase_= self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) UpperCAmelCase_= tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) UpperCAmelCase_= self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) UpperCAmelCase_= tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) UpperCAmelCase_= self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) UpperCAmelCase_= tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) UpperCAmelCase_= self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) UpperCAmelCase_= tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) UpperCAmelCase_= F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase_= self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) UpperCAmelCase_= tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) UpperCAmelCase_= self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) UpperCAmelCase_= tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) UpperCAmelCase_= self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) UpperCAmelCase_= tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , )
277
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase ( snake_case__): """simple docstring""" def __init__( self : Any , *__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[int]=None , **__UpperCAmelCase : Dict ) -> Optional[int]: super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_= eval_examples UpperCAmelCase_= post_process_function def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Optional[Dataset] = None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "eval" , **__UpperCAmelCase : Any , ) -> Dict[str, float]: UpperCAmelCase_= gen_kwargs.copy() UpperCAmelCase_= ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) UpperCAmelCase_= ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) UpperCAmelCase_= gen_kwargs UpperCAmelCase_= self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase_= self.get_eval_dataloader(__UpperCAmelCase ) UpperCAmelCase_= self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_= self.compute_metrics UpperCAmelCase_= None UpperCAmelCase_= time.time() UpperCAmelCase_= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase_= eval_loop( __UpperCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: UpperCAmelCase_= compute_metrics UpperCAmelCase_= self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase_= self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase_= metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) else: UpperCAmelCase_= output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase_= self.callback_handler.on_evaluate(self.args , self.state , self.control , __UpperCAmelCase ) return metrics def _SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : str = "test" , **__UpperCAmelCase : List[str] ) -> Tuple: UpperCAmelCase_= gen_kwargs.copy() UpperCAmelCase_= self.get_test_dataloader(__UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_= self.compute_metrics UpperCAmelCase_= None UpperCAmelCase_= time.time() UpperCAmelCase_= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase_= eval_loop( __UpperCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: UpperCAmelCase_= compute_metrics UpperCAmelCase_= self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase_= self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , """predict""" ) UpperCAmelCase_= self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase_= metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__UpperCAmelCase )
277
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''input_values''', '''attention_mask'''] def __init__( self : Optional[int] , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 16_000 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 80 , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : str = "hann_window" , UpperCAmelCase__ : float = 1.0 , UpperCAmelCase__ : float = 80 , UpperCAmelCase__ : float = 7_600 , UpperCAmelCase__ : float = 1e-10 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : int , ) ->int: '''simple docstring''' super().__init__(feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 1_000 A__ = hop_length * sampling_rate // 1_000 A__ = optimal_fft_length(self.sample_size) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCAmelCase__) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , UpperCAmelCase__ , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , UpperCAmelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : List[np.ndarray] , UpperCAmelCase__ : List[np.ndarray] , UpperCAmelCase__ : float = 0.0) ->List[np.ndarray]: '''simple docstring''' if attention_mask is not None: A__ = np.array(UpperCAmelCase__ , np.intaa) A__ = [] for vector, length in zip(UpperCAmelCase__ , attention_mask.sum(-1)): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(UpperCAmelCase__) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : np.ndarray , ) ->np.ndarray: '''simple docstring''' A__ = spectrogram( UpperCAmelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : Optional[int] , UpperCAmelCase__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , UpperCAmelCase__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[int] = None , **UpperCAmelCase__ : int , ) ->BatchFeature: '''simple docstring''' if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''') if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') if audio is not None: A__ = self._process_audio( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ , ) if inputs is None: return inputs_target else: A__ = inputs_target['''input_values'''] A__ = inputs_target.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : int , ) ->BatchFeature: '''simple docstring''' A__ = isinstance(UpperCAmelCase__ , np.ndarray) and len(speech.shape) > 1 if is_batched_numpy and len(speech.shape) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""") A__ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple)) and (isinstance(speech[0] , (np.ndarray, tuple, list))) ) if is_batched: A__ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa) for speech in speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray): A__ = np.asarray(UpperCAmelCase__ , dtype=np.floataa) elif isinstance(UpperCAmelCase__ , np.ndarray) and speech.dtype is np.dtype(np.floataa): A__ = speech.astype(np.floataa) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(UpperCAmelCase__) for waveform in speech] A__ = BatchFeature({'''input_values''': features}) A__ = self.num_mel_bins else: A__ = BatchFeature({'''input_values''': speech}) A__ = self.pad( UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray): A__ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa) for array in input_values] elif ( not isinstance(UpperCAmelCase__ , np.ndarray) and isinstance(input_values[0] , np.ndarray) and input_values[0].dtype is np.dtype(np.floataa) ): A__ = [array.astype(np.floataa) for array in input_values] elif isinstance(UpperCAmelCase__ , np.ndarray) and input_values.dtype is np.dtype(np.floataa): A__ = input_values.astype(np.floataa) # convert attention_mask to correct format A__ = padded_inputs.get('''attention_mask''') if attention_mask is not None: A__ = [np.asarray(UpperCAmelCase__ , dtype=np.intaa) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(UpperCAmelCase__ , max_length=UpperCAmelCase__) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=UpperCAmelCase__ , padding_value=self.padding_value) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(UpperCAmelCase__) return padded_inputs def SCREAMING_SNAKE_CASE ( self : int) ->Dict[str, Any]: '''simple docstring''' A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
14
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_: def __init__( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Union[str, Any]=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : int=3 , UpperCamelCase_ : Any=1_6 , UpperCamelCase_ : int=[1, 2, 1] , UpperCamelCase_ : Optional[int]=[2, 2, 4] , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Any=2.0 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : Tuple=1E-5 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : List[Any]=1_0 , UpperCamelCase_ : Dict=8 , ): lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : int = batch_size lowerCAmelCase : List[str] = image_size lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Any = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : Any = num_heads lowerCAmelCase : int = window_size lowerCAmelCase : List[Any] = mlp_ratio lowerCAmelCase : int = qkv_bias lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : str = drop_path_rate lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Union[str, Any] = patch_norm lowerCAmelCase : int = layer_norm_eps lowerCAmelCase : str = initializer_range lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : int = scope lowerCAmelCase : List[str] = use_labels lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : Union[str, Any] = encoder_stride def lowerCamelCase__ ( self : Any ): lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Union[str, Any] = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): lowerCAmelCase : List[str] = SwinvaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ ) lowerCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = SwinvaForMaskedImageModeling(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[str] = SwinvaForMaskedImageModeling(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : int = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : int ): lowerCAmelCase : List[str] = self.type_sequence_label_size lowerCAmelCase : Optional[Any] = SwinvaForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : str = config_and_inputs lowerCAmelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCamelCase = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : int ): lowerCAmelCase : Dict = SwinvaModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase_ , embed_dim=3_7 ) def lowerCamelCase__ ( self : Optional[int] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def lowerCamelCase__ ( self : Dict ): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def lowerCamelCase__ ( self : int ): pass def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) lowerCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: lowerCAmelCase : Any = True lowerCAmelCase : List[str] = False lowerCAmelCase : int = True lowerCAmelCase : int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : str = outputs.attentions lowerCAmelCase : int = len(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : Any = True lowerCAmelCase : Union[str, Any] = config.window_size**2 lowerCAmelCase : int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Dict = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase : str = len(UpperCamelCase_ ) # Check attention is always last and order is fine lowerCAmelCase : Optional[int] = True lowerCAmelCase : int = True lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Tuple = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowerCAmelCase : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase : Union[str, Any] = 2 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase_ ) ) lowerCAmelCase : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : str = outputs.hidden_states lowerCAmelCase : List[str] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # Swinv2 has a different seq_length lowerCAmelCase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : str = reshaped_hidden_states[0].shape lowerCAmelCase : Optional[Any] = ( reshaped_hidden_states[0].view(UpperCamelCase_ , UpperCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Tuple = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Dict = 3 lowerCAmelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase : str = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Optional[int] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : int ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = SwinvaModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(config=UpperCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Dict ): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( UpperCamelCase_ ) lowerCAmelCase : List[Any] = self.default_image_processor lowerCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : Dict = model(**UpperCamelCase_ ) # verify the logits lowerCAmelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowerCAmelCase : Any = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
60
0
import math import os import sys def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Any = '' try: with open(_UpperCAmelCase , 'rb' ) as binary_file: lowerCamelCase__ : List[Any] = binary_file.read() for dat in data: lowerCamelCase__ : Union[str, Any] = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lexicon.pop(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = last_match_id if math.loga(_UpperCAmelCase ).is_integer(): for curr_key in lexicon: lowerCamelCase__ : int = '0' + lexicon[curr_key] lowerCamelCase__ : List[Any] = bin(_UpperCAmelCase )[2:] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : List[str] = {'0': '0', '1': '1'} lowerCamelCase__ : Tuple = '', '' lowerCamelCase__ : Union[str, Any] = len(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCamelCase__ : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) index += 1 lowerCamelCase__ : Dict = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowerCamelCase__ : Any = lexicon[curr_string] result += last_match_id return result def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = os.path.getsize(_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = bin(_UpperCAmelCase )[2:] lowerCamelCase__ : Tuple = len(_UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> None: lowerCamelCase__ : Optional[Any] = 8 try: with open(_UpperCAmelCase , 'wb' ) as opened_file: lowerCamelCase__ : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> None: lowerCamelCase__ : Any = read_file_binary(_UpperCAmelCase ) lowerCamelCase__ : List[str] = compress_data(_UpperCAmelCase ) lowerCamelCase__ : Optional[int] = add_file_length(_UpperCAmelCase , _UpperCAmelCase ) write_file_binary(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
359
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : List[Any] = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0