code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[Any] = "Speech2TextFeatureExtractor" _lowerCamelCase :Optional[int] = "Speech2TextTokenizer" def __init__( self : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" super().__init__(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : int = self.feature_extractor lowerCAmelCase__ : Any = False def __call__( self : List[str] , *UpperCamelCase : int , **UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase , **UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowerCAmelCase__ : str = kwargs.pop("""raw_speech""" ) else: lowerCAmelCase__ : int = kwargs.pop("""audio""" , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = kwargs.pop("""sampling_rate""" , UpperCamelCase ) lowerCAmelCase__ : Tuple = kwargs.pop("""text""" , UpperCamelCase ) if len(UpperCamelCase ) > 0: lowerCAmelCase__ : Optional[int] = args[0] lowerCAmelCase__ : List[Any] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowerCAmelCase__ : str = self.feature_extractor(UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase ) if text is not None: lowerCAmelCase__ : Optional[int] = self.tokenizer(UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ : Dict = encodings["""input_ids"""] return inputs def _lowerCAmelCase ( self : str , *UpperCamelCase : Tuple , **UpperCamelCase : List[str] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] , *UpperCamelCase : str , **UpperCamelCase : int ) -> Dict: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @contextmanager def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : List[str] = self.tokenizer yield lowerCAmelCase__ : List[Any] = self.feature_extractor lowerCAmelCase__ : Any = False
242
"""simple docstring""" import math def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: lowerCAmelCase__ : Any = len(__UpperCAmelCase ) lowerCAmelCase__ : int = int(math.floor(math.sqrt(__UpperCAmelCase ) ) ) lowerCAmelCase__ : Optional[int] = 0 while arr[min(__UpperCAmelCase , __UpperCAmelCase ) - 1] < x: lowerCAmelCase__ : Any = step step += int(math.floor(math.sqrt(__UpperCAmelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: lowerCAmelCase__ : List[Any] = prev + 1 if prev == min(__UpperCAmelCase , __UpperCAmelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _A = input("""Enter numbers separated by a comma:\n""").strip() _A = [int(item) for item in user_input.split(""",""")] _A = int(input("""Enter the number to be searched:\n""")) _A = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
242
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off __lowerCamelCase : List[str] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __lowerCamelCase : Union[str, Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class a__ ( A__ ): A = 'whisper' A = ['past_key_values'] A = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any],_A : Any=5_1865,_A : Optional[int]=80,_A : List[str]=6,_A : List[str]=4,_A : List[Any]=6,_A : Tuple=4,_A : Any=1536,_A : List[str]=1536,_A : Union[str, Any]=0.0,_A : Dict=0.0,_A : str=5_0257,_A : Optional[int]=True,_A : Optional[Any]=True,_A : Union[str, Any]="gelu",_A : List[str]=256,_A : Union[str, Any]=0.0,_A : Union[str, Any]=0.0,_A : Union[str, Any]=0.0,_A : Union[str, Any]=0.02,_A : int=False,_A : Tuple=1500,_A : Optional[Any]=448,_A : List[Any]=5_0256,_A : Tuple=5_0256,_A : Dict=5_0256,_A : Dict=None,_A : Union[str, Any]=[220, 5_0256],_A : Optional[int]=False,_A : int=256,_A : str=False,_A : Optional[int]=0.05,_A : List[Any]=10,_A : Dict=2,_A : str=0.0,_A : Union[str, Any]=10,_A : Optional[int]=0,_A : List[Any]=7,**_A : int,): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Any = num_mel_bins SCREAMING_SNAKE_CASE_ : Dict = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE_ : Dict = decoder_layers SCREAMING_SNAKE_CASE_ : int = decoder_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE_ : List[Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE_ : Tuple = dropout SCREAMING_SNAKE_CASE_ : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE_ : Dict = activation_dropout SCREAMING_SNAKE_CASE_ : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE_ : Union[str, Any] = init_std SCREAMING_SNAKE_CASE_ : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_layerdrop SCREAMING_SNAKE_CASE_ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE_ : List[Any] = encoder_layers SCREAMING_SNAKE_CASE_ : Any = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ : int = max_source_positions SCREAMING_SNAKE_CASE_ : Any = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : List[str] = classifier_proj_size SCREAMING_SNAKE_CASE_ : Tuple = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ : List[Any] = apply_spec_augment SCREAMING_SNAKE_CASE_ : Tuple = mask_time_prob SCREAMING_SNAKE_CASE_ : List[str] = mask_time_length SCREAMING_SNAKE_CASE_ : Optional[int] = mask_time_min_masks SCREAMING_SNAKE_CASE_ : List[Any] = mask_feature_prob SCREAMING_SNAKE_CASE_ : str = mask_feature_length SCREAMING_SNAKE_CASE_ : Dict = mask_feature_min_masks SCREAMING_SNAKE_CASE_ : Dict = median_filter_width super().__init__( pad_token_id=_A,bos_token_id=_A,eos_token_id=_A,is_encoder_decoder=_A,decoder_start_token_id=_A,suppress_tokens=_A,begin_suppress_tokens=_A,**_A,) class a__ ( A__ ): @property def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ : str = {0: "batch"} else: SCREAMING_SNAKE_CASE_ : Optional[int] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_A,direction="inputs" ) return common_inputs def __UpperCamelCase ( self : Any,_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional["TensorType"] = None,_A : int = 2_2050,_A : float = 5.0,_A : int = 220,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = OrderedDict() SCREAMING_SNAKE_CASE_ : Tuple = OnnxConfig.generate_dummy_inputs( self,preprocessor=preprocessor.feature_extractor,batch_size=_A,framework=_A,sampling_rate=_A,time_duration=_A,frequency=_A,) SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_inputs["input_features"].shape[2] SCREAMING_SNAKE_CASE_ : int = encoder_sequence_length // 2 if self.use_past else seq_length SCREAMING_SNAKE_CASE_ : Dict = super().generate_dummy_inputs( preprocessor.tokenizer,_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = encoder_inputs.pop("input_features" ) SCREAMING_SNAKE_CASE_ : List[str] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: SCREAMING_SNAKE_CASE_ : Any = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def __UpperCamelCase ( self : Any ): """simple docstring""" return 1E-3
18
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __a ( lowerCAmelCase_ : int ) -> List[str]: '''simple docstring''' if "model" in orig_key: UpperCAmelCase_= orig_key.replace("""model.""" ,"""""" ) if "norm1" in orig_key: UpperCAmelCase_= orig_key.replace("""norm1""" ,"""attention.output.LayerNorm""" ) if "norm2" in orig_key: UpperCAmelCase_= orig_key.replace("""norm2""" ,"""output.LayerNorm""" ) if "norm" in orig_key: UpperCAmelCase_= orig_key.replace("""norm""" ,"""LayerNorm""" ) if "transformer" in orig_key: UpperCAmelCase_= orig_key.split(""".""" )[0].split("""_""" )[-1] UpperCAmelCase_= orig_key.replace(F"""transformer_{layer_num}""" ,F"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: UpperCAmelCase_= orig_key.replace("""mha.attn""" ,"""attention.self""" ) if "mha" in orig_key: UpperCAmelCase_= orig_key.replace("""mha""" ,"""attention""" ) if "W_q" in orig_key: UpperCAmelCase_= orig_key.replace("""W_q""" ,"""self.query""" ) if "W_k" in orig_key: UpperCAmelCase_= orig_key.replace("""W_k""" ,"""self.key""" ) if "W_v" in orig_key: UpperCAmelCase_= orig_key.replace("""W_v""" ,"""self.value""" ) if "ff1" in orig_key: UpperCAmelCase_= orig_key.replace("""ff1""" ,"""intermediate.dense""" ) if "ff2" in orig_key: UpperCAmelCase_= orig_key.replace("""ff2""" ,"""output.dense""" ) if "ff" in orig_key: UpperCAmelCase_= orig_key.replace("""ff""" ,"""output.dense""" ) if "mlm_class" in orig_key: UpperCAmelCase_= orig_key.replace("""mlm.mlm_class""" ,"""cls.predictions.decoder""" ) if "mlm" in orig_key: UpperCAmelCase_= orig_key.replace("""mlm""" ,"""cls.predictions.transform""" ) if "cls" not in orig_key: UpperCAmelCase_= """yoso.""" + orig_key return orig_key def __a ( lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_= orig_state_dict.pop(lowerCAmelCase_ ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase_= val UpperCAmelCase_= orig_state_dict["""cls.predictions.decoder.bias"""] UpperCAmelCase_= torch.arange(lowerCAmelCase_ ).expand((1, -1) ) + 2 return orig_state_dict def __a ( lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_= torch.load(lowerCAmelCase_ ,map_location="""cpu""" )["""model_state_dict"""] UpperCAmelCase_= YosoConfig.from_json_file(lowerCAmelCase_ ) UpperCAmelCase_= YosoForMaskedLM(lowerCAmelCase_ ) UpperCAmelCase_= convert_checkpoint_helper(config.max_position_embeddings ,lowerCAmelCase_ ) print(model.load_state_dict(lowerCAmelCase_ ) ) model.eval() model.save_pretrained(lowerCAmelCase_ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __A = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
277
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: UpperCAmelCase_= tempfile.mkdtemp() UpperCAmelCase_= BlipImageProcessor() UpperCAmelCase_= GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCAmelCase_= BlipaProcessor(__UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **__UpperCAmelCase : Union[str, Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__UpperCAmelCase : str ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_= [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase_= [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: UpperCAmelCase_= BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_= self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase_= self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) UpperCAmelCase_= BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= image_processor(__UpperCAmelCase , return_tensors="""np""" ) UpperCAmelCase_= processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= processor(text=__UpperCAmelCase ) UpperCAmelCase_= tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_= processor.batch_decode(__UpperCAmelCase ) UpperCAmelCase_= tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
277
1
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : Tuple = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Tuple = { 'Salesforce/codegen-350M-mono': 2048, } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Any = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Dict = CodeGenTokenizer def __init__( self : str , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , __lowerCamelCase : int=None , __lowerCamelCase : List[Any]="<|endoftext|>" , __lowerCamelCase : str="<|endoftext|>" , __lowerCamelCase : List[Any]="<|endoftext|>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Optional[int] , ) -> Optional[int]: super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) if kwargs.pop("add_bos_token" , __lowerCamelCase ): a = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space: a = getattr(__lowerCamelCase , pre_tok_state.pop("type" ) ) a = add_prefix_space a = pre_tok_class(**__lowerCamelCase ) a = add_prefix_space def __UpperCAmelCase ( self : Dict , *__lowerCamelCase : str , **__lowerCamelCase : Optional[int] ) -> BatchEncoding: a = kwargs.get("is_split_into_words" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , *__lowerCamelCase : List[str] , **__lowerCamelCase : List[str] ) -> BatchEncoding: a = kwargs.get("is_split_into_words" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: a = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , __lowerCamelCase : bool = False , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[List[str]] = None , **__lowerCamelCase : int , ) -> str: a = super().decode( token_ids=__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase , **__lowerCamelCase , ) if truncate_before_pattern is not None and len(__lowerCamelCase ) > 0: a = self.truncate(__lowerCamelCase , __lowerCamelCase ) return decoded_text def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] ) -> int: def find_re(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): a = pattern.search(__lowerCamelCase , __lowerCamelCase ) return m.start() if m else -1 a = [re.compile(__lowerCamelCase , re.MULTILINE ) for pattern in truncate_before_pattern] a = list(re.finditer("^print" , __lowerCamelCase , re.MULTILINE ) ) if len(__lowerCamelCase ) > 1: a = completion[: prints[1].start()] a = list(re.finditer("^def" , __lowerCamelCase , re.MULTILINE ) ) if len(__lowerCamelCase ) > 1: a = completion[: defs[1].start()] a = 0 a = [ pos for pos in [find_re(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for terminal in terminals] if pos != -1 ] if len(__lowerCamelCase ) > 0: return completion[: min(__lowerCamelCase )] else: return completion
107
'''simple docstring''' def UpperCAmelCase_ (__a : list , __a : list , __a : int ): """simple docstring""" _a : Optional[Any] = len(__a ) _a : int = [[0] * n for i in range(__a )] for i in range(__a ): _a : Tuple = y_points[i] for i in range(2 , __a ): for j in range(__a , __a ): _a : Tuple = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
271
0
'''simple docstring''' from sklearn.metrics import fa_score import datasets snake_case__ : str = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case__ : int = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case__ : Tuple = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=1 , snake_case_="binary" , snake_case_=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = fa_score( snake_case_ , snake_case_ , labels=snake_case_ , pos_label=snake_case_ , average=snake_case_ , sample_weight=snake_case_ ) return {"f1": float(snake_case_ ) if score.size == 1 else score}
274
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str = " " ): """simple docstring""" UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[Any] = 0 for index, char in enumerate(lowerCamelCase_ ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase_ : Optional[Any] = index + 1 elif index + 1 == len(lowerCamelCase_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
274
1
'''simple docstring''' from __future__ import annotations class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , snake_case_ : int ): snake_case__ : List[Any] = data snake_case__ : Node | None = None snake_case__ : Node | None = None def __snake_case( _lowerCAmelCase ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __snake_case( _lowerCAmelCase ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __snake_case( _lowerCAmelCase ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __snake_case( ) -> None: # Main function for testing. snake_case__ : int = Node(1 ) snake_case__ : Dict = Node(2 ) snake_case__ : str = Node(3 ) snake_case__ : int = Node(4 ) snake_case__ : List[Any] = Node(5 ) snake_case__ : List[Any] = Node(6 ) snake_case__ : Optional[Any] = Node(7 ) snake_case__ : Optional[Any] = Node(8 ) snake_case__ : Dict = Node(9 ) print(is_full_binary_tree(_lowerCAmelCase ) ) print(depth_of_tree(_lowerCAmelCase ) ) print("""Tree is: """ ) display(_lowerCAmelCase ) if __name__ == "__main__": main()
35
'''simple docstring''' import argparse import os import re __a = "src/transformers" # Pattern that looks at the indentation in a line. __a = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __a = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __a = re.compile(R"\[([^\]]+)\]") def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : int = _re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def __snake_case( _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: snake_case__ : str = 0 snake_case__ : Union[str, Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 snake_case__ : Tuple = ["""\n""".join(lines[:index] )] else: snake_case__ : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : Optional[int] = [lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: snake_case__ : str = [lines[index + 1]] index += 1 else: snake_case__ : int = [] else: blocks.append("""\n""".join(_lowerCAmelCase ) ) snake_case__ : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("""\n""".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __snake_case( _lowerCAmelCase ) -> Tuple: def _inner(_lowerCAmelCase ): return key(_lowerCAmelCase ).lower().replace("""_""" , """""" ) return _inner def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(_lowerCAmelCase ): return x if key is None: snake_case__ : Optional[int] = noop # Constants are all uppercase, they go first. snake_case__ : Optional[int] = [obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : int = [obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : str = [obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] snake_case__ : List[str] = ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: # This inner function sort imports between [ ]. def _replace(_lowerCAmelCase ): snake_case__ : Union[str, Any] = match.groups()[0] if "," not in imports: return f"[{imports}]" snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) + "]" snake_case__ : str = import_statement.split("""\n""" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Dict = 2 if lines[1].strip() == """[""" else 1 snake_case__ : str = [(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : str = sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) snake_case__ : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : List[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] snake_case__ : int = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def __snake_case( _lowerCAmelCase , _lowerCAmelCase=True ) -> Dict: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : Optional[int] = split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Optional[Any] = main_blocks[block_idx] snake_case__ : Dict = block.split("""\n""" ) # Get to the start of the imports. snake_case__ : Dict = 0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : List[str] = """\n""".join(block_lines[line_idx:-1] ) snake_case__ : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Optional[int] = split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Optional[Any] = [(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Dict = [(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] snake_case__ : Union[str, Any] = [x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case__ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : Dict = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase=True ) -> Tuple: snake_case__ : str = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case__ : Union[str, Any] = sort_imports(os.path.join(_lowerCAmelCase , """__init__.py""" ) , check_only=_lowerCAmelCase ) if result: snake_case__ : Union[str, Any] = [os.path.join(_lowerCAmelCase , """__init__.py""" )] if len(_lowerCAmelCase ) > 0: raise ValueError(f"Would overwrite {len(_lowerCAmelCase )} files, run `make style`." ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
35
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( __magic_name__ : List[Any] ) -> Any: """simple docstring""" lowercase__ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ = 4 lowercase__ = 48 lowercase__ = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ = [6, 6, 6, 6] lowercase__ = 60 lowercase__ = [6, 6, 6, 6] lowercase__ = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ = 4 lowercase__ = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ = 1 lowercase__ = 1 lowercase__ = 126 lowercase__ = 7 lowercase__ = 255.0 lowercase__ = """""" return config def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Any ) -> List[str]: """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ = """layernorm.weight""" if name == "norm.bias": lowercase__ = """layernorm.bias""" if "conv_first" in name: lowercase__ = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ = """swin2sr.""" + name return name def UpperCamelCase ( __magic_name__ : int , __magic_name__ : str ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(_a ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[1] ) lowercase__ = int(key_split[4] ) lowercase__ = config.embed_dim if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> int: """simple docstring""" lowercase__ = get_config(_a ) lowercase__ = SwinaSRForImageSuperResolution(_a ) model.eval() lowercase__ = torch.hub.load_state_dict_from_url(_a , map_location="""cpu""" ) lowercase__ = convert_state_dict(_a , _a ) lowercase__ , lowercase__ = model.load_state_dict(_a , strict=_a ) if len(_a ) > 0: raise ValueError("""Missing keys when converting: {}""".format(_a ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values lowercase__ = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ = Image.open(requests.get(_a , stream=_a ).raw ).convert("""RGB""" ) lowercase__ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ = 126 if """Jpeg""" in checkpoint_url else 256 lowercase__ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ = transforms(_a ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ = model(_a ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ = torch.Size([1, 3, 512, 512] ) lowercase__ = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ = torch.Size([1, 3, 1024, 1024] ) lowercase__ = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ = torch.Size([1, 3, 1024, 1024] ) lowercase__ = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ = torch.Size([1, 3, 512, 512] ) lowercase__ = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ = torch.Size([1, 3, 1024, 1024] ) lowercase__ = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _a , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_a ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_a ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') A : Dict = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
361
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) lowercase__ = { """input_ids""": tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowercase__ = model(_UpperCAmelCase )["""last_hidden_state"""] lowercase__ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice. lowercase__ = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
146
0
'''simple docstring''' import re import string import numpy as np import datasets __A = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" __A = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It\'s like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It\'s like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" __A = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def A__ ( self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , ) -> List[Any]: '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: lowercase__ = np.array([re.sub(__A , """""" , __A ) for x in predictions] ) lowercase__ = np.array([re.sub(__A , """""" , __A ) for x in references] ) else: lowercase__ = np.asarray(__A ) lowercase__ = np.asarray(__A ) if ignore_case: lowercase__ = np.char.lower(__A ) lowercase__ = np.char.lower(__A ) if ignore_punctuation: lowercase__ = string.punctuation.maketrans("""""" , """""" , string.punctuation ) lowercase__ = np.char.translate(__A , table=__A ) lowercase__ = np.char.translate(__A , table=__A ) if ignore_numbers: lowercase__ = string.digits.maketrans("""""" , """""" , string.digits ) lowercase__ = np.char.translate(__A , table=__A ) lowercase__ = np.char.translate(__A , table=__A ) lowercase__ = predictions == references return {"exact_match": np.mean(__A ) * 100}
164
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( UpperCamelCase , unittest.TestCase ): '''simple docstring''' __A : List[Any] = BioGptTokenizer __A : Optional[int] = False def _snake_case ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCamelCase : str = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : Dict = ["l o 123", "lo w 1456", "e r</w> 1789", ""] lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__A ) ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Dict = "lower newer" lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase : Optional[int] = "lower" lowerCamelCase : Any = ["low", "er</w>"] lowerCamelCase : List[str] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) lowerCamelCase : Union[str, Any] = tokens + ["<unk>"] lowerCamelCase : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) @slow def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) lowerCamelCase : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=__A ) lowerCamelCase : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=__A ) lowerCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__A ) lowerCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__A , __A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
283
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__: List[str] = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Tuple = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Any = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __magic_name__: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case__ ( _lowerCAmelCase ): lowercase__ : torch.FloatTensor lowercase__ : Optional[torch.FloatTensor] = None def UpperCamelCase ( _A, _A=0.999, _A="cosine", ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __magic_name__ : Optional[Any] = [] for i in range(_A ): __magic_name__ : Dict = i / num_diffusion_timesteps __magic_name__ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ), _A ) ) return torch.tensor(_A, dtype=torch.floataa ) class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self , lowerCAmelCase__ = 10_00 , lowerCAmelCase__ = "fixed_small_log" , lowerCAmelCase__ = True , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = "squaredcos_cap_v2" , ) -> Union[str, Any]: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __magic_name__ : Tuple = betas_for_alpha_bar(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = 1.0 - self.betas __magic_name__ : str = torch.cumprod(self.alphas , dim=0 ) __magic_name__ : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __magic_name__ : Tuple = 1.0 # setable values __magic_name__ : List[Any] = None __magic_name__ : int = torch.from_numpy(np.arange(0 , lowerCAmelCase__ )[::-1].copy() ) __magic_name__ : List[Any] = variance_type def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> torch.FloatTensor: return sample def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> str: __magic_name__ : List[Any] = num_inference_steps __magic_name__ : Union[str, Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __magic_name__ : List[Any] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __magic_name__ : Dict = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Tuple: if prev_timestep is None: __magic_name__ : int = t - 1 __magic_name__ : Optional[Any] = self.alphas_cumprod[t] __magic_name__ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Tuple = 1 - alpha_prod_t __magic_name__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : List[str] = self.betas[t] else: __magic_name__ : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Dict = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __magic_name__ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __magic_name__ : str = torch.log(torch.clamp(lowerCAmelCase__ , min=1e-2_0 ) ) __magic_name__ : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __magic_name__ : List[str] = variance.log() __magic_name__ : Optional[int] = beta.log() __magic_name__ : Any = (predicted_variance + 1) / 2 __magic_name__ : Any = frac * max_log + (1 - frac) * min_log return variance def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __magic_name__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __magic_name__ ,__magic_name__ : List[Any] = torch.split(lowerCAmelCase__ , sample.shape[1] , dim=1 ) else: __magic_name__ : List[str] = None # 1. compute alphas, betas if prev_timestep is None: __magic_name__ : Union[str, Any] = t - 1 __magic_name__ : List[str] = self.alphas_cumprod[t] __magic_name__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Any = 1 - alpha_prod_t __magic_name__ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Union[str, Any] = self.betas[t] __magic_name__ : int = self.alphas[t] else: __magic_name__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev __magic_name__ : Tuple = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : Tuple = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : Tuple = torch.clamp( lowerCAmelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : List[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __magic_name__ : Dict = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : Tuple = 0 if t > 0: __magic_name__ : Any = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase__ , device=model_output.device ) __magic_name__ : Tuple = self._get_variance( lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ , ) if self.variance_type == "fixed_small_log": __magic_name__ : Tuple = variance elif self.variance_type == "learned_range": __magic_name__ : int = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) __magic_name__ : Tuple = variance * variance_noise __magic_name__ : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __magic_name__ : List[str] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __magic_name__ : Any = timesteps.to(original_samples.device ) __magic_name__ : int = alphas_cumprod[timesteps] ** 0.5 __magic_name__ : Union[str, Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : int = sqrt_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __magic_name__ : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
138
0
import pytest import datasets # Import fixture modules as plugins a_ : int = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit']): continue item.add_marker(pytest.mark.unit) def lowerCamelCase__ (_UpperCAmelCase): config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12') @pytest.fixture(autouse=_UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? SCREAMING_SNAKE_CASE = tmp_path_factory.getbasetemp() / 'cache' SCREAMING_SNAKE_CASE = test_hf_cache_home / 'datasets' SCREAMING_SNAKE_CASE = test_hf_cache_home / 'metrics' SCREAMING_SNAKE_CASE = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_UpperCAmelCase)) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_UpperCAmelCase)) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_UpperCAmelCase)) @pytest.fixture(autouse=_UpperCAmelCase , scope='session') def lowerCamelCase__ (): datasets.disable_progress_bar() @pytest.fixture(autouse=_UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase): # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _UpperCAmelCase) @pytest.fixture def lowerCamelCase__ (_UpperCAmelCase): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _UpperCAmelCase)
137
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _snake_case : def __init__( self , a , a=13 , a=64 , a=2 , a=3 , a=True , a=True , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=10 , a=0.02 , a=[1, 16, 4, 4] , a=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=a , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> int: SCREAMING_SNAKE_CASE = ViTHybridModel(config=a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> List[Any]: SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _snake_case ( A__ , A__ , unittest.TestCase ): _lowercase : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _lowercase : str = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) _lowercase : int = False _lowercase : Any = False _lowercase : Dict = False def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = ViTHybridModelTester(self) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def SCREAMING_SNAKE_CASE__ ( self) -> int: pass def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear)) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(a) SCREAMING_SNAKE_CASE = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , a) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(a) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def SCREAMING_SNAKE_CASE__ ( self) -> str: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(a) self.assertIsNotNone(a) def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( a) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=a , return_tensors='pt').to(a) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**a) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , a) SCREAMING_SNAKE_CASE = torch.tensor([-1.90_90, -0.49_93, -0.23_89]).to(a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4)) @slow @require_accelerate def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384') SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto') SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=a , return_tensors='pt') SCREAMING_SNAKE_CASE = model(**a) SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat')
137
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowercase__ ( lowercase ): def __init__( self : int ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Dict = params _UpperCamelCase : Optional[Any] = np.array(lowerCamelCase__ ) _UpperCamelCase : Tuple = np.array([len(lowerCamelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Dict ,lowerCamelCase__ : Tuple ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self : str ): '''simple docstring''' return len(self.lengths ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Dict = self.params.max_model_input_size _UpperCamelCase : Any = self.lengths > max_len logger.info(F'Splitting {sum(lowerCamelCase__ )} too long sequences.' ) def divide_chunks(lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ): return [l[i : i + n] for i in range(0 ,len(lowerCamelCase__ ) ,lowerCamelCase__ )] _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : List[Any] = [] if self.params.mlm: _UpperCamelCase : int = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: _UpperCamelCase : Optional[Any] = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids ,self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _UpperCamelCase : List[str] = [] for sub_s in divide_chunks(seq_ ,max_len - 2 ): if sub_s[0] != cls_id: _UpperCamelCase : Tuple = np.insert(lowerCamelCase__ ,0 ,lowerCamelCase__ ) if sub_s[-1] != sep_id: _UpperCamelCase : Optional[int] = np.insert(lowerCamelCase__ ,len(lowerCamelCase__ ) ,lowerCamelCase__ ) assert len(lowerCamelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCamelCase__ ) new_tok_ids.extend(lowerCamelCase__ ) new_lengths.extend([len(lowerCamelCase__ ) for l in sub_seqs] ) _UpperCamelCase : str = np.array(lowerCamelCase__ ) _UpperCamelCase : Any = np.array(lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Dict = len(self ) _UpperCamelCase : Any = self.lengths > 11 _UpperCamelCase : Optional[int] = self.token_ids[indices] _UpperCamelCase : Optional[Any] = self.lengths[indices] _UpperCamelCase : Optional[Any] = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: _UpperCamelCase : Tuple = self.params.special_tok_ids['unk_token'] _UpperCamelCase : Optional[int] = len(self ) _UpperCamelCase : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _UpperCamelCase : Union[str, Any] = (unk_occs / self.lengths) < 0.5 _UpperCamelCase : Optional[Any] = self.token_ids[indices] _UpperCamelCase : int = self.lengths[indices] _UpperCamelCase : Optional[Any] = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase_ ( self : str ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : int = [t[0] for t in batch] _UpperCamelCase : Any = [t[1] for t in batch] assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) # Max for paddings _UpperCamelCase : Dict = max(lowerCamelCase__ ) # Pad token ids if self.params.mlm: _UpperCamelCase : str = self.params.special_tok_ids['pad_token'] else: _UpperCamelCase : Optional[Any] = self.params.special_tok_ids['unk_token'] _UpperCamelCase : Optional[Any] = [list(t.astype(lowerCamelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCamelCase__ )) for t in token_ids] assert len(tk_ ) == len(lowerCamelCase__ ) assert all(len(lowerCamelCase__ ) == max_seq_len_ for t in tk_ ) _UpperCamelCase : List[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) _UpperCamelCase : Union[str, Any] = torch.tensor(lowerCamelCase__ ) # (bs) return tk_t, lg_t
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case_ : Optional[Any] = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ['CLIPFeatureExtractor'] snake_case_ : Dict = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def UpperCamelCase__ ( A__ = "" ) -> Dict: snake_case__ : Optional[int] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' snake_case__ : str = BeautifulSoup(requests.get(_UpperCAmelCase ).text , 'html.parser' ) snake_case__ : List[Any] = soup.find_all('td' , attrs='titleColumn' ) snake_case__ : List[str] = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_UpperCAmelCase , _UpperCAmelCase ) } def UpperCamelCase__ ( A__ = "IMDb_Top_250_Movies.csv" ) -> Any: snake_case__ : Any = get_imdb_top_aaa_movies() with open(_UpperCAmelCase , 'w' , newline='' ) as out_file: snake_case__ : List[Any] = csv.writer(_UpperCAmelCase ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
143
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase ( __UpperCAmelCase): __lowerCAmelCase : str = ["""image_processor""", """tokenizer"""] __lowerCAmelCase : Optional[Any] = """OwlViTImageProcessor""" __lowerCAmelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Union[str, Any] , _lowerCamelCase : str=None , _lowerCamelCase : Tuple=None , **_lowerCamelCase : List[Any] ): """simple docstring""" A_ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowerCamelCase , ) A_ : List[Any] = kwargs.pop('''feature_extractor''' ) A_ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self : Optional[int] , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None , _lowerCamelCase : int=None , _lowerCamelCase : str="max_length" , _lowerCamelCase : List[Any]="np" , **_lowerCamelCase : Optional[int] ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(_lowerCamelCase , _lowerCamelCase ) or (isinstance(_lowerCamelCase , _lowerCamelCase ) and not isinstance(text[0] , _lowerCamelCase )): A_ : List[str] = [self.tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )] elif isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(text[0] , _lowerCamelCase ): A_ : Optional[int] = [] # Maximum number of queries across batch A_ : Any = max([len(_lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_lowerCamelCase ) != max_num_queries: A_ : Optional[int] = t + [''' '''] * (max_num_queries - len(_lowerCamelCase )) A_ : Tuple = self.tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) encodings.append(_lowerCamelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": A_ : Union[str, Any] = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) A_ : Dict = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ : List[Any] = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) A_ : Any = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ : Any = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) A_ : Union[str, Any] = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ : Tuple = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) A_ : str = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) A_ : Any = BatchEncoding() A_ : Optional[Any] = input_ids A_ : str = attention_mask if query_images is not None: A_ : Union[str, Any] = BatchEncoding() A_ : Optional[Any] = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ).pixel_values A_ : Dict = query_pixel_values if images is not None: A_ : int = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and images is not None: A_ : str = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def a_ ( self : Optional[Any] , *_lowerCamelCase : int , **_lowerCamelCase : Dict ): """simple docstring""" return self.image_processor.post_process(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : Optional[Any] , *_lowerCamelCase : Optional[Any] , **_lowerCamelCase : Dict ): """simple docstring""" return self.image_processor.post_process_object_detection(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : List[Any] , *_lowerCamelCase : List[str] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : str , *_lowerCamelCase : Tuple , **_lowerCamelCase : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : Dict , *_lowerCamelCase : Any , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def a_ ( self : List[str] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowerCamelCase , ) return self.image_processor_class @property def a_ ( self : Any ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowerCamelCase , ) return self.image_processor
167
0
"""simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = range(2, 2_0 + 1) SCREAMING_SNAKE_CASE_ : Dict = [1_0**k for k in range(ks[-1] + 1)] SCREAMING_SNAKE_CASE_ : dict[int, dict[int, list[list[int]]]] = {} def _snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): A__ = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) A__ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) A__ , A__ = 0, 0 A__ = n - i A__ = memo.get(UpperCAmelCase_ ) if sub_memo is not None: A__ = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over A__ = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ = _k break if max_jump >= 0: A__ , A__ , A__ = jumps[max_jump] # since the difference between jumps is cached, add c A__ = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): A__ , A__ = divmod(UpperCAmelCase_ , 10 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: A__ = [] else: A__ = {c: []} A__ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped A__ = sub_memo[c] # keep jumps sorted by # of terms skipped A__ = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ): if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ = i A__ , A__ , A__ = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ = ds_c + ds_b diff += addend A__ = 0 for j in range(UpperCAmelCase_ ): A__ = a_i[j] + addend A__ , A__ = divmod(UpperCAmelCase_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def _snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ): for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): A__ = digits[j] + addend if s >= 10: A__ , A__ = divmod(UpperCAmelCase_ , 10 ) A__ = addend // 10 + quotient else: A__ = s A__ = addend // 10 if addend == 0: break while addend > 0: A__ , A__ = divmod(UpperCAmelCase_ , 10 ) digits.append(UpperCAmelCase_ ) def _snake_case ( UpperCAmelCase_ : int = 10**15 ): A__ = [1] A__ = 1 A__ = 0 while True: A__ , A__ = next_term(UpperCAmelCase_ , 20 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break A__ = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
69
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: int , UpperCamelCase: int , UpperCamelCase: Union[str, Any]=13 , UpperCamelCase: List[Any]=7 , UpperCamelCase: Any=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: str=True , UpperCamelCase: Optional[int]=99 , UpperCamelCase: Optional[Any]=32 , UpperCamelCase: Tuple=5 , UpperCamelCase: Optional[int]=4 , UpperCamelCase: int=37 , UpperCamelCase: str="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: List[Any]=0.1 , UpperCamelCase: Tuple=5_12 , UpperCamelCase: List[str]=16 , UpperCamelCase: List[str]=2 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: List[str]=False , UpperCamelCase: int=True , UpperCamelCase: Union[str, Any]="None" , UpperCamelCase: Optional[int]=3 , UpperCamelCase: List[str]=4 , UpperCamelCase: List[str]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = relative_attention A__ = position_biased_input A__ = pos_att_type A__ = scope def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: str ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.get_config() A__ = 3_00 return config def UpperCamelCase ( self: List[Any] , UpperCamelCase: str ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase ( self: Tuple , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple ): """simple docstring""" A__ = DebertaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase )[0] A__ = model(UpperCamelCase , token_type_ids=UpperCamelCase )[0] A__ = model(UpperCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple , UpperCamelCase: Tuple , UpperCamelCase: str , UpperCamelCase: Any ): """simple docstring""" A__ = DebertaForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: int , UpperCamelCase: Dict , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: str ): """simple docstring""" A__ = self.num_labels A__ = DebertaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Dict , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: str , UpperCamelCase: int ): """simple docstring""" A__ = self.num_labels A__ = DebertaForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: Tuple , UpperCamelCase: Any ): """simple docstring""" A__ = DebertaForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = DebertaModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase ) @slow def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = DebertaModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Any ): """simple docstring""" pass @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) A__ = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] # compare the actual values for a slice. A__ = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
69
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a__ : List[str] =logging.get_logger(__name__) a__ : str ={ '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] ="dpt" def __init__( self : int , __A : Optional[int]=7_6_8 , __A : Any=1_2 , __A : Tuple=1_2 , __A : Optional[Any]=3_0_7_2 , __A : List[Any]="gelu" , __A : Tuple=0.0 , __A : List[Any]=0.0 , __A : List[Any]=0.02 , __A : Dict=1e-12 , __A : List[Any]=3_8_4 , __A : List[str]=1_6 , __A : Union[str, Any]=3 , __A : Optional[int]=False , __A : str=True , __A : Union[str, Any]=[2, 5, 8, 1_1] , __A : Any="project" , __A : List[str]=[4, 2, 1, 0.5] , __A : Union[str, Any]=[9_6, 1_9_2, 3_8_4, 7_6_8] , __A : List[str]=2_5_6 , __A : str=-1 , __A : Dict=False , __A : Tuple=True , __A : Union[str, Any]=0.4 , __A : int=2_5_5 , __A : Tuple=0.1 , __A : Optional[Any]=[1, 1_0_2_4, 2_4, 2_4] , __A : List[str]=[0, 1] , __A : Optional[Any]=None , **__A : Tuple , ): super().__init__(**__A ) __UpperCamelCase = hidden_size __UpperCamelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) __UpperCamelCase = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } __UpperCamelCase = BitConfig(**__A ) elif isinstance(__A , __A ): logger.info('Initializing the config with a `BiT` backbone.' ) __UpperCamelCase = BitConfig(**__A ) elif isinstance(__A , __A ): __UpperCamelCase = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) __UpperCamelCase = backbone_featmap_shape __UpperCamelCase = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = [] __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = qkv_bias __UpperCamelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) __UpperCamelCase = readout_type __UpperCamelCase = reassemble_factors __UpperCamelCase = neck_hidden_sizes __UpperCamelCase = fusion_hidden_size __UpperCamelCase = head_in_index __UpperCamelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __UpperCamelCase = use_auxiliary_head __UpperCamelCase = auxiliary_loss_weight __UpperCamelCase = semantic_loss_ignore_index __UpperCamelCase = semantic_classifier_dropout def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCamelCase = self.backbone_config.to_dict() __UpperCamelCase = self.__class__.model_type return output
53
"""simple docstring""" from statistics import mean import numpy as np def __A ( a_ :list , a_ :list , a_ :list , a_ :int) -> list: __a : Any = 0 # Number of processes finished __a : Union[str, Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __a : Any = [0] * no_of_process # List to include calculation results __a : str = [0] * no_of_process # Sort by arrival time. __a : List[Any] = [burst_time[i] for i in np.argsort(a_)] __a : Tuple = [process_name[i] for i in np.argsort(a_)] arrival_time.sort() while no_of_process > finished_process_count: __a : Optional[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __a : Dict = arrival_time[i] __a : Dict = 0 # Index showing the location of the process being performed __a : Tuple = 0 # Saves the current response ratio. __a : List[str] = 0 for i in range(0 , a_): if finished_process[i] == 0 and arrival_time[i] <= current_time: __a : Tuple = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __a : Tuple = temp __a : Optional[Any] = i # Calculate the turn around time __a : Optional[int] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __a : int = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __A ( a_ :list , a_ :list , a_ :list , a_ :int) -> list: __a : Dict = [0] * no_of_process for i in range(0 , a_): __a : Optional[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": A = 5 A = ['''A''', '''B''', '''C''', '''D''', '''E'''] A = [1, 2, 3, 4, 5] A = [1, 2, 3, 4, 5] A = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) A = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
160
0
from ...processing_utils import ProcessorMixin class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "WhisperFeatureExtractor" _a : int= "WhisperTokenizer" def __init__( self ,snake_case ,snake_case ): '''simple docstring''' super().__init__(snake_case ,snake_case ) lowercase : Optional[int] = self.feature_extractor lowercase : Tuple = False def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ,snake_case=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=snake_case ,language=snake_case ,no_timestamps=snake_case ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*snake_case ,**snake_case ) lowercase : Optional[Any] = kwargs.pop("""audio""" ,snake_case ) lowercase : str = kwargs.pop("""sampling_rate""" ,snake_case ) lowercase : Dict = kwargs.pop("""text""" ,snake_case ) if len(snake_case ) > 0: lowercase : List[Any] = args[0] lowercase : Tuple = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowercase : Any = self.feature_extractor(snake_case ,*snake_case ,sampling_rate=snake_case ,**snake_case ) if text is not None: lowercase : str = self.tokenizer(snake_case ,**snake_case ) if text is None: return inputs elif audio is None: return encodings else: lowercase : List[Any] = encodings["""input_ids"""] return inputs def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' return self.tokenizer.decode(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case="np" ): '''simple docstring''' return self.tokenizer.get_prompt_ids(snake_case ,return_tensors=snake_case )
285
class __snake_case : def __init__( self ,snake_case ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Tuple = data lowercase : List[Any] = previous lowercase : List[str] = next_node def __str__( self ): '''simple docstring''' return f"{self.data}" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.data def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.next def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.previous class __snake_case : def __init__( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = head def __iter__( self ): '''simple docstring''' return self def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if not self.current: raise StopIteration else: lowercase : Union[str, Any] = self.current.get_data() lowercase : Optional[Any] = self.current.get_next() return value class __snake_case : def __init__( self ): '''simple docstring''' lowercase : str = None # First node in list lowercase : str = None # Last node in list def __str__( self ): '''simple docstring''' lowercase : int = self.head lowercase : str = [] while current is not None: nodes.append(current.get_data() ) lowercase : Dict = current.get_next() return " ".join(str(snake_case ) for node in nodes ) def __contains__( self ,snake_case ): '''simple docstring''' lowercase : Dict = self.head while current: if current.get_data() == value: return True lowercase : Any = current.get_next() return False def __iter__( self ): '''simple docstring''' return LinkedListIterator(self.head ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.head: return self.head.get_data() return None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.head is None: lowercase : Any = node lowercase : Dict = node else: self.insert_before_node(self.head ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.head is None: self.set_head(snake_case ) else: self.insert_after_node(self.tail ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = Node(snake_case ) if self.head is None: self.set_head(snake_case ) else: self.set_tail(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = node lowercase : Optional[int] = node.previous if node.get_previous() is None: lowercase : Optional[int] = node_to_insert else: lowercase : Optional[int] = node_to_insert lowercase : List[Any] = node_to_insert def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = node lowercase : List[str] = node.next if node.get_next() is None: lowercase : Union[str, Any] = node_to_insert else: lowercase : List[str] = node_to_insert lowercase : Dict = node_to_insert def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[Any] = 1 lowercase : List[str] = Node(snake_case ) lowercase : Any = self.head while node: if current_position == position: self.insert_before_node(snake_case ,snake_case ) return current_position += 1 lowercase : List[Any] = node.next self.insert_after_node(self.tail ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.head while node: if node.get_data() == item: return node lowercase : Any = node.get_next() raise Exception("""Node not found""" ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if (node := self.get_node(snake_case )) is not None: if node == self.head: lowercase : Optional[Any] = self.head.get_next() if node == self.tail: lowercase : List[str] = self.tail.get_previous() self.remove_node_pointers(snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' if node.get_next(): lowercase : Optional[int] = node.previous if node.get_previous(): lowercase : Union[str, Any] = node.next lowercase : Union[str, Any] = None lowercase : Optional[Any] = None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.head is None def _snake_case( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
285
1
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( lowerCAmelCase_): __a : Optional[int] = 'new-model' if is_tf_available(): class _UpperCAmelCase ( lowerCAmelCase_): __a : Any = NewModelConfig @require_tf class _UpperCAmelCase ( unittest.TestCase): @slow def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Dict = """bert-base-cased""" _UpperCAmelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : int = TFAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = """bert-base-cased""" _UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[str] = TFAutoModelForPreTraining.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def __snake_case ( self ) -> Optional[int]: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = TFAutoModelForCausalLM.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Tuple = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def __snake_case ( self ) -> Dict: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[Any] = TFAutoModelForMaskedLM.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def __snake_case ( self ) -> str: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : int = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def __snake_case ( self ) -> List[str]: '''simple docstring''' for model_name in ["bert-base-uncased"]: _UpperCAmelCase : Dict = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def __snake_case ( self ) -> Optional[int]: '''simple docstring''' for model_name in ["bert-base-uncased"]: _UpperCAmelCase : Dict = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = TFAutoModelForQuestionAnswering.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow @require_tensorflow_probability def __snake_case ( self ) -> Optional[int]: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : str = TFAutoModelForTableQuestionAnswering.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( __lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCAmelCase ) , 1_44_10 ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCAmelCase ) , 1_44_10 ) def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Dict = copy.deepcopy(model.config ) _UpperCAmelCase : Dict = ["""FunnelBaseModel"""] _UpperCAmelCase : Any = TFAutoModel.from_config(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def __snake_case ( self ) -> Tuple: '''simple docstring''' try: AutoConfig.register("""new-model""" , __lowerCAmelCase ) _UpperCAmelCase : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__lowerCAmelCase ): auto_class.register(__lowerCAmelCase , __lowerCAmelCase ) auto_class.register(__lowerCAmelCase , __lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): auto_class.register(__lowerCAmelCase , __lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCAmelCase : Union[str, Any] = BertModelTester(self ).get_config() _UpperCAmelCase : int = NewModelConfig(**tiny_config.to_dict() ) _UpperCAmelCase : Dict = auto_class.from_config(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCAmelCase ) _UpperCAmelCase : int = auto_class.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __snake_case ( self ) -> Any: '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): _UpperCAmelCase : int = TFAutoModel.from_pretrained("""bert-base""" ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _UpperCAmelCase : Tuple = TFAutoModel.from_pretrained(__lowerCAmelCase , revision="""aaaaaa""" ) def __snake_case ( self ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): _UpperCAmelCase : Any = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex(__lowerCAmelCase , """Use `from_pt=True` to load this model""" ): _UpperCAmelCase : int = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : int = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: _UpperCAmelCase : int = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint _UpperCAmelCase : int = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: _UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
246
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=7 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : Optional[Any]=18 , __lowerCAmelCase : str=30 , __lowerCAmelCase : List[str]=400 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : int=None , __lowerCAmelCase : List[str]=True , ): _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 20} _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_flip_channel_order def lowerCAmelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[int] = MobileViTImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = MobileViTImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_flip_channel_order""" ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase_ ( self : str ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
289
0
# Algorithm for the pigeonhole sorting def A_ ( A__ ) -> int: a__ : Any = min(A__ ) # min() finds the minimum value a__ : List[Any] = max(A__ ) # max() finds the maximum value a__ : Optional[int] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size a__ : Tuple = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(A__ , A__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. a__ : Optional[int] = 0 for count in range(A__ ): while holes[count] > 0: holes[count] -= 1 a__ : Optional[Any] = count + min_val i += 1 def A_ ( ) -> int: a__ : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(A__ ) print('Sorted order is:' , ' '.join(A__ ) ) if __name__ == "__main__": main()
225
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : List[str] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""CLIPFeatureExtractor"""] lowercase : Union[str, Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
1
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: """simple docstring""" A : List[Any] = (boundary[1] - boundary[0]) / steps A : Any = boundary[0] A : str = boundary[1] A : str = make_points(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A : Dict = 0.0 y += (h / 2.0) * f(_lowerCAmelCase ) for i in x_i: # print(i) y += h * f(_lowerCAmelCase ) y += (h / 2.0) * f(_lowerCAmelCase ) return y def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" A : List[Any] = a + h while x < (b - h): yield x A : List[Any] = x + h def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]: # enter your function here """simple docstring""" A : List[str] = (x - 0) * (x - 0) return y def __UpperCamelCase ( ) -> List[str]: """simple docstring""" A : List[str] = 0.0 # Lower bound of integration A : str = 1.0 # Upper bound of integration A : str = 10.0 # define number of steps or resolution A : int = [a, b] # define boundary of integration A : Tuple = method_a(_lowerCAmelCase , _lowerCAmelCase ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
116
from __future__ import annotations from math import ceil, floor, sqrt def __UpperCamelCase ( _lowerCAmelCase = 200_0000 ) -> int: """simple docstring""" A : list[int] = [0] A : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target A : int = 0 # the area corresponding to the grid that gives the product closest to target A : int = 0 # an estimate of b, using the quadratic formula A : float # the largest integer less than b_estimate A : int # the largest integer less than b_estimate A : int # the triangle number corresponding to b_floor A : int # the triangle number corresponding to b_ceil A : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): A : Union[str, Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 A : List[Any] = floor(_lowerCAmelCase ) A : Tuple = ceil(_lowerCAmelCase ) A : int = triangle_numbers[b_floor] A : Dict = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): A : Optional[int] = triangle_b_first_guess * triangle_a A : Optional[int] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): A : Tuple = triangle_b_second_guess * triangle_a A : Tuple = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
116
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase__ ( lowercase ): # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase__ ( ): """simple docstring""" with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [1, 2] SCREAMING_SNAKE_CASE : Optional[int] = {"a": 1, "b": 2} SCREAMING_SNAKE_CASE : Dict = {"a": [1, 2], "b": [3, 4]} SCREAMING_SNAKE_CASE : Optional[Any] = {"a": {"1": 1}, "b": 2} SCREAMING_SNAKE_CASE : int = {"a": 1, "b": 2, "c": 3, "d": 4} SCREAMING_SNAKE_CASE : Dict = [2, 3] SCREAMING_SNAKE_CASE : str = {"a": 2, "b": 3} SCREAMING_SNAKE_CASE : str = {"a": [2, 3], "b": [4, 5]} SCREAMING_SNAKE_CASE : Optional[Any] = {"a": {"1": 2}, "b": 3} SCREAMING_SNAKE_CASE : List[str] = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
350
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""")) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""") @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ]) class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : List[str] )->int: if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , '''env''' ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[int]=1 )->int: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-single' , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Union[str, Any] )->Dict: TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) def lowercase__ ( self : Dict )->str: # create estimator _UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe _UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _SCREAMING_SNAKE_CASE )
260
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _a ( _lowercase): _a : Any = VOCAB_FILES_NAMES _a : List[str] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _a ( _lowercase): _a : int = VOCAB_FILES_NAMES _a : List[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Any = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowercase) class _a : def __call__( self : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Union[bool, str] = False , _SCREAMING_SNAKE_CASE : Union[bool, str] = False , _SCREAMING_SNAKE_CASE : Optional[int] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , **_SCREAMING_SNAKE_CASE : str , )-> BatchEncoding: if titles is None and texts is None: return super().__call__( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) elif titles is None or texts is None: lowerCAmelCase__ : Tuple = titles if texts is None else texts return super().__call__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : int = titles if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [titles] lowerCAmelCase__ : Dict = texts if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [texts] lowerCAmelCase__ : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = questions if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [questions] * n_passages if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( F'There should be as many titles than texts but got {len(_SCREAMING_SNAKE_CASE )} titles and {len(_SCREAMING_SNAKE_CASE )} texts.' ) lowerCAmelCase__ : Union[str, Any] = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] lowerCAmelCase__ : str = super().__call__(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] lowerCAmelCase__ : Dict = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] } if return_attention_mask is not False: lowerCAmelCase__ : Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase__ : Tuple = attention_mask return self.pad(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : BatchEncoding , _SCREAMING_SNAKE_CASE : DPRReaderOutput , _SCREAMING_SNAKE_CASE : int = 16 , _SCREAMING_SNAKE_CASE : int = 64 , _SCREAMING_SNAKE_CASE : int = 4 , )-> List[DPRSpanPrediction]: lowerCAmelCase__ : Optional[int] = reader_input['''input_ids'''] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reader_output[:3] lowerCAmelCase__ : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = sorted(range(_SCREAMING_SNAKE_CASE ) , reverse=_SCREAMING_SNAKE_CASE , key=relevance_logits.__getitem__ ) lowerCAmelCase__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowerCAmelCase__ : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase__ : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase__ : Any = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase__ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_SCREAMING_SNAKE_CASE , top_spans=_SCREAMING_SNAKE_CASE , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_SCREAMING_SNAKE_CASE , start_index=_SCREAMING_SNAKE_CASE , end_index=_SCREAMING_SNAKE_CASE , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_SCREAMING_SNAKE_CASE ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , )-> List[DPRSpanPrediction]: lowerCAmelCase__ : Union[str, Any] = [] for start_index, start_score in enumerate(_SCREAMING_SNAKE_CASE ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase__ : List[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x[1] , reverse=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) lowerCAmelCase__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_SCREAMING_SNAKE_CASE ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowercase) class _a ( _lowercase , _lowercase): _a : List[str] = VOCAB_FILES_NAMES _a : str = READER_PRETRAINED_VOCAB_FILES_MAP _a : Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION _a : Optional[int] = ['''input_ids''', '''attention_mask''']
131
0
def a__ ( A__, A__ ): if len(A__ ) != len(A__ ): raise ValueError('String lengths must match!' ) SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for chara, chara in zip(A__, A__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
359
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) lowerCAmelCase__ : Tuple ={ 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class __lowercase (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """focalnet""" def __init__( self , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=4 , lowerCAmelCase__=3 , lowerCAmelCase__=9_6 , lowerCAmelCase__=False , lowerCAmelCase__=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , lowerCAmelCase__=[2, 2, 6, 2] , lowerCAmelCase__=[2, 2, 2, 2] , lowerCAmelCase__=[3, 3, 3, 3] , lowerCAmelCase__="gelu" , lowerCAmelCase__=4.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=False , lowerCAmelCase__=1E-4 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=3_2 , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : str = patch_size SCREAMING_SNAKE_CASE_ : List[Any] = num_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE_ : Any = use_conv_embed SCREAMING_SNAKE_CASE_ : Dict = hidden_sizes SCREAMING_SNAKE_CASE_ : Any = depths SCREAMING_SNAKE_CASE_ : Optional[Any] = focal_levels SCREAMING_SNAKE_CASE_ : Any = focal_windows SCREAMING_SNAKE_CASE_ : Tuple = hidden_act SCREAMING_SNAKE_CASE_ : Dict = mlp_ratio SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = drop_path_rate SCREAMING_SNAKE_CASE_ : List[Any] = use_layerscale SCREAMING_SNAKE_CASE_ : List[Any] = layerscale_value SCREAMING_SNAKE_CASE_ : List[str] = use_post_layernorm SCREAMING_SNAKE_CASE_ : Optional[int] = use_post_layernorm_in_modulation SCREAMING_SNAKE_CASE_ : str = normalize_modulator SCREAMING_SNAKE_CASE_ : List[str] = initializer_range SCREAMING_SNAKE_CASE_ : str = layer_norm_eps SCREAMING_SNAKE_CASE_ : Dict = encoder_stride SCREAMING_SNAKE_CASE_ : Dict = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
162
0
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> list: '''simple docstring''' UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCAmelCase = True for i in range(0 , len(UpperCamelCase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCAmelCase , UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCAmelCase = False for i in range(1 , len(UpperCamelCase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCAmelCase , UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCAmelCase = False return input_list if __name__ == "__main__": print("Enter list to be sorted") __A : List[str] = [int(x) for x in input().split()] # inputing elements of the list in one line __A : Union[str, Any] = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
273
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __A : str = random.Random() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__=1.0 , UpperCamelCase__=None , UpperCamelCase__=None ) -> Tuple: '''simple docstring''' if rng is None: UpperCAmelCase = global_rng UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class A_ (unittest.TestCase ): def __init__( self , _A , _A=7 , _A=4_0_0 , _A=2_0_0_0 , _A=1 , _A=0.0 , _A=1_6_0_0_0 , _A=True , _A=8_0 , _A=1_6 , _A=6_4 , _A="hann_window" , _A=8_0 , _A=7_6_0_0 , _A=1E-10 , _A=True , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = min_seq_length UpperCAmelCase = max_seq_length UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase = feature_size UpperCAmelCase = padding_value UpperCAmelCase = sampling_rate UpperCAmelCase = do_normalize UpperCAmelCase = num_mel_bins UpperCAmelCase = hop_length UpperCAmelCase = win_length UpperCAmelCase = win_function UpperCAmelCase = fmin UpperCAmelCase = fmax UpperCAmelCase = mel_floor UpperCAmelCase = return_attention_mask def _lowercase ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowercase ( self , _A=False , _A=False ): '''simple docstring''' def _flatten(_A ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(_A ) for x in speech_inputs] return speech_inputs def _lowercase ( self , _A=False , _A=False ): '''simple docstring''' if equal_length: UpperCAmelCase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = SpeechTaFeatureExtractor def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = SpeechTaFeatureExtractionTester(self ) def _lowercase ( self , _A ): '''simple docstring''' self.assertTrue(np.all(np.mean(_A , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_A , axis=0 ) - 1 ) < 1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test batched UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): UpperCAmelCase = feat_extract(_A , padding=_A , max_length=_A , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) UpperCAmelCase = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): UpperCAmelCase = feat_extract(_A , max_length=_A , padding=_A ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(_A ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase = feature_extractor(audio_target=_A , padding=_A , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test batched UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCAmelCase = np.asarray(_A ) UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_A ) == len(_A ) for x, y in zip(_A , processed_features[input_name] ) ) ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_A ) UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_A ) UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' )[input_name] UpperCAmelCase = feat_extract.pad(_A , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_dict UpperCAmelCase = True UpperCAmelCase = self.feature_extraction_class(**_A ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = [len(_A ) for x in speech_inputs] UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_dict UpperCAmelCase = True UpperCAmelCase = self.feature_extraction_class(**_A ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = [len(_A ) for x in speech_inputs] UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = min(_A ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _lowercase ( self , _A ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , _A , atol=1E-6 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = feature_extractor(audio_target=_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _A , atol=1E-4 ) )
273
1
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowercase_ = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } lowercase_ = { """facebook/blenderbot_small-90M""": 512, } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : int = BlenderbotSmallTokenizer def __init__( self : Any , a : List[Any]=None , a : Tuple=None , a : List[str]="<|endoftext|>" , a : List[Any]="<|endoftext|>" , a : Optional[Any]="<|endoftext|>" , a : Tuple=False , a : Optional[Any]=True , **a : Union[str, Any] , )-> Tuple: """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a , merges=a , add_prefix_space=a , trim_offsets=a , ) , bos_token=a , eos_token=a , unk_token=a , **a , ) lowercase__ = add_prefix_space def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Tuple , a : Any=None )-> List[Any]: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
269
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """spiece.model"""} lowercase_ = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } lowercase_ = { """AI-Sweden/gpt-sw3-126m""": 2_048, """AI-Sweden/gpt-sw3-350m""": 2_048, """AI-Sweden/gpt-sw3-1.6b""": 2_048, """AI-Sweden/gpt-sw3-6.7b""": 2_048, """AI-Sweden/gpt-sw3-20b""": 2_048, } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , a : Tuple , a : Optional[int]=False , a : str=False , a : str=False , a : Tuple=None , a : Any=None , a : Union[str, Any]=None , a : Union[str, Any]=None , a : Optional[Dict[str, Any]] = None , **a : Optional[int] , )-> None: """simple docstring""" lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__ = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) lowercase__ = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowercase__ = '<|endoftext|>' if eos_token is None else eos_token lowercase__ = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowercase__ = unk_token if pad_token is None else pad_token lowercase__ = eos_token if bos_token is None else bos_token else: lowercase__ = '<pad>' if pad_token is None else pad_token lowercase__ = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , pad_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) lowercase__ = do_lower_case lowercase__ = remove_space lowercase__ = keep_accents lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) # Used for whitespace normalization in input texts # fmt : off lowercase__ = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowercase__ = re.compile( f"""[{"".join(map(a , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]""" ) def __getstate__( self : Any )-> str: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : int , a : Optional[Any] )-> int: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : str )-> str: """simple docstring""" lowercase__ = self.non_printing_characters_re.sub('' , a ) # Normalize whitespaces lowercase__ = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization lowercase__ = unicodedata.normalize('NFC' , a ) return text def SCREAMING_SNAKE_CASE_ ( self : Any , a : str , **a : Tuple )-> List[str]: """simple docstring""" lowercase__ = self.preprocess_text(a ) return self.sp_model.encode(a , out_type=a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str )-> int: """simple docstring""" return self.sp_model.PieceToId(a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : int )-> str: """simple docstring""" return self.sp_model.IdToPiece(a ) @staticmethod def SCREAMING_SNAKE_CASE_ ( a : str )-> str: """simple docstring""" return out_string def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[str] )-> str: """simple docstring""" lowercase__ = [] lowercase__ = '' lowercase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token lowercase__ = True lowercase__ = [] else: current_sub_tokens.append(a ) lowercase__ = False out_string += self.sp_model.decode(a ) return out_string def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict[str, int]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_ ( self : Any , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : Union[str, List[str]] , a : Union[str, bool] = False )-> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(a , a ): lowercase__ = self.preprocess_text(a ) lowercase__ = self.sp_model.encode(a ) else: lowercase__ = [self.preprocess_text(a ) for t in text] lowercase__ = self.sp_model.encode(a ) if return_tensors is True or return_tensors == "pt": lowercase__ = torch.tensor(a ) return token_ids def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Union[int, List[int]] )-> str: """simple docstring""" return self.sp_model.decode(a ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : "Conversation" )-> List[int]: """simple docstring""" lowercase__ = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowercase__ = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(a ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=a )
269
1
from math import factorial class a : def __init__( self :int ,__lowercase :Any ,__lowercase :Dict ): snake_case__ : Optional[int] = real if isinstance(__lowercase ,__lowercase ): snake_case__ : Optional[int] = [1] * rank else: snake_case__ : Optional[int] = rank def __repr__( self :Optional[int] ): return ( F"""{self.real}+""" F"""{'+'.join(str(__lowercase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Any = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real ,__lowercase ) def __add__( self :Tuple ,__lowercase :List[str] ): if not isinstance(__lowercase ,__lowercase ): return Dual(self.real + other ,self.duals ) snake_case__ : Union[str, Any] = self.duals.copy() snake_case__ : List[Any] = other.duals.copy() if len(__lowercase ) > len(__lowercase ): o_dual.extend([1] * (len(__lowercase ) - len(__lowercase )) ) elif len(__lowercase ) < len(__lowercase ): s_dual.extend([1] * (len(__lowercase ) - len(__lowercase )) ) snake_case__ : Optional[int] = [] for i in range(len(__lowercase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real ,__lowercase ) __lowerCAmelCase : Optional[Any] = __add__ def __sub__( self :List[str] ,__lowercase :Optional[Any] ): return self + other * -1 def __mul__( self :int ,__lowercase :List[Any] ): if not isinstance(__lowercase ,__lowercase ): snake_case__ : Tuple = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other ,__lowercase ) snake_case__ : str = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real ,__lowercase ) __lowerCAmelCase : List[Any] = __mul__ def __truediv__( self :Optional[Any] ,__lowercase :List[Any] ): if not isinstance(__lowercase ,__lowercase ): snake_case__ : Tuple = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other ,__lowercase ) raise ValueError def __floordiv__( self :Optional[int] ,__lowercase :Optional[Any] ): if not isinstance(__lowercase ,__lowercase ): snake_case__ : int = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other ,__lowercase ) raise ValueError def __pow__( self :int ,__lowercase :Any ): if n < 0 or isinstance(__lowercase ,__lowercase ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self snake_case__ : Any = self for _ in range(n - 1 ): x *= self return x def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" if not callable(__lowerCAmelCase ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(__lowerCAmelCase , (float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''differentiate() requires an int as input for order''' ) snake_case__ : str = Dual(__lowerCAmelCase , 1 ) snake_case__ : List[str] = func(__lowerCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
230
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } A__ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } A__ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class a ( __lowerCamelCase ): __lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[Any] = RealmTokenizer def __init__( self :Optional[Any] ,__lowercase :Dict=None ,__lowercase :Optional[int]=None ,__lowercase :Optional[Any]=True ,__lowercase :Optional[int]="[UNK]" ,__lowercase :List[str]="[SEP]" ,__lowercase :List[str]="[PAD]" ,__lowercase :int="[CLS]" ,__lowercase :str="[MASK]" ,__lowercase :Dict=True ,__lowercase :List[str]=None ,**__lowercase :Any ,): super().__init__( __lowercase ,tokenizer_file=__lowercase ,do_lower_case=__lowercase ,unk_token=__lowercase ,sep_token=__lowercase ,pad_token=__lowercase ,cls_token=__lowercase ,mask_token=__lowercase ,tokenize_chinese_chars=__lowercase ,strip_accents=__lowercase ,**__lowercase ,) snake_case__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,__lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,__lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,__lowercase ) != tokenize_chinese_chars ): snake_case__ : Optional[int] = getattr(__lowercase ,normalizer_state.pop('''type''' ) ) snake_case__ : List[Any] = do_lower_case snake_case__ : Optional[Any] = strip_accents snake_case__ : List[str] = tokenize_chinese_chars snake_case__ : Dict = normalizer_class(**__lowercase ) snake_case__ : Tuple = do_lower_case def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Union[str, Any] ,**__lowercase :Any ): snake_case__ : Dict = PaddingStrategy.MAX_LENGTH snake_case__ : List[str] = text snake_case__ : int = kwargs.pop('''text_pair''' ,__lowercase ) snake_case__ : Optional[int] = kwargs.pop('''return_tensors''' ,__lowercase ) snake_case__ : str = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(__lowercase ): if batch_text_pair is not None: snake_case__ : Optional[int] = batch_text_pair[idx] else: snake_case__ : Tuple = None snake_case__ : List[str] = super().__call__(__lowercase ,__lowercase ,return_tensors=__lowercase ,**__lowercase ) snake_case__ : Optional[Any] = encoded_candidates.get('''input_ids''' ) snake_case__ : Optional[Any] = encoded_candidates.get('''attention_mask''' ) snake_case__ : List[Any] = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(__lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__lowercase ) snake_case__ : Any = {key: item for key, item in output_data.items() if len(__lowercase ) != 0} return BatchEncoding(__lowercase ,tensor_type=__lowercase ) def __lowerCamelCase ( self :List[Any] ,__lowercase :Tuple ,__lowercase :Tuple=None ): snake_case__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self :List[str] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : Tuple = [self.sep_token_id] snake_case__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[str] = None ): snake_case__ : Tuple = self._tokenizer.model.save(__lowercase ,name=__lowercase ) return tuple(__lowercase )
230
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __A : """simple docstring""" __lowerCAmelCase = PegasusConfig __lowerCAmelCase = {} __lowerCAmelCase = "gelu" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=False , __A=99 , __A=32 , __A=2 , __A=4 , __A=37 , __A=0.1 , __A=0.1 , __A=40 , __A=2 , __A=1 , __A=0 , ) -> Optional[int]: a =parent a =batch_size a =seq_length a =is_training a =use_labels a =vocab_size a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_dropout_prob a =attention_probs_dropout_prob a =max_position_embeddings a =eos_token_id a =pad_token_id a =bos_token_id def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a =tf.concat([input_ids, eos_tensor] , axis=1 ) a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a =prepare_pegasus_inputs_dict(__A , __A , __A ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> Union[str, Any]: a =TFPegasusModel(config=__A ).get_decoder() a =inputs_dict['''input_ids'''] a =input_ids[:1, :] a =inputs_dict['''attention_mask'''][:1, :] a =inputs_dict['''head_mask'''] a =1 # first forward pass a =model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) a , a =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a =ids_tensor((self.batch_size, 3) , config.vocab_size ) a =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a =tf.concat([input_ids, next_tokens] , axis=-1 ) a =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a =model(__A , attention_mask=__A )[0] a =model(__A , attention_mask=__A , past_key_values=__A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a =output_from_no_past[:, -3:, random_slice_idx] a =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__A , __A , rtol=1E-3 ) def _A ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ): """simple docstring""" if attention_mask is None: a =tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __lowerCAmelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __lowerCAmelCase = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =TFPegasusModelTester(self ) a =ConfigTester(self , config_class=__A ) def SCREAMING_SNAKE_CASE ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__A ) @require_sentencepiece @require_tokenizers @require_tf class __A ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __lowerCAmelCase = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __lowerCAmelCase = "google/pegasus-xsum" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def SCREAMING_SNAKE_CASE ( self , **__A ) -> List[Any]: a =self.translate_src_text(**__A ) assert self.expected_text == generated_words def SCREAMING_SNAKE_CASE ( self , **__A ) -> str: a =self.tokenizer(self.src_text , **__A , padding=__A , return_tensors='''tf''' ) a =self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__A , ) a =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__A ) return generated_words @slow def SCREAMING_SNAKE_CASE ( self ) -> Any: self._assert_generated_batch_equal_expected()
215
"""simple docstring""" from ...processing_utils import ProcessorMixin class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "WhisperFeatureExtractor" __lowerCAmelCase = "WhisperTokenizer" def __init__( self , __A , __A ) -> Dict: super().__init__(__A , __A ) a =self.feature_extractor a =False def SCREAMING_SNAKE_CASE ( self , __A=None , __A=None , __A=True ) -> int: return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self , *__A , **__A ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) a =kwargs.pop('''audio''' , __A ) a =kwargs.pop('''sampling_rate''' , __A ) a =kwargs.pop('''text''' , __A ) if len(__A ) > 0: a =args[0] a =args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: a =self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if text is not None: a =self.tokenizer(__A , **__A ) if text is None: return inputs elif audio is None: return encodings else: a =encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Optional[Any]: return self.tokenizer.batch_decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Union[str, Any]: return self.tokenizer.decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A="np" ) -> Optional[Any]: return self.tokenizer.get_prompt_ids(__A , return_tensors=__A )
215
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 16000 ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = int(round(sample_rate * max_length ) ) if len(UpperCamelCase_ ) <= sample_length: return wav UpperCamelCase = randint(0 , len(UpperCamelCase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = field(default=__lowerCAmelCase , metadata={"""help""": """Name of a dataset from the datasets package"""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """A file containing the training audio paths and labels."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) __lowerCAmelCase = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to \'train\'""" } , ) __lowerCAmelCase = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to \'validation\'""" ) } , ) __lowerCAmelCase = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to \'audio\'"""} , ) __lowerCAmelCase = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to \'label\'"""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __lowerCAmelCase = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) __lowerCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def lowercase( ) -> Tuple: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , UpperCamelCase_ , UpperCamelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase = training_args.get_process_log_level() logger.setLevel(UpperCamelCase_ ) transformers.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase = DatasetDict() UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ f"""{", ".join(raw_datasets["train"].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ f"""{", ".join(raw_datasets["train"].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase = feature_extractor.model_input_names[0] def train_transforms(UpperCamelCase_ ): UpperCamelCase = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(UpperCamelCase_ ) UpperCamelCase = feature_extractor(UpperCamelCase_ , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase = {model_input_name: inputs.get(UpperCamelCase_ )} UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(UpperCamelCase_ ): UpperCamelCase = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase = feature_extractor(UpperCamelCase_ , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase = {model_input_name: inputs.get(UpperCamelCase_ )} UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase = {}, {} for i, label in enumerate(UpperCamelCase_ ): UpperCamelCase = str(UpperCamelCase_ ) UpperCamelCase = label # Load the accuracy metric from the datasets package UpperCamelCase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase_ ): UpperCamelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=UpperCamelCase_ , references=eval_pred.label_ids ) UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(UpperCamelCase_ ) , labelaid=UpperCamelCase_ , idalabel=UpperCamelCase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(UpperCamelCase_ , output_all_columns=UpperCamelCase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(UpperCamelCase_ , output_all_columns=UpperCamelCase_ ) # Initialize our trainer UpperCamelCase = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) # Training if training_args.do_train: UpperCamelCase = None if training_args.resume_from_checkpoint is not None: UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase = last_checkpoint UpperCamelCase = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCamelCase_ ) trainer.save_metrics("""eval""" , UpperCamelCase_ ) # Write model card and (optionally) push to hub UpperCamelCase = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase_ ) else: trainer.create_model_card(**UpperCamelCase_ ) if __name__ == "__main__": main()
343
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _UpperCAmelCase : Tuple = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase): _a = '''ernie_m''' _a = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: List[Any] , _lowerCAmelCase: int = 25_00_02 , _lowerCAmelCase: int = 7_68 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 30_72 , _lowerCAmelCase: str = "gelu" , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: int = 5_14 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 1e-0_5 , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: List[str]=0.0 , **_lowerCAmelCase: Tuple , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase :Tuple = vocab_size lowercase :List[str] = hidden_size lowercase :Optional[int] = num_hidden_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[Any] = intermediate_size lowercase :Optional[Any] = hidden_act lowercase :Any = hidden_dropout_prob lowercase :int = attention_probs_dropout_prob lowercase :Dict = max_position_embeddings lowercase :Optional[Any] = initializer_range lowercase :Any = layer_norm_eps lowercase :Union[str, Any] = classifier_dropout lowercase :int = is_decoder lowercase :List[str] = act_dropout
236
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Any = DebertaVaTokenizer A_ : List[Any] = DebertaVaTokenizerFast A_ : int = True A_ : List[Any] = True def a (self : str ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case = DebertaVaTokenizer(a__ , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : List[Any] , a__ : List[str] ): """simple docstring""" __snake_case = '''this is a test''' __snake_case = '''this is a test''' return input_text, output_text def a (self : Union[str, Any] ): """simple docstring""" __snake_case = '''<pad>''' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(a__ ) , 3_0001 ) def a (self : Dict ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def a (self : str ): """simple docstring""" __snake_case = ''' \tHeLLo!how \n Are yoU? ''' __snake_case = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on __snake_case = DebertaVaTokenizer(a__ , do_lower_case=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) __snake_case = DebertaVaTokenizerFast(a__ , do_lower_case=a__ ) __snake_case = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def a (self : Any ): """simple docstring""" pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def a (self : Dict ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __snake_case = DebertaVaTokenizer(a__ , split_by_punct=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) __snake_case = DebertaVaTokenizerFast(a__ , split_by_punct=a__ ) __snake_case = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) def a (self : int ): """simple docstring""" __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __snake_case = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) __snake_case = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__ ) __snake_case = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __snake_case = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) __snake_case = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__ ) __snake_case = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) def a (self : Dict ): """simple docstring""" __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __snake_case = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) __snake_case = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__ ) __snake_case = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = ''' \tHeLLo!how \n Are yoU? ''' __snake_case = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on __snake_case = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) __snake_case = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__ ) __snake_case = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) def a (self : Any ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) __snake_case = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ ) __snake_case = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(a__ ) __snake_case = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) def a (self : str ): """simple docstring""" __snake_case = '''This is a test''' __snake_case = [13, 1, 4398, 25, 21, 1289] __snake_case = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __snake_case = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __snake_case = DebertaVaTokenizer(a__ , keep_accents=a__ ) __snake_case = DebertaVaTokenizerFast(a__ , keep_accents=a__ ) __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) __snake_case = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = rust_tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual(a__ , a__ ) # fmt: off __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] __snake_case = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] __snake_case = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) __snake_case = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = rust_tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual(a__ , a__ ) def a (self : Optional[int] ): """simple docstring""" __snake_case = DebertaVaTokenizer(a__ ) __snake_case = tokenizer.encode('''sequence builders''' ) __snake_case = tokenizer.encode('''multi-sequence build''' ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , a__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , a__ , ) @slow def a (self : List[Any] ): """simple docstring""" __snake_case = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
238
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : int ): """simple docstring""" super().tearDown() gc.collect() def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case , __snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case = controlnet_params __snake_case = '''bird''' __snake_case = jax.device_count() __snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) __snake_case = pipe.prepare_image_inputs([canny_image] * num_samples ) __snake_case = jax.random.PRNGKey(0 ) __snake_case = jax.random.split(a__ , jax.device_count() ) __snake_case = replicate(a__ ) __snake_case = shard(a__ ) __snake_case = shard(a__ ) __snake_case = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case = images[0, 253:256, 253:256, -1] __snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case , __snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case = controlnet_params __snake_case = '''Chef in the kitchen''' __snake_case = jax.device_count() __snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) __snake_case = pipe.prepare_image_inputs([pose_image] * num_samples ) __snake_case = jax.random.PRNGKey(0 ) __snake_case = jax.random.split(a__ , jax.device_count() ) __snake_case = replicate(a__ ) __snake_case = shard(a__ ) __snake_case = shard(a__ ) __snake_case = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case = images[0, 253:256, 253:256, -1] __snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
238
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] ) ->Tuple: _SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = downstream_dict["""projector.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""projector.bias"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.post_net.linear.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.post_net.linear.bias"""] return model def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ) ->List[str]: _SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = downstream_dict["""model.linear.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.linear.bias"""] return model def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict ) ->Dict: _SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = downstream_dict["""connector.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _SCREAMING_SNAKE_CASE = downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] _SCREAMING_SNAKE_CASE = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] _SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] _SCREAMING_SNAKE_CASE = downstream_dict["""objective.W"""] return model @torch.no_grad() def lowerCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ) ->List[str]: _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = checkpoint["""Downstream"""] _SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( __lowerCamelCase , return_attention_mask=__lowerCamelCase , do_normalize=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): _SCREAMING_SNAKE_CASE = convert_classification(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): _SCREAMING_SNAKE_CASE = convert_diarization(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForXVector""" ): _SCREAMING_SNAKE_CASE = convert_xvector(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: _SCREAMING_SNAKE_CASE = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") lowercase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
58
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def lowerCamelCase ( __lowerCamelCase : str ) ->str: if not sentence: return "" _SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , __lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __a ( UpperCAmelCase ) ->List[Any]: """simple docstring""" for param in module.parameters(): A = False def __a ( ) ->Tuple: """simple docstring""" A = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): A = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" A = plt.imshow(UpperCAmelCase ) fig.axes.get_xaxis().set_visible(UpperCAmelCase ) fig.axes.get_yaxis().set_visible(UpperCAmelCase ) plt.show() def __a ( ) ->Optional[int]: """simple docstring""" A = datetime.now() A = current_time.strftime("""%H:%M:%S""" ) return timestamp
368
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : List[str] = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : List[str] = { 'Salesforce/codegen-350M-mono': 2048, } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = CodeGenTokenizer def __init__(self : int , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Optional[int] , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) if kwargs.pop("""add_bos_token""" , _lowerCAmelCase ): A = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) A = add_prefix_space A = pre_tok_class(**_lowerCAmelCase ) A = add_prefix_space def A (self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[List[str]] = None , **_lowerCAmelCase : Tuple , ): A = super().decode( token_ids=_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , **_lowerCAmelCase , ) if truncate_before_pattern is not None and len(_lowerCAmelCase ) > 0: A = self.truncate(_lowerCAmelCase , _lowerCAmelCase ) return decoded_text def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): def find_re(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): A = pattern.search(_lowerCAmelCase , _lowerCAmelCase ) return m.start() if m else -1 A = [re.compile(_lowerCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A = list(re.finditer("""^print""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: prints[1].start()] A = list(re.finditer("""^def""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: defs[1].start()] A = 0 A = [ pos for pos in [find_re(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for terminal in terminals] if pos != -1 ] if len(_lowerCAmelCase ) > 0: return completion[: min(_lowerCAmelCase )] else: return completion
337
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
231
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Dict , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : List[str]=32 , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : Dict=10 , _lowerCamelCase : Tuple=[10, 20, 30, 40] , _lowerCamelCase : int=[1, 1, 2, 1] , _lowerCamelCase : int=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Dict=None , ): _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = embeddings_size _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = hidden_act _snake_case = num_labels _snake_case = scope _snake_case = len(_lowerCamelCase ) def lowercase ( self : Optional[int] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase ( self : Tuple ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[Any] ): _snake_case = TFResNetModel(config=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self : Dict , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple ): _snake_case = self.num_labels _snake_case = TFResNetForImageClassification(_lowerCamelCase ) _snake_case = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Tuple ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __a = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowercase ( self : List[Any] ): _snake_case = TFResNetModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : List[Any] ): return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def lowercase ( self : Any ): pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def lowercase ( self : List[str] ): pass def lowercase ( self : int ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase ( self : Union[str, Any] ): def check_hidden_states_output(_lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : str ): _snake_case = model_class(_lowerCamelCase ) _snake_case = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _snake_case = layer_type _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Union[str, Any] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def lowercase ( self : List[str] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFResNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _UpperCAmelCase ( ) -> Union[str, Any]: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Dict ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self : List[Any] ): _snake_case = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=_lowerCamelCase , return_tensors='''tf''' ) # forward pass _snake_case = model(**_lowerCamelCase ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) _snake_case = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCamelCase , atol=1e-4 ) )
288
0
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "isbn/0140328726" ): """simple docstring""" lowerCAmelCase__ : List[str] = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: lowerCAmelCase__ : List[str] = f"""{olid} is not a valid Open Library olid""" raise ValueError(__UpperCAmelCase ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } lowerCAmelCase__ : Dict = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowerCAmelCase__ : Tuple = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] lowerCAmelCase__ : Optional[Any] = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Tuple = """, """.join(__UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowerCAmelCase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowerCAmelCase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
356
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase = 10 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" for i in range(UpperCamelCase , UpperCamelCase ): if array[i] == target: return i return -1 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = len(UpperCamelCase ) while left <= right: if right - left < precision: return lin_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = (left + right) // 3 + 1 lowerCAmelCase__ : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCAmelCase__ : int = one_third - 1 elif array[two_third] < target: lowerCAmelCase__ : Union[str, Any] = two_third + 1 else: lowerCAmelCase__ : List[Any] = one_third + 1 lowerCAmelCase__ : List[str] = two_third - 1 else: return -1 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = (left + right) // 3 + 1 lowerCAmelCase__ : Tuple = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCamelCase , one_third - 1 , UpperCamelCase , UpperCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCamelCase , UpperCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _lowerCAmelCase = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase = ite_ternary_search(collection, target) _lowerCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('''Not found''')
184
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Dict ) -> Any: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : int = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any ) -> Any: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Optional[int] ) -> Union[str, Any]: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : List[Any] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Optional[int] , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Tuple=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : int , __a : List[Any] , __a : Union[str, Any] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : int ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
63
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class UpperCamelCase__( __A ): lowerCAmelCase__ : Union[str, Any] = 'transfo-xl' lowerCAmelCase__ : Any = ['mems'] lowerCAmelCase__ : Tuple = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,__UpperCAmelCase=26_77_35 ,__UpperCAmelCase=[2_00_00, 4_00_00, 20_00_00] ,__UpperCAmelCase=10_24 ,__UpperCAmelCase=10_24 ,__UpperCAmelCase=16 ,__UpperCAmelCase=64 ,__UpperCAmelCase=40_96 ,__UpperCAmelCase=4 ,__UpperCAmelCase=False ,__UpperCAmelCase=18 ,__UpperCAmelCase=16_00 ,__UpperCAmelCase=10_00 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=0 ,__UpperCAmelCase=-1 ,__UpperCAmelCase=True ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=True ,__UpperCAmelCase="normal" ,__UpperCAmelCase=0.0_1 ,__UpperCAmelCase=0.0_1 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1e-5 ,__UpperCAmelCase=0 ,**__UpperCAmelCase ,) -> Tuple: A__ = vocab_size A__ = [] self.cutoffs.extend(__UpperCAmelCase ) if proj_share_all_but_first: A__ = [False] + [True] * len(self.cutoffs ) else: A__ = [False] + [False] * len(self.cutoffs ) A__ = d_model A__ = d_embed A__ = d_head A__ = d_inner A__ = div_val A__ = pre_lnorm A__ = n_layer A__ = n_head A__ = mem_len A__ = same_length A__ = attn_type A__ = clamp_len A__ = sample_softmax A__ = adaptive A__ = dropout A__ = dropatt A__ = untie_r A__ = init A__ = init_range A__ = proj_init_std A__ = init_std A__ = layer_norm_epsilon super().__init__(eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) @property def snake_case__ ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case__ ( self ,__UpperCAmelCase ) -> int: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
221
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : int , A : str , A : Union[str, Any]=7 , A : Union[str, Any]=3 , A : Any=3_0 , A : int=4_0_0 , A : Dict=True , A : Optional[Any]=None , A : Union[str, Any]=True , A : Dict=[0.5, 0.5, 0.5] , A : List[Any]=[0.5, 0.5, 0.5] , A : Tuple=True , A : int=1 / 2_5_5 , A : Union[str, Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _UpperCAmelCase : Optional[Any] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : int = min_resolution _UpperCAmelCase : List[str] = max_resolution _UpperCAmelCase : Tuple = do_resize _UpperCAmelCase : List[str] = size _UpperCAmelCase : List[Any] = do_normalize _UpperCAmelCase : List[Any] = image_mean _UpperCAmelCase : Dict = image_std _UpperCAmelCase : Optional[int] = do_rescale _UpperCAmelCase : List[Any] = rescale_factor _UpperCAmelCase : Any = do_pad def snake_case_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[str] , A : int , A : Optional[int]=False ): if not batched: _UpperCAmelCase : Union[str, Any] = image_inputs[0] if isinstance(A , Image.Image ): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = image.size else: _UpperCAmelCase , _UpperCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase : Tuple = int(self.size["shortest_edge"] * h / w ) _UpperCAmelCase : List[Any] = self.size["shortest_edge"] elif w > h: _UpperCAmelCase : List[Any] = self.size["shortest_edge"] _UpperCAmelCase : List[str] = int(self.size["shortest_edge"] * w / h ) else: _UpperCAmelCase : int = self.size["shortest_edge"] _UpperCAmelCase : Dict = self.size["shortest_edge"] else: _UpperCAmelCase : str = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase : Optional[Any] = max(A , key=lambda A : item[0] )[0] _UpperCAmelCase : Any = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = DetaImageProcessor if is_vision_available() else None def snake_case_ ( self : Tuple ): _UpperCAmelCase : int = DetaImageProcessingTester(self ) @property def snake_case_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "image_mean" ) ) self.assertTrue(hasattr(A , "image_std" ) ) self.assertTrue(hasattr(A , "do_normalize" ) ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "do_rescale" ) ) self.assertTrue(hasattr(A , "do_pad" ) ) self.assertTrue(hasattr(A , "size" ) ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , A ) def snake_case_ ( self : str ): pass def snake_case_ ( self : str ): # Initialize image_processing _UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(A , batched=A ) _UpperCAmelCase : Optional[int] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Union[str, Any] ): # Initialize image_processing _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase : int = image_processing(A , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : List[str] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ): # Initialize image_processing _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase : List[str] = image_processing(A , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[int] ): # prepare image and target _UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: _UpperCAmelCase : int = json.loads(f.read() ) _UpperCAmelCase : str = {"image_id": 3_9_7_6_9, "annotations": target} # encode them _UpperCAmelCase : Union[str, Any] = DetaImageProcessor() _UpperCAmelCase : Optional[int] = image_processing(images=A , annotations=A , return_tensors="pt" ) # verify pixel values _UpperCAmelCase : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , A ) _UpperCAmelCase : Optional[int] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area _UpperCAmelCase : Union[str, Any] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A ) ) # verify boxes _UpperCAmelCase : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , A ) _UpperCAmelCase : List[str] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A , atol=1e-3 ) ) # verify image_id _UpperCAmelCase : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A ) ) # verify is_crowd _UpperCAmelCase : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A ) ) # verify class_labels _UpperCAmelCase : Any = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A ) ) # verify orig_size _UpperCAmelCase : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A ) ) # verify size _UpperCAmelCase : Dict = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A ) ) @slow def snake_case_ ( self : Union[str, Any] ): # prepare image, target and masks_path _UpperCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: _UpperCAmelCase : Dict = json.loads(f.read() ) _UpperCAmelCase : List[str] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} _UpperCAmelCase : List[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them _UpperCAmelCase : List[str] = DetaImageProcessor(format="coco_panoptic" ) _UpperCAmelCase : int = image_processing(images=A , annotations=A , masks_path=A , return_tensors="pt" ) # verify pixel values _UpperCAmelCase : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , A ) _UpperCAmelCase : Optional[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area _UpperCAmelCase : Optional[int] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A ) ) # verify boxes _UpperCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , A ) _UpperCAmelCase : int = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A , atol=1e-3 ) ) # verify image_id _UpperCAmelCase : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A ) ) # verify is_crowd _UpperCAmelCase : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A ) ) # verify class_labels _UpperCAmelCase : str = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A ) ) # verify masks _UpperCAmelCase : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , A ) # verify orig_size _UpperCAmelCase : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A ) ) # verify size _UpperCAmelCase : int = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A ) )
202
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = GPTSanJapaneseTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[str] = {'do_clean_text': False, 'add_prefix_space': False} def snake_case_ ( self : Any ): super().setUp() # fmt: off _UpperCAmelCase : Any = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : Optional[int] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _UpperCAmelCase : List[Any] = {"unk_token": "<unk>"} _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(A ) ) def snake_case_ ( self : int , **A : List[str] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : int , A : Any ): _UpperCAmelCase : Optional[Any] = "こんにちは、世界。 \nこんばんは、㔺界。😀" _UpperCAmelCase : List[Any] = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def snake_case_ ( self : Optional[Any] , A : str ): _UpperCAmelCase , _UpperCAmelCase : str = self.get_input_output_texts(A ) _UpperCAmelCase : List[Any] = tokenizer.encode(A , add_special_tokens=A ) _UpperCAmelCase : Union[str, Any] = tokenizer.decode(A , clean_up_tokenization_spaces=A ) return text, ids def snake_case_ ( self : Any ): pass # TODO add if relevant def snake_case_ ( self : Union[str, Any] ): pass # TODO add if relevant def snake_case_ ( self : int ): pass # TODO add if relevant def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Optional[int] = "こんにちは、世界。 こんばんは、㔺界。" _UpperCAmelCase : Dict = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _UpperCAmelCase : List[Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) # Testing conversion to ids without special tokens _UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) # Testing conversion to ids with special tokens _UpperCAmelCase : str = tokens + [tokenizer.unk_token] _UpperCAmelCase : Any = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) def snake_case_ ( self : Any ): _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Dict = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _UpperCAmelCase : Tuple = "こんにちは、、、、世界。こんばんは、、、、世界。" _UpperCAmelCase : int = tokenizer.encode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) @slow def snake_case_ ( self : Dict ): _UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : List[Any] = "こんにちは、世界。" _UpperCAmelCase : List[str] = "こんばんは、㔺界。😀" _UpperCAmelCase : Any = "こんにちは、世界。こんばんは、世界。😀" _UpperCAmelCase : Union[str, Any] = tokenizer.encode(prefix_text + input_text ) _UpperCAmelCase : Tuple = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _UpperCAmelCase : Optional[int] = tokenizer.encode(A , prefix_text=A ) _UpperCAmelCase : Tuple = tokenizer.decode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(A ) _UpperCAmelCase : Tuple = tokenizer.decode(A ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) @slow def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : Any = "こんにちは、世界。" _UpperCAmelCase : List[Any] = "こんばんは、㔺界。😀" _UpperCAmelCase : Optional[Any] = len(tokenizer.encode(A ) ) - 2 _UpperCAmelCase : List[Any] = len(tokenizer.encode(A ) ) - 2 _UpperCAmelCase : List[str] = [1] + [0] * (len_prefix + len_text + 1) _UpperCAmelCase : str = [1] * (len_prefix + len_text + 1) + [0] _UpperCAmelCase : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _UpperCAmelCase : Union[str, Any] = tokenizer(prefix_text + input_text ).token_type_ids _UpperCAmelCase : Any = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _UpperCAmelCase : List[Any] = tokenizer(A , prefix_text=A ).token_type_ids self.assertListEqual(A , A ) self.assertListEqual(A , A ) self.assertListEqual(A , A ) @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : str = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Dict = tokenizer.encode("あンいワ" ) _UpperCAmelCase : str = tokenizer.encode("" , prefix_text="あンいワ" ) _UpperCAmelCase : Dict = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertNotEqual(A , A ) self.assertNotEqual(A , A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Tuple = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _UpperCAmelCase : Tuple = tokenizer(A , padding=A ) _UpperCAmelCase : str = tokenizer.batch_encode_plus(A , padding=A ) # fmt: off _UpperCAmelCase : str = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _UpperCAmelCase : str = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _UpperCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , A ) self.assertListEqual(x_token.token_type_ids , A ) self.assertListEqual(x_token.attention_mask , A ) self.assertListEqual(x_token_a.input_ids , A ) self.assertListEqual(x_token_a.token_type_ids , A ) self.assertListEqual(x_token_a.attention_mask , A ) def snake_case_ ( self : List[Any] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def snake_case_ ( self : int ): # tokenizer has no padding token pass
202
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCAmelCase__ = random.Random() def snake_case_ ( A_ : Tuple, A_ : List[str]=1.0, A_ : Optional[int]=None, A_ : List[str]=None ): '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = global_rng _lowerCamelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __snake_case ( unittest.TestCase): def __init__( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : str=4_0_0 , __lowerCAmelCase : Optional[Any]=2_0_0_0 , __lowerCAmelCase : str=1 , __lowerCAmelCase : List[str]=0.0 , __lowerCAmelCase : Dict=1_6_0_0_0 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : str=True , ): """simple docstring""" _lowerCamelCase : int = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : str = min_seq_length _lowerCamelCase : List[str] = max_seq_length _lowerCamelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase : List[Any] = feature_size _lowerCamelCase : Dict = padding_value _lowerCamelCase : int = sampling_rate _lowerCamelCase : int = return_attention_mask _lowerCamelCase : List[Any] = do_normalize def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Tuple=False ): """simple docstring""" def _flatten(__lowerCAmelCase : int ): return list(itertools.chain(*__lowerCAmelCase ) ) if equal_length: _lowerCamelCase : str = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _lowerCamelCase : Optional[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCamelCase : Union[str, Any] = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Tuple = WavaVecaFeatureExtractor def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Any = WavaVecaFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : int ): """simple docstring""" self.assertTrue(np.all(np.mean(__lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase : int = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCamelCase : int = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input _lowerCamelCase : List[Any] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values _lowerCamelCase : Optional[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test batched _lowerCamelCase : List[Any] = feat_extract(__lowerCAmelCase , return_tensors='''np''' ).input_values _lowerCamelCase : Optional[Any] = feat_extract(__lowerCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowerCamelCase : List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _lowerCamelCase : Optional[int] = np.asarray(__lowerCAmelCase ) _lowerCamelCase : Tuple = feat_extract(__lowerCAmelCase , return_tensors='''np''' ).input_values _lowerCamelCase : Any = feat_extract(__lowerCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCamelCase : List[str] = ['''longest''', '''max_length''', '''do_not_pad'''] _lowerCamelCase : Tuple = [None, 1_6_0_0, None] for max_length, padding in zip(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : str = feat_extract(__lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors='''np''' ) _lowerCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Dict = range(8_0_0 , 1_4_0_0 , 2_0_0 ) _lowerCamelCase : Tuple = [floats_list((1, x) )[0] for x in lengths] _lowerCamelCase : Optional[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] _lowerCamelCase : str = [None, 1_6_0_0, None] for max_length, padding in zip(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : Tuple = feat_extract(__lowerCAmelCase , max_length=__lowerCAmelCase , padding=__lowerCAmelCase ) _lowerCamelCase : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCamelCase : str = feat_extract( __lowerCAmelCase , truncation=__lowerCAmelCase , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) _lowerCamelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCamelCase : Union[str, Any] = feat_extract( __lowerCAmelCase , truncation=__lowerCAmelCase , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) _lowerCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) _lowerCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCamelCase : List[str] = feat_extract( __lowerCAmelCase , truncation=__lowerCAmelCase , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) _lowerCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" import torch _lowerCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Tuple = np.random.rand(1_0_0 ).astype(np.floataa ) _lowerCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase : List[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _lowerCamelCase : List[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _lowerCamelCase : Optional[Any] = WavaVecaConfig.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Any = WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
72
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCamelCase : Union[str, Any] = TextStreamer(__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCamelCase : int = cs.out[:-1] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : List[str] = tokenizer.decode(greedy_ids[0] ) _lowerCamelCase : Tuple = TextIteratorStreamer(__lowerCAmelCase ) _lowerCamelCase : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _lowerCamelCase : List[Any] = Thread(target=model.generate , kwargs=__lowerCAmelCase ) thread.start() _lowerCamelCase : int = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = greedy_ids[:, input_ids.shape[1] :] _lowerCamelCase : int = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCamelCase : Any = TextStreamer(__lowerCAmelCase , skip_prompt=__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCamelCase : Union[str, Any] = cs.out[:-1] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''distilgpt2''' ) _lowerCamelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = -1 _lowerCamelCase : Any = torch.ones((1, 5) , device=__lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCamelCase : List[Any] = TextStreamer(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCamelCase : Any = cs.out[:-1] # Remove the final "\n" _lowerCamelCase : int = tokenizer(__lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = -1 _lowerCamelCase : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = TextIteratorStreamer(__lowerCAmelCase , timeout=0.0_01 ) _lowerCamelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _lowerCamelCase : List[Any] = Thread(target=model.generate , kwargs=__lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text
72
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _snake_case ( __lowercase ): SCREAMING_SNAKE_CASE__ = 'pegasus' SCREAMING_SNAKE_CASE__ = ['past_key_values'] SCREAMING_SNAKE_CASE__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _lowerCamelCase=5_0265 , _lowerCamelCase=1024 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="gelu" , _lowerCamelCase=1024 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=0 , _lowerCamelCase=False , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=1 , **_lowerCamelCase , ): a :int = vocab_size a :Tuple = max_position_embeddings a :Tuple = d_model a :Dict = encoder_ffn_dim a :Dict = encoder_layers a :int = encoder_attention_heads a :List[str] = decoder_ffn_dim a :Any = decoder_layers a :Optional[Any] = decoder_attention_heads a :str = dropout a :Optional[Any] = attention_dropout a :List[str] = activation_dropout a :List[str] = activation_function a :Optional[int] = init_std a :Any = encoder_layerdrop a :List[str] = decoder_layerdrop a :int = use_cache a :int = encoder_layers a :List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , forced_eos_token_id=_a , **_a , ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self ): return self.d_model
350
def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" if n_term == "": return [] a :list = [] for temp in range(int(UpperCAmelCase_ ) ): series.append(F'''1/{temp + 1}''' if series else '''1''' ) return series if __name__ == "__main__": snake_case : Tuple = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
281
0
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : str = seq_length snake_case : Optional[int] = is_training snake_case : Optional[int] = use_attention_mask snake_case : str = use_token_type_ids snake_case : int = use_labels snake_case : Any = vocab_size snake_case : Any = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : List[str] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : Any = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = num_choices def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = None if self.use_attention_mask: snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None if self.use_token_type_ids: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : str = config_and_inputs snake_case : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase ): a__ : Optional[Any] = True a__ : List[str] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: snake_case : List[Any] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=SCREAMING_SNAKE_CASE ) snake_case : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) snake_case : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE )[0] snake_case : List[Any] = 50_000 snake_case : List[str] = (1, 6, vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline __A = "path-to-your-trained-model" __A = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") __A = "A photo of sks dog in a bucket" __A = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
148
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __a = logging.get_logger(__name__) __a = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class __SCREAMING_SNAKE_CASE ( A__ ): @add_start_docstrings(SCREAMING_SNAKE_CASE__ ) def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : int = max_length lowercase : Optional[int] = max_position_embeddings @add_start_docstrings(SCREAMING_SNAKE_CASE__ ) def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = input_ids.shape[-1] lowercase : Optional[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ '''exceptions, performance degradation, or nothing at all.''' ) return is_done class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ '''with `max_length = start_length + max_new_tokens` instead.''' , SCREAMING_SNAKE_CASE__ , ) lowercase : Union[str, Any] = start_length lowercase : Union[str, Any] = max_new_tokens lowercase : str = start_length + max_new_tokens @add_start_docstrings(SCREAMING_SNAKE_CASE__ ) def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return input_ids.shape[-1] >= self.max_length class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : List[str] = max_time lowercase : List[str] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(SCREAMING_SNAKE_CASE__ ) def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return time.time() - self.initial_timestamp > self.max_time class __SCREAMING_SNAKE_CASE ( A__ ): @add_start_docstrings(SCREAMING_SNAKE_CASE__ ) def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return any(criteria(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for criteria in self ) @property def __lowerCamelCase ( self ): for stopping_criterium in self: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return stopping_criterium.max_length elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return stopping_criterium.max_length return None def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->StoppingCriteriaList: """simple docstring""" lowercase : str = stopping_criteria.max_length lowercase : List[Any] = deepcopy(_UpperCamelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''', _UpperCamelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_UpperCamelCase ) ) return new_stopping_criteria
173
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __a = 50_00_00 __a , __a = os.path.split(__file__) __a = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def __lowercase ( _UpperCamelCase, **_UpperCamelCase ) ->Any: """simple docstring""" lowercase : Optional[Any] = dataset.map(**_UpperCamelCase ) @get_duration def __lowercase ( _UpperCamelCase, **_UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : int = dataset.filter(**_UpperCamelCase ) def __lowercase ( ) ->Union[str, Any]: """simple docstring""" lowercase : Dict = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase : List[str] = generate_example_dataset( os.path.join(_UpperCamelCase, '''dataset.arrow''' ), _UpperCamelCase, num_examples=_UpperCamelCase ) lowercase : List[Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=_UpperCamelCase ) def tokenize(_UpperCamelCase ): return tokenizer(examples['''text'''] ) lowercase : Union[str, Any] = map(_UpperCamelCase ) lowercase : Dict = map(_UpperCamelCase, batched=_UpperCamelCase ) lowercase : Tuple = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''numpy''' ): lowercase : Dict = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''pandas''' ): lowercase : Any = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): lowercase : str = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): lowercase : Tuple = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) lowercase : List[str] = map(_UpperCamelCase, function=_UpperCamelCase, batched=_UpperCamelCase ) lowercase : Any = filter(_UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_UpperCamelCase, '''wb''' ) as f: f.write(json.dumps(_UpperCamelCase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
173
1
'''simple docstring''' import os def A__ ( ): _UpperCamelCase : List[str] = os.path.join(os.path.dirname(UpperCAmelCase_ ) , 'num.txt' ) with open(UpperCAmelCase_ ) as file_hand: return str(sum(int(UpperCAmelCase_ ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
83
'''simple docstring''' def A__ ( UpperCAmelCase_ ): if num < 0: return False _UpperCamelCase : int = num _UpperCamelCase : int = 0 while num > 0: _UpperCamelCase : str = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
83
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Optional[Any]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=5_1_2 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[Any]=None , ) -> List[str]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_multiple_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = weight_tying __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowercase ( self : Optional[int] ) -> str: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : int ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase = True return config, input_ids, input_mask, token_labels def lowercase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ) -> int: __lowerCAmelCase = GPTNeoXJapaneseModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple ) -> Dict: __lowerCAmelCase = True __lowerCAmelCase = GPTNeoXJapaneseModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] ) -> Dict: __lowerCAmelCase = GPTNeoXJapaneseForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = True __lowerCAmelCase = GPTNeoXJapaneseForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # first forward pass __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) __lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ ) __lowerCAmelCase = output_from_no_past['hidden_states'][0] __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )['hidden_states'][0] # select random slice __lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () a_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () a_ = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[Any] ) -> int: __lowerCAmelCase = GPTNeoXJapaneseModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> str: self.config_tester.run_common_tests() def lowercase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: # This regression test was failing with PyTorch < 1.3 __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase_ ) @slow def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = 'abeja/gpt-neox-japanese-2.7b' __lowerCAmelCase = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] __lowerCAmelCase = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] __lowerCAmelCase = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = [] for prompt in prompts: __lowerCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors='pt' ).input_ids __lowerCAmelCase = model.generate(lowerCAmelCase_ , max_length=5_0 ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
207
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : List[Any] , lowerCAmelCase_ : int = 6_5_5_3_6 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : str = "fourier" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Tuple[int] = (3_2, 3_2, 6_4) , lowerCAmelCase_ : str = None , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : bool = False , ) -> Optional[int]: super().__init__() __lowerCAmelCase = sample_size # time if time_embedding_type == "fourier": __lowerCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCAmelCase_ , log=lowerCAmelCase_ , flip_sin_to_cos=lowerCAmelCase_ ) __lowerCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": __lowerCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCAmelCase_ , downscale_freq_shift=lowerCAmelCase_ ) __lowerCAmelCase = block_out_channels[0] if use_timestep_embedding: __lowerCAmelCase = block_out_channels[0] * 4 __lowerCAmelCase = TimestepEmbedding( in_channels=lowerCAmelCase_ , time_embed_dim=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , out_dim=block_out_channels[0] , ) __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None # down __lowerCAmelCase = in_channels for i, down_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_down_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCAmelCase_ ) # mid __lowerCAmelCase = get_mid_block( lowerCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCAmelCase_ , add_downsample=lowerCAmelCase_ , ) # up __lowerCAmelCase = list(reversed(lowerCAmelCase_ ) ) __lowerCAmelCase = reversed_block_out_channels[0] if out_block_type is None: __lowerCAmelCase = out_channels else: __lowerCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(lowerCAmelCase_ ) - 1 else final_upsample_channels ) __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_up_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCAmelCase_ ) __lowerCAmelCase = output_channel # out __lowerCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) __lowerCAmelCase = get_out_block( out_block_type=lowerCAmelCase_ , num_groups_out=lowerCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[torch.Tensor, float, int] , lowerCAmelCase_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: __lowerCAmelCase = timestep if not torch.is_tensor(lowerCAmelCase_ ): __lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCAmelCase_ ) and len(timesteps.shape ) == 0: __lowerCAmelCase = timesteps[None].to(sample.device ) __lowerCAmelCase = self.time_proj(lowerCAmelCase_ ) if self.config.use_timestep_embedding: __lowerCAmelCase = self.time_mlp(lowerCAmelCase_ ) else: __lowerCAmelCase = timestep_embed[..., None] __lowerCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __lowerCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __lowerCAmelCase = () for downsample_block in self.down_blocks: __lowerCAmelCase , __lowerCAmelCase = downsample_block(hidden_states=lowerCAmelCase_ , temb=lowerCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __lowerCAmelCase = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __lowerCAmelCase = down_block_res_samples[-1:] __lowerCAmelCase = down_block_res_samples[:-1] __lowerCAmelCase = upsample_block(lowerCAmelCase_ , res_hidden_states_tuple=lowerCAmelCase_ , temb=lowerCAmelCase_ ) # 5. post-process if self.out_block: __lowerCAmelCase = self.out_block(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCAmelCase_ )
207
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowercase__ : Dict = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def lowerCamelCase__ ( _A = "dhaka" , _A = 5 ): '''simple docstring''' snake_case_ = min(A__ , 50 ) # Prevent abuse! snake_case_ = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } snake_case_ = requests.get("https://www.google.com/search" , params=A__ , headers=A__ ) snake_case_ = BeautifulSoup(html.text , "html.parser" ) snake_case_ = "".join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) snake_case_ = json.dumps(A__ ) snake_case_ = json.loads(A__ ) snake_case_ = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , A__ , ) if not matched_google_image_data: return 0 snake_case_ = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(A__ ) , ) snake_case_ = re.findall( R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , A__ , ) for index, fixed_full_res_image in enumerate(A__ ): if index >= max_images: return index snake_case_ = bytes(A__ , "ascii" ).decode( "unicode-escape" ) snake_case_ = bytes(A__ , "ascii" ).decode( "unicode-escape" ) snake_case_ = urllib.request.build_opener() snake_case_ = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(A__ ) snake_case_ = f"query_{query.replace(' ' , '_' )}" if not os.path.exists(A__ ): os.makedirs(A__ ) urllib.request.urlretrieve( # noqa: S310 A__ , f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: lowercase__ : Tuple = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print("Please provide a search term.") raise
187
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def snake_case ( A__ ): UpperCAmelCase_ : Dict = SwinConfig(image_size=1_92 ) if "base" in model_name: UpperCAmelCase_ : Any = 6 UpperCAmelCase_ : Optional[Any] = 1_28 UpperCAmelCase_ : Optional[int] = (2, 2, 18, 2) UpperCAmelCase_ : List[str] = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : int = 1_92 UpperCAmelCase_ : List[Any] = (2, 2, 18, 2) UpperCAmelCase_ : int = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) UpperCAmelCase_ : str = window_size UpperCAmelCase_ : Any = embed_dim UpperCAmelCase_ : int = depths UpperCAmelCase_ : Any = num_heads return config def snake_case ( A__ ): if "encoder.mask_token" in name: UpperCAmelCase_ : str = name.replace("encoder.mask_token" ,"embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: UpperCAmelCase_ : Optional[int] = name.replace("encoder.patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: UpperCAmelCase_ : List[str] = name.replace("encoder.patch_embed.norm" ,"embeddings.norm" ) if "attn.proj" in name: UpperCAmelCase_ : Optional[Any] = name.replace("attn.proj" ,"attention.output.dense" ) if "attn" in name: UpperCAmelCase_ : Any = name.replace("attn" ,"attention.self" ) if "norm1" in name: UpperCAmelCase_ : str = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: UpperCAmelCase_ : Tuple = name.replace("norm2" ,"layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ : List[str] = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ : str = name.replace("mlp.fc2" ,"output.dense" ) if name == "encoder.norm.weight": UpperCAmelCase_ : List[str] = "layernorm.weight" if name == "encoder.norm.bias": UpperCAmelCase_ : int = "layernorm.bias" if "decoder" in name: pass else: UpperCAmelCase_ : Any = "swin." + name return name def snake_case ( A__ ,A__ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Tuple = orig_state_dict.pop(A__ ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase_ : Optional[int] = key.split("." ) UpperCAmelCase_ : str = int(key_split[2] ) UpperCAmelCase_ : Union[str, Any] = int(key_split[4] ) UpperCAmelCase_ : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase_ : List[Any] = val[:dim, :] UpperCAmelCase_ : str = val[ dim : dim * 2, : ] UpperCAmelCase_ : str = val[-dim:, :] else: UpperCAmelCase_ : List[str] = val[ :dim ] UpperCAmelCase_ : str = val[ dim : dim * 2 ] UpperCAmelCase_ : Optional[Any] = val[ -dim: ] else: UpperCAmelCase_ : Tuple = val return orig_state_dict def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : List[Any] = torch.load(A__ ,map_location="cpu" )["model"] UpperCAmelCase_ : Optional[Any] = get_swin_config(A__ ) UpperCAmelCase_ : List[Any] = SwinForMaskedImageModeling(A__ ) model.eval() UpperCAmelCase_ : str = convert_state_dict(A__ ,A__ ) model.load_state_dict(A__ ) UpperCAmelCase_ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : int = ViTImageProcessor(size={"height": 1_92, "width": 1_92} ) UpperCAmelCase_ : Any = Image.open(requests.get(A__ ,stream=A__ ).raw ) UpperCAmelCase_ : Any = image_processor(images=A__ ,return_tensors="pt" ) with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**A__ ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase_ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
268
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
281
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : Optional[Any] = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } snake_case : str = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } snake_case : List[Any] = { '''vinai/phobert-base''': 2_56, '''vinai/phobert-large''': 2_56, } def __lowerCamelCase ( UpperCAmelCase_ : List[str] ): """simple docstring""" a :Union[str, Any] = set() a :str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a :Optional[int] = char a :Optional[int] = set(UpperCAmelCase_ ) return pairs class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , **_lowerCamelCase , ): super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) a :Optional[Any] = vocab_file a :Optional[Any] = merges_file a :Any = {} a :Any = 0 a :int = 1 a :Union[str, Any] = 2 a :List[Any] = 3 self.add_from_file(_lowerCamelCase ) a :List[str] = {v: k for k, v in self.encoder.items()} with open(_lowerCamelCase , encoding='''utf-8''' ) as merges_handle: a :List[str] = merges_handle.read().split('''\n''' )[:-1] a :Any = [tuple(merge.split()[:-1] ) for merge in merges] a :str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :str = {} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a :Union[str, Any] = [self.cls_token_id] a :Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): a :Optional[int] = [self.sep_token_id] a :Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if token in self.cache: return self.cache[token] a :Optional[int] = tuple(_lowerCamelCase ) a :List[str] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) a :Union[str, Any] = get_pairs(_lowerCamelCase ) if not pairs: return token while True: a :Optional[Any] = min(_lowerCamelCase , key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break a , a :Dict = bigram a :Union[str, Any] = [] a :int = 0 while i < len(_lowerCamelCase ): try: a :Optional[Any] = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a :Union[str, Any] = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a :Union[str, Any] = tuple(_lowerCamelCase ) a :int = new_word if len(_lowerCamelCase ) == 1: break else: a :List[str] = get_pairs(_lowerCamelCase ) a :Union[str, Any] = '''@@ '''.join(_lowerCamelCase ) a :Dict = word[:-4] a :Any = word return word def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Union[str, Any] = [] a :str = re.findall(R'''\S+\n?''' , _lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.decoder.get(_lowerCamelCase , self.unk_token ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Optional[int] = ''' '''.join(_lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a :Tuple = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) a :Optional[int] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.merges_file , _lowerCamelCase ) return out_vocab_file, out_merge_file def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if isinstance(_lowerCamelCase , _lowerCamelCase ): try: with open(_lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return a :str = f.readlines() for lineTmp in lines: a :Tuple = lineTmp.strip() a :int = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) a :Tuple = line[:idx] a :Tuple = len(self.encoder )
281
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase_ = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowerCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Dict=None , ) ->Union[str, Any]: if attention_mask is None: _SCREAMING_SNAKE_CASE = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _SCREAMING_SNAKE_CASE = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class a_ : '''simple docstring''' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=32 , A=2 , A=1 , A=0 , A=0.02 , ) -> int: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = initializer_range def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _SCREAMING_SNAKE_CASE = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _SCREAMING_SNAKE_CASE = shift_tokens_right(A , 1 , 2 ) _SCREAMING_SNAKE_CASE = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=A , ) _SCREAMING_SNAKE_CASE = prepare_blenderbot_inputs_dict(A , A , A ) return config, inputs_dict def snake_case_( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def snake_case_( self , A , A , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = 20 _SCREAMING_SNAKE_CASE = model_class_name(A ) _SCREAMING_SNAKE_CASE = model.encode(inputs_dict["""input_ids"""] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , A , A ) _SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) _SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) _SCREAMING_SNAKE_CASE = model.decode(A , A ) _SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) def snake_case_( self , A , A , A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = 20 _SCREAMING_SNAKE_CASE = model_class_name(A ) _SCREAMING_SNAKE_CASE = model.encode(inputs_dict["""input_ids"""] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , A , A ) _SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) _SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) _SCREAMING_SNAKE_CASE = model.decode(A , A , decoder_attention_mask=A ) _SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = 99 def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _SCREAMING_SNAKE_CASE = input_ids.shape[0] _SCREAMING_SNAKE_CASE = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_config_and_data() _SCREAMING_SNAKE_CASE = FlaxBlenderbotSmallForConditionalGeneration(A ) _SCREAMING_SNAKE_CASE = lm_model(input_ids=A ) _SCREAMING_SNAKE_CASE = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , A ) def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _SCREAMING_SNAKE_CASE = FlaxBlenderbotSmallForConditionalGeneration(A ) _SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE = lm_model(input_ids=A , decoder_input_ids=A ) _SCREAMING_SNAKE_CASE = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , A ) def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE = shift_tokens_right(A , 1 , 2 ) _SCREAMING_SNAKE_CASE = np.equal(A , 1 ).astype(np.floataa ).sum() _SCREAMING_SNAKE_CASE = np.equal(A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class a_ ( snake_case_ , unittest.TestCase , snake_case_ ): '''simple docstring''' UpperCamelCase = True UpperCamelCase = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = FlaxBlenderbotSmallModelTester(self ) def snake_case_( self ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE = self._prepare_for_class(A , A ) _SCREAMING_SNAKE_CASE = model_class(A ) @jax.jit def encode_jitted(A , A=None , **A ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest("""JIT Enabled""" ): _SCREAMING_SNAKE_CASE = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE = model_class(A ) _SCREAMING_SNAKE_CASE = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _SCREAMING_SNAKE_CASE = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A , A , A ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest("""JIT Enabled""" ): _SCREAMING_SNAKE_CASE = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case_( self ) -> str: for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _SCREAMING_SNAKE_CASE = np.ones((1, 1) ) * model.config.eos_token_id _SCREAMING_SNAKE_CASE = model(A ) self.assertIsNotNone(A )
58
"""simple docstring""" import re def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = re.compile(r"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" ) if match := re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
153
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: _a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , '''num_heads''' ) ) class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) -> Dict: _a = parent _a = batch_size _a = image_size _a = patch_sizes _a = patch_stride _a = patch_padding _a = is_training _a = use_labels _a = num_labels _a = num_channels _a = embed_dim _a = num_heads _a = stride_kv _a = depth _a = cls_token _a = attention_drop_rate _a = initializer_range _a = layer_norm_eps def _UpperCAmelCase ( self ) -> Tuple: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: # create a random int32 tensor of given shape _a = ids_tensor([self.batch_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: _a = TFCvtModel(config=__UpperCAmelCase ) _a = model(__UpperCAmelCase , training=__UpperCAmelCase ) _a = (self.image_size, self.image_size) _a = image_size[0], image_size[1] for i in range(len(self.depth ) ): _a = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _a = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: _a = self.num_labels _a = TFCvtForImageClassification(__UpperCAmelCase ) _a = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.prepare_config_and_inputs() _a = config_and_inputs _a = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () A_ : List[Any] = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) A_ : Any = False A_ : Optional[Any] = False A_ : Any = False A_ : List[str] = False A_ : List[str] = False def _UpperCAmelCase ( self ) -> Optional[int]: _a = TFCvtModelTester(self ) _a = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def _UpperCAmelCase ( self ) -> str: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def _UpperCAmelCase ( self ) -> int: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _UpperCAmelCase ( self ) -> Any: super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def _UpperCAmelCase ( self ) -> List[Any]: _a = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def _UpperCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__UpperCAmelCase ) _a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _a = model_class(__UpperCAmelCase ) _a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _a = outputs.hidden_states _a = len(self.model_tester.depth ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Any: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFCvtModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A_ ( ): """simple docstring""" _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCAmelCase ( self ) -> str: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=__UpperCAmelCase , return_tensors='''tf''' ) # forward pass _a = model(**__UpperCAmelCase ) # verify the logits _a = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _a = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1e-4 ) )
359
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class __lowerCamelCase ( a__ ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A_ : str = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) A_ : ClassVar[Features] = Features({'text': Value('string' )} ) A_ : ClassVar[Features] = Features({'summary': Value('string' )} ) A_ : str = "text" A_ : str = "summary" @property def _UpperCAmelCase ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
153
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''audio-spectrogram-transformer''' def __init__( self , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3_072 , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=1e-1_2 , snake_case_=16 , snake_case_=True , snake_case_=10 , snake_case_=10 , snake_case_=1_024 , snake_case_=128 , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ ) __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = patch_size __lowerCAmelCase = qkv_bias __lowerCAmelCase = frequency_stride __lowerCAmelCase = time_stride __lowerCAmelCase = max_length __lowerCAmelCase = num_mel_bins
301
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 10**-10 ): _SCREAMING_SNAKE_CASE : int = a while True: _SCREAMING_SNAKE_CASE : int = Decimal(__lowerCamelCase ) - ( Decimal(eval(__lowerCamelCase ) ) / Decimal(eval(str(diff(__lowerCamelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowerCamelCase ) ) < precision: # noqa: S307 return float(__lowerCamelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
325
from __future__ import annotations import math def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__lowerCamelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) return min( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 34423] _SCREAMING_SNAKE_CASE : Tuple = math.log(len(__lowerCamelCase ), 2 ) print("Optimal value : ", end="" ) print(minimax(0, 0, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
325
1
from statistics import mean import numpy as np def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0 # Number of processes finished lowercase__ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase__ = [0] * no_of_process # List to include calculation results lowercase__ = [0] * no_of_process # Sort by arrival time. lowercase__ = [burst_time[i] for i in np.argsort(lowerCamelCase_ )] lowercase__ = [process_name[i] for i in np.argsort(lowerCamelCase_ )] arrival_time.sort() while no_of_process > finished_process_count: lowercase__ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase__ = arrival_time[i] lowercase__ = 0 # Index showing the location of the process being performed lowercase__ = 0 # Saves the current response ratio. lowercase__ = 0 for i in range(0 , lowerCamelCase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase__ = temp lowercase__ = i # Calculate the turn around time lowercase__ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase__ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [0] * no_of_process for i in range(0 , lowerCamelCase_ ): lowercase__ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": A__ : int = 5 A__ : Any = ['A', 'B', 'C', 'D', 'E'] A__ : Optional[int] = [1, 2, 3, 4, 5] A__ : Union[str, Any] = [1, 2, 3, 4, 5] A__ : Tuple = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) A__ : str = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( F"{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t" F"{turn_around_time[i]}\t\t\t{waiting_time[i]}" ) print(F"average waiting time : {mean(waiting_time):.5f}") print(F"average turn around time : {mean(turn_around_time):.5f}")
207
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [1] lowercase__ , lowercase__ , lowercase__ = 0, 0, 0 lowercase__ = ugly_nums[ia] * 2 lowercase__ = ugly_nums[ia] * 3 lowercase__ = ugly_nums[ia] * 5 for _ in range(1 , lowerCamelCase_ ): lowercase__ = min(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ugly_nums.append(lowerCamelCase_ ) if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(2_00) = }")
207
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = ComputeEnvironment.AMAZON_SAGEMAKER __lowerCAmelCase = True __lowerCAmelCase = 'ml.p3.2xlarge' __lowerCAmelCase = 'accelerate_sagemaker_execution_role' __lowerCAmelCase = 'hf-sm' __lowerCAmelCase = 'us-east-1' __lowerCAmelCase = 1 __lowerCAmelCase = 'accelerate-sagemaker-1' __lowerCAmelCase = '1.6' __lowerCAmelCase = '4.4' __lowerCAmelCase = 'train.py' __lowerCAmelCase = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] __lowerCAmelCase = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args["""do_train"""] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args["""epochs"""] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args["""learning_rate"""] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args["""max_steps"""] , _SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
364
from math import pi def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
165
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : str = { """configuration_lxmert""": ["""LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LxmertConfig"""], """tokenization_lxmert""": ["""LxmertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] = ["""LxmertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = [ """LxmertEncoder""", """LxmertForPreTraining""", """LxmertForQuestionAnswering""", """LxmertModel""", """LxmertPreTrainedModel""", """LxmertVisualFeatureEncoder""", """LxmertXLayer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = [ """TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLxmertForPreTraining""", """TFLxmertMainLayer""", """TFLxmertModel""", """TFLxmertPreTrainedModel""", """TFLxmertVisualFeatureEncoder""", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _A : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _A : int = """CompVis/stable-diffusion-v1-1""" _A : Any = """CompVis/stable-diffusion-v1-2""" _A : Optional[int] = """CompVis/stable-diffusion-v1-3""" _A : Union[str, Any] = """CompVis/stable-diffusion-v1-4""" class a__ ( a_ ): def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a = True , ): super()._init_() lowercase : Optional[Any] = StableDiffusionPipeline.from_pretrained(_a ) lowercase : str = StableDiffusionPipeline.from_pretrained(_a ) lowercase : Dict = StableDiffusionPipeline.from_pretrained(_a ) lowercase : Union[str, Any] = StableDiffusionPipeline( vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , requires_safety_checker=_a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __magic_name__ ( self ): return {k: getattr(self , _a ) for k in self.config.keys() if not k.startswith("_" )} def __magic_name__ ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __magic_name__ ( self ): self.enable_attention_slicing(_a ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): lowercase : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" self.to(_a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 lowercase : List[Any] = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.2 lowercase : Any = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.3 lowercase : str = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.4 lowercase : Optional[int] = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
202
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase_ = sys.version_info >= (3, 10) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=__SCREAMING_SNAKE_CASE ) @dataclass class SCREAMING_SNAKE_CASE__ : A : int A : float A : str A : bool @dataclass class SCREAMING_SNAKE_CASE__ : A : int = 42 A : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class SCREAMING_SNAKE_CASE__ : A : bool = False A : bool = True A : Optional[bool] = None class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Tuple = "titi" A : List[str] = "toto" class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = "titi" A : Tuple = "toto" A : Optional[int] = 42 @dataclass class SCREAMING_SNAKE_CASE__ : A : BasicEnum = "toto" def snake_case__ ( self : Any ): __snake_case : Tuple = BasicEnum(self.foo ) @dataclass class SCREAMING_SNAKE_CASE__ : A : MixedTypeEnum = "toto" def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = MixedTypeEnum(self.foo ) @dataclass class SCREAMING_SNAKE_CASE__ : A : Optional[int] = None A : Optional[float] = field(default=__UpperCamelCase , metadata={"help": "help message"} ) A : Optional[str] = None A : Optional[List[str]] = list_field(default=[] ) A : Optional[List[int]] = list_field(default=[] ) @dataclass class SCREAMING_SNAKE_CASE__ : A : List[int] = list_field(default=[] ) A : List[int] = list_field(default=[1, 2, 3] ) A : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) A : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class SCREAMING_SNAKE_CASE__ : A : List[int] = field() A : str = field() A : BasicEnum = field() def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = BasicEnum(self.required_enum ) @dataclass class SCREAMING_SNAKE_CASE__ : A : int A : "BasicEnum" = field() A : "Optional[bool]" = None A : "str" = field(default="toto" , metadata={"help": "help message"} ) A : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class SCREAMING_SNAKE_CASE__ : A : bool = False A : bool = True A : bool | None = None @dataclass class SCREAMING_SNAKE_CASE__ : A : int | None = None A : float | None = field(default=__UpperCamelCase , metadata={"help": "help message"} ) A : str | None = None A : list[str] | None = list_field(default=[] ) A : list[int] | None = list_field(default=[] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Dict , _lowerCAmelCase : argparse.ArgumentParser , _lowerCAmelCase : argparse.ArgumentParser ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __snake_case : Optional[Any] = {k: v for k, v in vars(_lowerCAmelCase ).items() if k != """container"""} __snake_case : Tuple = {k: v for k, v in vars(_lowerCAmelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , _lowerCAmelCase ) and yy.get("""choices""" , _lowerCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](_lowerCAmelCase ) , yy["""type"""](_lowerCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : int = HfArgumentParser(_lowerCAmelCase ) __snake_case : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument("""--bar""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument("""--baz""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument("""--flag""" , type=_lowerCAmelCase , default=_lowerCAmelCase , const=_lowerCAmelCase , nargs="""?""" ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Dict = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((__snake_case) , ) : str = parser.parse_args_into_dataclasses(_lowerCAmelCase , look_for_args_file=_lowerCAmelCase ) self.assertFalse(example.flag ) def snake_case__ ( self : List[str] ): __snake_case : str = HfArgumentParser(_lowerCAmelCase ) __snake_case : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=_lowerCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=_lowerCAmelCase , help="""help message""" ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCAmelCase , default=_lowerCAmelCase , const=_lowerCAmelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=_lowerCAmelCase , default=_lowerCAmelCase , const=_lowerCAmelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=_lowerCAmelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=_lowerCAmelCase , default=_lowerCAmelCase ) __snake_case : List[str] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCAmelCase ) for dataclass_type in dataclass_types: __snake_case : str = HfArgumentParser(_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Any = parser.parse_args([] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) ) __snake_case : List[Any] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) ) __snake_case : Optional[int] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) ) __snake_case : int = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) ) __snake_case : Tuple = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) ) def snake_case__ ( self : List[str] ): __snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase ) __snake_case : Optional[int] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : str = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __snake_case : Optional[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __snake_case : Tuple = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __snake_case : str = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __snake_case : List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) __snake_case : List[Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__ ( self : Dict ): @dataclass class SCREAMING_SNAKE_CASE__ : A : Literal["titi", "toto", 42] = "toto" __snake_case : Any = HfArgumentParser(_lowerCAmelCase ) __snake_case : int = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __snake_case : List[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __snake_case : Tuple = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def snake_case__ ( self : Dict ): __snake_case : Optional[int] = HfArgumentParser(_lowerCAmelCase ) __snake_case : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_lowerCAmelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_lowerCAmelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_lowerCAmelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = parser.parse_args([] ) self.assertEqual( _lowerCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) __snake_case : Tuple = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(_lowerCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def snake_case__ ( self : str ): __snake_case : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=_lowerCAmelCase , type=_lowerCAmelCase ) expected.add_argument("""--bar""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=_lowerCAmelCase , type=_lowerCAmelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_lowerCAmelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_lowerCAmelCase ) __snake_case : Optional[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCAmelCase ) for dataclass_type in dataclass_types: __snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , bar=_lowerCAmelCase , baz=_lowerCAmelCase , ces=[] , des=[] ) ) __snake_case : List[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(_lowerCAmelCase , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = HfArgumentParser(_lowerCAmelCase ) __snake_case : Any = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument("""--required_str""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_lowerCAmelCase , ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase ) __snake_case : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_lowerCAmelCase , ) expected.add_argument("""--opt""" , type=_lowerCAmelCase , default=_lowerCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=_lowerCAmelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[int] ): __snake_case : str = HfArgumentParser(_lowerCAmelCase ) __snake_case : int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } __snake_case : Tuple = parser.parse_dict(_lowerCAmelCase )[0] __snake_case : int = BasicExample(**_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase ) __snake_case : str = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(_lowerCAmelCase , parser.parse_dict , _lowerCAmelCase , allow_extra_keys=_lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : Optional[int] = HfArgumentParser(_lowerCAmelCase ) __snake_case : int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = os.path.join(_lowerCAmelCase , """temp_json""" ) os.mkdir(_lowerCAmelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : List[str] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] __snake_case : int = BasicExample(**_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[Any] = HfArgumentParser(_lowerCAmelCase ) __snake_case : Any = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : int = os.path.join(_lowerCAmelCase , """temp_yaml""" ) os.mkdir(_lowerCAmelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : str = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] __snake_case : Tuple = BasicExample(**_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = HfArgumentParser(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = {} __snake_case : int = {} if prompt is not None: __snake_case : Dict = prompt if generate_kwargs is not None: __snake_case : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __snake_case : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __snake_case : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) __snake_case : Tuple = self.model.config.model_type if model_type == "git": __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids __snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids __snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __snake_case : int = None return model_inputs def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __snake_case : List[Any] = None if generate_kwargs is None: __snake_case : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __snake_case : Dict = model_inputs.pop(self.model.main_input_name ) __snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = [] for output_ids in model_outputs: __snake_case : Union[str, Any] = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
20
1
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ): """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __UpperCAmelCase : str = mf_knapsack(i - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[Any] = max( mf_knapsack(i - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , mf_knapsack(i - 1 , lowerCAmelCase__ , lowerCAmelCase__ , j - wt[i - 1] ) + val[i - 1] , ) __UpperCAmelCase : List[str] = val return f[i][j] def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict ): """simple docstring""" __UpperCAmelCase : int = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __UpperCAmelCase : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __UpperCAmelCase : Optional[Any] = dp[i - 1][w_] return dp[n][w_], dp def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : list , lowerCAmelCase__ : list ): """simple docstring""" if not (isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) __UpperCAmelCase : int = len(lowerCAmelCase__ ) if num_items != len(lowerCAmelCase__ ): __UpperCAmelCase : Dict = ( """The number of weights must be the same as the number of values.\n""" f'But got {num_items} weights and {len(lowerCAmelCase__ )} values' ) raise ValueError(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): if not isinstance(wt[i] , lowerCAmelCase__ ): __UpperCAmelCase : int = ( """All weights must be integers but got weight of """ f'type {type(wt[i] )} at index {i}' ) raise TypeError(lowerCAmelCase__ ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : set = set() _construct_solution(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return optimal_val, example_optional_set def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : set ): """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowerCAmelCase__ , lowerCAmelCase__ , i - 1 , lowerCAmelCase__ , lowerCAmelCase__ ) else: optimal_set.add(lowerCAmelCase__ ) _construct_solution(lowerCAmelCase__ , lowerCAmelCase__ , i - 1 , j - wt[i - 1] , lowerCAmelCase__ ) if __name__ == "__main__": _UpperCamelCase = [3, 2, 4, 4] _UpperCamelCase = [4, 3, 2, 3] _UpperCamelCase = 4 _UpperCamelCase = 6 _UpperCamelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _UpperCamelCase , _UpperCamelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _UpperCamelCase , _UpperCamelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
254
'''simple docstring''' _UpperCamelCase = ''' # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git ''' _UpperCamelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _UpperCamelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
254
1
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _a : int = logging.getLogger(__name__) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[int] ="""summarization""" a : List[str] =["""loss"""] a : List[Any] =ROUGE_KEYS a : Tuple ="""rouge2""" def __init__( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: __lowerCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(__SCREAMING_SNAKE_CASE,num_labels=__SCREAMING_SNAKE_CASE,mode=self.mode,**__SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model,"""summarization""" ) save_git_info(self.hparams.output_dir ) __lowerCAmelCase = Path(self.output_dir ) / """metrics.json""" __lowerCAmelCase = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams,self.hparams_save_path ) __lowerCAmelCase = 0 __lowerCAmelCase = defaultdict(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.config.model_type __lowerCAmelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size __lowerCAmelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __lowerCAmelCase = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } __lowerCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __lowerCAmelCase = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], f'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __lowerCAmelCase = get_git_info()["""repo_sha"""] __lowerCAmelCase = hparams.num_workers __lowerCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __lowerCAmelCase = self.decoder_start_token_id __lowerCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer,"""prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) __lowerCAmelCase = False __lowerCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __lowerCAmelCase = self.hparams.eval_max_gen_length else: __lowerCAmelCase = self.model.config.max_length __lowerCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(__SCREAMING_SNAKE_CASE,Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()},Path(self.output_dir ) / """tok_batch.json""" ) __lowerCAmelCase = True return readable_batch def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.model(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.tokenizer.batch_decode( __SCREAMING_SNAKE_CASE,skip_special_tokens=__SCREAMING_SNAKE_CASE,clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) return lmap(str.strip,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.tokenizer.pad_token_id __lowerCAmelCase , __lowerCAmelCase = batch["""input_ids"""], batch["""attention_mask"""] __lowerCAmelCase = batch["""labels"""] if isinstance(self.model,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = self.model._shift_right(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = shift_tokens_right(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __lowerCAmelCase = decoder_input_ids self.save_readable_batch(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,decoder_input_ids=__SCREAMING_SNAKE_CASE,use_cache=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __lowerCAmelCase = nn.CrossEntropyLoss(ignore_index=__SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size __lowerCAmelCase = ce_loss_fct(lm_logits.view(-1,lm_logits.shape[-1] ),tgt_ids.view(-1 ) ) else: __lowerCAmelCase = nn.functional.log_softmax(__SCREAMING_SNAKE_CASE,dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = label_smoothed_nll_loss( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,self.hparams.label_smoothing,ignore_index=__SCREAMING_SNAKE_CASE ) return (loss,) @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.tokenizer.pad_token_id def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self._step(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = dict(zip(self.loss_names,__SCREAMING_SNAKE_CASE ) ) # tokens per batch __lowerCAmelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() __lowerCAmelCase = batch["""input_ids"""].shape[0] __lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).sum() __lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self._generative_step(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="val" ): '''simple docstring''' self.step_count += 1 __lowerCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __lowerCAmelCase = losses["""loss"""] __lowerCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } __lowerCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __lowerCAmelCase = torch.tensor(__SCREAMING_SNAKE_CASE ).type_as(__SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {f'{prefix}_avg_{k}': x for k, x in losses.items()} __lowerCAmelCase = self.step_count self.metrics[prefix].append(__SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path __lowerCAmelCase = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'{prefix}_loss': loss, f'{prefix}_{self.val_metric}': metric_tensor, } def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return calculate_rouge(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __lowerCAmelCase = self.model.generate( batch["""input_ids"""],attention_mask=batch["""attention_mask"""],use_cache=__SCREAMING_SNAKE_CASE,decoder_start_token_id=self.decoder_start_token_id,num_beams=self.eval_beams,max_length=self.eval_max_length,) __lowerCAmelCase = (time.time() - ta) / batch["""input_ids"""].shape[0] __lowerCAmelCase = self.ids_to_clean_text(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.ids_to_clean_text(batch["""labels"""] ) __lowerCAmelCase = self._step(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = dict(zip(self.loss_names,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = self.calc_generative_metrics(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.mean(lmap(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=__SCREAMING_SNAKE_CASE,gen_len=__SCREAMING_SNAKE_CASE,preds=__SCREAMING_SNAKE_CASE,target=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) return base_metrics def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self._generative_step(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.validation_epoch_end(__SCREAMING_SNAKE_CASE,prefix="""test""" ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.n_obs[type_path] __lowerCAmelCase = self.target_lens[type_path] __lowerCAmelCase = self.dataset_class( self.tokenizer,type_path=__SCREAMING_SNAKE_CASE,n_obs=__SCREAMING_SNAKE_CASE,max_target_length=__SCREAMING_SNAKE_CASE,**self.dataset_kwargs,) return dataset def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' __lowerCAmelCase = self.get_dataset(__SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __lowerCAmelCase = dataset.make_sortish_sampler(__SCREAMING_SNAKE_CASE,distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,collate_fn=dataset.collate_fn,shuffle=__SCREAMING_SNAKE_CASE,num_workers=self.num_workers,sampler=__SCREAMING_SNAKE_CASE,) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __lowerCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch,distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE,batch_sampler=__SCREAMING_SNAKE_CASE,collate_fn=dataset.collate_fn,num_workers=self.num_workers,) else: return DataLoader( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,collate_fn=dataset.collate_fn,shuffle=__SCREAMING_SNAKE_CASE,num_workers=self.num_workers,sampler=__SCREAMING_SNAKE_CASE,) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_dataloader("""train""",batch_size=self.hparams.train_batch_size,shuffle=__SCREAMING_SNAKE_CASE ) return dataloader def lowerCamelCase__ ( self ): '''simple docstring''' return self.get_dataloader("""val""",batch_size=self.hparams.eval_batch_size ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.get_dataloader("""test""",batch_size=self.hparams.eval_batch_size ) @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' BaseTransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) add_generic_args(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) parser.add_argument( """--max_source_length""",default=10_24,type=__SCREAMING_SNAKE_CASE,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ),) parser.add_argument( """--max_target_length""",default=56,type=__SCREAMING_SNAKE_CASE,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ),) parser.add_argument( """--val_max_target_length""",default=1_42,type=__SCREAMING_SNAKE_CASE,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ),) parser.add_argument( """--test_max_target_length""",default=1_42,type=__SCREAMING_SNAKE_CASE,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ),) parser.add_argument("""--freeze_encoder""",action="""store_true""" ) parser.add_argument("""--freeze_embeds""",action="""store_true""" ) parser.add_argument("""--sortish_sampler""",action="""store_true""",default=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--overwrite_output_dir""",action="""store_true""",default=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--max_tokens_per_batch""",type=__SCREAMING_SNAKE_CASE,default=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--logger_name""",type=__SCREAMING_SNAKE_CASE,choices=["""default""", """wandb""", """wandb_shared"""],default="""default""" ) parser.add_argument("""--n_train""",type=__SCREAMING_SNAKE_CASE,default=-1,required=__SCREAMING_SNAKE_CASE,help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""",type=__SCREAMING_SNAKE_CASE,default=5_00,required=__SCREAMING_SNAKE_CASE,help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""",type=__SCREAMING_SNAKE_CASE,default=-1,required=__SCREAMING_SNAKE_CASE,help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""",type=__SCREAMING_SNAKE_CASE,default="""summarization""",required=__SCREAMING_SNAKE_CASE,help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""",type=__SCREAMING_SNAKE_CASE,default=0.0,required=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--src_lang""",type=__SCREAMING_SNAKE_CASE,default="""""",required=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--tgt_lang""",type=__SCREAMING_SNAKE_CASE,default="""""",required=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--eval_beams""",type=__SCREAMING_SNAKE_CASE,default=__SCREAMING_SNAKE_CASE,required=__SCREAMING_SNAKE_CASE ) parser.add_argument( """--val_metric""",type=__SCREAMING_SNAKE_CASE,default=__SCREAMING_SNAKE_CASE,required=__SCREAMING_SNAKE_CASE,choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""",type=__SCREAMING_SNAKE_CASE,default=__SCREAMING_SNAKE_CASE,help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""",type=__SCREAMING_SNAKE_CASE,default=1,required=__SCREAMING_SNAKE_CASE,help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""",type=__SCREAMING_SNAKE_CASE,default=-1,required=__SCREAMING_SNAKE_CASE,help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ),) return parser class _UpperCAmelCase ( lowerCAmelCase_ ): a : int ="""translation""" a : Optional[Any] =["""loss"""] a : Optional[Any] =["""bleu"""] a : Dict ="""bleu""" def __init__( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = hparams.src_lang __lowerCAmelCase = hparams.tgt_lang def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return calculate_bleu(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( lowercase , lowercase=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=lowercase ) check_output_dir(lowercase , expected_items=3 ) if model is None: if "summarization" in args.task: __lowerCAmelCase = SummarizationModule(lowercase ) else: __lowerCAmelCase = TranslationModule(lowercase ) __lowerCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): __lowerCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __lowerCAmelCase = os.environ.get("""WANDB_PROJECT""" , lowercase ) __lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=f'hf_{dataset}' ) if args.early_stopping_patience >= 0: __lowerCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __lowerCAmelCase = False __lowerCAmelCase = args.val_metric == """loss""" __lowerCAmelCase = generic_train( lowercase , lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , lowercase ) , early_stopping_callback=lowercase , logger=lowercase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model __lowerCAmelCase = """""" __lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=lowercase ) ) if checkpoints: __lowerCAmelCase = checkpoints[-1] __lowerCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() _a : str = pl.Trainer.add_argparse_args(parser) _a : Dict = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _a : Tuple = parser.parse_args() main(args)
46
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : List[str] = """▁""" _a : Optional[int] = {"""vocab_file""": """spiece.model"""} _a : int = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } _a : int = { """google/pegasus-xsum""": 5_1_2, } _a : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] =VOCAB_FILES_NAMES a : Tuple =VOCAB_FILES_NAMES a : Any =PRETRAINED_VOCAB_FILES_MAP a : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] =["""input_ids""", """attention_mask"""] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<mask_2>",__SCREAMING_SNAKE_CASE="<mask_1>",__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=1_03,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = offset if additional_special_tokens is not None: if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): raise TypeError( f'additional_special_tokens should be of type {type(__SCREAMING_SNAKE_CASE )}, but is' f' {type(__SCREAMING_SNAKE_CASE )}' ) __lowerCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(__SCREAMING_SNAKE_CASE ),self.offset - 1 ) ] if len(set(__SCREAMING_SNAKE_CASE ) ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) __lowerCAmelCase = additional_special_tokens_extended else: __lowerCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2,self.offset )] __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,mask_token_sent=__SCREAMING_SNAKE_CASE,offset=__SCREAMING_SNAKE_CASE,additional_special_tokens=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = mask_token_sent __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict __lowerCAmelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1,self.offset - 1 )} ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) + self.offset def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __lowerCAmelCase = self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __lowerCAmelCase = self.sp_model.IdToPiece(index - self.offset ) return token def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __lowerCAmelCase = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' return 1 def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(__SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(__SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
46
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } UpperCamelCase = Dataset.from_dict(lowercase ) return dataset class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = get_dataset() UpperCamelCase = make_duplicate_clusters(A_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = get_dataset() UpperCamelCase , UpperCamelCase = deduplicate_dataset(A_ ) self.assertEqual(len(A_ ) , 2 ) print(A_ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , A_ )
222
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'embed_dim' ) ) self.parent.assertTrue(hasattr(A_ , 'num_heads' ) ) class lowercase : def __init__( self , A_ , A_=13 , A_=64 , A_=3 , A_=[16, 48, 96] , A_=[1, 3, 6] , A_=[1, 2, 10] , A_=[7, 3, 3] , A_=[4, 2, 2] , A_=[2, 1, 1] , A_=[2, 2, 2] , A_=[False, False, True] , A_=[0.0, 0.0, 0.0] , A_=0.02 , A_=1e-12 , A_=True , A_=True , A_=2 , ) -> int: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_sizes UpperCamelCase = patch_stride UpperCamelCase = patch_padding UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = num_labels UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = num_heads UpperCamelCase = stride_kv UpperCamelCase = depth UpperCamelCase = cls_token UpperCamelCase = attention_drop_rate UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase = CvtModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase , UpperCamelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCamelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCamelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = CvtForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else () __lowercase : Tuple = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Union[str, Any] = False __lowercase : Optional[Any] = False __lowercase : List[str] = False __lowercase : Dict = False def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = CvtModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self ) -> Any: """simple docstring""" return @unittest.skip(reason='Cvt does not output attentions' ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = len(self.model_tester.depth ) self.assertEqual(len(A_ ) , A_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @slow def __UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = CvtModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> Tuple: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
222
1
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Tuple = multiprocessing.Manager() lowercase_ : str = manager.list() lowercase_ : List[str] = multiprocessing.Process(target=__SCREAMING_SNAKE_CASE , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowercase_ : List[Any] = shutil.rmtree lowercase_ : Optional[Any] = os.rmdir lowercase_ : Tuple = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowercase_ : Union[str, Any] = {} with swallow_io(): with time_limit(__SCREAMING_SNAKE_CASE ): exec(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. lowercase_ : List[str] = rmtree lowercase_ : List[str] = rmdir lowercase_ : Dict = chdir @contextlib.contextmanager def lowercase__( __SCREAMING_SNAKE_CASE : Any ): def signal_handler(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , __SCREAMING_SNAKE_CASE ) signal.signal(signal.SIGALRM , __SCREAMING_SNAKE_CASE ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def lowercase__( ): lowercase_ : Tuple = WriteOnlyStringIO() with contextlib.redirect_stdout(__SCREAMING_SNAKE_CASE ): with contextlib.redirect_stderr(__SCREAMING_SNAKE_CASE ): with redirect_stdin(__SCREAMING_SNAKE_CASE ): yield @contextlib.contextmanager def lowercase__( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__SCREAMING_SNAKE_CASE ): yield dirname class UpperCamelCase ( lowercase_ ): pass class UpperCamelCase ( io.StringIO ): def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' raise OSError def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' raise OSError def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' raise OSError def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return False class UpperCamelCase ( contextlib._RedirectStream ): # type: ignore lowercase = 'stdin' @contextlib.contextmanager def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): if root == ".": yield return lowercase_ : Any = os.getcwd() os.chdir(__SCREAMING_SNAKE_CASE ) try: yield except BaseException as exc: raise exc finally: os.chdir(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowercase_ : List[Any] = None lowercase_ : str = None import os lowercase_ : Any = '1' lowercase_ : Optional[int] = None lowercase_ : Dict = None lowercase_ : Union[str, Any] = None lowercase_ : List[Any] = None lowercase_ : Optional[int] = None lowercase_ : Union[str, Any] = None lowercase_ : Union[str, Any] = None lowercase_ : Optional[Any] = None lowercase_ : List[Any] = None lowercase_ : List[Any] = None lowercase_ : Union[str, Any] = None lowercase_ : Tuple = None lowercase_ : List[Any] = None lowercase_ : int = None lowercase_ : Optional[Any] = None lowercase_ : Any = None lowercase_ : List[Any] = None lowercase_ : List[str] = None lowercase_ : int = None lowercase_ : Tuple = None lowercase_ : Optional[int] = None lowercase_ : List[str] = None lowercase_ : Any = None lowercase_ : Dict = None lowercase_ : Optional[int] = None lowercase_ : Union[str, Any] = None lowercase_ : Optional[int] = None import shutil lowercase_ : Optional[int] = None lowercase_ : int = None lowercase_ : Optional[int] = None import subprocess lowercase_ : Optional[int] = None # type: ignore lowercase_ : Dict = None import sys lowercase_ : List[Any] = None lowercase_ : Tuple = None lowercase_ : Union[str, Any] = None lowercase_ : Optional[int] = None lowercase_ : List[Any] = None
321
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
1
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: __lowerCamelCase : Tuple = [1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = 0, 0, 0 __lowerCamelCase : str = ugly_nums[ia] * 2 __lowerCamelCase : Optional[Any] = ugly_nums[ia] * 3 __lowerCamelCase : List[str] = ugly_nums[ia] * 5 for _ in range(1 , lowerCamelCase__ ): __lowerCamelCase : int = min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ugly_nums.append(lowerCamelCase__ ) if next_num == next_a: ia += 1 __lowerCamelCase : List[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __lowerCamelCase : Optional[Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __lowerCamelCase : int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(200) = }""")
73
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a =logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = '''mask2former''' _UpperCAmelCase : Dict = ['''swin'''] _UpperCAmelCase : Optional[int] = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Dict] = None ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ,SCREAMING_SNAKE_CASE__ : str = "relu" ,SCREAMING_SNAKE_CASE__ : int = 6 ,SCREAMING_SNAKE_CASE__ : int = 1_0 ,SCREAMING_SNAKE_CASE__ : int = 8 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : int = 2_0_4_8 ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : int = 4 ,SCREAMING_SNAKE_CASE__ : int = 2_5_5 ,SCREAMING_SNAKE_CASE__ : int = 1_0_0 ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,SCREAMING_SNAKE_CASE__ : float = 2.0 ,SCREAMING_SNAKE_CASE__ : float = 5.0 ,SCREAMING_SNAKE_CASE__ : float = 5.0 ,SCREAMING_SNAKE_CASE__ : int = 1_2_5_4_4 ,SCREAMING_SNAKE_CASE__ : float = 3.0 ,SCREAMING_SNAKE_CASE__ : float = 0.75 ,SCREAMING_SNAKE_CASE__ : float = 0.02 ,SCREAMING_SNAKE_CASE__ : float = 1.0 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 1_6, 3_2] ,SCREAMING_SNAKE_CASE__ : bool = None ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.') __lowerCamelCase : Optional[Any] = CONFIG_MAPPING['swin']( image_size=2_2_4 ,in_channels=3 ,patch_size=4 ,embed_dim=9_6 ,depths=[2, 2, 1_8, 2] ,num_heads=[3, 6, 1_2, 2_4] ,window_size=7 ,drop_path_rate=0.3 ,use_absolute_embeddings=SCREAMING_SNAKE_CASE__ ,out_features=['stage1', 'stage2', 'stage3', 'stage4'] ,) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Union[str, Any] = backbone_config.pop('model_type') __lowerCamelCase : Dict = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase : int = config_class.from_dict(SCREAMING_SNAKE_CASE__) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported)}") __lowerCamelCase : Dict = backbone_config __lowerCamelCase : int = feature_size __lowerCamelCase : List[str] = mask_feature_size __lowerCamelCase : int = hidden_dim __lowerCamelCase : str = encoder_feedforward_dim __lowerCamelCase : Optional[int] = activation_function __lowerCamelCase : int = encoder_layers __lowerCamelCase : List[Any] = decoder_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Tuple = dropout __lowerCamelCase : Dict = dim_feedforward __lowerCamelCase : Union[str, Any] = pre_norm __lowerCamelCase : List[str] = enforce_input_projection __lowerCamelCase : Optional[int] = common_stride __lowerCamelCase : Dict = ignore_value __lowerCamelCase : Optional[Any] = num_queries __lowerCamelCase : int = no_object_weight __lowerCamelCase : Optional[Any] = class_weight __lowerCamelCase : str = mask_weight __lowerCamelCase : List[str] = dice_weight __lowerCamelCase : Dict = train_num_points __lowerCamelCase : Optional[int] = oversample_ratio __lowerCamelCase : Optional[Any] = importance_sample_ratio __lowerCamelCase : List[Any] = init_std __lowerCamelCase : Tuple = init_xavier_std __lowerCamelCase : Union[str, Any] = use_auxiliary_loss __lowerCamelCase : List[Any] = feature_strides __lowerCamelCase : Any = output_auxiliary_logits __lowerCamelCase : List[Any] = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__) @classmethod def lowerCAmelCase ( cls : str ,SCREAMING_SNAKE_CASE__ : PretrainedConfig ,**SCREAMING_SNAKE_CASE__ : Tuple): return cls( backbone_config=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) def lowerCAmelCase ( self : str): __lowerCamelCase : List[Any] = copy.deepcopy(self.__dict__) __lowerCamelCase : List[Any] = self.backbone_config.to_dict() __lowerCamelCase : Union[str, Any] = self.__class__.model_type return output
73
1
def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if edge <= 0 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if edge <= 0 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
350
import argparse import copy def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = {} with open(UpperCamelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[1], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[0], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" with open(UpperCamelCase_ ) as f: snake_case = f.read(1 ) snake_case = start_node snake_case = [] snake_case = start_node snake_case = 0 while visiting not in first_solution: snake_case = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCamelCase_ ) and k[0] not in first_solution: snake_case = k[1] snake_case = k[0] first_solution.append(UpperCamelCase_ ) snake_case = distance_of_first_solution + int(UpperCamelCase_ ) snake_case = best_node first_solution.append(UpperCamelCase_ ) snake_case = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = [] for n in solution[1:-1]: snake_case = solution.index(UpperCamelCase_ ) for kn in solution[1:-1]: snake_case = solution.index(UpperCamelCase_ ) if n == kn: continue snake_case = copy.deepcopy(UpperCamelCase_ ) snake_case = kn snake_case = n snake_case = 0 for k in _tmp[:-1]: snake_case = _tmp[_tmp.index(UpperCamelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case = distance + int(i[1] ) _tmp.append(UpperCamelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCamelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = 1 snake_case = first_solution snake_case = [] snake_case = distance_of_first_solution snake_case = solution while count <= iters: snake_case = find_neighborhood(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = 0 snake_case = neighborhood[index_of_best_solution] snake_case = len(UpperCamelCase_ ) - 1 snake_case = False while not found: snake_case = 0 while i < len(UpperCamelCase_ ): if best_solution[i] != solution[i]: snake_case = best_solution[i] snake_case = solution[i] break snake_case = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case = True snake_case = best_solution[:-1] snake_case = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case = cost snake_case = solution else: snake_case = index_of_best_solution + 1 snake_case = neighborhood[index_of_best_solution] if len(UpperCamelCase_ ) >= size: tabu_list.pop(0 ) snake_case = count + 1 return best_solution_ever, best_cost def UpperCAmelCase__ (UpperCamelCase_=None ): """simple docstring""" snake_case = generate_neighbours(args.File ) snake_case , snake_case = generate_first_solution( args.File ,UpperCamelCase_ ) snake_case , snake_case = tabu_search( UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,args.Iterations ,args.Size ,) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
213
0
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__ : Tuple = 10 def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : list[int] , __lowerCAmelCase : int ) -> int: for i in range(__lowerCAmelCase , __lowerCAmelCase ): if array[i] == target: return i return -1 def __magic_name__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int ) -> int: __lowerCamelCase = 0 __lowerCamelCase = len(__lowerCAmelCase ) while left <= right: if right - left < precision: return lin_search(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowerCamelCase = one_third - 1 elif array[two_third] < target: __lowerCamelCase = two_third + 1 else: __lowerCamelCase = one_third + 1 __lowerCamelCase = two_third - 1 else: return -1 def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : list[int] , __lowerCAmelCase : int ) -> int: if left < right: if right - left < precision: return lin_search(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowerCAmelCase , one_third - 1 , __lowerCAmelCase , __lowerCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __lowerCAmelCase , __lowerCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : List[str] = input("Enter numbers separated by comma:\n").strip() SCREAMING_SNAKE_CASE__ : Optional[Any] = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__ : str = int(input("Enter the number to be found in the list:\n").strip()) SCREAMING_SNAKE_CASE__ : int = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__ : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print("Not found")
270
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets SCREAMING_SNAKE_CASE__ : Union[str, Any] = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" SCREAMING_SNAKE_CASE__ : int = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" SCREAMING_SNAKE_CASE__ : Optional[Any] = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __A ( self : Dict ) -> Tuple: if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = CHRF.CHAR_ORDER , SCREAMING_SNAKE_CASE__ : int = CHRF.WORD_ORDER , SCREAMING_SNAKE_CASE__ : int = CHRF.BETA , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Optional[Any]: __lowerCamelCase = len(references[0] ) if any(len(SCREAMING_SNAKE_CASE__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowerCamelCase = [[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE__ )] __lowerCamelCase = CHRF(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = sb_chrf.corpus_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
270
1
'''simple docstring''' from __future__ import annotations class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ , lowercase__ : Optional[Any] = text, pattern lowercase__ , lowercase__ : Any = len(__lowerCAmelCase ), len(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCAmelCase( self ) -> list[int]: # searches pattern in text and returns index positions lowercase__ : Tuple = [] for i in range(self.textLen - self.patLen + 1 ): lowercase__ : str = self.mismatch_in_text(__lowerCAmelCase ) if mismatch_index == -1: positions.append(__lowerCAmelCase ) else: lowercase__ : Any = self.match_in_pattern(self.text[mismatch_index] ) lowercase__ : List[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __a: List[str] = """ABAABA""" __a: Union[str, Any] = """AB""" __a: int = BoyerMooreSearch(text, pattern) __a: Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
214
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ProphetNetTokenizer SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Any: super().setUp() lowercase__ : Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: lowercase__ : Union[str, Any] = '''UNwant\u00E9d,running''' lowercase__ : List[Any] = '''unwanted, running''' return input_text, output_text def _lowerCAmelCase( self ) -> Any: lowercase__ : List[str] = self.tokenizer_class(self.vocab_file ) lowercase__ : Union[str, Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__lowerCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _lowerCAmelCase( self ) -> Tuple: lowercase__ : List[Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[int] = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _lowerCAmelCase( self ) -> Tuple: lowercase__ : str = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCAmelCase( self ) -> int: lowercase__ : Union[str, Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : int = BasicTokenizer(do_lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Tuple = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCAmelCase( self ) -> Any: lowercase__ : Tuple = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Optional[int] = BasicTokenizer(do_lower_case=__lowerCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _lowerCAmelCase( self ) -> int: lowercase__ : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowercase__ : Union[str, Any] = {} for i, token in enumerate(__lowerCAmelCase ): lowercase__ : List[Any] = i lowercase__ : Dict = WordpieceTokenizer(vocab=__lowerCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) lowercase__ : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase__ : Dict = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] lowercase__ : int = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Optional[int] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _lowerCAmelCase( self ) -> str: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _lowerCAmelCase( self ) -> Optional[Any]: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _lowerCAmelCase( self ) -> Dict: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : List[Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) lowercase__ : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCAmelCase ) lowercase__ : Optional[int] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCAmelCase ) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) lowercase__ : List[str] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
214
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = DanceDiffusionPipeline SCREAMING_SNAKE_CASE__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } SCREAMING_SNAKE_CASE__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Dict: torch.manual_seed(0 ) _lowercase =UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=UpperCAmelCase , use_timestep_embedding=UpperCAmelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _lowercase =IPNDMScheduler() _lowercase ={ '''unet''': unet, '''scheduler''': scheduler, } return components def __A (self , UpperCAmelCase , UpperCAmelCase=0 ) -> Tuple: if str(UpperCAmelCase ).startswith('''mps''' ): _lowercase =torch.manual_seed(UpperCAmelCase ) else: _lowercase =torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _lowercase ={ '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def __A (self ) -> Tuple: _lowercase ='''cpu''' # ensure determinism for the device-dependent torch.Generator _lowercase =self.get_dummy_components() _lowercase =DanceDiffusionPipeline(**UpperCAmelCase ) _lowercase =pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _lowercase =self.get_dummy_inputs(UpperCAmelCase ) _lowercase =pipe(**UpperCAmelCase ) _lowercase =output.audios _lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowercase =np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __A (self ) -> Any: return super().test_save_load_local() @skip_mps def __A (self ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __A (self ) -> Any: return super().test_save_load_optional_components() @skip_mps def __A (self ) -> Optional[Any]: return super().test_attention_slicing_forward_pass() def __A (self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A (self ) -> List[str]: _lowercase =torch_device _lowercase =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _lowercase =pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _lowercase =torch.manual_seed(0 ) _lowercase =pipe(generator=UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) _lowercase =output.audios _lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowercase =np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __A (self ) -> Optional[Any]: _lowercase =torch_device _lowercase =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _lowercase =pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _lowercase =torch.manual_seed(0 ) _lowercase =pipe(generator=UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) _lowercase =output.audios _lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowercase =np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
5
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """token-classification""" def __init__( self : Union[str, Any] , A : List[Any] ): if type(A ) == dict: __snake_case: str = Namespace(**A ) __snake_case: str = import_module("""tasks""" ) try: __snake_case: Tuple = getattr(A , hparams.task_type ) __snake_case: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) __snake_case: Optional[int] = self.token_classification_task.get_labels(hparams.labels ) __snake_case: str = CrossEntropyLoss().ignore_index super().__init__(A , len(self.labels ) , self.mode ) def UpperCAmelCase__ ( self : Union[str, Any] , **A : Union[str, Any] ): return self.model(**A ) def UpperCAmelCase__ ( self : Any , A : Optional[int] , A : str ): __snake_case: str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case: List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case: Any = self(**A ) __snake_case: Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCAmelCase__ ( self : List[str] ): __snake_case: Tuple = self.hparams for mode in ["train", "dev", "test"]: __snake_case: Union[str, Any] = self._feature_file(A ) if os.path.exists(A ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , A ) __snake_case: Tuple = torch.load(A ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __snake_case: List[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , A ) __snake_case: Optional[int] = self.token_classification_task.convert_examples_to_features( A , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , A ) torch.save(A , A ) def UpperCAmelCase__ ( self : List[str] , A : int , A : int , A : bool = False ): __snake_case: List[str] = self._feature_file(A ) logger.info("""Loading features from cached file %s""" , A ) __snake_case: int = torch.load(A ) __snake_case: Optional[int] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case: Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __snake_case: Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __snake_case: Tuple = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __snake_case: Optional[int] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(A , A , A , A ) , batch_size=A ) def UpperCAmelCase__ ( self : Tuple , A : Optional[Any] , A : int ): """Compute validation""" "" __snake_case: List[str] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case: Union[str, Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case: List[str] = self(**A ) __snake_case , __snake_case: int = outputs[:2] __snake_case: List[str] = logits.detach().cpu().numpy() __snake_case: Any = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCAmelCase__ ( self : Dict , A : Dict ): __snake_case: Union[str, Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() __snake_case: Tuple = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) __snake_case: List[str] = np.argmax(A , axis=2 ) __snake_case: Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __snake_case: Tuple = dict(enumerate(self.labels ) ) __snake_case: Dict = [[] for _ in range(out_label_ids.shape[0] )] __snake_case: Tuple = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __snake_case: Dict = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(A , A ), """precision""": precision_score(A , A ), """recall""": recall_score(A , A ), """f1""": fa_score(A , A ), } __snake_case: Dict = dict(results.items() ) __snake_case: Dict = results return ret, preds_list, out_label_list def UpperCAmelCase__ ( self : Tuple , A : int ): # when stable __snake_case , __snake_case , __snake_case: List[str] = self._eval_end(A ) __snake_case: int = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCAmelCase__ ( self : Dict , A : Optional[int] ): # updating to test_epoch_end instead of deprecated test_end __snake_case , __snake_case , __snake_case: int = self._eval_end(A ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __snake_case: List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCAmelCase__ ( A : Any , A : int ): # Add NER specific options BaseTransformer.add_model_specific_args(A , A ) parser.add_argument( """--task_type""" , default="""NER""" , type=A , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=A , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=A , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": __UpperCAmelCase : Tuple = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCAmelCase : Tuple = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase : List[str] = parser.parse_args() __UpperCAmelCase : Optional[int] = NERTransformer(args) __UpperCAmelCase : Tuple = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) __UpperCAmelCase : Any = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
111
0
from queue import PriorityQueue from typing import Any import numpy as np def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCAmelCase : Dict = cst_fwd.get(__lowerCAmelCase , np.inf ) _UpperCAmelCase : List[Any] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCAmelCase : int = new_cost_f _UpperCAmelCase : str = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCAmelCase : Tuple = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = -1 _UpperCAmelCase : Optional[int] = set() _UpperCAmelCase : List[Any] = set() _UpperCAmelCase : str = {source: 0} _UpperCAmelCase : Union[str, Any] = {destination: 0} _UpperCAmelCase : Union[str, Any] = {source: None} _UpperCAmelCase : List[Any] = {destination: None} _UpperCAmelCase : PriorityQueue[Any] = PriorityQueue() _UpperCAmelCase : PriorityQueue[Any] = PriorityQueue() _UpperCAmelCase : Union[str, Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCAmelCase : Dict = queue_forward.get() visited_forward.add(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = queue_backward.get() visited_backward.add(__lowerCAmelCase ) _UpperCAmelCase : List[str] = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _UpperCAmelCase : Optional[int] = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCAmelCase : str = shortest_distance return shortest_path_distance lowerCamelCase__ = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } lowerCamelCase__ = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __a :Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __a :Optional[int] = 25_0004 __a :Union[str, Any] = 25_0020 @require_sentencepiece @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Tuple = MBartTokenizer _lowerCamelCase : List[str] = MBartTokenizerFast _lowerCamelCase : Tuple = True _lowerCamelCase : Tuple = True def __A ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing A_ = MBartTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : int ): A_ = MBartTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) A_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) A_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __A ( self : List[str] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) A_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) A_ = tempfile.mkdtemp() A_ = tokenizer_r.save_pretrained(UpperCAmelCase ) A_ = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) A_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way A_ = tokenizer_r.from_pretrained(UpperCAmelCase ) A_ = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=True A_ = tempfile.mkdtemp() A_ = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) A_ = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way A_ = tokenizer_r.from_pretrained(UpperCAmelCase ) A_ = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=False A_ = tempfile.mkdtemp() A_ = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) A_ = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A_ = tokenizer_r.from_pretrained(UpperCAmelCase ) A_ = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[str] = 'facebook/mbart-large-en-ro' _lowerCamelCase : str = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _lowerCamelCase : Union[str, Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _lowerCamelCase : Tuple = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __A ( cls : Tuple ): A_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) A_ = 1 return cls def __A ( self : Any ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 ) def __A ( self : Tuple ): A_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) def __A ( self : Dict ): self.assertIn(UpperCAmelCase , self.tokenizer.all_special_ids ) A_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] A_ = self.tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) A_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase ) def __A ( self : Optional[int] ): A_ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , UpperCAmelCase ) A_ = 10 A_ = self.tokenizer(UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) def __A ( self : Tuple ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250026, 250001] ) def __A ( self : Optional[Any] ): A_ = tempfile.mkdtemp() A_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase ) A_ = MBartTokenizer.from_pretrained(UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase ) @require_torch def __A ( self : int ): A_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , return_tensors="pt" ) A_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __A ( self : Optional[Any] ): A_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) A_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) A_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __A ( self : Optional[int] ): A_ = self.tokenizer(self.src_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=3 , return_tensors="pt" ) A_ = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=10 , return_tensors="pt" ) A_ = targets["input_ids"] A_ = shift_tokens_right(UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __A ( self : Optional[int] ): A_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 250004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, } , )
312
from __future__ import annotations def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(__UpperCamelCase ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
312
1
from __future__ import annotations _A = 8.988e9 # units = N * m^s * C^-2 def __UpperCamelCase ( _A , _A , _A , _A ): lowerCAmelCase_ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowerCAmelCase_ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCAmelCase_ = abs(_A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCAmelCase_ = abs(_A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCAmelCase_ = (COULOMBS_CONSTANT * charge_product / abs(_A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
167
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _A = get_tests_dir('''fixtures''') class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = mock.Mock() lowerCAmelCase_ = 500 lowerCAmelCase_ = {} lowerCAmelCase_ = HTTPError lowerCAmelCase_ = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''', return_value=UpperCamelCase__ ) as mock_head: lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with self.assertRaises(UpperCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''', subfolder='''feature_extractor''' ) self.assertIsNotNone(UpperCamelCase__ ) @is_staging_test class A ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" lowerCAmelCase_ = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor.from_pretrained(UpperCamelCase__ ) image_processor.push_to_hub('''test-image-processor''', use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase__, getattr(UpperCamelCase__, UpperCamelCase__ ) ) # Reset repo delete_repo(token=self._token, repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCamelCase__, repo_id='''test-image-processor''', push_to_hub=UpperCamelCase__, use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase__, getattr(UpperCamelCase__, UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor.from_pretrained(UpperCamelCase__ ) image_processor.push_to_hub('''valid_org/test-image-processor''', use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase__, getattr(UpperCamelCase__, UpperCamelCase__ ) ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCamelCase__, repo_id='''valid_org/test-image-processor-org''', push_to_hub=UpperCamelCase__, use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase__, getattr(UpperCamelCase__, UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" CustomImageProcessor.register_for_auto_class() lowerCAmelCase_ = CustomImageProcessor.from_pretrained(UpperCamelCase__ ) image_processor.push_to_hub('''test-dynamic-image-processor''', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''}, ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor", trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, '''CustomImageProcessor''' )
167
1
def lowerCAmelCase_ ( __a = 10**12 ) -> int: """simple docstring""" lowerCamelCase__: str =1 lowerCamelCase__: List[str] =0 lowerCamelCase__: Optional[int] =1 lowerCamelCase__: List[Any] =1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'{solution() = }')
10
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" with open(__magic_name__, encoding='''utf-8''' ) as input_file: UpperCamelCase__ : Tuple = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase__ : str = input_file.read() UpperCamelCase__ : List[Any] = regexp.search(__magic_name__ ) return match def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" with open(__magic_name__, encoding='''utf-8''' ) as input_file: UpperCamelCase__ : Dict = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''', re.DOTALL ) UpperCamelCase__ : Any = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase__ : Tuple = regexp.finditer(__magic_name__ ) UpperCamelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = Path('''./datasets''' ) UpperCamelCase__ : Any = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__magic_name__ ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Optional[int] = Path('''./datasets''' ) UpperCamelCase__ : Optional[Any] = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__magic_name__ ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
201
0
from __future__ import annotations import math class _SCREAMING_SNAKE_CASE : def __init__( self : int , __lowerCamelCase : int ): UpperCamelCase :Tuple = size # approximate the overall size of segment tree with given value UpperCamelCase :List[str] = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCamelCase :Optional[Any] = [0 for i in range(0 , 4 * size )] UpperCamelCase :str = [0 for i in range(0 , 4 * size )] # flag for lazy update def _A ( self : Dict , __lowerCamelCase : int ): return idx * 2 def _A ( self : List[str] , __lowerCamelCase : int ): return idx * 2 + 1 def _A ( self : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[int] ): if left_element == right_element: UpperCamelCase :Optional[Any] = a[left_element - 1] else: UpperCamelCase :Tuple = (left_element + right_element) // 2 self.build(self.left(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.build(self.right(__lowerCamelCase ) , mid + 1 , __lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = max( self.segment_tree[self.left(__lowerCamelCase )] , self.segment_tree[self.right(__lowerCamelCase )] ) def _A ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): if self.flag[idx] is True: UpperCamelCase :List[Any] = self.lazy[idx] UpperCamelCase :List[Any] = False if left_element != right_element: UpperCamelCase :Optional[int] = self.lazy[idx] UpperCamelCase :Dict = self.lazy[idx] UpperCamelCase :Any = True UpperCamelCase :Any = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase :Dict = val if left_element != right_element: UpperCamelCase :List[Any] = val UpperCamelCase :Dict = val UpperCamelCase :Optional[int] = True UpperCamelCase :Optional[int] = True return True UpperCamelCase :Optional[int] = (left_element + right_element) // 2 self.update(self.left(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.update(self.right(__lowerCamelCase ) , mid + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = max( self.segment_tree[self.left(__lowerCamelCase )] , self.segment_tree[self.right(__lowerCamelCase )] ) return True def _A ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): if self.flag[idx] is True: UpperCamelCase :Dict = self.lazy[idx] UpperCamelCase :Any = False if left_element != right_element: UpperCamelCase :Optional[int] = self.lazy[idx] UpperCamelCase :List[Any] = self.lazy[idx] UpperCamelCase :Union[str, Any] = True UpperCamelCase :Tuple = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase :Any = (left_element + right_element) // 2 UpperCamelCase :Dict = self.query(self.left(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = self.query(self.right(__lowerCamelCase ) , mid + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return max(__lowerCamelCase , __lowerCamelCase ) def __str__( self : Optional[int] ): return str([self.query(1 , 1 , self.size , __lowerCamelCase , __lowerCamelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] UpperCAmelCase_ : Any = 15 UpperCAmelCase_ : str = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
62
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : str ): UpperCamelCase :Dict = """hf-internal-testing/tiny-random-t5""" UpperCamelCase :Optional[int] = AutoTokenizer.from_pretrained(__lowerCamelCase ) UpperCamelCase :Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[Any] = tokenizer("""This is me""" , return_tensors="""pt""" ) UpperCamelCase :int = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCamelCase :List[Any] = model.generate(**__lowerCamelCase ) UpperCamelCase :List[Any] = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) UpperCamelCase :List[str] = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCamelCase :List[Any] = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _A ( self : Optional[int] ): UpperCamelCase :Dict = """hf-internal-testing/tiny-random-t5""" UpperCamelCase :Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) UpperCamelCase :int = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
62
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowercase : Any = None lowercase : str = logging.get_logger(__name__) lowercase : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase : Tuple = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowercase : Union[str, Any] = { """facebook/nllb-large-en-ro""": 1024, """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off lowercase : Tuple = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __snake_case ( lowerCAmelCase ): _a : Dict= VOCAB_FILES_NAMES _a : Dict= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : str= PRETRAINED_VOCAB_FILES_MAP _a : Tuple= ["input_ids", "attention_mask"] _a : int= NllbTokenizer _a : List[int]= [] _a : List[int]= [] def __init__( self ,snake_case=None ,snake_case=None ,snake_case="<s>" ,snake_case="</s>" ,snake_case="</s>" ,snake_case="<s>" ,snake_case="<unk>" ,snake_case="<pad>" ,snake_case="<mask>" ,snake_case=None ,snake_case=None ,snake_case=None ,snake_case=False ,**snake_case ,): '''simple docstring''' lowercase : int = AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else mask_token lowercase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case ,tokenizer_file=snake_case ,bos_token=snake_case ,eos_token=snake_case ,sep_token=snake_case ,cls_token=snake_case ,unk_token=snake_case ,pad_token=snake_case ,mask_token=snake_case ,src_lang=snake_case ,tgt_lang=snake_case ,additional_special_tokens=snake_case ,legacy_behaviour=snake_case ,**snake_case ,) lowercase : Union[str, Any] = vocab_file lowercase : int = False if not self.vocab_file else True lowercase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) lowercase : List[Any] = { lang_code: self.convert_tokens_to_ids(snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase : Tuple = src_lang if src_lang is not None else """eng_Latn""" lowercase : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) lowercase : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : List[Any] = [self.sep_token_id] lowercase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,**snake_case ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowercase : List[Any] = src_lang lowercase : Dict = self(snake_case ,add_special_tokens=snake_case ,return_tensors=snake_case ,**snake_case ) lowercase : Optional[int] = self.convert_tokens_to_ids(snake_case ) lowercase : Optional[Any] = tgt_lang_id return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = "eng_Latn" ,snake_case = None ,snake_case = "fra_Latn" ,**snake_case ,): '''simple docstring''' lowercase : Tuple = src_lang lowercase : List[Any] = tgt_lang return super().prepare_seqaseq_batch(snake_case ,snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = self.convert_tokens_to_ids(snake_case ) if self.legacy_behaviour: lowercase : Optional[int] = [] lowercase : int = [self.eos_token_id, self.cur_lang_code] else: lowercase : Union[str, Any] = [self.cur_lang_code] lowercase : Any = [self.eos_token_id] lowercase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str ,pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = self.convert_tokens_to_ids(snake_case ) if self.legacy_behaviour: lowercase : Union[str, Any] = [] lowercase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowercase : Optional[Any] = [self.cur_lang_code] lowercase : List[Any] = [self.eos_token_id] lowercase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str ,pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return lowercase : Tuple = os.path.join( snake_case ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file ,snake_case ) return (out_vocab_file,)
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
1
import requests from bsa import BeautifulSoup def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = BeautifulSoup(requests.get(_A , params=_A ).content , '''html.parser''' ) lowerCAmelCase_ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) lowerCAmelCase_ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _A = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 2_018, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
356
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): __snake_case = ['pixel_values'] def __init__( self, UpperCamelCase__ = True, UpperCamelCase__ = 32, UpperCamelCase__=PILImageResampling.BILINEAR, UpperCamelCase__ = True, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = do_resize lowerCAmelCase_ = do_rescale lowerCAmelCase_ = size_divisor lowerCAmelCase_ = resample super().__init__(**UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(UpperCamelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCAmelCase_ = height // size_divisor * size_divisor lowerCAmelCase_ = width // size_divisor * size_divisor lowerCAmelCase_ = resize(UpperCamelCase__, (new_h, new_w), resample=UpperCamelCase__, data_format=UpperCamelCase__, **UpperCamelCase__ ) return image def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, **UpperCamelCase__ ): """simple docstring""" return rescale(image=UpperCamelCase__, scale=UpperCamelCase__, data_format=UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__=None, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = ChannelDimension.FIRST, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = size_divisor if size_divisor is not None else self.size_divisor lowerCAmelCase_ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) lowerCAmelCase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(UpperCamelCase__ ) for img in images] if do_resize: lowerCAmelCase_ = [self.resize(UpperCamelCase__, size_divisor=UpperCamelCase__, resample=UpperCamelCase__ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(UpperCamelCase__, scale=1 / 255 ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(UpperCamelCase__, UpperCamelCase__ ) for image in images] lowerCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase__, tensor_type=UpperCamelCase__ )
167
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'philschmid/bart-large-cnn-samsum' _SCREAMING_SNAKE_CASE = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) _SCREAMING_SNAKE_CASE = 'summarizer' _SCREAMING_SNAKE_CASE = AutoTokenizer _SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM _SCREAMING_SNAKE_CASE = ['text'] _SCREAMING_SNAKE_CASE = ['text'] def _snake_case ( self , lowercase ) -> List[Any]: return self.pre_processor(lowercase , return_tensors="""pt""" , truncation=lowercase ) def _snake_case ( self , lowercase ) -> Dict: return self.model.generate(**lowercase )[0] def _snake_case ( self , lowercase ) -> str: return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
46
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return [ord(SCREAMING_SNAKE_CASE ) - 96 for elem in plain] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , SCREAMING_SNAKE_CASE ) print("""Decoded:""" , decode(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
46
1
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: Any=2 , __lowerCamelCase: Dict=3 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: List[str]=[32, 64, 1_28] , __lowerCamelCase: str=[1, 2, 1] , __lowerCamelCase: Optional[Any]=[2, 2, 4] , __lowerCamelCase: Tuple=2 , __lowerCamelCase: List[Any]=2.0 , __lowerCamelCase: Tuple=True , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: str=0.0 , __lowerCamelCase: str=0.1 , __lowerCamelCase: str="gelu" , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: Tuple=True , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: Optional[Any]=1e-5 , __lowerCamelCase: str=True , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: int=True , __lowerCamelCase: List[str]=10 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=["stage1", "stage2"] , __lowerCamelCase: Union[str, Any]=[1, 2] , ) -> Union[str, Any]: __UpperCAmelCase : str = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : Dict = embed_dim __UpperCAmelCase : int = hidden_sizes __UpperCAmelCase : Union[str, Any] = depths __UpperCAmelCase : List[Any] = num_heads __UpperCAmelCase : Optional[Any] = window_size __UpperCAmelCase : Optional[int] = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Any = drop_path_rate __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = use_absolute_embeddings __UpperCAmelCase : List[str] = patch_norm __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : Tuple = encoder_stride __UpperCAmelCase : Tuple = out_features __UpperCAmelCase : List[Any] = out_indices def _lowerCamelCase ( self: Tuple ) -> str: __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[Any] = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: int ) -> Dict: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : str = FocalNetModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : int = model(UpperCamelCase__ ) __UpperCAmelCase : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[Any] = FocalNetBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : str = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[Any] = FocalNetBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : Tuple = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ) -> int: __UpperCAmelCase : Optional[int] = FocalNetForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : int = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Union[str, Any] = 1 __UpperCAmelCase : str = FocalNetForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] ) -> Any: __UpperCAmelCase : Dict = self.type_sequence_label_size __UpperCAmelCase : Optional[Any] = FocalNetForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : List[str] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = FocalNetForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self: Dict ) -> Optional[int]: __UpperCAmelCase : Dict = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __a , __a , unittest.TestCase ): lowerCamelCase__: Any = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: int = False lowerCamelCase__: str = False lowerCamelCase__: Dict = False def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : Tuple = FocalNetModelTester(self ) __UpperCAmelCase : Dict = ConfigTester(self , config_class=UpperCamelCase__ , embed_dim=37 , has_text_modality=UpperCamelCase__ ) def _lowerCamelCase ( self: Tuple ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: str ) -> int: return def _lowerCamelCase ( self: Any ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def _lowerCamelCase ( self: Dict ) -> Optional[Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def _lowerCamelCase ( self: Tuple ) -> List[Any]: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def _lowerCamelCase ( self: Dict ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : str = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def _lowerCamelCase ( self: str ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase__ ) __UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Any , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] ) -> Dict: __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[str] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # FocalNet has a different seq_length __UpperCAmelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : str = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(UpperCamelCase__ , UpperCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self: Dict ) -> int: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Tuple = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) ) @slow def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = FocalNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def _lowerCamelCase ( self: int ) -> Any: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(config=UpperCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: str ) -> Dict: return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> str: __UpperCAmelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCamelCase__ ) __UpperCAmelCase : int = self.default_image_processor __UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __UpperCAmelCase : List[str] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**UpperCamelCase__ ) # verify the logits __UpperCAmelCase : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) __UpperCAmelCase : Any = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class _snake_case ( __a , unittest.TestCase ): lowerCamelCase__: List[str] = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase__: Optional[Any] = FocalNetConfig lowerCamelCase__: Tuple = False def _lowerCamelCase ( self: Optional[int] ) -> Dict: __UpperCAmelCase : List[Any] = FocalNetModelTester(self )
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCAmelCase = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCAmelCase = 0 _lowerCAmelCase = 0xe_000 _lowerCAmelCase = 0xe_001 _lowerCAmelCase = 0xe_002 _lowerCAmelCase = 0xe_003 _lowerCAmelCase = 0xe_004 # Maps special codepoints to human-readable names. _lowerCAmelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCAmelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=False ,__UpperCAmelCase=2048 ,**__UpperCAmelCase ,) -> Optional[int]: lowerCAmelCase__ : Optional[int] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else bos_token lowerCAmelCase__ : Dict = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else eos_token lowerCAmelCase__ : Union[str, Any] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else sep_token lowerCAmelCase__ : int = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else cls_token lowerCAmelCase__ : int = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : str = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token super().__init__( bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,model_max_length=__UpperCAmelCase ,**__UpperCAmelCase ,) # Creates a mapping for looking up the IDs of special symbols. lowerCAmelCase__ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCAmelCase__ : Tuple = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCAmelCase__ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCAmelCase__ : Optional[Any] = UNICODE_VOCAB_SIZE lowerCAmelCase__ : Any = len(self._special_codepoints ) @property def UpperCAmelCase_ ( self ) -> int: return self._unicode_vocab_size def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: return list(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: try: return ord(__UpperCAmelCase ) except TypeError: raise ValueError(F"""invalid token: '{token}'""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__UpperCAmelCase ) except TypeError: raise ValueError(F"""invalid id: {index}""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: return "".join(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] lowerCAmelCase__ : str = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [1] + ([0] * len(__UpperCAmelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__UpperCAmelCase )) + [1] return result def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : Optional[int] = [self.sep_token_id] lowerCAmelCase__ : List[str] = [self.cls_token_id] lowerCAmelCase__ : Optional[int] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> int: return ()
37
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "-m", "--pretrained_model_name_or_path", type=a_, default=a_, required=a_, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "-c", "--caption", type=a_, default="robotic cat with wings", help="Text used to generate images.", ) parser.add_argument( "-n", "--images_num", type=a_, default=4, help="How much images to generate.", ) parser.add_argument( "-s", "--seed", type=a_, default=42, help="Seed for random process.", ) parser.add_argument( "-ci", "--cuda_id", type=a_, default=0, help="cuda_id.", ) _UpperCAmelCase : Any = parser.parse_args() return args def __UpperCAmelCase ( a_: Any, a_: List[Any], a_: Optional[Any] ): if not len(a_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = imgs[0].size _UpperCAmelCase : Union[str, Any] = Image.new("RGB", size=(cols * w, rows * h) ) _UpperCAmelCase , _UpperCAmelCase : Any = grid.size for i, img in enumerate(a_ ): grid.paste(a_, box=(i % cols * w, i // cols * h) ) return grid def __UpperCAmelCase ( a_: List[str], a_: Optional[int]="robotic cat with wings", a_: List[str]=7.5, a_: Optional[int]=50, a_: List[Any]=1, a_: Union[str, Any]=42, ): _UpperCAmelCase : Optional[Any] = torch.Generator(pipeline.device ).manual_seed(a_ ) _UpperCAmelCase : Dict = pipeline( a_, guidance_scale=a_, num_inference_steps=a_, generator=a_, num_images_per_prompt=a_, ).images _UpperCAmelCase : Any = int(math.sqrt(a_ ) ) _UpperCAmelCase : List[Any] = image_grid(a_, rows=_rows, cols=num_images_per_prompt // _rows ) return grid, images __a = parse_args() # Load models and create wrapper for stable diffusion __a = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') __a = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') __a = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') __a = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') __a = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __a = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): __a = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: __a = unet.to(torch.device('cuda', args.cuda_id)) __a = pipeline.to(unet.device) __a , __a = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) __a = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
145
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def _lowercase (self : Dict , __a : Any ): if isinstance(__a , __a ): UpperCAmelCase_ = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__(self : Union[str, Any] , __a : Optional[int] , __a : Optional[int] , __a : int ): if len(__a ) == 0 or len(__a ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(__a ) ) if isinstance(__a , __a ): UpperCAmelCase_ = [sequences] UpperCAmelCase_ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCamelCase__ ) class __A ( UpperCamelCase__ ): def __init__(self : Optional[Any] , __a : Union[str, Any]=ZeroShotClassificationArgumentHandler() , *__a : Optional[int] , **__a : List[str] ): UpperCAmelCase_ = args_parser super().__init__(*__a , **__a ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def _lowercase (self : str ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def _lowercase (self : Any , __a : Any , __a : int=True , __a : Dict=True , __a : Any=TruncationStrategy.ONLY_FIRST , **__a : Tuple ): UpperCAmelCase_ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) UpperCAmelCase_ = self.tokenizer.eos_token try: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase (self : List[str] , **__a : Tuple ): if kwargs.get("multi_class" , __a ) is not None: UpperCAmelCase_ = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) UpperCAmelCase_ = {} if "candidate_labels" in kwargs: UpperCAmelCase_ = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: UpperCAmelCase_ = kwargs["hypothesis_template"] UpperCAmelCase_ = {} if "multi_label" in kwargs: UpperCAmelCase_ = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__(self : Tuple , __a : Union[str, List[str]] , *__a : Optional[Any] , **__a : Tuple , ): if len(__a ) == 0: pass elif len(__a ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase_ = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(__a , **__a ) def _lowercase (self : Optional[int] , __a : Optional[Any] , __a : List[str]=None , __a : Any="This example is {}." ): UpperCAmelCase_ , UpperCAmelCase_ = self._args_parser(__a , __a , __a ) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ): UpperCAmelCase_ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a ) - 1, **model_input, } def _lowercase (self : List[str] , __a : Any ): UpperCAmelCase_ = inputs["candidate_label"] UpperCAmelCase_ = inputs["sequence"] UpperCAmelCase_ = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def _lowercase (self : Optional[Any] , __a : List[str] , __a : Tuple=False ): UpperCAmelCase_ = [outputs["candidate_label"] for outputs in model_outputs] UpperCAmelCase_ = [outputs["sequence"] for outputs in model_outputs] UpperCAmelCase_ = np.concatenate([output["logits"].numpy() for output in model_outputs] ) UpperCAmelCase_ = logits.shape[0] UpperCAmelCase_ = len(__a ) UpperCAmelCase_ = N // n UpperCAmelCase_ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase_ = self.entailment_id UpperCAmelCase_ = -1 if entailment_id == 0 else 0 UpperCAmelCase_ = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase_ = reshaped_outputs[..., self.entailment_id] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
106
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_: Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[str] ={'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } SCREAMING_SNAKE_CASE_: Optional[int] ={ 'abeja/gpt-neox-japanese-2.7b': 20_48, } def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple ) -> Union[str, Any]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(snake_case_ ): UpperCAmelCase_ = b UpperCAmelCase_ = idx for wd in b: UpperCAmelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class __A ( UpperCamelCase__ ): a__ : List[str] = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__(self : Any , __a : List[Any] , __a : Dict , __a : int="<|endoftext|>" , __a : Union[str, Any]="<|endoftext|>" , __a : int="<|startoftext|>" , __a : Tuple="<|endoftext|>" , __a : Optional[int]=False , **__a : int , ): super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase_ = do_clean_text UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = load_vocab_and_emoji(__a , __a ) UpperCAmelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _lowercase (self : Optional[Any] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _lowercase (self : List[Any] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _lowercase (self : List[Any] , __a : int ): return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text ) def _lowercase (self : List[Any] , __a : List[str] ): return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def _lowercase (self : int , __a : List[Any] ): return self.subword_tokenizer.convert_id_to_token(__a ) def _lowercase (self : Dict , __a : str ): UpperCAmelCase_ = "".join(__a ).strip() return out_string def _lowercase (self : int , __a : "Conversation" ): UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids def _lowercase (self : int , __a : str , __a : Optional[str] = None ): UpperCAmelCase_ = 0 if os.path.isdir(__a ): UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__a , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(",".join(__a ) + "\n" ) index += 1 with open(__a , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __a ) return vocab_file, emoji_file class __A ( UpperCamelCase__ ): def __init__(self : List[Any] , __a : Dict , __a : Any , __a : int ): UpperCAmelCase_ = vocab # same as swe UpperCAmelCase_ = ids_to_tokens # same as bpe UpperCAmelCase_ = emoji UpperCAmelCase_ = np.max([len(__a ) for w in self.vocab.keys()] ) UpperCAmelCase_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__(self : Dict ): return len(self.ids_to_tokens ) def _lowercase (self : str , __a : Union[str, Any] ): UpperCAmelCase_ = self.content_repattera.sub("<URL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<EMAIL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<TEL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<PRICE>" , __a ) UpperCAmelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : str=False ): UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace("\r\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\r" , "<BR>" ) UpperCAmelCase_ = text.replace("\t" , "<TAB>" ) UpperCAmelCase_ = text.replace("—" , "ー" ) UpperCAmelCase_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase_ = text.replace(__a , __a ) if clean: UpperCAmelCase_ = self.clean_text(__a ) def check_simbol(__a : List[Any] ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 2: UpperCAmelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2_a1 and c <= 0Xc2_bf) or (c >= 0Xc7_80 and c <= 0Xc7_83) or (c >= 0Xca_b9 and c <= 0Xcb_bf) or (c >= 0Xcc_80 and c <= 0Xcd_a2) ): return True return False def checkuae(__a : Tuple ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 3: UpperCAmelCase_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_80_80 and c <= 0Xe2_b0_7f: return True return False UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while pos < len(__a ): UpperCAmelCase_ = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase_ = [] # (token_id, token, pos) for e in range(__a , __a , -1 ): UpperCAmelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a ) > 2: UpperCAmelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__a ) > 0: # the smallest token_id is adopted UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = sorted(__a , key=lambda __a : x[0] )[0] result.append(__a ) UpperCAmelCase_ = e else: UpperCAmelCase_ = pos + 1 UpperCAmelCase_ = text[pos:end] if check_simbol(__a ): result.append("<KIGOU>" ) elif checkuae(__a ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase_ = end return result def _lowercase (self : int , __a : Optional[Any] , __a : Optional[int]="\n" ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__a ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__a ) if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = "".join(__a ) return text
106
1
"""simple docstring""" import math def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowerCAmelCase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
194
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
216
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self : List[Any] , snake_case__ : List[str] , snake_case__ : Any=7 , snake_case__ : Any=3 , snake_case__ : List[str]=1_0 , snake_case__ : List[Any]=1_8 , snake_case__ : Union[str, Any]=3_0 , snake_case__ : Optional[int]=4_0_0 , snake_case__ : Any=True , snake_case__ : Union[str, Any]=None , snake_case__ : Union[str, Any]=True , snake_case__ : Dict=[0.5, 0.5, 0.5] , snake_case__ : str=[0.5, 0.5, 0.5] , snake_case__ : str=None , ): '''simple docstring''' lowercase :Optional[Any] = size if size is not None else {'''shortest_edge''': 1_8} lowercase :Any = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} lowercase :int = parent lowercase :List[str] = batch_size lowercase :str = num_channels lowercase :Dict = num_frames lowercase :Optional[Any] = image_size lowercase :List[Any] = min_resolution lowercase :Optional[Any] = max_resolution lowercase :Optional[int] = do_resize lowercase :Optional[Any] = size lowercase :Tuple = do_normalize lowercase :Optional[Any] = image_mean lowercase :Optional[int] = image_std lowercase :Optional[int] = crop_size def __snake_case ( self : Any ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : Tuple = VivitImageProcessor if is_vision_available() else None def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[Any] = VivitImageProcessingTester(self ) @property def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : str ): '''simple docstring''' lowercase :List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , '''image_mean''' ) ) self.assertTrue(hasattr(snake_case__ , '''image_std''' ) ) self.assertTrue(hasattr(snake_case__ , '''do_normalize''' ) ) self.assertTrue(hasattr(snake_case__ , '''do_resize''' ) ) self.assertTrue(hasattr(snake_case__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(snake_case__ , '''size''' ) ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) lowercase :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowercase :Optional[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for video in video_inputs: self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowercase :Optional[int] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase :List[str] = image_processing(snake_case__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase :Dict = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for video in video_inputs: self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowercase :List[str] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase :int = image_processing(snake_case__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase :Union[str, Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for video in video_inputs: self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowercase :List[str] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase :Optional[Any] = image_processing(snake_case__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
172
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase (a_ :List[Any]) -> Any: lowercase :Tuple = 384 lowercase :int = 7 if "tiny" in model_name: lowercase :Union[str, Any] = 96 lowercase :Any = (2, 2, 6, 2) lowercase :Any = (3, 6, 12, 24) elif "small" in model_name: lowercase :int = 96 lowercase :Any = (2, 2, 18, 2) lowercase :Optional[int] = (3, 6, 12, 24) elif "base" in model_name: lowercase :Optional[int] = 128 lowercase :Any = (2, 2, 18, 2) lowercase :Dict = (4, 8, 16, 32) lowercase :Tuple = 12 lowercase :List[Any] = 512 elif "large" in model_name: lowercase :List[str] = 192 lowercase :Optional[int] = (2, 2, 18, 2) lowercase :Any = (6, 12, 24, 48) lowercase :Any = 12 lowercase :str = 768 # set label information lowercase :Optional[int] = 150 lowercase :str = '''huggingface/label-files''' lowercase :List[str] = '''ade20k-id2label.json''' lowercase :List[str] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowercase :Union[str, Any] = {int(a_): v for k, v in idalabel.items()} lowercase :Dict = {v: k for k, v in idalabel.items()} lowercase :List[str] = SwinConfig( embed_dim=a_ , depths=a_ , num_heads=a_ , window_size=a_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) lowercase :List[str] = UperNetConfig( backbone_config=a_ , auxiliary_in_channels=a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ , ) return config def lowerCamelCase (a_ :Any) -> Optional[Any]: lowercase :Any = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''')) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''')) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""")) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""")) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""")) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""")) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""")) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""")) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ]) # fmt: on return rename_keys def lowerCamelCase (a_ :int , a_ :str , a_ :Union[str, Any]) -> int: lowercase :Any = dct.pop(a_) lowercase :Tuple = val def lowerCamelCase (a_ :Optional[int] , a_ :int) -> Optional[int]: lowercase :int = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): lowercase :List[str] = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase :Optional[Any] = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""") lowercase :int = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowercase :Optional[Any] = in_proj_weight[:dim, :] lowercase :str = in_proj_bias[: dim] lowercase :Optional[Any] = in_proj_weight[ dim : dim * 2, : ] lowercase :Optional[int] = in_proj_bias[ dim : dim * 2 ] lowercase :List[str] = in_proj_weight[ -dim :, : ] lowercase :Any = in_proj_bias[-dim :] # fmt: on def lowerCamelCase (a_ :Tuple) -> Any: lowercase , lowercase :Tuple = x.shape lowercase :str = x.reshape(a_ , 4 , in_channel // 4) lowercase :str = x[:, [0, 2, 1, 3], :].transpose(1 , 2).reshape(a_ , a_) return x def lowerCamelCase (a_ :Optional[int]) -> Tuple: lowercase , lowercase :Any = x.shape lowercase :Union[str, Any] = x.reshape(a_ , in_channel // 4 , 4) lowercase :int = x[:, :, [0, 2, 1, 3]].transpose(1 , 2).reshape(a_ , a_) return x def lowerCamelCase (a_ :Any) -> Union[str, Any]: lowercase :int = x.shape[0] lowercase :Any = x.reshape(4 , in_channel // 4) lowercase :Any = x[[0, 2, 1, 3], :].transpose(0 , 1).reshape(a_) return x def lowerCamelCase (a_ :str) -> Union[str, Any]: lowercase :List[str] = x.shape[0] lowercase :Optional[Any] = x.reshape(in_channel // 4 , 4) lowercase :List[Any] = x[:, [0, 2, 1, 3]].transpose(0 , 1).reshape(a_) return x def lowerCamelCase (a_ :int , a_ :Optional[int] , a_ :List[Any]) -> Dict: lowercase :Dict = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } lowercase :List[Any] = model_name_to_url[model_name] lowercase :Tuple = torch.hub.load_state_dict_from_url(a_ , map_location='''cpu''' , file_name=a_)[ '''state_dict''' ] for name, param in state_dict.items(): print(a_ , param.shape) lowercase :Union[str, Any] = get_upernet_config(a_) lowercase :int = UperNetForSemanticSegmentation(a_) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase :Union[str, Any] = state_dict.pop(a_) if "bn" in key: lowercase :int = key.replace('''bn''' , '''batch_norm''') lowercase :str = val # rename keys lowercase :List[str] = create_rename_keys(a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , config.backbone_config) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase :str = reverse_correct_unfold_reduction_order(a_) if "norm" in key: lowercase :int = reverse_correct_unfold_norm_order(a_) model.load_state_dict(a_) # verify on image lowercase :Dict = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowercase :str = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') lowercase :Union[str, Any] = SegformerImageProcessor() lowercase :int = processor(a_ , return_tensors='''pt''').pixel_values with torch.no_grad(): lowercase :Optional[int] = model(a_) lowercase :int = outputs.logits print(logits.shape) print('''First values of logits:''' , logits[0, 0, :3, :3]) # assert values if model_name == "upernet-swin-tiny": lowercase :Union[str, Any] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]]) elif model_name == "upernet-swin-small": lowercase :List[str] = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]]) elif model_name == "upernet-swin-base": lowercase :Tuple = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]]) elif model_name == "upernet-swin-large": lowercase :str = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]]) print('''Logits:''' , outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving processor to {pytorch_dump_folder_path}""") processor.save_pretrained(a_) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""") model.push_to_hub(F"""openmmlab/{model_name}""") processor.push_to_hub(F"""openmmlab/{model_name}""") if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F"""upernet-swin-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
172
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = KandinskyVaaImgaImgPipeline UpperCAmelCase_ : Any = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCAmelCase_ : Optional[int] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCAmelCase_ : Optional[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase_ : Union[str, Any] = False @property def a_ ( self): """simple docstring""" return 32 @property def a_ ( self): """simple docstring""" return 32 @property def a_ ( self): """simple docstring""" return self.time_input_dim @property def a_ ( self): """simple docstring""" return self.time_input_dim * 4 @property def a_ ( self): """simple docstring""" return 100 @property def a_ ( self): """simple docstring""" torch.manual_seed(0) lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase = UNetaDConditionModel(**__lowerCAmelCase) return model @property def a_ ( self): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a_ ( self): """simple docstring""" torch.manual_seed(0) lowerCAmelCase = VQModel(**self.dummy_movq_kwargs) return model def a_ ( self): """simple docstring""" lowerCAmelCase = self.dummy_unet lowerCAmelCase = self.dummy_movq lowerCAmelCase = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowerCAmelCase = DDIMScheduler(**__lowerCAmelCase) lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=0): """simple docstring""" lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase)).to(__lowerCAmelCase) lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( __lowerCAmelCase) # create init_image lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase)).to(__lowerCAmelCase) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] lowerCAmelCase = Image.fromarray(np.uinta(__lowerCAmelCase)).convert("""RGB""").resize((256, 256)) if str(__lowerCAmelCase).startswith("""mps"""): lowerCAmelCase = torch.manual_seed(__lowerCAmelCase) else: lowerCAmelCase = torch.Generator(device=__lowerCAmelCase).manual_seed(__lowerCAmelCase) lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a_ ( self): """simple docstring""" lowerCAmelCase = """cpu""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**__lowerCAmelCase) lowerCAmelCase = pipe.to(__lowerCAmelCase) pipe.set_progress_bar_config(disable=__lowerCAmelCase) lowerCAmelCase = pipe(**self.get_dummy_inputs(__lowerCAmelCase)) lowerCAmelCase = output.images lowerCAmelCase = pipe( **self.get_dummy_inputs(__lowerCAmelCase) , return_dict=__lowerCAmelCase , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self): """simple docstring""" lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""") lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") lowerCAmelCase = """A red cartoon frog, 4k""" lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(__lowerCAmelCase) lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa) lowerCAmelCase = pipeline.to(__lowerCAmelCase) pipeline.set_progress_bar_config(disable=__lowerCAmelCase) lowerCAmelCase = torch.Generator(device="""cpu""").manual_seed(0) lowerCAmelCase , lowerCAmelCase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowerCAmelCase = pipeline( image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase)
272
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def snake_case__ ( _A: jnp.ndarray , _A: int , _A: float = 1 , _A: float = 1 , _A: float = 1.0e4 , _A: bool = False , _A: float = 1.0 , ) -> jnp.ndarray: '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even" lowerCAmelCase = float(embedding_dim // 2 ) lowerCAmelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCAmelCase = min_timescale * jnp.exp(jnp.arange(_A , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCAmelCase = jnp.expand_dims(_A , 1 ) * jnp.expand_dims(_A , 0 ) # scale embeddings lowerCAmelCase = scale * emb if flip_sin_to_cos: lowerCAmelCase = jnp.concatenate([jnp.cos(_A ), jnp.sin(_A )] , axis=1 ) else: lowerCAmelCase = jnp.concatenate([jnp.sin(_A ), jnp.cos(_A )] , axis=1 ) lowerCAmelCase = jnp.reshape(_A , [jnp.shape(_A )[0], embedding_dim] ) return signal class a__( nn.Module ): '''simple docstring''' UpperCAmelCase_ : int = 3_2 UpperCAmelCase_ : jnp.dtype = jnp.floataa @nn.compact def __call__( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""")(__lowerCAmelCase) lowerCAmelCase = nn.silu(__lowerCAmelCase) lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""")(__lowerCAmelCase) return temb class a__( nn.Module ): '''simple docstring''' UpperCAmelCase_ : int = 3_2 UpperCAmelCase_ : bool = False UpperCAmelCase_ : float = 1 @nn.compact def __call__( self , __lowerCAmelCase): """simple docstring""" return get_sinusoidal_embeddings( __lowerCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift)
272
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def UpperCamelCase_( snake_case__: Optional[int] ) -> Any: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _UpperCamelCase = '''\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n''' class lowercase ( __a ): '''simple docstring''' @staticmethod def UpperCamelCase__ (__a ) -> Dict: """simple docstring""" UpperCAmelCase__ = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=a__ , required=a__ , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=a__ , required=a__ , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=a__ , required=a__ , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=a__ , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=a__ , default=a__ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=a__ ) def __init__(self , __a , __a , __a , __a , __a , *__a , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = logging.get_logger('transformers-cli/converting' ) self._logger.info(F"Loading model {model_type}" ) UpperCAmelCase__ = model_type UpperCAmelCase__ = tf_checkpoint UpperCAmelCase__ = pytorch_dump_output UpperCAmelCase__ = config UpperCAmelCase__ = finetuning_task_name def UpperCamelCase__ (self ) -> Dict: """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase__ = self._tf_checkpoint UpperCAmelCase__ = '' else: UpperCAmelCase__ = self._tf_checkpoint UpperCAmelCase__ = '' convert_transfo_xl_checkpoint_to_pytorch( a__ , self._config , self._pytorch_dump_output , a__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
360
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["ConditionalDetrFeatureExtractor"] __A = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
90
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase__ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): for attribute in key.split('.' ): __lowerCAmelCase : str = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: __lowerCAmelCase : Tuple = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: __lowerCAmelCase : Dict = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __lowerCAmelCase : List[Any] = value elif weight_type == "weight_v": __lowerCAmelCase : Any = value elif weight_type == "bias": __lowerCAmelCase : List[str] = value else: __lowerCAmelCase : List[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = [] __lowerCAmelCase : Optional[int] = fairseq_model.state_dict() __lowerCAmelCase : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) __lowerCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCAmelCase : int = True if "*" in mapped_key: __lowerCAmelCase : List[str] = name.split(_UpperCamelCase )[0].split('.' )[-2] __lowerCAmelCase : Optional[Any] = mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: __lowerCAmelCase : Union[str, Any] = 'weight_g' elif "weight_v" in name: __lowerCAmelCase : int = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __lowerCAmelCase : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase : List[str] = 'weight' else: __lowerCAmelCase : Optional[Any] = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = full_name.split('conv_layers.' )[-1] __lowerCAmelCase : Any = name.split('.' ) __lowerCAmelCase : List[Any] = int(items[0] ) __lowerCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowerCAmelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowerCAmelCase : int = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __lowerCAmelCase : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowerCAmelCase : Any = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): # load the pre-trained checkpoints __lowerCAmelCase : Any = torch.load(_UpperCamelCase ) __lowerCAmelCase : List[str] = WavLMConfigOrig(checkpoint['cfg'] ) __lowerCAmelCase : Optional[Any] = WavLMOrig(_UpperCamelCase ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __lowerCAmelCase : Dict = WavLMConfig.from_pretrained(_UpperCamelCase ) else: __lowerCAmelCase : List[str] = WavLMConfig() __lowerCAmelCase : List[str] = WavLMModel(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase ) hf_wavlm.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
86
0
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict ="""src/transformers""" # This is to make sure the transformers module imported is the one in the repo. A_ : str =direct_transformers_import(PATH_TO_TRANSFORMERS) A_ : str =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : List[str] =re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") A_ : List[str] ={ """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple )-> Dict: _lowerCamelCase = None # source code of `config_class` _lowerCamelCase = inspect.getsource(snake_case ) _lowerCamelCase = _re_checkpoint.findall(snake_case ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): _lowerCamelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _lowerCamelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _lowerCamelCase = ckpt_name break return checkpoint def SCREAMING_SNAKE_CASE_ ( )-> List[Any]: _lowerCamelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _lowerCamelCase = get_checkpoint_from_config_class(snake_case ) _lowerCamelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(snake_case ) if len(snake_case ) > 0: _lowerCamelCase = '\n'.join(sorted(snake_case ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
80
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : int =logging.get_logger(__name__) A_ : Tuple ={ """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = "deta" SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , a__=None , a__=9_00 , a__=20_48 , a__=6 , a__=20_48 , a__=8 , a__=6 , a__=10_24 , a__=8 , a__=0.0 , a__=True , a__="relu" , a__=2_56 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.02 , a__=1.0 , a__=True , a__=False , a__="sine" , a__=5 , a__=4 , a__=4 , a__=True , a__=3_00 , a__=True , a__=True , a__=1 , a__=5 , a__=2 , a__=1 , a__=1 , a__=5 , a__=2 , a__=0.1 , a__=0.25 , **a__ , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(a__ , a__ ): _lowerCamelCase = backbone_config.pop('model_type' ) _lowerCamelCase = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase = config_class.from_dict(a__ ) _lowerCamelCase = backbone_config _lowerCamelCase = num_queries _lowerCamelCase = max_position_embeddings _lowerCamelCase = d_model _lowerCamelCase = encoder_ffn_dim _lowerCamelCase = encoder_layers _lowerCamelCase = encoder_attention_heads _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_attention_heads _lowerCamelCase = dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = activation_function _lowerCamelCase = init_std _lowerCamelCase = init_xavier_std _lowerCamelCase = encoder_layerdrop _lowerCamelCase = auxiliary_loss _lowerCamelCase = position_embedding_type # deformable attributes _lowerCamelCase = num_feature_levels _lowerCamelCase = encoder_n_points _lowerCamelCase = decoder_n_points _lowerCamelCase = two_stage _lowerCamelCase = two_stage_num_proposals _lowerCamelCase = with_box_refine _lowerCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _lowerCamelCase = class_cost _lowerCamelCase = bbox_cost _lowerCamelCase = giou_cost # Loss coefficients _lowerCamelCase = mask_loss_coefficient _lowerCamelCase = dice_loss_coefficient _lowerCamelCase = bbox_loss_coefficient _lowerCamelCase = giou_loss_coefficient _lowerCamelCase = eos_coefficient _lowerCamelCase = focal_alpha super().__init__(is_encoder_decoder=a__ , **a__ ) @property def snake_case_ ( self ): return self.encoder_attention_heads @property def snake_case_ ( self ): return self.d_model def snake_case_ ( self ): _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.backbone_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
80
1
lowerCAmelCase__ : Tuple = [0, 2, 4, 6, 8] lowerCAmelCase__ : Union[str, Any] = [1, 3, 5, 7, 9] def UpperCamelCase__ ( A__ , A__ , A__ , A__ ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case__ : List[Any] = 0 for digit in range(10 ): snake_case__ : Tuple = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowercase_ , lowercase_ ) return result snake_case__ : List[str] = 0 for digita in range(10 ): snake_case__ : Dict = digita if (remainder + digita) % 2 == 0: snake_case__ : int = ODD_DIGITS else: snake_case__ : str = EVEN_DIGITS for digita in other_parity_digits: snake_case__ : Optional[int] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowercase_ , lowercase_ , ) return result def UpperCamelCase__ ( A__ = 9 ) -> int: snake_case__ : List[str] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowercase_ , 0 , [0] * length , lowercase_ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
143
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset SCREAMING_SNAKE_CASE = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) SCREAMING_SNAKE_CASE = dataset.iloc[:, 1:2].values SCREAMING_SNAKE_CASE = dataset.iloc[:, 2].values SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = train_test_split(X, y, test_size=0.2, random_state=0) SCREAMING_SNAKE_CASE = PolynomialFeatures(degree=4) SCREAMING_SNAKE_CASE = poly_reg.fit_transform(X) SCREAMING_SNAKE_CASE = LinearRegression() pol_reg.fit(X_poly, y) def _SCREAMING_SNAKE_CASE ( ) -> int: plt.scatter(lowercase_ , lowercase_ , color="red" ) plt.plot(lowercase_ , pol_reg.predict(poly_reg.fit_transform(lowercase_ ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
247
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Optional[Any] =logging.get_logger(__name__) A__ : Dict ={ '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class UpperCAmelCase ( snake_case_ ): _lowercase: Tuple = '''xlm''' _lowercase: str = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self : int , __snake_case : Tuple=3_01_45 , __snake_case : int=20_48 , __snake_case : Dict=12 , __snake_case : Optional[int]=16 , __snake_case : List[str]=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Union[str, Any]=True , __snake_case : Optional[Any]=False , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=False , __snake_case : Tuple=1 , __snake_case : Any=True , __snake_case : List[str]=5_12 , __snake_case : List[Any]=20_48**-0.5 , __snake_case : Union[str, Any]=1E-1_2 , __snake_case : List[str]=0.02 , __snake_case : Dict=0 , __snake_case : Optional[Any]=1 , __snake_case : List[Any]=2 , __snake_case : int=3 , __snake_case : Optional[int]=5 , __snake_case : Optional[int]=True , __snake_case : int="first" , __snake_case : Any=True , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : Any=0.1 , __snake_case : Tuple=5 , __snake_case : int=5 , __snake_case : Optional[Any]=0 , __snake_case : Optional[int]=0 , __snake_case : Optional[Any]=2 , __snake_case : Optional[Any]=0 , **__snake_case : Optional[Any] , ) -> Tuple: _lowerCAmelCase = vocab_size _lowerCAmelCase = emb_dim _lowerCAmelCase = n_layers _lowerCAmelCase = n_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = gelu_activation _lowerCAmelCase = sinusoidal_embeddings _lowerCAmelCase = causal _lowerCAmelCase = asm _lowerCAmelCase = n_langs _lowerCAmelCase = use_lang_emb _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = bos_index _lowerCAmelCase = eos_index _lowerCAmelCase = pad_index _lowerCAmelCase = unk_index _lowerCAmelCase = mask_index _lowerCAmelCase = is_encoder _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = embed_init_std _lowerCAmelCase = init_std _lowerCAmelCase = summary_type _lowerCAmelCase = summary_use_proj _lowerCAmelCase = summary_activation _lowerCAmelCase = summary_proj_to_labels _lowerCAmelCase = summary_first_dropout _lowerCAmelCase = start_n_top _lowerCAmelCase = end_n_top _lowerCAmelCase = mask_token_id _lowerCAmelCase = lang_id if "n_words" in kwargs: _lowerCAmelCase = kwargs["""n_words"""] super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , **__snake_case ) class UpperCAmelCase ( snake_case_ ): @property def lowercase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
356
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _lowerCAmelCase = test_metrics @require_cpu def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase__ ( self : Tuple ) -> Tuple: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase__ ( self : Union[str, Any] ) -> str: self.test_metrics.main() @require_multi_gpu def lowercase__ ( self : str ) -> List[str]: print(f"Found {torch.cuda.device_count()} devices." ) _lowerCAmelCase = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
220
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowerCAmelCase_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowerCAmelCase_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowerCAmelCase_ ) return parser.parse_args() def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = parse_args() # Import training_script as a module. __SCREAMING_SNAKE_CASE = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __SCREAMING_SNAKE_CASE = script_fpath.stem __SCREAMING_SNAKE_CASE = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __SCREAMING_SNAKE_CASE = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
54
import numpy as np from PIL import Image def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: __lowercase : Optional[int] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowercase : Optional[int] = 0 __lowercase : Union[str, Any] = 0 __lowercase : Optional[Any] = 0 __lowercase : str = 0 # compute the shape of the output matrix __lowercase : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowercase : List[str] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowercase : Optional[int] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowercase : Any = 0 __lowercase : List[Any] = 0 return updated_arr def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: __lowercase : Optional[Any] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowercase : int = 0 __lowercase : str = 0 __lowercase : List[str] = 0 __lowercase : Dict = 0 # compute the shape of the output matrix __lowercase : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowercase : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowercase : str = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowercase : int = 0 __lowercase : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image __lowerCAmelCase : List[Any] = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
156
0
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = SwinConfig() lowerCAmelCase__ : Any = swin_name.split("""_""" ) lowerCAmelCase__ : List[Any] = name_split[1] lowerCAmelCase__ : Any = int(name_split[4] ) lowerCAmelCase__ : Any = int(name_split[3][-1] ) if model_size == "tiny": lowerCAmelCase__ : Optional[int] = 96 lowerCAmelCase__ : Optional[int] = (2, 2, 6, 2) lowerCAmelCase__ : Tuple = (3, 6, 12, 24) elif model_size == "small": lowerCAmelCase__ : Dict = 96 lowerCAmelCase__ : List[Any] = (2, 2, 18, 2) lowerCAmelCase__ : List[str] = (3, 6, 12, 24) elif model_size == "base": lowerCAmelCase__ : Dict = 128 lowerCAmelCase__ : List[Any] = (2, 2, 18, 2) lowerCAmelCase__ : List[str] = (4, 8, 16, 32) else: lowerCAmelCase__ : Union[str, Any] = 192 lowerCAmelCase__ : str = (2, 2, 18, 2) lowerCAmelCase__ : Any = (6, 12, 24, 48) if "in22k" in swin_name: lowerCAmelCase__ : Dict = 21841 else: lowerCAmelCase__ : Union[str, Any] = 1000 lowerCAmelCase__ : Dict = """huggingface/label-files""" lowerCAmelCase__ : Optional[Any] = """imagenet-1k-id2label.json""" lowerCAmelCase__ : str = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase__ : Tuple = {int(UpperCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : List[str] = img_size lowerCAmelCase__ : Optional[Any] = num_classes lowerCAmelCase__ : Optional[int] = embed_dim lowerCAmelCase__ : Union[str, Any] = depths lowerCAmelCase__ : List[Any] = num_heads lowerCAmelCase__ : Tuple = window_size return config def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if "patch_embed.proj" in name: lowerCAmelCase__ : List[str] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase__ : Union[str, Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: lowerCAmelCase__ : List[str] = """encoder.""" + name if "attn.proj" in name: lowerCAmelCase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase__ : str = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase__ : Tuple = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase__ : List[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase__ : int = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase__ : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": lowerCAmelCase__ : List[Any] = """layernorm.weight""" if name == "norm.bias": lowerCAmelCase__ : Any = """layernorm.bias""" if "head" in name: lowerCAmelCase__ : Tuple = name.replace("""head""" , """classifier""" ) else: lowerCAmelCase__ : Any = """swin.""" + name return name def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : List[Any] = orig_state_dict.pop(UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: lowerCAmelCase__ : Tuple = key.split(""".""" ) lowerCAmelCase__ : Tuple = int(key_split[1] ) lowerCAmelCase__ : List[Any] = int(key_split[3] ) lowerCAmelCase__ : str = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase__ : Any = val[:dim, :] lowerCAmelCase__ : List[Any] = val[ dim : dim * 2, : ] lowerCAmelCase__ : str = val[-dim:, :] else: lowerCAmelCase__ : str = val[ :dim ] lowerCAmelCase__ : int = val[ dim : dim * 2 ] lowerCAmelCase__ : int = val[ -dim: ] else: lowerCAmelCase__ : str = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = timm.create_model(UpperCamelCase , pretrained=UpperCamelCase ) timm_model.eval() lowerCAmelCase__ : Optional[Any] = get_swin_config(UpperCamelCase ) lowerCAmelCase__ : Tuple = SwinForImageClassification(UpperCamelCase ) model.eval() lowerCAmelCase__ : Tuple = convert_state_dict(timm_model.state_dict() , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) lowerCAmelCase__ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) lowerCAmelCase__ : Union[str, Any] = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) lowerCAmelCase__ : List[str] = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) lowerCAmelCase__ : Optional[int] = timm_model(inputs["""pixel_values"""] ) lowerCAmelCase__ : List[str] = model(**UpperCamelCase ).logits assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) print(f"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
350
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if any(not isinstance(UpperCamelCase , UpperCamelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(UpperCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
184
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __lowercase : Optional[Any] = pd.read_csv('sample_data.csv', header=None) __lowercase : str = df.shape[:1][0] # If you're using some other dataset input the target column __lowercase : Tuple = df.iloc[:, 1:2] __lowercase : List[Any] = actual_data.values.reshape(len_data, 1) __lowercase : List[Any] = MinMaxScaler().fit_transform(actual_data) __lowercase : Dict = 10 __lowercase : Optional[Any] = 5 __lowercase : Tuple = 20 __lowercase : Any = len_data - periods * look_back __lowercase : str = actual_data[:division] __lowercase : List[Any] = actual_data[division - look_back :] __lowercase , __lowercase : List[Any] = [], [] __lowercase , __lowercase : str = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __lowercase : Optional[int] = np.array(train_x) __lowercase : Optional[Any] = np.array(test_x) __lowercase : int = np.array([list(i.ravel()) for i in train_y]) __lowercase : Optional[int] = np.array([list(i.ravel()) for i in test_y]) __lowercase : Dict = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') __lowercase : List[Any] = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) __lowercase : List[str] = model.predict(x_test)
27
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _A = """bart""" _A = True @st.cache(allow_output_mutation=__UpperCAmelCase ) def lowercase_ ( ) -> Optional[Any]: if LOAD_DENSE_INDEX: lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) lowerCAmelCase__ : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) lowerCAmelCase__ : List[str] = qar_model.eval() else: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) lowerCAmelCase__ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) lowerCAmelCase__ : List[str] = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) lowerCAmelCase__ : Dict = sas_model.eval() else: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__UpperCAmelCase ) def lowercase_ ( ) -> Union[str, Any]: if LOAD_DENSE_INDEX: lowerCAmelCase__ : Union[str, Any] = faiss.StandardGpuResources() lowerCAmelCase__ : List[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] lowerCAmelCase__ : Dict = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) lowerCAmelCase__ : str = faiss.IndexFlatIP(128 ) lowerCAmelCase__ : Optional[int] = faiss.index_cpu_to_gpu(__UpperCAmelCase , 1 , __UpperCAmelCase ) wikiaab_gpu_index_flat.add(__UpperCAmelCase ) # TODO fix for larger GPU else: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = (None, None) lowerCAmelCase__ : Optional[int] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__UpperCAmelCase ) def lowercase_ ( ) -> List[str]: lowerCAmelCase__ : List[Any] = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) lowerCAmelCase__ : Tuple = elia["""train_eli5"""] lowerCAmelCase__ : Dict = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) lowerCAmelCase__ : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__UpperCAmelCase ) return (elia_train, eli5_train_q_index) _A , _A , _A = load_indexes() _A , _A , _A , _A = load_models() _A , _A = load_train_data() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=10 ) -> Optional[Any]: lowerCAmelCase__ : str = embed_questions_for_retrieval([question] , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = eli5_train_q_index.search(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : List[Any] = [elia_train[int(__UpperCAmelCase )] for i in I[0]] return nn_examples def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase="wiki40b" , __UpperCAmelCase="dense" , __UpperCAmelCase=10 ) -> List[str]: if source == "none": lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = query_qa_dense_index( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: lowerCAmelCase__ , lowerCAmelCase__ : int = query_es_index( __UpperCAmelCase , __UpperCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=__UpperCAmelCase , ) lowerCAmelCase__ : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] lowerCAmelCase__ : Optional[Any] = """question: {} context: {}""".format(__UpperCAmelCase , __UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __UpperCAmelCase : None), } ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=64 , __UpperCAmelCase=256 , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=0.95 , __UpperCAmelCase=0.8 ) -> Optional[int]: with torch.no_grad(): lowerCAmelCase__ : List[Any] = qa_sas_generate( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_answers=1 , num_beams=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase , do_sample=__UpperCAmelCase , temp=__UpperCAmelCase , top_p=__UpperCAmelCase , top_k=__UpperCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _A = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _A = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _A = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _A = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _A = st.sidebar.checkbox("""Demo options""") if demo_options: _A = st.sidebar.selectbox( """""", action_list, index=3, ) _A = action_list.index(action_st) _A = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _A = show_type == """Show full text of passages""" else: _A = 3 _A = True _A = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _A = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _A = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _A = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _A = """wiki40b""" _A = """dense""" _A = """beam""" _A = 2 _A = 6_4 _A = 2_5_6 _A = None _A = None _A = st.sidebar.checkbox("""Generation options""") if generate_options: _A = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _A = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _A = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) _A = st.sidebar.slider( """Maximum generation length""", min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": _A = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _A = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _A = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _A = None # start main text _A = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _A = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _A = st.text_input("""Enter your question here:""", """""") else: _A = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _A , _A = make_support(question, source=wiki_source, method="""dense""", n_results=1_0) _A , _A = make_support(question, source=wiki_source, method="""sparse""", n_results=1_0) _A = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _A = support_list[:1_0] _A = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _A , _A = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: _A , _A = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _A = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _A = res[1].strip() if sec_titles == "": _A = """[{}]({})""".format(res[0], wiki_url) else: _A = sec_titles.split(""" & """) _A = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _A = find_nearest_training(question) _A = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _A = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _A = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
242
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = """trajectory_transformer""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ : List[str] = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase__=100 , lowerCAmelCase__=5 , lowerCAmelCase__=1 , lowerCAmelCase__=1 , lowerCAmelCase__=249 , lowerCAmelCase__=6 , lowerCAmelCase__=17 , lowerCAmelCase__=25 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=128 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.00_06 , lowerCAmelCase__=512 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=1 , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=50_256 , lowerCAmelCase__=50_256 , **lowerCAmelCase__ , ) -> Dict: SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = action_weight SCREAMING_SNAKE_CASE = reward_weight SCREAMING_SNAKE_CASE = value_weight SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = block_size SCREAMING_SNAKE_CASE = action_dim SCREAMING_SNAKE_CASE = observation_dim SCREAMING_SNAKE_CASE = transition_dim SCREAMING_SNAKE_CASE = learning_rate SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = kaiming_initializer_range SCREAMING_SNAKE_CASE = use_cache super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
38
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCamelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCamelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCamelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCamelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCamelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCamelCase = np.expand_dims(test_image, axis=0) __UpperCamelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCamelCase = '''Normal''' if result[0][0] == 1: __UpperCamelCase = '''Abnormality detected'''
38
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : int =VOCAB_FILES_NAMES __lowerCamelCase : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any =['input_ids', 'attention_mask'] __lowerCamelCase : Dict =None def __init__( self : List[str] , __lowercase : List[Any]=None , __lowercase : List[Any]=None , __lowercase : Union[str, Any]=None , __lowercase : int="<unk>" , __lowercase : Tuple="<s>" , __lowercase : Any="</s>" , __lowercase : Union[str, Any]="<pad>" , __lowercase : List[str]=False , __lowercase : List[str]=False , **__lowercase : List[str] , ): '''simple docstring''' super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , add_prefix_space=__lowercase , clean_up_tokenization_spaces=__lowercase , **__lowercase , ) __a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowercase ) != add_prefix_space: __a = getattr(__lowercase , pre_tok_state.pop("""type""" ) ) __a = add_prefix_space __a = pre_tok_class(**__lowercase ) __a = add_prefix_space def UpperCamelCase_ ( self : str , *__lowercase : int , **__lowercase : int ): '''simple docstring''' __a = kwargs.get("""is_split_into_words""" , __lowercase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" """ pretokenized inputs.""" ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Optional[Any] , *__lowercase : Optional[Any] , **__lowercase : Union[str, Any] ): '''simple docstring''' __a = kwargs.get("""is_split_into_words""" , __lowercase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" """ pretokenized inputs.""" ) return super()._encode_plus(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' __a = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : "Conversation" ): '''simple docstring''' __a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowercase , add_special_tokens=__lowercase ) + [self.eos_token_id] ) if len(__lowercase ) > self.model_max_length: __a = input_ids[-self.model_max_length :] return input_ids
302
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='albert' def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
302
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=A , ) assert hasattr(self , """env""" ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : List[str] = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings UpperCAmelCase : Optional[int] = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version="""py36""" , ) def _lowercase( self , A ) -> Tuple: TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def _lowercase( self , A ) -> str: # create estimator UpperCAmelCase : int = self.create_estimator(A ) # run training estimator.fit() # result dataframe UpperCAmelCase : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
import datasets __lowercase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' __lowercase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' __lowercase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32'''), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32'''), }) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[Any]: return {"accuracy": simple_accuracy(__lowercase , __lowercase)}
43
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = FlaxAutoencoderKL @property def UpperCAmelCase_ ( self :int ) -> Optional[int]: UpperCAmelCase__ = 4 UpperCAmelCase__ = 3 UpperCAmelCase__ = (32, 32) UpperCAmelCase__ = jax.random.PRNGKey(0 ) UpperCAmelCase__ = jax.random.uniform(lowerCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCAmelCase_ ( self :Optional[Any] ) -> Any: UpperCAmelCase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict
169
0
'''simple docstring''' import math def _A (lowerCAmelCase__ :float , lowerCAmelCase__ :float ) -> str: '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(SCREAMING_SNAKE_CASE_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
364
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable a_ : int = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
104
0
def _a ( SCREAMING_SNAKE_CASE_ : float ): if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _a ( SCREAMING_SNAKE_CASE_ : float ): if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
92
def _a ( SCREAMING_SNAKE_CASE_ : int = 1_00_00_00 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
92
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __a ( ) ->Dict: a__: Tuple = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' a__: Optional[int] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('RGB' ) return image def __a ( _SCREAMING_SNAKE_CASE ) ->Dict: a__: Dict = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: a__: Dict = dct.pop(__lowerCAmelCase ) a__: Optional[int] = val def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__: List[Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) a__: str = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict a__: Union[str, Any] = torch.cat((q_bias, torch.zeros_like(__lowerCAmelCase , requires_grad=__lowerCAmelCase ), v_bias) ) a__: Optional[int] = qkv_bias def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: a__: List[Any] = 364 if '''coco''' in model_name else 224 a__: Optional[Any] = BlipaVisionConfig(image_size=__lowerCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: a__: int = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=__lowerCAmelCase ).to_dict() elif "opt-6.7b" in model_name: a__: Optional[Any] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=__lowerCAmelCase ).to_dict() elif "t5-xl" in model_name: a__: List[str] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__: Tuple = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() a__: Dict = BlipaConfig(vision_config=__lowerCAmelCase , text_config=__lowerCAmelCase ) return config, image_size @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) ->int: a__: str = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) a__: Tuple = tokenizer('\n' , add_special_tokens=__lowerCAmelCase ).input_ids[0] a__: int = get_blipa_config(__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) a__: Dict = BlipaForConditionalGeneration(__lowerCAmelCase ).eval() a__: Optional[Any] = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } a__: Tuple = model_name_to_original[model_name] # load original model print('Loading original model...' ) a__: Dict = '''cuda''' if torch.cuda.is_available() else '''cpu''' a__: List[str] = load_model_and_preprocess( name=__lowerCAmelCase , model_type=__lowerCAmelCase , is_eval=__lowerCAmelCase , device=__lowerCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys a__: Dict = original_model.state_dict() a__: str = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__: List[Any] = state_dict.pop(__lowerCAmelCase ) if key.startswith('Qformer.bert' ): a__: Optional[int] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: a__: Optional[int] = key.replace('self' , 'attention' ) if "opt_proj" in key: a__: List[str] = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: a__: Optional[int] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): a__: List[str] = key.replace('opt' , 'language' ) if key.startswith('t5' ): a__: List[str] = key.replace('t5' , 'language' ) a__: int = val # read in qv biases read_in_q_v_bias(__lowerCAmelCase , __lowerCAmelCase ) a__: List[str] = hf_model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert len(__lowerCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] a__: Tuple = load_demo_image() a__: Tuple = vis_processors['''eval'''](__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) a__: int = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(__lowerCAmelCase ) # create processor a__: Any = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) a__: Any = BlipaProcessor(image_processor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) a__: int = processor(images=__lowerCAmelCase , return_tensors='pt' ).pixel_values.to(__lowerCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) original_model.to(__lowerCAmelCase ) hf_model.to(__lowerCAmelCase ) with torch.no_grad(): if "opt" in model_name: a__: Optional[int] = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits a__: str = hf_model(__lowerCAmelCase , __lowerCAmelCase ).logits else: a__: Optional[int] = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits a__: Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) a__: Optional[Any] = hf_model(__lowerCAmelCase , __lowerCAmelCase , labels=__lowerCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": a__: Any = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=__lowerCAmelCase ) assert torch.allclose(logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": a__: List[str] = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=__lowerCAmelCase ) else: # cast to same type a__: str = logits.dtype assert torch.allclose(original_logits.to(__lowerCAmelCase ) , __lowerCAmelCase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) a__: Any = '''''' a__: Dict = tokenizer(__lowerCAmelCase , return_tensors='pt' ).input_ids.to(__lowerCAmelCase ) a__: int = original_model.generate({'image': original_pixel_values} ) a__: Optional[Any] = hf_model.generate( __lowerCAmelCase , __lowerCAmelCase , do_sample=__lowerCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , __lowerCAmelCase ) a__: int = input_ids.shape[1] a__: List[Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowerCAmelCase ) a__: Optional[int] = [text.strip() for text in output_text] print('HF generation:' , __lowerCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() lowercase__ = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) lowercase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
362
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } lowercase__ = { 'unc-nlp/lxmert-base-uncased': 512, } lowercase__ = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class __snake_case ( __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_INIT_CONFIGURATION a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = LxmertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Dict: '''simple docstring''' super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) a__: Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , lowercase) != do_lower_case or normalizer_state.get('strip_accents' , lowercase) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase) != tokenize_chinese_chars ): a__: int = getattr(lowercase , normalizer_state.pop('type')) a__: Dict = do_lower_case a__: Dict = strip_accents a__: Optional[int] = tokenize_chinese_chars a__: List[Any] = normalizer_class(**lowercase) a__: Optional[int] = do_lower_case def lowerCamelCase_ ( self , lowercase , lowercase=None) -> Tuple: '''simple docstring''' a__: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: List[Any] = [self.sep_token_id] a__: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCamelCase_ ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__: List[Any] = self._tokenizer.model.save(lowercase , name=lowercase) return tuple(lowercase)
203
0
def lowerCamelCase__ ( a , a ) -> int: _A: List[str] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _A: List[str] = n - k # Calculate C(n,k) for i in range(a ): result *= n - i result //= i + 1 return result def lowerCamelCase__ ( a ) -> int: return binomial_coefficient(2 * node_count , a ) // (node_count + 1) def lowerCamelCase__ ( a ) -> int: if n < 0: raise ValueError('''factorial() not defined for negative values''' ) _A: Tuple = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase__ ( a ) -> int: return catalan_number(a ) * factorial(a ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
121
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Any = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = '''informer''' __UpperCamelCase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "student_t" , lowerCAmelCase_ : str = "nll" , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : List[int] = None , lowerCAmelCase_ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : int = 6_4 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.05 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : str = "prob" , lowerCAmelCase_ : int = 5 , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : str , ): """simple docstring""" # time series specific configuration _A: Optional[Any] = prediction_length _A: Optional[Any] = context_length or prediction_length _A: Dict = distribution_output _A: List[str] = loss _A: int = input_size _A: List[str] = num_time_features _A: Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] _A: str = scaling _A: Optional[Any] = num_dynamic_real_features _A: List[Any] = num_static_real_features _A: Tuple = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) _A: str = cardinality else: _A: Union[str, Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) _A: List[str] = embedding_dimension else: _A: Union[str, Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _A: int = num_parallel_samples # Transformer architecture configuration _A: Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features _A: Union[str, Any] = d_model _A: Optional[Any] = encoder_attention_heads _A: Optional[Any] = decoder_attention_heads _A: Optional[Any] = encoder_ffn_dim _A: Union[str, Any] = decoder_ffn_dim _A: Any = encoder_layers _A: str = decoder_layers _A: List[str] = dropout _A: Any = attention_dropout _A: Optional[int] = activation_dropout _A: List[Any] = encoder_layerdrop _A: str = decoder_layerdrop _A: int = activation_function _A: Tuple = init_std _A: Union[str, Any] = use_cache # Informer _A: Union[str, Any] = attention_type _A: str = sampling_factor _A: List[str] = distil super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : List[str] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
121
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase: Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Any = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class a__: def __init__( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[int]=2 , __snake_case : Union[str, Any]=8 , __snake_case : List[str]=True , __snake_case : Dict=True , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : Tuple=99 , __snake_case : int=16 , __snake_case : Optional[int]=5 , __snake_case : int=2 , __snake_case : Tuple=36 , __snake_case : Optional[Any]="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Tuple=5_12 , __snake_case : str=16 , __snake_case : str=2 , __snake_case : int=0.02 , __snake_case : Optional[int]=3 , __snake_case : List[Any]=4 , __snake_case : Any=None , ): a : int = parent a : Any = batch_size a : Optional[int] = seq_length a : List[str] = is_training a : Dict = use_input_mask a : Union[str, Any] = use_token_type_ids a : Tuple = use_labels a : Dict = vocab_size a : Optional[int] = hidden_size a : List[Any] = num_hidden_layers a : Optional[Any] = num_attention_heads a : str = intermediate_size a : Dict = hidden_act a : str = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : Optional[Any] = max_position_embeddings a : Tuple = type_vocab_size a : int = type_sequence_label_size a : List[Any] = initializer_range a : List[str] = num_labels a : List[str] = num_choices a : Optional[Any] = scope def lowercase_ ( self : Union[str, Any] ): a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Optional[Any] = None if self.use_input_mask: a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : Tuple = None if self.use_token_type_ids: a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a : str = None a : int = None a : Any = None if self.use_labels: a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) a : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Union[str, Any] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def lowercase_ ( self : List[str] ): a : List[Any] = self.get_config() a : Optional[Any] = 3_00 return config def lowercase_ ( self : Union[str, Any] ): ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Optional[Any] = self.prepare_config_and_inputs() a : Union[str, Any] = True a : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase_ ( self : int , __snake_case : int , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Any ): a : Dict = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() a : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) a : List[str] = model(__snake_case , token_type_ids=__snake_case ) a : Union[str, Any] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : List[str] , __snake_case : Tuple , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[Any] , ): a : Optional[Any] = True a : Optional[int] = MraModel(__snake_case ) model.to(__snake_case ) model.eval() a : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) a : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) a : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Dict , __snake_case : Optional[Any] ): a : Union[str, Any] = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Tuple , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : int ): a : Optional[int] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() a : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Dict , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : str ): a : Tuple = self.num_labels a : Dict = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a : Any = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : int ): a : Tuple = self.num_labels a : Tuple = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[Any] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Any , __snake_case : Any , __snake_case : str , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Any , __snake_case : Any , __snake_case : str ): a : Optional[int] = self.num_choices a : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() a : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : int = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : Optional[Any] ): a : Union[str, Any] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = () def lowercase_ ( self : Any ): a : Tuple = MraModelTester(self ) a : str = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowercase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase_ ( self : List[str] ): a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : Any ): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a : Dict = type self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : List[Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowercase_ ( self : Optional[Any] ): a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def lowercase_ ( self : List[Any] ): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def lowercase_ ( self : Tuple ): a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def lowercase_ ( self : Optional[Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def lowercase_ ( self : int ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase_ ( self : Union[str, Any] ): return @require_torch class a__( unittest.TestCase ): @slow def lowercase_ ( self : Union[str, Any] ): a : Union[str, Any] = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) a : List[str] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): a : Optional[int] = model(__snake_case )[0] a : Any = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , __snake_case ) a : str = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowercase_ ( self : Optional[int] ): a : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) a : Optional[int] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): a : Dict = model(__snake_case )[0] a : Union[str, Any] = 5_02_65 a : Dict = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , __snake_case ) a : Dict = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowercase_ ( self : Any ): a : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) a : Optional[int] = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): a : Tuple = model(__snake_case )[0] a : List[Any] = 5_02_65 a : str = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , __snake_case ) a : int = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) )
96
0
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _lowerCAmelCase ( snake_case_ ): def __get__( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Dict: '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) snake_case : int = "__cached_" + self.fget.__name__ snake_case : Dict = getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if cached is None: snake_case : Any = self.fget(UpperCamelCase__ ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return cached def __lowerCAmelCase ( lowercase : Any ) -> str: """simple docstring""" snake_case : int = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def __lowerCAmelCase ( lowercase : int ) -> str: """simple docstring""" if is_torch_fx_proxy(lowercase ): return True if is_torch_available(): import torch if isinstance(lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(lowercase , np.ndarray ) def __lowerCAmelCase ( lowercase : List[Any] ) -> int: """simple docstring""" return isinstance(lowercase , np.ndarray ) def __lowerCAmelCase ( lowercase : Optional[int] ) -> Tuple: """simple docstring""" return _is_numpy(lowercase ) def __lowerCAmelCase ( lowercase : Any ) -> int: """simple docstring""" import torch return isinstance(lowercase , torch.Tensor ) def __lowerCAmelCase ( lowercase : Optional[Any] ) -> List[Any]: """simple docstring""" return False if not is_torch_available() else _is_torch(lowercase ) def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Dict: """simple docstring""" import torch return isinstance(lowercase , torch.device ) def __lowerCAmelCase ( lowercase : int ) -> Optional[Any]: """simple docstring""" return False if not is_torch_available() else _is_torch_device(lowercase ) def __lowerCAmelCase ( lowercase : Dict ) -> str: """simple docstring""" import torch if isinstance(lowercase , lowercase ): if hasattr(lowercase , lowercase ): snake_case : List[str] = getattr(lowercase , lowercase ) else: return False return isinstance(lowercase , torch.dtype ) def __lowerCAmelCase ( lowercase : Optional[int] ) -> int: """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(lowercase ) def __lowerCAmelCase ( lowercase : List[str] ) -> Dict: """simple docstring""" import tensorflow as tf return isinstance(lowercase , tf.Tensor ) def __lowerCAmelCase ( lowercase : int ) -> Optional[Any]: """simple docstring""" return False if not is_tf_available() else _is_tensorflow(lowercase ) def __lowerCAmelCase ( lowercase : List[str] ) -> Optional[Any]: """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowercase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(lowercase ) return type(lowercase ) == tf.Tensor def __lowerCAmelCase ( lowercase : Dict ) -> List[Any]: """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(lowercase ) def __lowerCAmelCase ( lowercase : Tuple ) -> Union[str, Any]: """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(lowercase , jnp.ndarray ) def __lowerCAmelCase ( lowercase : Dict ) -> Dict: """simple docstring""" return False if not is_flax_available() else _is_jax(lowercase ) def __lowerCAmelCase ( lowercase : str ) -> List[str]: """simple docstring""" if isinstance(lowercase , (dict, UserDict) ): return {k: to_py_obj(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return [to_py_obj(lowercase ) for o in obj] elif is_tf_tensor(lowercase ): return obj.numpy().tolist() elif is_torch_tensor(lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ).tolist() elif isinstance(lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __lowerCAmelCase ( lowercase : Optional[Any] ) -> Optional[int]: """simple docstring""" if isinstance(lowercase , (dict, UserDict) ): return {k: to_numpy(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return np.array(lowercase ) elif is_tf_tensor(lowercase ): return obj.numpy() elif is_torch_tensor(lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ) else: return obj class _lowerCAmelCase ( snake_case_ ): def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = fields(self ) # Safety and consistency checks if not len(UpperCamelCase__ ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) snake_case : Tuple = getattr(self , class_fields[0].name ) snake_case : Union[str, Any] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Tuple = first_field.items() snake_case : Dict = True else: try: snake_case : Optional[Any] = iter(UpperCamelCase__ ) snake_case : int = True except TypeError: snake_case : Union[str, Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(UpperCamelCase__ ): if ( not isinstance(UpperCamelCase__ , (list, tuple) ) or not len(UpperCamelCase__ ) == 2 or not isinstance(element[0] , UpperCamelCase__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute snake_case : Union[str, Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: snake_case : List[Any] = element[1] elif first_field is not None: snake_case : List[str] = first_field else: for field in class_fields: snake_case : Union[str, Any] = getattr(self , field.name ) if v is not None: snake_case : Optional[int] = v def __delitem__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , UpperCamelCase__ ) -> str: '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(UpperCamelCase__ , UpperCamelCase__ ) super().__setattr__(UpperCamelCase__ , UpperCamelCase__ ) def __setitem__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__setitem__(UpperCamelCase__ , UpperCamelCase__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Tuple[Any]: '''simple docstring''' return tuple(self[k] for k in self.keys() ) class _lowerCAmelCase ( snake_case_ , snake_case_ ): @classmethod def lowerCamelCase ( cls , UpperCamelCase__ ) -> Dict: '''simple docstring''' raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : str = '''longest''' __UpperCAmelCase : Any = '''max_length''' __UpperCAmelCase : List[str] = '''do_not_pad''' class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[Any] = '''pt''' __UpperCAmelCase : Dict = '''tf''' __UpperCAmelCase : Tuple = '''np''' __UpperCAmelCase : List[str] = '''jax''' class _lowerCAmelCase : def __init__( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = context_managers snake_case : List[str] = ExitStack() def __enter__( self ) -> Optional[int]: '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(UpperCamelCase__ ) def __exit__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' self.stack.__exit__(*UpperCamelCase__ , **UpperCamelCase__ ) def __lowerCAmelCase ( lowercase : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case : int = infer_framework(lowercase ) if framework == "tf": snake_case : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case : Tuple = inspect.signature(model_class.forward ) # PyTorch models else: snake_case : Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __lowerCAmelCase ( lowercase : List[Any] ) -> int: """simple docstring""" snake_case : Dict = model_class.__name__ snake_case : Dict = infer_framework(lowercase ) if framework == "tf": snake_case : str = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case : Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: snake_case : Union[str, Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __lowerCAmelCase ( lowercase : MutableMapping , lowercase : str = "" , lowercase : str = "." ) -> int: """simple docstring""" def _flatten_dict(lowercase : str , lowercase : Union[str, Any]="" , lowercase : List[str]="." ): for k, v in d.items(): snake_case : List[Any] = str(lowercase ) + delimiter + str(lowercase ) if parent_key else k if v and isinstance(lowercase , lowercase ): yield from flatten_dict(lowercase , lowercase , delimiter=lowercase ).items() else: yield key, v return dict(_flatten_dict(lowercase , lowercase , lowercase ) ) @contextmanager def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : bool = False ) -> str: """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __lowerCAmelCase ( lowercase : str , lowercase : Union[str, Any]=None ) -> int: """simple docstring""" if is_numpy_array(lowercase ): return np.transpose(lowercase , axes=lowercase ) elif is_torch_tensor(lowercase ): return array.T if axes is None else array.permute(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.transpose(lowercase , perm=lowercase ) elif is_jax_tensor(lowercase ): return jnp.transpose(lowercase , axes=lowercase ) else: raise ValueError(F'Type not supported for transpose: {type(lowercase )}.' ) def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : Tuple ) -> List[str]: """simple docstring""" if is_numpy_array(lowercase ): return np.reshape(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.reshape(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.reshape(lowercase , lowercase ) elif is_jax_tensor(lowercase ): return jnp.reshape(lowercase , lowercase ) else: raise ValueError(F'Type not supported for reshape: {type(lowercase )}.' ) def __lowerCAmelCase ( lowercase : List[Any] , lowercase : Tuple=None ) -> Optional[int]: """simple docstring""" if is_numpy_array(lowercase ): return np.squeeze(lowercase , axis=lowercase ) elif is_torch_tensor(lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.squeeze(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.squeeze(lowercase , axis=lowercase ) else: raise ValueError(F'Type not supported for squeeze: {type(lowercase )}.' ) def __lowerCAmelCase ( lowercase : List[Any] , lowercase : int ) -> List[Any]: """simple docstring""" if is_numpy_array(lowercase ): return np.expand_dims(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.unsqueeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.expand_dims(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.expand_dims(lowercase , axis=lowercase ) else: raise ValueError(F'Type not supported for expand_dims: {type(lowercase )}.' ) def __lowerCAmelCase ( lowercase : int ) -> Optional[Any]: """simple docstring""" if is_numpy_array(lowercase ): return np.size(lowercase ) elif is_torch_tensor(lowercase ): return array.numel() elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.size(lowercase ) elif is_jax_tensor(lowercase ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(lowercase )}.' ) def __lowerCAmelCase ( lowercase : Optional[int] , lowercase : Optional[int] ) -> Tuple: """simple docstring""" for key, value in auto_map.items(): if isinstance(lowercase , (tuple, list) ): snake_case : Dict = [F'{repo_id}--{v}' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: snake_case : Dict = F'{repo_id}--{value}' return auto_map def __lowerCAmelCase ( lowercase : Optional[Any] ) -> Tuple: """simple docstring""" for base_class in inspect.getmro(lowercase ): snake_case : Optional[int] = base_class.__module__ snake_case : Any = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
203
"""simple docstring""" def __lowerCAmelCase ( lowercase : int ) -> bool: """simple docstring""" if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case : Dict = 4 snake_case : str = (1 << p) - 1 for _ in range(p - 2 ): snake_case : Any = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
203
1
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __SCREAMING_SNAKE_CASE : Dict = NewType('DataClass', Any) __SCREAMING_SNAKE_CASE : List[Any] = NewType('DataClassType', Any) def _A ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def _A ( _SCREAMING_SNAKE_CASE ) -> Callable[[str], Any]: snake_case_ = {str(_SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda _SCREAMING_SNAKE_CASE : str_to_choice.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _A ( *, _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = dataclasses.MISSING , _SCREAMING_SNAKE_CASE = dataclasses.MISSING , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls snake_case_ = {} if aliases is not None: snake_case_ = aliases if help is not None: snake_case_ = help return dataclasses.field(metadata=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , default_factory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class __A (snake_case__): '''simple docstring''' __lowercase: Iterable[DataClassType] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Union[DataClassType, Iterable[DataClassType]] , **UpperCAmelCase_ : Optional[Any] ) ->str: """simple docstring""" if "formatter_class" not in kwargs: snake_case_ = ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase_ ) if dataclasses.is_dataclass(UpperCAmelCase_ ): snake_case_ = [dataclass_types] snake_case_ = list(UpperCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase_ ) @staticmethod def lowerCAmelCase ( UpperCAmelCase_ : ArgumentParser , UpperCAmelCase_ : dataclasses.Field ) ->Union[str, Any]: """simple docstring""" snake_case_ = F"""--{field.name}""" snake_case_ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase_ ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) snake_case_ = kwargs.pop("""aliases""" , [] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = [aliases] snake_case_ = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase_ , """UnionType""" ) and isinstance(UpperCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase_ ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" F""" Problem encountered in field '{field.name}'.""" ) if type(UpperCAmelCase_ ) not in field.type.__args__: # filter `str` in Union snake_case_ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] snake_case_ = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) snake_case_ = ( field.type.__args__[0] if isinstance(UpperCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) snake_case_ = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) snake_case_ = {} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase_ ) and issubclass(field.type , UpperCAmelCase_ )): if origin_type is Literal: snake_case_ = field.type.__args__ else: snake_case_ = [x.value for x in field.type] snake_case_ = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: snake_case_ = field.default else: snake_case_ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument snake_case_ = copy(UpperCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. snake_case_ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. snake_case_ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way snake_case_ = default # This tells argparse we accept 0 or 1 value after --field_name snake_case_ = """?""" # This is the value that will get picked if we do --field_name (without value) snake_case_ = True elif isclass(UpperCAmelCase_ ) and issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = field.type.__args__[0] snake_case_ = """+""" if field.default_factory is not dataclasses.MISSING: snake_case_ = field.default_factory() elif field.default is dataclasses.MISSING: snake_case_ = True else: snake_case_ = field.type if field.default is not dataclasses.MISSING: snake_case_ = field.default elif field.default_factory is not dataclasses.MISSING: snake_case_ = field.default_factory() else: snake_case_ = True parser.add_argument(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): snake_case_ = False parser.add_argument(F"""--no_{field.name}""" , action="""store_false""" , dest=field.name , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : DataClassType ) ->int: """simple docstring""" if hasattr(UpperCAmelCase_ , """_argument_group_name""" ): snake_case_ = self.add_argument_group(dtype._argument_group_name ) else: snake_case_ = self try: snake_case_ = get_type_hints(UpperCAmelCase_ ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase_ ): snake_case_ = """.""".join(map(UpperCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(UpperCAmelCase_ ): if not field.init: continue snake_case_ = type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Union[str, Any]=None , ) ->Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): snake_case_ = [] if args_filename: args_files.append(Path(UpperCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values snake_case_ = ArgumentParser() args_file_parser.add_argument(UpperCAmelCase_ , type=UpperCAmelCase_ , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) snake_case_ , snake_case_ = args_file_parser.parse_known_args(args=UpperCAmelCase_ ) snake_case_ = vars(UpperCAmelCase_ ).get(args_file_flag.lstrip("""-""" ) , UpperCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase_ ) for p in cmd_args_file_paths] ) snake_case_ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last snake_case_ = file_args + args if args is not None else file_args + sys.argv[1:] snake_case_ , snake_case_ = self.parse_known_args(args=UpperCAmelCase_ ) snake_case_ = [] for dtype in self.dataclass_types: snake_case_ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} snake_case_ = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Dict[str, Any] , UpperCAmelCase_ : bool = False ) ->Tuple[DataClass, ...]: """simple docstring""" snake_case_ = set(args.keys() ) snake_case_ = [] for dtype in self.dataclass_types: snake_case_ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} snake_case_ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) snake_case_ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase_ )}""" ) return tuple(UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ) ->Tuple[DataClass, ...]: """simple docstring""" with open(Path(UpperCAmelCase_ ) , encoding="""utf-8""" ) as open_json_file: snake_case_ = json.loads(open_json_file.read() ) snake_case_ = self.parse_dict(UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ) ->Tuple[DataClass, ...]: """simple docstring""" snake_case_ = self.parse_dict(yaml.safe_load(Path(UpperCAmelCase_ ).read_text() ) , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
356
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ) -> list: snake_case_ = length or len(_SCREAMING_SNAKE_CASE ) snake_case_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case_ , snake_case_ = list_data[i + 1], list_data[i] snake_case_ = True return list_data if not swapped else bubble_sort(_SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
233
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a__ ( lowercase : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def a__ ( lowercase : np.ndarray, lowercase : np.ndarray, lowercase : np.ndarray ) -> np.ndarray: """simple docstring""" _UpperCamelCase = XGBRegressor(verbosity=0, random_state=42 ) xgb.fit(lowercase, lowercase ) # Predict target for test data _UpperCamelCase = xgb.predict(lowercase ) _UpperCamelCase = predictions.reshape(len(lowercase ), 1 ) return predictions def a__ ( ) -> None: """simple docstring""" _UpperCamelCase = fetch_california_housing() _UpperCamelCase , _UpperCamelCase = data_handling(lowercase ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = train_test_split( lowercase, lowercase, test_size=0.2_5, random_state=1 ) _UpperCamelCase = xgboost(lowercase, lowercase, lowercase ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(lowercase, lowercase )}""" ) print(F"""Mean Square Error : {mean_squared_error(lowercase, lowercase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
324
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = LevitImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = LevitImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
324
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase : List[Any] = None _lowercase : List[str] = logging.get_logger(__name__) _lowercase : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _lowercase : Any = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } _lowercase : int = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } _lowercase : Optional[Any] = '▁' class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[str] = AlbertTokenizer def __init__( self : Optional[Any] , _lowercase : List[Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=True , _lowercase : List[str]=True , _lowercase : Union[str, Any]=False , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[SEP]" , _lowercase : List[Any]="<unk>" , _lowercase : Tuple="[SEP]" , _lowercase : Optional[Any]="<pad>" , _lowercase : Tuple="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __UpperCAmelCase = ( AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase , normalized=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token ) super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = False if not self.vocab_file else True def a ( self : int , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : int , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
86
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _lowercase : int = pd.read_csv('sample_data.csv', header=None) _lowercase : str = df.shape[:1][0] # If you're using some other dataset input the target column _lowercase : Optional[int] = df.iloc[:, 1:2] _lowercase : Optional[int] = actual_data.values.reshape(len_data, 1) _lowercase : Any = MinMaxScaler().fit_transform(actual_data) _lowercase : Dict = 10 _lowercase : List[str] = 5 _lowercase : Any = 20 _lowercase : Optional[int] = len_data - periods * look_back _lowercase : Optional[int] = actual_data[:division] _lowercase : Optional[int] = actual_data[division - look_back :] _lowercase ,_lowercase : Tuple = [], [] _lowercase ,_lowercase : Optional[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _lowercase : List[str] = np.array(train_x) _lowercase : str = np.array(test_x) _lowercase : Union[str, Any] = np.array([list(i.ravel()) for i in train_y]) _lowercase : List[Any] = np.array([list(i.ravel()) for i in test_y]) _lowercase : str = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') _lowercase : str = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) _lowercase : str = model.predict(x_test)
86
1
import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCAmelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowercase = self.diffusers_dir shutil.copy( os.path.join(snake_case , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case=None ): lowercase = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowercase = black.format_str(snake_case , mode=snake_case ) lowercase = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(snake_case , 'w' , newline='\n' ) as f: f.write(snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case ) with open(snake_case , 'r' ) as f: self.assertTrue(f.read() , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , snake_case , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , snake_case ) , ) # Copy consistency with a really long name lowercase = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub('Bert' , snake_case , snake_case ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , snake_case , overwrite_result=re.sub('DDPM' , 'Test' , snake_case ) , )
195
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self ): lowercase = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_init_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_train_begin' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_train_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_epoch_begin' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_epoch_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_step_begin' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_step_end' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_evaluate' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_predict' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_save' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_log' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , **snake_case ): self.events.append('on_prediction_step' ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE__ ( self , snake_case=0 , snake_case=0 , snake_case=64 , snake_case=64 , snake_case=None , snake_case=False , **snake_case ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase = RegressionDataset(length=snake_case ) lowercase = RegressionDataset(length=snake_case ) lowercase = RegressionModelConfig(a=snake_case , b=snake_case ) lowercase = RegressionPreTrainedModel(snake_case ) lowercase = TrainingArguments(self.output_dir , disable_tqdm=snake_case , report_to=[] , **snake_case ) return Trainer( snake_case , snake_case , train_dataset=snake_case , eval_dataset=snake_case , callbacks=snake_case , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): self.assertEqual(len(snake_case ) , len(snake_case ) ) # Order doesn't matter lowercase = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) lowercase = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case , snake_case ): if isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(snake_case , snake_case ) elif isinstance(snake_case , snake_case ) and not isinstance(snake_case , snake_case ): self.assertEqual(snake_case , cba.__class__ ) elif not isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(cba.__class__ , snake_case ) else: self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = ['on_init_end', 'on_train_begin'] lowercase = 0 lowercase = len(trainer.get_eval_dataloader() ) lowercase = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(snake_case ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_trainer() lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # Callbacks passed at init are added to the default callbacks lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase = self.get_trainer(disable_tqdm=snake_case ) lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) lowercase = self.get_trainer() lowercase = trainer.pop_callback(snake_case ) self.assertEqual(cb.__class__ , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # We can also add, pop, or remove by instance lowercase = self.get_trainer() lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) lowercase = self.get_trainer() lowercase = trainer.callback_handler.callbacks[0] lowercase = trainer.pop_callback(snake_case ) self.assertEqual(snake_case , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=snake_case ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # Independent log/save/eval lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # A bit of everything lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case ) in warn_mock.call_args[0][0]
195
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
78
from __future__ import annotations def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> list[list[int]]: '''simple docstring''' UpperCAmelCase : list[list[int]] =[] create_all_state(1 , __lowerCAmelCase , __lowerCAmelCase , [] , __lowerCAmelCase ) return result def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )-> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(__lowerCAmelCase , total_number - level + 2 ): current_list.append(__lowerCAmelCase ) create_all_state(i + 1 , __lowerCAmelCase , level - 1 , __lowerCAmelCase , __lowerCAmelCase ) current_list.pop() def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' for i in total_list: print(*__lowerCAmelCase ) if __name__ == "__main__": __snake_case = 4 __snake_case = 2 __snake_case = generate_all_combinations(n, k) print_all_state(total_list)
78
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) snake_case__ : Optional[str] = field( default=_a , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) snake_case__ : Optional[str] = field( default=_a , metadata={"""help""": """The column name of the images in the files."""} ) snake_case__ : Optional[str] = field(default=_a , metadata={"""help""": """A folder containing the training data."""} ) snake_case__ : Optional[str] = field(default=_a , metadata={"""help""": """A folder containing the validation data."""} ) snake_case__ : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) snake_case__ : Optional[int] = field( default=_a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) snake_case__ : Optional[int] = field( default=_a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _A ( self : Dict ): UpperCamelCase :Dict = {} if self.train_dir is not None: UpperCamelCase :Any = self.train_dir if self.validation_dir is not None: UpperCamelCase :List[Any] = self.validation_dir UpperCamelCase :Optional[Any] = data_files if data_files else None @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : str = field( default=_a , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) snake_case__ : Optional[str] = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) snake_case__ : Optional[str] = field( default=_a , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) snake_case__ : Optional[str] = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) snake_case__ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) snake_case__ : str = field(default=_a , metadata={"""help""": """Name or path of preprocessor config."""} ) snake_case__ : bool = field( default=_a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) snake_case__ : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) snake_case__ : bool = field( default=_a , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] ) -> Dict: """simple docstring""" UpperCamelCase :Tuple = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" UpperCamelCase :Any = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase :str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , __magic_name__ , __magic_name__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase :List[str] = training_args.get_process_log_level() logger.setLevel(__magic_name__ ) transformers.utils.logging.set_verbosity(__magic_name__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase :List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase :Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase :Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase :Optional[Any] = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __magic_name__ ) and data_args.train_val_split > 0.0: UpperCamelCase :Any = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase :Optional[Any] = split["""train"""] UpperCamelCase :int = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase :Tuple = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase :str = ViTMAEConfig.from_pretrained(model_args.config_name , **__magic_name__ ) elif model_args.model_name_or_path: UpperCamelCase :List[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: UpperCamelCase :int = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase :Any = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__magic_name__ ) elif model_args.model_name_or_path: UpperCamelCase :List[str] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: UpperCamelCase :List[str] = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase :List[Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase :str = ViTMAEForPreTraining(__magic_name__ ) if training_args.do_train: UpperCamelCase :int = ds["""train"""].column_names else: UpperCamelCase :List[str] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase :List[Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase :Any = """image""" elif "img" in column_names: UpperCamelCase :Union[str, Any] = """img""" else: UpperCamelCase :Optional[int] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase :Union[str, Any] = image_processor.size["""shortest_edge"""] else: UpperCamelCase :List[str] = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase :Optional[int] = Compose( [ Lambda(lambda __magic_name__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(__magic_name__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__magic_name__ : Union[str, Any] ): UpperCamelCase :int = [transforms(__magic_name__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase :List[str] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__magic_name__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase :Dict = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__magic_name__ ) # Compute absolute learning rate UpperCamelCase :Optional[Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase :Optional[int] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase :str = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: UpperCamelCase :Optional[int] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase :Any = last_checkpoint UpperCamelCase :int = trainer.train(resume_from_checkpoint=__magic_name__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase :List[str] = trainer.evaluate() trainer.log_metrics("""eval""" , __magic_name__ ) trainer.save_metrics("""eval""" , __magic_name__ ) # Write model card and (optionally) push to hub UpperCamelCase :Any = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**__magic_name__ ) else: trainer.create_model_card(**__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" main() if __name__ == "__main__": main()
38
import re import string import numpy as np import datasets UpperCAmelCase_ : Dict = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' UpperCAmelCase_ : Any = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' UpperCAmelCase_ : Tuple = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def _A ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _A ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase :str = np.array([re.sub(__lowerCamelCase , """""" , __lowerCamelCase ) for x in predictions] ) UpperCamelCase :Tuple = np.array([re.sub(__lowerCamelCase , """""" , __lowerCamelCase ) for x in references] ) else: UpperCamelCase :Any = np.asarray(__lowerCamelCase ) UpperCamelCase :str = np.asarray(__lowerCamelCase ) if ignore_case: UpperCamelCase :Tuple = np.char.lower(__lowerCamelCase ) UpperCamelCase :Any = np.char.lower(__lowerCamelCase ) if ignore_punctuation: UpperCamelCase :Optional[int] = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCamelCase :Optional[Any] = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :List[str] = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) if ignore_numbers: UpperCamelCase :Tuple = string.digits.maketrans("""""" , """""" , string.digits ) UpperCamelCase :Dict = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :Tuple = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :int = predictions == references return {"exact_match": np.mean(__lowerCamelCase ) * 100}
38
1
'''simple docstring''' import pytest __A : Union[str, Any] = '__dummy_dataset1__' __A : Dict = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def UpperCAmelCase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCAmelCase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : int = dataset_loading_script_name snake_case_ : Optional[int] = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase_ ) snake_case_ : Tuple = script_dir / F'''{script_name}.py''' with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ )
8
'''simple docstring''' import collections import os import re from pathlib import Path __A : Dict = 'src/transformers' # Matches is_xxx_available() __A : Dict = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __A : int = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __A : List[Any] = re.compile(r'^\s*try:') # Catches a line with else: __A : Any = re.compile(r'^\s*else:') def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' if _re_test_backend.search(lowerCamelCase_ ) is None: return None snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )] backends.sort() return "_and_".join(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : str = f.readlines() snake_case_ : List[Any] = 0 while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure snake_case_ : Union[str, Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case_ : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase_ ): snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0] snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ ) if single_line_import_search is not None: snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case_ : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case_ : List[Any] = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None: snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_between_brackets.search(lowerCamelCase_ ) is not None: snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_quote_object.search(lowerCamelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ : List[Any] = [] while ( line_index < len(lowerCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case_ : Union[str, Any] = lines[line_index] snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ : Dict = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case_ : Dict = lines[line_index] snake_case_ : Any = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ): '''simple docstring''' def find_duplicates(lowerCamelCase_ :Union[str, Any] ): return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ : Optional[int] = [] for key in import_dict_objects.keys(): snake_case_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) snake_case_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" ) snake_case_ : Dict = parse_init(lowerCamelCase_ ) if objects is not None: snake_case_ : Any = analyze_results(*lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > 0: raise ValueError("""\n\n""".join(lowerCamelCase_ ) ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] for path, directories, files in os.walk(lowerCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCamelCase_ ) for fname in files: if fname == "__init__.py": continue snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCamelCase_ ) return submodules __A : List[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCAmelCase ( ): '''simple docstring''' # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ ) snake_case_ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f: snake_case_ : str = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) ) snake_case_ : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase_ ) > 0: snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
8
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A__ : Optional[int] =logging.get_logger(__name__) A__ : Union[str, Any] ={ '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCAmelCase ( _UpperCAmelCase ): _lowercase: int = """marian""" _lowercase: List[str] = ["""past_key_values"""] _lowercase: str = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Union[str, Any] , __snake_case : Tuple=5_81_01 , __snake_case : int=None , __snake_case : Optional[Any]=10_24 , __snake_case : Dict=12 , __snake_case : int=40_96 , __snake_case : List[Any]=16 , __snake_case : Optional[int]=12 , __snake_case : List[str]=40_96 , __snake_case : Tuple=16 , __snake_case : str=0.0 , __snake_case : str=0.0 , __snake_case : int=True , __snake_case : str=True , __snake_case : List[Any]="gelu" , __snake_case : Union[str, Any]=10_24 , __snake_case : List[Any]=0.1 , __snake_case : str=0.0 , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.02 , __snake_case : List[Any]=5_81_00 , __snake_case : List[Any]=False , __snake_case : str=5_81_00 , __snake_case : Dict=0 , __snake_case : List[str]=0 , __snake_case : int=True , **__snake_case : List[str] , ) -> str: _lowerCAmelCase = vocab_size _lowerCAmelCase = decoder_vocab_size or vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) class UpperCAmelCase ( _UpperCAmelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowercase__ ( self : Tuple ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _lowerCAmelCase = {0: """batch"""} _lowerCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} _lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(UpperCAmelCase_ ): _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} else: _lowerCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowercase__ ( self : Union[str, Any] ) -> Tuple: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(UpperCAmelCase_ , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(UpperCAmelCase_ ): _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowercase__ ( self : List[Any] , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , ) -> str: _lowerCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**UpperCAmelCase_ , **UpperCAmelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["""input_ids"""].shape _lowerCAmelCase = common_inputs["""decoder_input_ids"""].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = max(UpperCAmelCase_ , UpperCAmelCase_ ) - min_num_layers _lowerCAmelCase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(UpperCAmelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCAmelCase_ ), torch.zeros(UpperCAmelCase_ ), torch.zeros(UpperCAmelCase_ ), torch.zeros(UpperCAmelCase_ ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(UpperCAmelCase_ , UpperCAmelCase_ ): common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase_ ), torch.zeros(UpperCAmelCase_ )) ) return common_inputs def lowercase__ ( self : List[Any] , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , ) -> Any: _lowerCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["""attention_mask"""].dtype _lowerCAmelCase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ , dtype=UpperCAmelCase_ )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(UpperCAmelCase_ ), torch.zeros(UpperCAmelCase_ )) for _ in range(UpperCAmelCase_ ) ] return common_inputs def lowercase__ ( self : Optional[int] , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , ) -> Union[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(UpperCAmelCase_ ) _lowerCAmelCase = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase_ ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) ) return common_inputs def lowercase__ ( self : Union[str, Any] , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , ) -> Any: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ ) return common_inputs def lowercase__ ( self : str , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Any , __snake_case : List[str] ) -> str: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _lowerCAmelCase = super(UpperCAmelCase_ , self )._flatten_past_key_values_( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @property def lowercase__ ( self : List[Any] ) -> Dict: return 1E-4
70
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' def update_area_of_max_square(UpperCamelCase_ , UpperCamelCase_ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 SCREAMING_SNAKE_CASE__ = update_area_of_max_square(UpperCamelCase_ , col + 1 ) SCREAMING_SNAKE_CASE__ = update_area_of_max_square(row + 1 , col + 1 ) SCREAMING_SNAKE_CASE__ = update_area_of_max_square(row + 1 , UpperCamelCase_ ) if mat[row][col]: SCREAMING_SNAKE_CASE__ = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE__ = max(largest_square_area[0] , UpperCamelCase_ ) return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE__ = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' def update_area_of_max_square_using_dp_array( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] SCREAMING_SNAKE_CASE__ = update_area_of_max_square_using_dp_array(UpperCamelCase_ , col + 1 , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = update_area_of_max_square_using_dp_array(row + 1 , UpperCamelCase_ , UpperCamelCase_ ) if mat[row][col]: SCREAMING_SNAKE_CASE__ = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE__ = max(largest_square_area[0] , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = sub_problem_sol return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE__ = [0] SCREAMING_SNAKE_CASE__ = [[-1] * cols for _ in range(UpperCamelCase_ )] update_area_of_max_square_using_dp_array(0 , 0 , UpperCamelCase_ ) return largest_square_area[0] def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [[0] * (cols + 1) for _ in range(rows + 1 )] SCREAMING_SNAKE_CASE__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): SCREAMING_SNAKE_CASE__ = dp_array[row][col + 1] SCREAMING_SNAKE_CASE__ = dp_array[row + 1][col + 1] SCREAMING_SNAKE_CASE__ = dp_array[row + 1][col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE__ = 1 + min(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = max(dp_array[row][col] , UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = 0 return largest_square_area def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * (cols + 1) SCREAMING_SNAKE_CASE__ = [0] * (cols + 1) SCREAMING_SNAKE_CASE__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): SCREAMING_SNAKE_CASE__ = current_row[col + 1] SCREAMING_SNAKE_CASE__ = next_row[col + 1] SCREAMING_SNAKE_CASE__ = next_row[col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE__ = 1 + min(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = max(current_row[col] , UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
176
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowercase: '''simple docstring''' def __init__( self: Optional[Any], a_: Dict, a_: List[str]=3, a_: Optional[Any]=7, a_: Any=True, a_: str=True, a_: Union[str, Any]=False, a_: Any=True, a_: List[Any]=99, a_: List[str]=32, a_: Any=5, a_: Optional[Any]=4, a_: List[str]=37, a_: List[str]="gelu", a_: Tuple=0.1, a_: str=0.1, a_: int=512, a_: List[str]=16, a_: Union[str, Any]=2, a_: Union[str, Any]=0.02, a_: List[Any]=3, a_: List[str]=4, a_: List[str]=None, ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : int = batch_size _snake_case : Optional[Any] = seq_length _snake_case : str = is_training _snake_case : int = use_input_mask _snake_case : Union[str, Any] = use_token_type_ids _snake_case : Optional[Any] = use_labels _snake_case : List[Any] = vocab_size _snake_case : Tuple = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : int = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Any = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : Optional[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Tuple = type_sequence_label_size _snake_case : Tuple = initializer_range _snake_case : Any = num_labels _snake_case : Optional[int] = num_choices _snake_case : Tuple = scope def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _snake_case : List[Any] = None if self.use_input_mask: _snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Dict = None _snake_case : Any = None _snake_case : List[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _snake_case : List[str] = ids_tensor([self.batch_size], self.num_choices ) _snake_case : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=a_, initializer_range=self.initializer_range, pad_token_id=1, new_decoder_architecture=a_, ) def UpperCamelCase_ ( self: Any, a_: Any, a_: Optional[int], a_: str, a_: Union[str, Any], a_: Tuple, a_: Any, a_: List[Any] ): '''simple docstring''' _snake_case : Tuple = FalconModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, attention_mask=a_ ) _snake_case : Tuple = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: List[Any], a_: List[str], a_: Union[str, Any], a_: Optional[Any], a_: Union[str, Any], a_: Any, a_: List[Any], a_: int, a_: Tuple, a_: int, ): '''simple docstring''' _snake_case : List[str] = True _snake_case : Any = FalconModel(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model( a_, attention_mask=a_, encoder_hidden_states=a_, encoder_attention_mask=a_, ) _snake_case : Any = model( a_, attention_mask=a_, encoder_hidden_states=a_, ) _snake_case : Optional[int] = model(a_, attention_mask=a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: Any, a_: str, a_: Any, a_: Optional[int], a_: Union[str, Any], a_: Union[str, Any], a_: Union[str, Any], a_: List[str], a_: List[str], a_: List[str], ): '''simple docstring''' _snake_case : Optional[int] = FalconForCausalLM(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_, attention_mask=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self: List[Any], a_: Union[str, Any], a_: Optional[Any], a_: Optional[int], a_: Any, a_: List[Any], a_: List[str], a_: List[str], a_: Tuple, a_: Optional[Any], ): '''simple docstring''' _snake_case : Optional[Any] = True _snake_case : List[Any] = True _snake_case : Tuple = FalconForCausalLM(config=a_ ) model.to(a_ ) model.eval() # first forward pass _snake_case : str = model( a_, attention_mask=a_, encoder_hidden_states=a_, encoder_attention_mask=a_, use_cache=a_, ) _snake_case : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _snake_case : int = ids_tensor((self.batch_size, 3), config.vocab_size ) _snake_case : int = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and _snake_case : int = torch.cat([input_ids, next_tokens], dim=-1 ) _snake_case : Optional[int] = torch.cat([input_mask, next_mask], dim=-1 ) _snake_case : Optional[int] = model( a_, attention_mask=a_, encoder_hidden_states=a_, encoder_attention_mask=a_, output_hidden_states=a_, )["""hidden_states"""][0] _snake_case : str = model( a_, attention_mask=a_, encoder_hidden_states=a_, encoder_attention_mask=a_, past_key_values=a_, output_hidden_states=a_, )["""hidden_states"""][0] # select random slice _snake_case : Optional[int] = ids_tensor((1,), output_from_past.shape[-1] ).item() _snake_case : int = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a_, a_, atol=1E-3 ) ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Tuple = config_and_inputs _snake_case : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase( __a , __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ = (FalconForCausalLM,) if is_torch_available() else () lowercase__ = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[Any] = FalconModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self, config_class=a_, hidden_size=37 ) def UpperCamelCase_ ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , *_snake_case : Tuple = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: _snake_case : str = alibi self.model_tester.create_and_check_model(a_, *a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Optional[Any] = 3 _snake_case : List[Any] = input_dict["""input_ids"""] _snake_case : List[str] = input_ids.ne(1 ).to(a_ ) _snake_case : Tuple = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) _snake_case : Optional[int] = FalconForSequenceClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_, attention_mask=a_, labels=a_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : List[Any] = 3 _snake_case : Optional[int] = """single_label_classification""" _snake_case : Any = input_dict["""input_ids"""] _snake_case : Optional[int] = input_ids.ne(1 ).to(a_ ) _snake_case : Tuple = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) _snake_case : Tuple = FalconForSequenceClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_, attention_mask=a_, labels=a_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : str = input_dict["""input_ids"""] _snake_case : Tuple = FalconForCausalLM(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_, use_cache=a_ ) _snake_case : Union[str, Any] = input_ids.shape[0] _snake_case : Tuple = model._convert_to_rw_cache(result.past_key_values ) _snake_case : Optional[Any] = model._convert_cache_to_standard_format(a_, a_ ) for layer in range(len(a_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = 3 _snake_case : List[Any] = """multi_label_classification""" _snake_case : Tuple = input_dict["""input_ids"""] _snake_case : str = input_ids.ne(1 ).to(a_ ) _snake_case : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) _snake_case : Optional[int] = FalconForSequenceClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[int] = model(a_, attention_mask=a_, labels=a_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for model_class in self.all_generative_model_classes: _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(a_, """use_cache""" ): return _snake_case : int = model_class(a_ ).to(a_ ) if "use_cache" not in inputs: _snake_case : List[Any] = True _snake_case : Optional[Any] = model(**a_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return _snake_case : int = ( getattr(a_, """decoder_layers""", a_ ) or getattr(a_, """num_decoder_layers""", a_ ) or config.num_hidden_layers ) _snake_case : List[Any] = getattr(a_, """num_kv_heads""", config.num_attention_heads ) _snake_case : Optional[Any] = getattr(a_, """d_model""", config.hidden_size ) _snake_case : Union[str, Any] = embed_dim // num_attention_heads _snake_case : Tuple = outputs["""past_key_values"""] self.assertEqual(len(a_ ), a_ ) _snake_case , _snake_case : List[Any] = inputs["""input_ids"""].shape for i in range(a_ ): if config.new_decoder_architecture: _snake_case : int = config.num_attention_heads elif config.multi_query: _snake_case : Any = 1 self.assertEqual(len(past_kv[0] ), 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class lowercase( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Tuple = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) _snake_case : str = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(a_ ) _snake_case : Union[str, Any] = tokenizer("""My favorite food is""", return_tensors="""pt""" ).to(a_ ) _snake_case : List[Any] = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) _snake_case : Optional[Any] = model.generate(**a_, do_sample=a_, max_new_tokens=19 ) _snake_case : List[str] = tokenizer.batch_decode(a_ )[0] self.assertEqual(a_, a_ ) @slow def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: _snake_case : str = AutoTokenizer.from_pretrained(a_ ) _snake_case : List[str] = FalconForCausalLM.from_pretrained(a_ ) model.eval() model.to(a_ ) _snake_case : Any = tokenizer("""My favorite food is""", return_tensors="""pt""" ).to(a_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**a_, do_sample=a_, max_new_tokens=4 ) model.generate(**a_, do_sample=a_, max_new_tokens=4 ) model.generate(**a_, num_beams=2, max_new_tokens=4 ) @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: _snake_case : Any = AutoTokenizer.from_pretrained(a_ ) _snake_case : int = FalconForCausalLM.from_pretrained(a_ ) model.eval() model.to(device=a_ ) _snake_case : Optional[int] = tokenizer("""My favorite food is""", return_tensors="""pt""" ).to(a_ ) # Test results are the same with and without cache _snake_case : Optional[int] = model.generate(**a_, do_sample=a_, max_new_tokens=20, use_cache=a_ ) _snake_case : List[Any] = model.generate(**a_, do_sample=a_, max_new_tokens=20, use_cache=a_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
132
"""simple docstring""" from __future__ import annotations from math import gcd def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : int = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> int: return (pow(snake_case__ , 2 ) + step) % modulus for _ in range(snake_case__ ): # These track the position within the cycle detection logic. _snake_case : Optional[int] = seed _snake_case : str = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. _snake_case : Any = rand_fn(snake_case__ , snake_case__ , snake_case__ ) _snake_case : Optional[Any] = rand_fn(snake_case__ , snake_case__ , snake_case__ ) _snake_case : int = rand_fn(snake_case__ , snake_case__ , snake_case__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. _snake_case : str = gcd(hare - tortoise , snake_case__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. _snake_case : Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse A_ = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) A_ = parser.parse_args() A_ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: A_ = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
132
1