code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Optional[int] = """altclip_text_model""" def __init__( self : str , UpperCamelCase__ : Any=2_5_0_0_0_2 , UpperCamelCase__ : Union[str, Any]=1_0_2_4 , UpperCamelCase__ : List[Any]=2_4 , UpperCamelCase__ : Union[str, Any]=1_6 , UpperCamelCase__ : int=4_0_9_6 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Union[str, Any]=5_1_4 , UpperCamelCase__ : int=1 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Optional[Any]=1e-05 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Union[str, Any]=0 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : str="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Union[str, Any]=7_6_8 , **UpperCamelCase__ : List[Any] , )-> Tuple: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__) __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: List[Any] = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[str] = intermediate_size __lowerCAmelCase: Tuple = hidden_dropout_prob __lowerCAmelCase: Dict = attention_probs_dropout_prob __lowerCAmelCase: Union[str, Any] = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Tuple = initializer_range __lowerCAmelCase: str = initializer_factor __lowerCAmelCase: int = layer_norm_eps __lowerCAmelCase: List[Any] = position_embedding_type __lowerCAmelCase: List[str] = use_cache __lowerCAmelCase: Dict = project_dim class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = """altclip_vision_model""" def __init__( self : Dict , UpperCamelCase__ : Dict=7_6_8 , UpperCamelCase__ : int=3_0_7_2 , UpperCamelCase__ : Optional[int]=5_1_2 , UpperCamelCase__ : int=1_2 , UpperCamelCase__ : str=1_2 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : Dict=2_2_4 , UpperCamelCase__ : Any=3_2 , UpperCamelCase__ : List[str]="quick_gelu" , UpperCamelCase__ : Optional[int]=1e-5 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Any=1.0 , **UpperCamelCase__ : Optional[int] , )-> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Optional[Any] = projection_dim __lowerCAmelCase: List[str] = num_hidden_layers __lowerCAmelCase: Tuple = num_attention_heads __lowerCAmelCase: Union[str, Any] = num_channels __lowerCAmelCase: Optional[int] = patch_size __lowerCAmelCase: str = image_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Tuple = initializer_factor __lowerCAmelCase: List[str] = attention_dropout __lowerCAmelCase: List[Any] = layer_norm_eps __lowerCAmelCase: List[str] = hidden_act @classmethod def lowercase_ ( cls : int , UpperCamelCase__ : Union[str, os.PathLike] , **UpperCamelCase__ : Optional[int])-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type") == "altclip": __lowerCAmelCase: str = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Optional[Any] = """altclip""" SCREAMING_SNAKE_CASE_ : str = True def __init__( self : Tuple , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Dict=7_6_8 , UpperCamelCase__ : Any=2.6592 , **UpperCamelCase__ : str)-> Tuple: '''simple docstring''' __lowerCAmelCase: str = kwargs.pop("text_config_dict" , UpperCamelCase__) __lowerCAmelCase: Dict = kwargs.pop("vision_config_dict" , UpperCamelCase__) super().__init__(**UpperCamelCase__) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __lowerCAmelCase: List[Any] = {} # This is the complete result when using `text_config_dict`. __lowerCAmelCase: Tuple = AltCLIPTextConfig(**UpperCamelCase__).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __lowerCAmelCase: str = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowerCAmelCase: Dict = ( f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " f"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(UpperCamelCase__) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: __lowerCAmelCase: str = {} # This is the complete result when using `vision_config_dict`. __lowerCAmelCase: Dict = AltCLIPVisionConfig(**UpperCamelCase__).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __lowerCAmelCase: int = { str(UpperCamelCase__): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __lowerCAmelCase: int = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowerCAmelCase: Optional[Any] = ( f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " f"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(UpperCamelCase__) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: __lowerCAmelCase: List[str] = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.") if vision_config is None: __lowerCAmelCase: Tuple = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.") __lowerCAmelCase: str = AltCLIPTextConfig(**UpperCamelCase__) __lowerCAmelCase: str = AltCLIPVisionConfig(**UpperCamelCase__) __lowerCAmelCase: Any = projection_dim __lowerCAmelCase: Any = logit_scale_init_value __lowerCAmelCase: int = 1.0 @classmethod def lowercase_ ( cls : Dict , UpperCamelCase__ : AltCLIPTextConfig , UpperCamelCase__ : AltCLIPVisionConfig , **UpperCamelCase__ : int)-> Tuple: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__) def lowercase_ ( self : List[Any])-> str: '''simple docstring''' __lowerCAmelCase: Dict = copy.deepcopy(self.__dict__) __lowerCAmelCase: List[str] = self.text_config.to_dict() __lowerCAmelCase: str = self.vision_config.to_dict() __lowerCAmelCase: Any = self.__class__.model_type return output
217
"""simple docstring""" from __future__ import annotations def a__ ( __SCREAMING_SNAKE_CASE ) -> bool: __lowerCAmelCase: Tuple = str(__SCREAMING_SNAKE_CASE ) return len(__SCREAMING_SNAKE_CASE ) == 9 and set(__SCREAMING_SNAKE_CASE ) == set("123456789" ) def a__ ( ) -> int | None: for base_num in range(9_9_9_9 , 4_9_9_9 , -1 ): __lowerCAmelCase: Tuple = 1_0_0_0_0_2 * base_num if is_9_pandigital(__SCREAMING_SNAKE_CASE ): return candidate for base_num in range(3_3_3 , 9_9 , -1 ): __lowerCAmelCase: int = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(__SCREAMING_SNAKE_CASE ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
217
1
"""simple docstring""" from math import ceil, sqrt def a__ ( snake_case__ = 1_00_00_00 ) -> int: lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"""{solution() = }""")
168
"""simple docstring""" from __future__ import annotations class __magic_name__ : '''simple docstring''' def __init__( self , _a ): """simple docstring""" lowerCamelCase = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(_a ) != 0: lowerCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_a ) != cols: raise error for value in row: if not isinstance(_a , (int, float) ): raise error lowerCamelCase = rows else: lowerCamelCase = [] def _lowerCAmelCase ( self ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCAmelCase ( self ): """simple docstring""" return len(self.rows ) @property def _lowerCAmelCase ( self ): """simple docstring""" return len(self.rows[0] ) @property def _lowerCAmelCase ( self ): """simple docstring""" return (self.num_rows, self.num_columns) @property def _lowerCAmelCase ( self ): """simple docstring""" return self.order[0] == self.order[1] def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_a ) def _lowerCAmelCase ( self ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCAmelCase ( self ): """simple docstring""" return bool(self.determinant() ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_a ).determinant() def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(_a , _a ) return -1 * self.get_minor(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" return Matrix( [ [self.get_minor(_a , _a ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCAmelCase ( self ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self ): """simple docstring""" return str(self.rows ) def __str__( self ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(_a ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(_a , _a ): raise type_error for value in row: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(_a ) else: lowerCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(_a , _a ): raise type_error for value in column: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: lowerCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowerCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , _a ): """simple docstring""" if not isinstance(_a , _a ): return NotImplemented return self.rows == other.rows def __ne__( self , _a ): """simple docstring""" return not self == other def __neg__( self ): """simple docstring""" return self * -1 def __add__( self , _a ): """simple docstring""" if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , _a ): """simple docstring""" if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , _a ): """simple docstring""" if isinstance(_a , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_a , _a ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(_a , _a ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self , _a ): """simple docstring""" if not isinstance(_a , _a ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) lowerCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCAmelCase ( cls , _a , _a ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(_a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
168
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'OwlViTImageProcessor' __snake_case = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[int] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[Any] ) -> int: '''simple docstring''' A__ : int =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase_ , ) A__ : Optional[Any] =kwargs.pop("""feature_extractor""" ) A__ : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : Dict , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]="max_length" , lowerCAmelCase_ : Dict="np" , **lowerCAmelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not isinstance(text[0] , lowerCAmelCase_ )): A__ : Any =[self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ )] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(text[0] , lowerCAmelCase_ ): A__ : str =[] # Maximum number of queries across batch A__ : Optional[int] =max([len(lowerCAmelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCAmelCase_ ) != max_num_queries: A__ : Any =t + [""" """] * (max_num_queries - len(lowerCAmelCase_ )) A__ : List[str] =self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) encodings.append(lowerCAmelCase_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": A__ : Union[str, Any] =np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A__ : Dict =np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A__ : Optional[Any] =jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A__ : str =jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A__ : Dict =torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) A__ : List[Any] =torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A__ : List[Any] =tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A__ : int =tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) A__ : str =BatchEncoding() A__ : Dict =input_ids A__ : Any =attention_mask if query_images is not None: A__ : Union[str, Any] =BatchEncoding() A__ : str =self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ).pixel_values A__ : Any =query_pixel_values if images is not None: A__ : Any =self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: A__ : List[str] =image_features.pixel_values return encoding elif query_images is not None and images is not None: A__ : List[Any] =image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def lowercase__ ( self : List[str] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[str] ) -> Any: '''simple docstring''' return self.image_processor.post_process(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Dict , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : List[str] ) -> Tuple: '''simple docstring''' return self.image_processor.post_process_object_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase_ , ) return self.image_processor_class @property def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase_ , ) return self.image_processor
134
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : int = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'xlm-roberta' def __init__( self : List[Any] , lowerCAmelCase_ : str=3_05_22 , lowerCAmelCase_ : Any=7_68 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Any=5_12 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any="absolute" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Any =vocab_size A__ : Any =hidden_size A__ : Any =num_hidden_layers A__ : str =num_attention_heads A__ : Union[str, Any] =hidden_act A__ : Union[str, Any] =intermediate_size A__ : Optional[Any] =hidden_dropout_prob A__ : List[Any] =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : int =type_vocab_size A__ : Any =initializer_range A__ : Union[str, Any] =layer_norm_eps A__ : str =position_embedding_type A__ : str =use_cache A__ : Any =classifier_dropout class lowerCamelCase ( lowercase_ ): '''simple docstring''' @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ : Union[str, Any] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : str ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
134
1
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCAmelCase_ = logging.getLogger() def __magic_name__ ( A ) -> int: snake_case = {} snake_case = os.path.join(A , 'all_results.json' ) if os.path.exists(A ): with open(A , 'r' ) as f: snake_case = json.load(A ) else: raise ValueError(F'''can\'t find {path}''' ) return results lowerCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCamelCase ( __lowerCAmelCase ): def _lowerCamelCase ( self ) -> str: import xla_spawn snake_case = self.get_auto_remove_tmp_dir() snake_case = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowercase_, 'argv', lowercase_ ): snake_case = time() xla_spawn.main() snake_case = time() snake_case = get_results(lowercase_ ) self.assertGreaterEqual(result['eval_accuracy'], 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start, 500 ) def _lowerCamelCase ( self ) -> Any: import xla_spawn snake_case = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(lowercase_, 'argv', lowercase_ ): xla_spawn.main()
332
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
1
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase=768 ) -> int: super().__init__(lowercase ) lowerCAmelCase = proj_size lowerCAmelCase = CLIPVisionModel(lowercase ) lowerCAmelCase = PaintByExampleMapper(lowercase ) lowerCAmelCase = nn.LayerNorm(config.hidden_size ) lowerCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowerCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _snake_case ( self , lowercase , lowercase=False ) -> Optional[Any]: lowerCAmelCase = self.model(pixel_values=lowercase ) lowerCAmelCase = clip_output.pooler_output lowerCAmelCase = self.mapper(latent_states[:, None] ) lowerCAmelCase = self.final_layer_norm(lowercase ) lowerCAmelCase = self.proj_out(lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowercase ( nn.Module ): def __init__( self , lowercase ) -> str: super().__init__() lowerCAmelCase = (config.num_hidden_layers + 1) // 5 lowerCAmelCase = config.hidden_size lowerCAmelCase = 1 lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock(lowercase , lowercase , lowercase , activation_fn="""gelu""" , attention_bias=lowercase ) for _ in range(lowercase ) ] ) def _snake_case ( self , lowercase ) -> Optional[int]: for block in self.blocks: lowerCAmelCase = block(lowercase ) return hidden_states
46
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : List[str] ): '''simple docstring''' lowercase = '' for i in table: res += inp[i - 1] return res def _SCREAMING_SNAKE_CASE ( __snake_case : str ): '''simple docstring''' return data[1:] + data[0] def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : Optional[int] ): '''simple docstring''' lowercase = '' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : Optional[Any] ): '''simple docstring''' lowercase = int('0b' + data[0] + data[-1] , 2 ) lowercase = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): '''simple docstring''' lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(__snake_case , __snake_case ) lowercase = xor(__snake_case , __snake_case ) lowercase = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 lowercase = apply_sbox(__snake_case , temp[4:] ) lowercase = '0' * (2 - len(__snake_case )) + l # noqa: E741 lowercase = '0' * (2 - len(__snake_case )) + r lowercase = apply_table(l + r , __snake_case ) lowercase = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": _UpperCamelCase : Dict = input('Enter 10 bit key: ') _UpperCamelCase : int = input('Enter 8 bit message: ') _UpperCamelCase : Optional[int] = [6, 3, 7, 4, 8, 5, 1_0, 9] _UpperCamelCase : Optional[Any] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] _UpperCamelCase : str = [2, 4, 3, 1] _UpperCamelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] _UpperCamelCase : List[str] = [4, 1, 3, 5, 7, 2, 8, 6] _UpperCamelCase : int = [4, 1, 2, 3, 2, 3, 4, 1] _UpperCamelCase : Optional[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _UpperCamelCase : Optional[int] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _UpperCamelCase : str = apply_table(key, paa_table) _UpperCamelCase : Union[str, Any] = temp[:5] _UpperCamelCase : Dict = temp[5:] _UpperCamelCase : List[Any] = left_shift(left) _UpperCamelCase : str = left_shift(right) _UpperCamelCase : int = apply_table(left + right, pa_table) _UpperCamelCase : Optional[int] = left_shift(left) _UpperCamelCase : Any = left_shift(right) _UpperCamelCase : str = left_shift(left) _UpperCamelCase : Tuple = left_shift(right) _UpperCamelCase : Union[str, Any] = apply_table(left + right, pa_table) # encryption _UpperCamelCase : Tuple = apply_table(message, IP) _UpperCamelCase : Any = function(expansion, sa, sa, keya, temp) _UpperCamelCase : List[Any] = temp[4:] + temp[:4] _UpperCamelCase : List[str] = function(expansion, sa, sa, keya, temp) _UpperCamelCase : int = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption _UpperCamelCase : List[Any] = apply_table(CT, IP) _UpperCamelCase : Optional[Any] = function(expansion, sa, sa, keya, temp) _UpperCamelCase : int = temp[4:] + temp[:4] _UpperCamelCase : str = function(expansion, sa, sa, keya, temp) _UpperCamelCase : List[Any] = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
220
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
143
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: UpperCamelCase__ = None UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '▁' UpperCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } UpperCamelCase__ = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Union[str, Any] = PegasusTokenizer __UpperCAmelCase : Any = ['input_ids', 'attention_mask'] def __init__(self : Optional[int] , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]="<pad>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : int="<mask_2>" , __UpperCAmelCase : Optional[Any]="<mask_1>" , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=1_0_3 , **__UpperCAmelCase : str , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is""" f""" {type(__UpperCAmelCase )}""" ) UpperCAmelCase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(__UpperCAmelCase ) , self.offset - 1 ) ] if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase__ = additional_special_tokens_extended else: UpperCAmelCase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = vocab_file UpperCAmelCase__ = False if not self.vocab_file else True def lowercase_ (self : List[Any] , __UpperCAmelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List , __UpperCAmelCase : Optional[List] = None , __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ (self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
143
1
def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" a__ : Optional[int] =[1] for i in range(2 , SCREAMING_SNAKE_CASE ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" a__ : int =[] a__ : Optional[Any] =list(range(SCREAMING_SNAKE_CASE ) ) # Find permutation while factorials: a__ : int =factorials.pop() a__ , a__ : int =divmod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
95
"""simple docstring""" def lowercase ( __snake_case : int = 1_0_0 ): lowercase_ : str = 0 lowercase_ : List[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
33
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = process SCREAMING_SNAKE_CASE_ = params def __len__( self ) -> Union[str, Any]: return len(self.dataset ) def __getitem__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.dataset[i] SCREAMING_SNAKE_CASE_ = self.process(_A , **self.params ) return processed class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A , _A=None ) -> List[Any]: SCREAMING_SNAKE_CASE_ = loader SCREAMING_SNAKE_CASE_ = infer SCREAMING_SNAKE_CASE_ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = loader_batch_size # Internal bookkeeping SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None def __len__( self ) -> Any: return len(self.loader ) def __iter__( self ) -> str: SCREAMING_SNAKE_CASE_ = iter(self.loader ) return self def _UpperCamelCase ( self ) -> Optional[Any]: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice SCREAMING_SNAKE_CASE_ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) SCREAMING_SNAKE_CASE_ = {} for k, element in self._loader_batch_data.items(): if isinstance(_A , _A ): # Convert ModelOutput to tuple first SCREAMING_SNAKE_CASE_ = element.to_tuple() if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_A , _A ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around SCREAMING_SNAKE_CASE_ = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE_ = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE_ = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. SCREAMING_SNAKE_CASE_ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 SCREAMING_SNAKE_CASE_ = self._loader_batch_data.__class__(_A ) self._loader_batch_index += 1 return result def _UpperCamelCase ( self ) -> Dict: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch SCREAMING_SNAKE_CASE_ = next(self.iterator ) SCREAMING_SNAKE_CASE_ = self.infer(_A , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_A , torch.Tensor ): SCREAMING_SNAKE_CASE_ = processed else: SCREAMING_SNAKE_CASE_ = list(processed.keys() )[0] SCREAMING_SNAKE_CASE_ = processed[key] if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: SCREAMING_SNAKE_CASE_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE_ = observed_batch_size # Setting internal index to unwrap the batch SCREAMING_SNAKE_CASE_ = processed SCREAMING_SNAKE_CASE_ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A , _A=None ) -> Union[str, Any]: super().__init__(_A , _A , _A ) def __iter__( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = iter(self.loader ) SCREAMING_SNAKE_CASE_ = None return self def _UpperCamelCase ( self ) -> str: if self.subiterator is None: SCREAMING_SNAKE_CASE_ = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item SCREAMING_SNAKE_CASE_ = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators SCREAMING_SNAKE_CASE_ = self.infer(next(self.iterator ) , **self.params ) SCREAMING_SNAKE_CASE_ = next(self.subiterator ) return processed class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __iter__( self ) -> Dict: SCREAMING_SNAKE_CASE_ = iter(self.loader ) return self def _UpperCamelCase ( self ) -> Dict: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE_ = self.loader_batch_item() SCREAMING_SNAKE_CASE_ = item.pop('''is_last''' ) accumulator.append(_A ) if is_last: return accumulator while not is_last: SCREAMING_SNAKE_CASE_ = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_A , torch.Tensor ): SCREAMING_SNAKE_CASE_ = processed else: SCREAMING_SNAKE_CASE_ = list(processed.keys() )[0] SCREAMING_SNAKE_CASE_ = processed[key] if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: SCREAMING_SNAKE_CASE_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE_ = observed_batch_size SCREAMING_SNAKE_CASE_ = processed SCREAMING_SNAKE_CASE_ = 0 while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE_ = self.loader_batch_item() SCREAMING_SNAKE_CASE_ = item.pop('''is_last''' ) accumulator.append(_A ) if is_last: return accumulator else: SCREAMING_SNAKE_CASE_ = processed SCREAMING_SNAKE_CASE_ = item.pop('''is_last''' ) accumulator.append(_A ) return accumulator class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = key def __len__( self ) -> str: return len(self.dataset ) def __getitem__( self , _A ) -> Optional[Any]: return self.dataset[i][self.key] class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = keya SCREAMING_SNAKE_CASE_ = keya def __len__( self ) -> Tuple: return len(self.dataset ) def __getitem__( self , _A ) -> Any: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
257
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __UpperCAmelCase = ["bert-base-uncased", "bert-base-cased"] __UpperCAmelCase = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class UpperCamelCase__ ( tf.keras.Model ): """simple docstring""" def __init__( self , _A ) -> int: super().__init__() SCREAMING_SNAKE_CASE_ = tokenizer SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = TFAutoModel.from_config(_A ) def _UpperCamelCase ( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A ) SCREAMING_SNAKE_CASE_ = self.bert(**_A ) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Optional[Any]: super().setUp() SCREAMING_SNAKE_CASE_ = [ BertTokenizer.from_pretrained(_A ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false SCREAMING_SNAKE_CASE_ = [TFBertTokenizer.from_pretrained(_A ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_A , use_fast_bert_tokenizer=_A ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE_ = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] SCREAMING_SNAKE_CASE_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _UpperCamelCase ( self ) -> str: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): SCREAMING_SNAKE_CASE_ = tokenizer(_A , return_tensors='''tf''' , padding='''longest''' ) SCREAMING_SNAKE_CASE_ = tf_tokenizer(_A ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _UpperCamelCase ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ = tf_tokenizer(self.paired_sentences ) SCREAMING_SNAKE_CASE_ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _UpperCamelCase ( self ) -> int: for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ = tf.function(_A ) for test_inputs in (self.test_sentences, self.paired_sentences): SCREAMING_SNAKE_CASE_ = tf.constant(_A ) SCREAMING_SNAKE_CASE_ = compiled_tokenizer(_A ) SCREAMING_SNAKE_CASE_ = tf_tokenizer(_A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _UpperCamelCase ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ = ModelToSave(tokenizer=_A ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(self.test_sentences ) SCREAMING_SNAKE_CASE_ = model(_A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE_ = Path(_A ) / '''saved.model''' model.save(_A ) SCREAMING_SNAKE_CASE_ = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ = loaded_model(_A ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
257
1
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowercase__ ( snake_case_ :Optional[int] ): __UpperCAmelCase = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def lowercase__ ( snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def lowercase__ ( snake_case_ :Optional[int] ): __UpperCAmelCase = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', '''stage2.cls_token''') ) return token def lowercase__ ( ): __UpperCAmelCase = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[int] , snake_case_ :Union[str, Any] , snake_case_ :Any ): __UpperCAmelCase = '''imagenet-1k-id2label.json''' __UpperCAmelCase = 1_000 __UpperCAmelCase = '''huggingface/label-files''' __UpperCAmelCase = num_labels __UpperCAmelCase = json.load(open(cached_download(hf_hub_url(snake_case_ , snake_case_ , repo_type='''dataset''' ) ) , '''r''' ) ) __UpperCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} __UpperCAmelCase = idalabel __UpperCAmelCase = {v: k for k, v in idalabel.items()} __UpperCAmelCase = __UpperCAmelCase = CvtConfig(num_labels=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __UpperCAmelCase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __UpperCAmelCase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __UpperCAmelCase = [2, 2, 20] __UpperCAmelCase = [3, 12, 16] __UpperCAmelCase = [192, 768, 1_024] __UpperCAmelCase = CvtForImageClassification(snake_case_ ) __UpperCAmelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __UpperCAmelCase = image_size __UpperCAmelCase = torch.load(snake_case_ , map_location=torch.device('''cpu''' ) ) __UpperCAmelCase = OrderedDict() __UpperCAmelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __UpperCAmelCase = list_of_state_dict + cls_token(snake_case_ ) __UpperCAmelCase = list_of_state_dict + embeddings(snake_case_ ) for cnt in range(config.depth[idx] ): __UpperCAmelCase = list_of_state_dict + attention(snake_case_ , snake_case_ ) __UpperCAmelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(snake_case_ ) for i in range(len(snake_case_ ) ): __UpperCAmelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_84, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowercase : List[Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "swinv2" a__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ): super().__init__(**_lowercase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) __UpperCAmelCase = (0, 0, 0, 0)
332
1
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __lowercase ( snake_case_ : Union[str, Any]="" ) ->str: '''simple docstring''' __A : Tuple = tempfile.mkdtemp() return os.path.join(snake_case_ ,str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 __A : str = AgentAudio(__lowerCamelCase ) __A : Optional[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__lowerCamelCase , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(__lowerCamelCase ) ) # Ensure that the file contains the same value as the original tensor __A , __A : Tuple = sf.read(__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , torch.tensor(__lowerCamelCase ) , atol=1e-4 ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5 __A : Optional[int] = get_new_path(suffix='''.wav''' ) sf.write(__lowerCamelCase , __lowerCamelCase , 1_6000 ) __A : Union[str, Any] = AgentAudio(__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , __lowerCamelCase ) @require_vision @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' __A : Any = torch.randint(0 , 256 , (64, 64, 3) ) __A : List[str] = AgentImage(__lowerCamelCase ) __A : Tuple = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__lowerCamelCase , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__lowerCamelCase ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' __A : str = Image.open(__lowerCamelCase ) __A : List[Any] = AgentImage(__lowerCamelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__lowerCamelCase ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' __A : Optional[int] = Image.open(__lowerCamelCase ) __A : Any = AgentImage(__lowerCamelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__lowerCamelCase ) ) class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = '''Hey!''' __A : Tuple = AgentText(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , agent_type.to_string() ) self.assertEqual(__lowerCamelCase , agent_type.to_raw() ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
291
"""simple docstring""" import numpy as np import qiskit def __lowercase ( snake_case_ : int = 8 ,snake_case_ : int | None = None ) ->str: '''simple docstring''' __A : str = np.random.default_rng(seed=snake_case_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __A : str = 6 * key_len # Measurement basis for Alice's qubits. __A : Any = rng.integers(2 ,size=snake_case_ ) # The set of states Alice will prepare. __A : Any = rng.integers(2 ,size=snake_case_ ) # Measurement basis for Bob's qubits. __A : str = rng.integers(2 ,size=snake_case_ ) # Quantum Circuit to simulate BB84 __A : Dict = qiskit.QuantumCircuit(snake_case_ ,name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(snake_case_ ): if alice_state[index] == 1: bbaa_circ.x(snake_case_ ) if alice_basis[index] == 1: bbaa_circ.h(snake_case_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(snake_case_ ): if bob_basis[index] == 1: bbaa_circ.h(snake_case_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __A : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __A : List[str] = qiskit.execute(snake_case_ ,snake_case_ ,shots=1 ,seed_simulator=snake_case_ ) # Returns the result of measurement. __A : Union[str, Any] = job.result().get_counts(snake_case_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __A : int = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( snake_case_ ,snake_case_ ,snake_case_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __A : Union[str, Any] = gen_key[:key_len] if len(snake_case_ ) >= key_len else gen_key.ljust(snake_case_ ,'''0''' ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
291
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Dict: '''simple docstring''' A__ = [] A__ = [] A__ = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator A__ = len(SCREAMING_SNAKE_CASE_ ) if (len(SCREAMING_SNAKE_CASE_ ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(SCREAMING_SNAKE_CASE_ ) , "Postfix".center(SCREAMING_SNAKE_CASE_ ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(SCREAMING_SNAKE_CASE_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(SCREAMING_SNAKE_CASE_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(SCREAMING_SNAKE_CASE_ ) == 0: stack.append(SCREAMING_SNAKE_CASE_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(SCREAMING_SNAKE_CASE_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(SCREAMING_SNAKE_CASE_ ) # push x to stack print( x.center(8 ) , ("".join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , ("".join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , sep=" | " , ) # Output in tabular format while len(SCREAMING_SNAKE_CASE_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , ("".join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , sep=" | " , ) # Output in tabular format return "".join(SCREAMING_SNAKE_CASE_ ) # return Postfix as str def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> List[str]: '''simple docstring''' A__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if infix[i] == "(": A__ = ")" # change "(" to ")" elif infix[i] == ")": A__ = "(" # change ")" to "(" return (infix_2_postfix("".join(SCREAMING_SNAKE_CASE_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowerCAmelCase__ = input("""\nEnter an Infix Equation = """) # Input an Infix equation lowerCAmelCase__ = """""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
68
import numpy as np from PIL import Image def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = np.array(lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __A = 0 __A = 0 __A = 0 __A = 0 # compute the shape of the output matrix __A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __A = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __A = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __A = 0 __A = 0 return updated_arr def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = np.array(lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __A = 0 __A = 0 __A = 0 __A = 0 # compute the shape of the output matrix __A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __A = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __A = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __A = 0 __A = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
117
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase : UpperCAmelCase__ = 42 # setable values UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None @classmethod def A_ ( cls : List[str] , UpperCAmelCase : CommonSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray ) -> Union[str, Any]: return cls(common=UpperCAmelCase , init_noise_sigma=UpperCAmelCase , timesteps=UpperCAmelCase ) @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): UpperCAmelCase__ = [e.name for e in FlaxKarrasDiffusionSchedulers] UpperCAmelCase__ = 42 @property def A_ ( self : List[str] ) -> Optional[Any]: return True @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : float = 0.0_0_0_1 , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : str = "linear" , UpperCAmelCase : Optional[jnp.ndarray] = None , UpperCAmelCase : str = "fixed_small" , UpperCAmelCase : bool = True , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : jnp.dtype = jnp.floataa , ) -> Tuple: lowerCamelCase__ : Optional[Any] = dtype def A_ ( self : Optional[Any] , UpperCAmelCase : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: if common is None: lowerCamelCase__ : Tuple = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCamelCase__ : List[Any] = jnp.array(1.0 , dtype=self.dtype ) lowerCamelCase__ : str = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=UpperCAmelCase , init_noise_sigma=UpperCAmelCase , timesteps=UpperCAmelCase , ) def A_ ( self : Dict , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : Optional[int] = None ) -> jnp.ndarray: return sample def A_ ( self : int , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : int , UpperCAmelCase : Tuple = () ) -> DDPMSchedulerState: lowerCamelCase__ : List[str] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCamelCase__ : int = (jnp.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase , ) def A_ ( self : str , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : Any , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[Any]=None ) -> Any: lowerCamelCase__ : List[str] = state.common.alphas_cumprod[t] lowerCamelCase__ : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase__ : Dict = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCamelCase__ : Tuple = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCamelCase__ : Optional[int] = jnp.clip(UpperCAmelCase , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCamelCase__ : List[str] = jnp.log(jnp.clip(UpperCAmelCase , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCamelCase__ : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCamelCase__ : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCamelCase__ : str = variance lowerCamelCase__ : Dict = state.common.betas[t] lowerCamelCase__ : int = (predicted_variance + 1) / 2 lowerCamelCase__ : str = frac * max_log + (1 - frac) * min_log return variance def A_ ( self : Tuple , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : Optional[jax.random.KeyArray] = None , UpperCAmelCase : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: lowerCamelCase__ : List[Any] = timestep if key is None: lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCamelCase__ , lowerCamelCase__ : List[Any] = jnp.split(UpperCAmelCase , sample.shape[1] , axis=1 ) else: lowerCamelCase__ : str = None # 1. compute alphas, betas lowerCamelCase__ : Tuple = state.common.alphas_cumprod[t] lowerCamelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCamelCase__ : Union[str, Any] = 1 - alpha_prod_t lowerCamelCase__ : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase__ : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase__ : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase__ : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase__ : List[str] = jnp.clip(UpperCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : Dict = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCamelCase__ : Optional[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCamelCase__ : int = jax.random.split(UpperCAmelCase , num=1 ) lowerCamelCase__ : Tuple = jax.random.normal(UpperCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(UpperCAmelCase , UpperCAmelCase , predicted_variance=UpperCAmelCase ) ** 0.5) * noise lowerCamelCase__ : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCamelCase__ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCAmelCase , state=UpperCAmelCase ) def A_ ( self : Any , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , ) -> jnp.ndarray: return add_noise_common(state.common , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A_ ( self : str , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , ) -> jnp.ndarray: return get_velocity_common(state.common , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __len__( self : Dict ) -> Any: return self.config.num_train_timesteps
45
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : int = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase_( lowerCamelCase_ ) -> Any: _lowercase : Any = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> str: _lowercase , _lowercase : List[str] = emb.weight.shape _lowercase : int = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) _lowercase : List[Any] = emb.weight.data return lin_layer def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Optional[Any] = torch.load(lowerCamelCase_ , map_location='cpu' ) _lowercase : Union[str, Any] = mam_aaa['args'] or mam_aaa['cfg']['model'] _lowercase : Any = mam_aaa['model'] remove_ignore_keys_(lowerCamelCase_ ) _lowercase : List[Any] = state_dict['encoder.embed_tokens.weight'].shape[0] _lowercase : List[Any] = MaMaaaConfig( vocab_size=lowerCamelCase_ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) _lowercase : Optional[Any] = state_dict['decoder.embed_tokens.weight'] _lowercase : Optional[int] = MaMaaaForConditionalGeneration(lowerCamelCase_ ) model.model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) _lowercase : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
21
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
0
import random class __snake_case : @staticmethod def UpperCAmelCase__ ( snake_case__ ) -> tuple[list[int], list[int]]: '''simple docstring''' UpperCAmelCase : str =[ord(snake_case__ ) for i in text] UpperCAmelCase : Optional[Any] =[] UpperCAmelCase : Optional[Any] =[] for i in plain: UpperCAmelCase : List[str] =random.randint(1 , 300 ) UpperCAmelCase : Optional[int] =(i + k) * k cipher.append(snake_case__ ) key.append(snake_case__ ) return cipher, key @staticmethod def UpperCAmelCase__ ( snake_case__ , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : str =[] for i in range(len(snake_case__ ) ): UpperCAmelCase : Union[str, Any] =int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(snake_case__ ) ) return "".join(snake_case__ ) if __name__ == "__main__": __snake_case , __snake_case = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
78
from __future__ import annotations def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> list[list[int]]: '''simple docstring''' UpperCAmelCase : list[list[int]] =[] create_all_state(1 , __lowerCAmelCase , __lowerCAmelCase , [] , __lowerCAmelCase ) return result def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )-> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(__lowerCAmelCase , total_number - level + 2 ): current_list.append(__lowerCAmelCase ) create_all_state(i + 1 , __lowerCAmelCase , level - 1 , __lowerCAmelCase , __lowerCAmelCase ) current_list.pop() def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' for i in total_list: print(*__lowerCAmelCase ) if __name__ == "__main__": __snake_case = 4 __snake_case = 2 __snake_case = generate_all_combinations(n, k) print_all_state(total_list)
78
1
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : List[Any] = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowerCAmelCase_ : int = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) assert base_extractor.is_extractable(__UpperCamelCase ) lowerCAmelCase_ : List[str] = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(__UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowerCAmelCase_ : List[str] = file_path.read_text(encoding="utf-8" ) else: lowerCAmelCase_ : Dict = output_path.read_text(encoding="utf-8" ) lowerCAmelCase_ : Tuple = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Any: """simple docstring""" lowerCAmelCase_ : Tuple = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } lowerCAmelCase_ : Tuple = input_paths[compression_format] if input_path is None: lowerCAmelCase_ : Optional[Any] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) lowerCAmelCase_ : Dict = Extractor.infer_extractor_format(__UpperCamelCase ) assert extractor_format is not None lowerCAmelCase_ : Optional[Any] = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowerCAmelCase_ : List[Any] = file_path.read_text(encoding="utf-8" ) else: lowerCAmelCase_ : Dict = output_path.read_text(encoding="utf-8" ) lowerCAmelCase_ : Tuple = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: """simple docstring""" import tarfile lowerCAmelCase_ : List[str] = tmp_path / "data_dot_dot" directory.mkdir() lowerCAmelCase_ : str = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(__UpperCamelCase , "w" ) as f: f.add(__UpperCamelCase , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" import tarfile lowerCAmelCase_ : List[str] = tmp_path / "data_sym_link" directory.mkdir() lowerCAmelCase_ : Optional[Any] = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=__UpperCamelCase ) with tarfile.TarFile(__UpperCamelCase , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } lowerCAmelCase_ : Union[str, Any] = insecure_tar_files[insecure_tar_file] lowerCAmelCase_ : Optional[int] = tmp_path / "extracted" TarExtractor.extract(__UpperCamelCase , __UpperCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCamelCase ( __UpperCamelCase ) -> Any: """simple docstring""" lowerCAmelCase_ : str = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 lowerCAmelCase_ : Optional[int] = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(__UpperCamelCase ) assert zipfile.is_zipfile(str(__UpperCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__UpperCamelCase ) # but we're right
241
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowercase__ = get_logger() lowercase__ = None class __lowerCamelCase ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a_ : Union[str, Any]=None , a_ : Optional[Any]=None , **a_ : Tuple ): super().__init__(features=a_ ) import jax from jaxlib.xla_client import Device if isinstance(a_ , a_ ): raise ValueError( f'''Expected {device} to be a `str` not {type(a_ )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) lowerCAmelCase_ : List[Any] = device if isinstance(a_ , a_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase_ : Dict = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) lowerCAmelCase_ : Tuple = str(jax.devices()[0] ) lowerCAmelCase_ : Dict = jnp_array_kwargs @staticmethod def lowerCamelCase ( ): import jax return {str(a_ ): device for device in jax.devices()} def lowerCamelCase ( self : Tuple , a_ : Dict ): import jax import jax.numpy as jnp if isinstance(a_ , a_ ) and column: if all( isinstance(a_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a_ , axis=0 ) return column def lowerCamelCase ( self : Tuple , a_ : Tuple ): import jax import jax.numpy as jnp if isinstance(a_ , (str, bytes, type(a_ )) ): return value elif isinstance(a_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase_ : Any = {} if isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCAmelCase_ : List[Any] = {"dtype": jnp.intaa} else: lowerCAmelCase_ : Tuple = {"dtype": jnp.intaa} elif isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase_ : Optional[int] = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ : List[str] = np.asarray(a_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase_ : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a_ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCamelCase ( self : Any , a_ : List[str] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a_ , "__array__" ) and not isinstance(a_ , jax.Array ): lowerCAmelCase_ : str = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) elif isinstance(a_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) return self._tensorize(a_ ) def lowerCamelCase ( self : Dict , a_ : dict ): return map_nested(self._recursive_tensorize , a_ , map_list=a_ ) def lowerCamelCase ( self : List[str] , a_ : pa.Table ): lowerCAmelCase_ : Tuple = self.numpy_arrow_extractor().extract_row(a_ ) lowerCAmelCase_ : Union[str, Any] = self.python_features_decoder.decode_row(a_ ) return self.recursive_tensorize(a_ ) def lowerCamelCase ( self : Any , a_ : pa.Table ): lowerCAmelCase_ : Dict = self.numpy_arrow_extractor().extract_column(a_ ) lowerCAmelCase_ : Optional[int] = self.python_features_decoder.decode_column(a_ , pa_table.column_names[0] ) lowerCAmelCase_ : List[str] = self.recursive_tensorize(a_ ) lowerCAmelCase_ : Optional[Any] = self._consolidate(a_ ) return column def lowerCamelCase ( self : Tuple , a_ : pa.Table ): lowerCAmelCase_ : Tuple = self.numpy_arrow_extractor().extract_batch(a_ ) lowerCAmelCase_ : Tuple = self.python_features_decoder.decode_batch(a_ ) lowerCAmelCase_ : List[str] = self.recursive_tensorize(a_ ) for column_name in batch: lowerCAmelCase_ : Tuple = self._consolidate(batch[column_name] ) return batch
241
1
A : Dict = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A : Optional[int] = [{'type': 'code', 'content': INSTALL_CONTENT}] A : Optional[int] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
371
from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( a__ ) -> List[str]: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += [key] setattr(a__ , '''handle_key''' , a__ ) return func return decorator def __lowerCAmelCase ( *a__ ) -> str: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += keys setattr(a__ , '''handle_key''' , a__ ) return func return decorator class __A( a ): def __new__( cls , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = super().__new__(cls , _snake_case , _snake_case , _snake_case ) if not hasattr(_snake_case , '''key_handler''' ): setattr(_snake_case , '''key_handler''' , {} ) setattr(_snake_case , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __a = getattr(_snake_case , '''handle_key''' , [] ) for key in handled_keys: __a = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> List[str]: '''simple docstring''' __a = get_character() if char != KEYMAP["undefined"]: __a = ord(_snake_case ) __a = cls.key_handler.get(_snake_case ) if handler: __a = char return handler(cls ) else: return None def __lowerCAmelCase ( cls ) -> Union[str, Any]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
33
0
"""simple docstring""" from math import factorial a = {str(d): factorial(d) for d in range(1_0)} def lowercase (snake_case__ : int ) -> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(snake_case__ ) ) def lowercase () -> int: '''simple docstring''' lowerCAmelCase = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case__ ) if sum_of_digit_factorial(snake_case__ ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
155
"""simple docstring""" from itertools import permutations def lowercase (snake_case__ : tuple ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCAmelCase = [7, 11, 13, 17] for i, test in enumerate(snake_case__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase (snake_case__ : int = 10 ) -> int: '''simple docstring''' return sum( int("""""".join(map(snake_case__ , snake_case__ ) ) ) for num in permutations(range(snake_case__ ) ) if is_substring_divisible(snake_case__ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
155
1
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class A__ ( lowercase__ ): A__ = 0 A__ = False A__ = 3.0 class A__ ( unittest.TestCase ): def A ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCamelCase ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _SCREAMING_SNAKE_CASE =Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _SCREAMING_SNAKE_CASE =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCamelCase ) @require_multi_gpu def A ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowerCamelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCamelCase : List[str] = torch.nn.Linear(1_0_0, 2_0_0) lowerCamelCase : str = accelerator.prepare(model) # Check the values changed in kwargs lowerCamelCase : str = '' lowerCamelCase : List[Any] = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
358
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[int] = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
114
0
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase_ ( A__ : Tuple=None ) -> Optional[int]: """simple docstring""" if subparsers is not None: snake_case = subparsers.add_parser("env" ) else: snake_case = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=A__ , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def lowercase_ ( A__ : Any ) -> Union[str, Any]: """simple docstring""" snake_case = torch.__version__ snake_case = torch.cuda.is_available() snake_case = is_xpu_available() snake_case = is_npu_available() snake_case = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(A__ ): snake_case = load_config_from_file(args.config_file ).to_dict() snake_case = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})', "PyTorch XPU available": str(A__ ), "PyTorch NPU available": str(A__ ), "System RAM": F'{psutil.virtual_memory().total / 1024 ** 3:.2f} GB', } if pt_cuda_available: snake_case = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F'- {prop}: {val}' for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) snake_case = ( "\n".join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(A__ , A__ ) else F'\t{accelerate_config}' ) print(A__ ) snake_case = accelerate_config return info def lowercase_ ( ) -> int: """simple docstring""" snake_case = env_command_parser() snake_case = parser.parse_args() env_command(A__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
363
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _A = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } _A = {"mobilebert-uncased": 5_12} _A = {} class lowerCamelCase ( A_ ): UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = MobileBertTokenizer def __init__(self : Any , _A : str=None , _A : str=None , _A : Union[str, Any]=True , _A : Optional[Any]="[UNK]" , _A : int="[SEP]" , _A : Dict="[PAD]" , _A : int="[CLS]" , _A : Union[str, Any]="[MASK]" , _A : Any=True , _A : Dict=None , **_A : List[str] , ) -> List[str]: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _A ) != do_lower_case or normalizer_state.get("strip_accents" , _A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _A ) != tokenize_chinese_chars ): snake_case = getattr(_A , normalizer_state.pop("type" ) ) snake_case = do_lower_case snake_case = strip_accents snake_case = tokenize_chinese_chars snake_case = normalizer_class(**_A ) snake_case = do_lower_case def UpperCAmelCase(self : List[str] , _A : Union[str, Any] , _A : Dict=None ) -> Optional[Any]: snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase(self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase(self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
137
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github _UpperCamelCase : Tuple = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = Github(os.environ['GITHUB_TOKEN'] ) lowercase = g.get_repo('huggingface/diffusers' ) lowercase = repo.get_issues(state='open' ) for issue in open_issues: lowercase = sorted(issue.get_comments() , key=lambda __snake_case : i.created_at , reverse=__snake_case ) lowercase = comments[0] if len(__snake_case ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
220
"""simple docstring""" import requests from bsa import BeautifulSoup def _SCREAMING_SNAKE_CASE ( __snake_case : str = "AAPL" ): '''simple docstring''' lowercase = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' lowercase = BeautifulSoup(requests.get(__snake_case ).text , 'html.parser' ) lowercase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
220
1
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase_ : Optional[int] = 5_0_0_0_0 lowerCAmelCase_ : str = 5_0_0_0 lowerCAmelCase_ : Optional[int] = os.path.split(__file__) lowerCAmelCase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' for i in range(lowerCAmelCase ): UpperCAmelCase = dataset[i] @get_duration def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' for i in range(0 , len(lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase = dataset[i : i + batch_size] @get_duration def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' with dataset.formatted_as(type=lowerCAmelCase ): for i in range(lowerCAmelCase ): UpperCAmelCase = dataset[i] @get_duration def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' with dataset.formatted_as(type=lowerCAmelCase ): for i in range(0 , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = dataset[i : i + batch_size] def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = {"""num examples""": SPEED_TEST_N_EXAMPLES} UpperCAmelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] UpperCAmelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) UpperCAmelCase = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) UpperCAmelCase = generate_example_dataset( os.path.join(lowerCAmelCase , """dataset.arrow""" ) , lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes={"""list""": (100,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase ) ) UpperCAmelCase = func(lowerCAmelCase , **lowerCAmelCase ) print("""shuffling dataset""" ) UpperCAmelCase = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(lowerCAmelCase ) ) UpperCAmelCase = func( lowerCAmelCase , **lowerCAmelCase ) with open(lowerCAmelCase , """wb""" ) as f: f.write(json.dumps(lowerCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
365
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( a_ ): def __init__( self , *snake_case__ , snake_case__=None , snake_case__=None , **snake_case__ ) -> Optional[Any]: """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function def UpperCamelCase_ ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = "eval" ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(snake_case__ ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( snake_case__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , metric_key_prefix=snake_case__ , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case__ , snake_case__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase = self.post_process_function(snake_case__ , snake_case__ , output.predictions ) UpperCAmelCase = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(snake_case__ ) metrics.update(output.metrics ) else: UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(snake_case__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case__ ) return metrics def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__ = "test" ) -> Dict: """simple docstring""" UpperCAmelCase = self.get_test_dataloader(snake_case__ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( snake_case__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , metric_key_prefix=snake_case__ , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case__ , snake_case__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(snake_case__ , snake_case__ , output.predictions , """predict""" ) UpperCAmelCase = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(snake_case__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case__ )
248
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowercase_ = "base_with_context" def a ( A__ : Optional[int] , A__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _lowercase =nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) _lowercase =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowercase =weights[F'''layers_{lyr_num}'''] _lowercase =nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _lowercase =ly_weight['attention'] _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def a ( A__ : Optional[int] , A__ : Optional[int] ) -> Dict: """simple docstring""" _lowercase =nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) _lowercase =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowercase =weights[F'''layers_{lyr_num}'''] _lowercase =ly_weight['attention'] _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowercase =nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _lowercase =nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def a ( A__ : List[str] , A__ : List[Any] ) -> Any: """simple docstring""" _lowercase =nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) _lowercase =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCamelCase ) _lowercase =nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowercase =weights[F'''layers_{lyr_num}'''] _lowercase =nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) _lowercase =nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) _lowercase =ly_weight['self_attention'] _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowercase =ly_weight['MultiHeadDotProductAttention_0'] _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowercase =nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _lowercase =nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _lowercase =nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) _lowercase =nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def a ( A__ : Dict ) -> Union[str, Any]: """simple docstring""" _lowercase =checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowercase =jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) _lowercase =[ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] _lowercase =os.path.join(args.checkpoint_path , '..' , 'config.gin' ) _lowercase =inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) _lowercase =inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) _lowercase =DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) _lowercase =SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _lowercase =SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _lowercase =TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowercase =load_notes_encoder(ta_checkpoint['target']['token_encoder'] , _lowerCamelCase ) _lowercase =load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , _lowerCamelCase ) _lowercase =load_decoder(ta_checkpoint['target']['decoder'] , _lowerCamelCase ) _lowercase =OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) _lowercase =SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=f"{MODEL}/checkpoint_500000", type=str, required=False, help='Path to the original jax model checkpoint.', ) lowercase_ = parser.parse_args() main(args)
205
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class UpperCAmelCase : __lowercase = 42 __lowercase = None @staticmethod def UpperCAmelCase_ ( )-> Dict: raise NotImplementedError def UpperCAmelCase_ ( self :List[Any] , lowercase_ :str , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> str: raise NotImplementedError def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :int )-> Any: raise NotImplementedError def UpperCAmelCase_ ( self :List[Any] )-> Optional[Any]: if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def UpperCAmelCase_ ( cls :int )-> Any: return F"`pip install {cls.pip_package or cls.name}`" class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """optuna""" @staticmethod def UpperCAmelCase_ ( )-> int: return is_optuna_available() def UpperCAmelCase_ ( self :List[str] , lowercase_ :str , lowercase_ :int , lowercase_ :str , **lowercase_ :List[Any] )-> Tuple: return run_hp_search_optuna(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :str , lowercase_ :Optional[int] )-> Optional[Any]: return default_hp_space_optuna(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """ray""" __lowercase = """'ray[tune]'""" @staticmethod def UpperCAmelCase_ ( )-> str: return is_ray_available() def UpperCAmelCase_ ( self :int , lowercase_ :Dict , lowercase_ :int , lowercase_ :str , **lowercase_ :List[str] )-> int: return run_hp_search_ray(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Dict )-> int: return default_hp_space_ray(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """sigopt""" @staticmethod def UpperCAmelCase_ ( )-> Union[str, Any]: return is_sigopt_available() def UpperCAmelCase_ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> Dict: return run_hp_search_sigopt(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Optional[int] )-> List[str]: return default_hp_space_sigopt(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """wandb""" @staticmethod def UpperCAmelCase_ ( )-> List[str]: return is_wandb_available() def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> List[str]: return run_hp_search_wandb(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :str )-> Dict: return default_hp_space_wandb(lowercase_ ) __lowerCAmelCase : int ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase ( ): A__ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_lowerCamelCase ) > 0: A__ = available_backends[0].name if len(_lowerCamelCase ) > 1: logger.info( F"{len(_lowerCamelCase )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
237
0
import math def UpperCamelCase ( __lowercase : float ,__lowercase : float ): '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__lowercase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
361
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _UpperCAmelCase = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def UpperCamelCase ( __lowercase : Any ,__lowercase : str ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def UpperCamelCase ( __lowercase : Dict ): '''simple docstring''' A_ : Optional[Any] = _TestCommandArgs(dataset=__lowercase ,all_configs=__lowercase ,save_infos=__lowercase ) A_ : List[Any] = TestCommand(*__lowercase ) test_command.run() A_ : Any = os.path.join(__lowercase ,'README.md' ) assert os.path.exists(__lowercase ) A_ : Tuple = DatasetInfosDict.from_directory(__lowercase ) A_ : Any = DatasetInfosDict( { 'default': DatasetInfo( features=Features( { 'tokens': Sequence(Value('string' ) ), 'ner_tags': Sequence( ClassLabel(names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] ) ), 'langs': Sequence(Value('string' ) ), 'spans': Sequence(Value('string' ) ), } ) ,splits=[ { 'name': 'train', 'num_bytes': 2_35_15_63, 'num_examples': 1_00_00, }, { 'name': 'validation', 'num_bytes': 23_84_18, 'num_examples': 10_00, }, ] ,download_size=3_94_06_80 ,dataset_size=2_58_99_81 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: A_ , A_ : Union[str, Any] = getattr(dataset_infos['default'] ,__lowercase ), getattr(expected_dataset_infos['default'] ,__lowercase ) if key == "num_bytes": assert is_apercent_close(__lowercase ,__lowercase ) elif key == "splits": assert list(__lowercase ) == list(__lowercase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
192
0
"""simple docstring""" from PIL import Image def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Image: lowercase__ : Union[str, Any] = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(__lowerCamelCase ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(__lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 lowerCAmelCase_ = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
16
from datetime import datetime as dt import os from github import Github a_ = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : int = Github(os.environ["GITHUB_TOKEN"]) SCREAMING_SNAKE_CASE : List[str] = g.get_repo("huggingface/transformers") SCREAMING_SNAKE_CASE : Optional[int] = repo.get_issues(state="open") for issue in open_issues: SCREAMING_SNAKE_CASE : List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _a: i.created_at , reverse=_a) SCREAMING_SNAKE_CASE : str = comments[0] if len(_a) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") if __name__ == "__main__": main()
76
0
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _lowerCAmelCase ( UpperCAmelCase : np.ndarray , UpperCAmelCase : np.ndarray ): '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ) ) ) def _lowerCAmelCase ( UpperCAmelCase : np.ndarray , UpperCAmelCase : np.ndarray ): '''simple docstring''' if dataset.ndim != value_array.ndim: UpperCamelCase__ : str =( '''Wrong input data\'s dimensions... ''' F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(UpperCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase__ : Any =( '''Wrong input data\'s shape... ''' F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(UpperCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: UpperCamelCase__ : int =( '''Input data have different datatype... ''' F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(UpperCAmelCase ) UpperCamelCase__ : Optional[Any] =[] for value in value_array: UpperCamelCase__ : Optional[int] =euclidean(UpperCAmelCase , dataset[0] ) UpperCamelCase__ : int =dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase__ : Union[str, Any] =euclidean(UpperCAmelCase , UpperCAmelCase ) if dist > temp_dist: UpperCamelCase__ : Optional[Any] =temp_dist UpperCamelCase__ : int =dataset_value.tolist() answer.append([vector, dist] ) return answer def _lowerCAmelCase ( UpperCAmelCase : np.ndarray , UpperCAmelCase : np.ndarray ): '''simple docstring''' return np.dot(UpperCAmelCase , UpperCAmelCase ) / (norm(UpperCAmelCase ) * norm(UpperCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) @dataclass(frozen=snake_case__ ) class __a : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None @dataclass(frozen=snake_case__ ) class __a : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if is_torch_available(): import torch from torch.utils.data import Dataset class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 def __init__( self : Optional[int] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : Optional[int]=False , lowercase_ : bool = False , ): UpperCamelCase__ : Tuple =hans_processors[task]() UpperCamelCase__ : Union[str, Any] =os.path.join( lowercase_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCamelCase__ : int =processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] =label_list[2], label_list[1] UpperCamelCase__ : List[Any] =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase__ : Any =cached_features_file + '''.lock''' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) UpperCamelCase__ : Optional[int] =torch.load(lowercase_ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) UpperCamelCase__ : str =( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('''Training examples: %s''' , len(lowercase_ ) ) UpperCamelCase__ : Tuple =hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('''Saving features into cached file %s''' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ): return len(self.features ) def __getitem__( self : Optional[int] , lowercase_ : Optional[Any] ): return self.features[i] def _lowerCAmelCase ( self : int ): return self.label_list if is_tf_available(): import tensorflow as tf class __a : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 def __init__( self : Any , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : Union[str, Any]=False , lowercase_ : bool = False , ): UpperCamelCase__ : Any =hans_processors[task]() UpperCamelCase__ : Tuple =processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase__ , UpperCamelCase__ : Tuple =label_list[2], label_list[1] UpperCamelCase__ : Union[str, Any] =label_list UpperCamelCase__ : Any =processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCamelCase__ : Union[str, Any] =hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase__ : Optional[Any] =tf.data.Dataset.from_generator( lowercase_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowerCAmelCase ( self : Optional[Any] ): return self.dataset def __len__( self : str ): return len(self.features ) def __getitem__( self : List[str] , lowercase_ : Dict ): return self.features[i] def _lowerCAmelCase ( self : Dict ): return self.label_list class __a ( snake_case__ ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] , lowercase_ : Union[str, Any] ): return self._create_examples(self._read_tsv(os.path.join(lowercase_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Optional[int] ): return self._create_examples(self._read_tsv(os.path.join(lowercase_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _lowerCAmelCase ( self : List[Any] ): return ["contradiction", "entailment", "neutral"] def _lowerCAmelCase ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] ): UpperCamelCase__ : Tuple =[] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCamelCase__ : str ='''%s-%s''' % (set_type, line[0]) UpperCamelCase__ : str =line[5] UpperCamelCase__ : Any =line[6] UpperCamelCase__ : Optional[int] =line[7][2:] if line[7].startswith('''ex''' ) else line[7] UpperCamelCase__ : str =line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def _lowerCAmelCase ( UpperCAmelCase : List[InputExample] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : PreTrainedTokenizer , ): '''simple docstring''' UpperCamelCase__ : List[str] ={label: i for i, label in enumerate(UpperCAmelCase )} UpperCamelCase__ : int =[] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) UpperCamelCase__ : str =tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , truncation=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , ) UpperCamelCase__ : str =label_map[example.label] if example.label in label_map else 0 UpperCamelCase__ : int =int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features _SCREAMING_SNAKE_CASE : List[str] = { """hans""": 3, } _SCREAMING_SNAKE_CASE : Tuple = { """hans""": HansProcessor, }
157
0
"""simple docstring""" import math import tensorflow as tf from packaging import version def lowercase ( lowerCAmelCase__ : Tuple ) -> Union[str, Any]: __a = tf.convert_to_tensor(lowerCAmelCase__ ) __a = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowercase ( lowerCAmelCase__ : Dict ) -> str: __a = tf.convert_to_tensor(lowerCAmelCase__ ) __a = tf.cast(math.pi , x.dtype ) __a = tf.cast(0.04_47_15 , x.dtype ) __a = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCAmelCase__ , 3 )) )) return x * cdf def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a = tf.convert_to_tensor(lowerCAmelCase__ ) return x * tf.tanh(tf.math.softplus(lowerCAmelCase__ ) ) def lowercase ( lowerCAmelCase__ : str ) -> Optional[Any]: __a = tf.convert_to_tensor(lowerCAmelCase__ ) __a = tf.cast(0.04_47_15 , x.dtype ) __a = tf.cast(0.79_78_84_56_08 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: __a = tf.convert_to_tensor(lowerCAmelCase__ ) __a = tf.cast(1.7_02 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: return tf.clip_by_value(_gelu(lowerCAmelCase__ ) , -10 , 10 ) def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=-1 ) -> str: __a , __a = tf.split(lowerCAmelCase__ , 2 , axis=lowerCAmelCase__ ) return a * tf.math.sigmoid(lowerCAmelCase__ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowercase ( lowerCAmelCase__ : Optional[int] ) -> List[str]: return tf.keras.activations.gelu(lowerCAmelCase__ , approximate=lowerCAmelCase__ ) lowercase_ = tf.keras.activations.gelu lowercase_ = approximate_gelu_wrap else: lowercase_ = _gelu lowercase_ = _gelu_new lowercase_ = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> int: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
45
"""simple docstring""" import numpy as np def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> np.ndarray: return np.where(vector > 0 , lowerCAmelCase__ , (alpha * (np.exp(lowerCAmelCase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[Any] = len(__a ) for i in range(length - 1 ): snake_case_ : Optional[int] = i for k in range(i + 1 , __a ): if collection[k] < collection[least]: snake_case_ : List[str] = k if least != i: snake_case_ ,snake_case_ : Tuple = (collection[i], collection[least]) return collection if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
88
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file snake_case_ : Optional[int] = TapasConfig.from_json_file(__a ) # set absolute/relative position embeddings parameter snake_case_ : List[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": snake_case_ : int = TapasForQuestionAnswering(config=__a ) elif task == "WTQ": # run_task_main.py hparams snake_case_ : Optional[int] = 4 snake_case_ : List[str] = True # hparam_utils.py hparams snake_case_ : Optional[Any] = 0.664694 snake_case_ : Dict = 0.207951 snake_case_ : Tuple = 0.121194 snake_case_ : Dict = True snake_case_ : int = True snake_case_ : int = False snake_case_ : str = 0.0352513 snake_case_ : int = TapasForQuestionAnswering(config=__a ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams snake_case_ : int = 4 snake_case_ : Optional[int] = False # hparam_utils.py hparams snake_case_ : str = 36.4519 snake_case_ : Optional[Any] = 0.903421 snake_case_ : List[Any] = 222.088 snake_case_ : Optional[int] = True snake_case_ : Optional[Any] = True snake_case_ : str = True snake_case_ : int = 0.763141 snake_case_ : str = TapasForQuestionAnswering(config=__a ) elif task == "TABFACT": snake_case_ : List[Any] = TapasForSequenceClassification(config=__a ) elif task == "MLM": snake_case_ : Optional[int] = TapasForMaskedLM(config=__a ) elif task == "INTERMEDIATE_PRETRAINING": snake_case_ : Tuple = TapasModel(config=__a ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__a , __a , __a ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) snake_case_ : str = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=5_12 ) tokenizer.save_pretrained(__a ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
88
1
from typing import Dict from .base import GenericTensor, Pipeline class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , _snake_case , **_snake_case ) -> Dict[str, GenericTensor]: '''simple docstring''' __a = self.framework __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.model(**_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return super().__call__(*_snake_case , **_snake_case )
6
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" _UpperCamelCase = credit_card_number _UpperCamelCase = 0 _UpperCamelCase = len(__snake_case ) - 2 for i in range(__snake_case, -1, -2 ): # double the value of every second digit _UpperCamelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _UpperCamelCase = cc_number[:i] + str(__snake_case ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__snake_case ) - 1, -1, -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" _UpperCamelCase = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(__snake_case ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(__snake_case ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(__snake_case ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
194
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : str )-> bool: _lowerCamelCase = len(snake_case ) _lowerCamelCase = len(snake_case ) _lowerCamelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _lowerCamelCase = True for i in range(snake_case ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _lowerCamelCase = True if a[i].islower(): _lowerCamelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
80
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType A_ : int =logging.get_logger(__name__) class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = "vision-encoder-decoder" SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def __init__( self , **a__ ): super().__init__(**a__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) _lowerCamelCase = kwargs.pop('encoder' ) _lowerCamelCase = encoder_config.pop('model_type' ) _lowerCamelCase = kwargs.pop('decoder' ) _lowerCamelCase = decoder_config.pop('model_type' ) _lowerCamelCase = AutoConfig.for_model(a__ , **a__ ) _lowerCamelCase = AutoConfig.for_model(a__ , **a__ ) _lowerCamelCase = True @classmethod def snake_case_ ( cls , a__ , a__ , **a__ ): logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCamelCase = True _lowerCamelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a__ ) def snake_case_ ( self ): _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.encoder.to_dict() _lowerCamelCase = self.decoder.to_dict() _lowerCamelCase = self.__class__.model_type return output class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = version.parse("1.11" ) @property def snake_case_ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self ): return 1e-4 @property def snake_case_ ( self ): return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class __a ( lowerCAmelCase__ ): @property def snake_case_ ( self ): _lowerCamelCase = OrderedDict() _lowerCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowerCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowerCamelCase = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def snake_case_ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ): import torch _lowerCamelCase = OrderedDict() _lowerCamelCase = super().generate_dummy_inputs( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) _lowerCamelCase , _lowerCamelCase = dummy_input['input_ids'].shape _lowerCamelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCamelCase = dummy_input.pop('input_ids' ) _lowerCamelCase = dummy_input.pop('attention_mask' ) _lowerCamelCase = torch.zeros(a__ ) return common_inputs class __a ( lowerCAmelCase__ ): @property def snake_case_ ( self ): pass def snake_case_ ( self , a__ ): return VisionEncoderDecoderEncoderOnnxConfig(a__ ) def snake_case_ ( self , a__ , a__ , a__ = "default" ): _lowerCamelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(a__ , a__ )
80
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class snake_case_ ( __A ): __A : Union[str, Any] = "visual_bert" def __init__( self : Any , lowercase_ : Any=3_05_22 , lowercase_ : List[Any]=7_68 , lowercase_ : List[str]=5_12 , lowercase_ : Dict=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : List[Any]=30_72 , lowercase_ : Dict="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : int=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : int=2 , lowercase_ : List[Any]=0.02 , lowercase_ : List[Any]=1E-12 , lowercase_ : str=False , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=1 , lowercase_ : List[str]=0 , lowercase_ : str=2 , **lowercase_ : Dict , ) -> List[str]: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = max_position_embeddings lowercase__ : List[str] = hidden_size lowercase__ : str = visual_embedding_dim lowercase__ : List[Any] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Any = hidden_act lowercase__ : int = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Dict = initializer_range lowercase__ : str = type_vocab_size lowercase__ : Any = layer_norm_eps lowercase__ : Tuple = bypass_transformer lowercase__ : Tuple = special_visual_initialize
87
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowercase ( __snake_case : str , __snake_case : str , __snake_case : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path lowercase_ : Union[str, Any] = quote(__snake_case ) return hfh.hf_hub_url(__snake_case , __snake_case , repo_type='''dataset''' , revision=__snake_case )
33
0
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str: UpperCamelCase__ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCamelCase__ : List[Any] = "" UpperCamelCase__ : str = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCAmelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCamelCase__ , UpperCamelCase__ : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCamelCase__ : Union[str, Any] = [1 for i in range(len(__lowerCAmelCase ) )] # for each character in new_string find corresponding palindromic string UpperCamelCase__ : Any = 0 for j in range(len(__lowerCAmelCase ) ): UpperCamelCase__ : Union[str, Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCAmelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCamelCase__ : Optional[Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCamelCase__ : Optional[int] = j - k + 1 # noqa: E741 UpperCamelCase__ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCamelCase__ : Tuple = length[j] UpperCamelCase__ : Union[str, Any] = j # create that string UpperCamelCase__ : Optional[int] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
196
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: if len(__lowerCAmelCase ) == 0: return False UpperCamelCase__ : Any = len(__lowerCAmelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __lowerCAmelCase ) else: return binary_search(a_list[midpoint + 1 :] , __lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase : Any =input('''Enter numbers separated by comma:\n''').strip() lowerCamelCase : Dict =[int(item.strip()) for item in user_input.split(''',''')] lowerCamelCase : List[str] =int(input('''Enter the number to be found in the list:\n''').strip()) lowerCamelCase : Union[str, Any] ='''''' if binary_search(sequence, target) else '''not ''' print(F"""{target} was {not_str}found in {sequence}""")
196
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = 1 for i in range(1 , num + 1 ): fact *= i return fact def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = 0 while number > 0: _snake_case = number % 10 sum_of_digits += last_digit _snake_case = number // 10 # Removing the last_digit from the given number return sum_of_digits def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 100 ): _snake_case = factorial(_SCREAMING_SNAKE_CASE ) _snake_case = split_and_add(_SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
341
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""height""": 256, """width""": 256} _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
1
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): UpperCAmelCase_ = [10, 20, 30, 40, 50, 60] UpperCAmelCase_ = [2, 4, 6, 8, 10, 12] UpperCAmelCase_ = 100 self.assertEqual(kp.calc_profit(__a , __a , __a ) , 210 ) def _lowercase (self : List[str] ): self.assertRaisesRegex(__a , "max_weight must greater than zero." ) def _lowercase (self : int ): self.assertRaisesRegex(__a , "Weight can not be negative." ) def _lowercase (self : List[Any] ): self.assertRaisesRegex(__a , "Profit can not be negative." ) def _lowercase (self : Union[str, Any] ): self.assertRaisesRegex(__a , "max_weight must greater than zero." ) def _lowercase (self : Tuple ): self.assertRaisesRegex( __a , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
361
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @slow def _lowercase (self : Dict ): UpperCAmelCase_ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) UpperCAmelCase_ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCAmelCase_ = model(__a )["last_hidden_state"] UpperCAmelCase_ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. UpperCAmelCase_ = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
106
0
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int = 10 ) -> int: if not isinstance(_lowerCamelCase , _lowerCamelCase ) or n < 0: raise ValueError('''Invalid input''' ) _snake_case = 10**n _snake_case = 2_84_33 * (pow(2 , 7_83_04_57 , _lowerCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
288
'''simple docstring''' UpperCamelCase__ : Optional[Any] = [ (10_00, '''M'''), (9_00, '''CM'''), (5_00, '''D'''), (4_00, '''CD'''), (1_00, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : List[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : str = 0 while place < len(_lowerCamelCase ): if (place + 1 < len(_lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Any = [] for arabic, roman in ROMAN: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : str = divmod(_lowerCamelCase , _lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
112
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" @require_torch def __A ( self: Dict ) -> Optional[int]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _A = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task='''fill-mask''' , model=__A ) # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _A = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Dict ) -> Tuple: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _A = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task='''fill-mask''' , model=__A ) # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Any ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _A = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Optional[int] ) -> Dict: _A = ''' from transformers import pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _A = self.get_env() _A = '''1''' _A = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def __A ( self: Optional[int] ) -> int: _A = ''' from transformers import AutoModel ''' _A = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
364
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" @require_torch def __A ( self: Dict ) -> Optional[int]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _A = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task='''fill-mask''' , model=__A ) # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _A = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Dict ) -> Tuple: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _A = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task='''fill-mask''' , model=__A ) # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Any ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _A = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Optional[int] ) -> Dict: _A = ''' from transformers import pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _A = self.get_env() _A = '''1''' _A = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def __A ( self: Optional[int] ) -> int: _A = ''' from transformers import AutoModel ''' _A = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
75
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCamelCase ( snake_case__ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.size _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _SCREAMING_SNAKE_CASE = image.resize((w, h) ,resample=PIL_INTERPOLATION["""lanczos"""] ) _SCREAMING_SNAKE_CASE = np.array(snake_case_ ).astype(np.floataa ) / 255.0 _SCREAMING_SNAKE_CASE = image[None].transpose(0 ,3 ,1 ,2 ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case_ ) return 2.0 * image - 1.0 class __UpperCAmelCase (UpperCAmelCase__ ): def __init__( self: Tuple , UpperCAmelCase_: VQModel , UpperCAmelCase_: UNetaDModel , UpperCAmelCase_: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): '''simple docstring''' super().__init__() self.register_modules(vqvae=snake_case__ , unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self: Any , UpperCAmelCase_: Union[torch.Tensor, PIL.Image.Image] = None , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 100 , UpperCAmelCase_: Optional[float] = 0.0 , UpperCAmelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_: Optional[str] = "pil" , UpperCAmelCase_: bool = True , ): '''simple docstring''' if isinstance(snake_case__ , PIL.Image.Image ): _SCREAMING_SNAKE_CASE = 1 elif isinstance(snake_case__ , torch.Tensor ): _SCREAMING_SNAKE_CASE = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case__ )}' ) if isinstance(snake_case__ , PIL.Image.Image ): _SCREAMING_SNAKE_CASE = preprocess(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _SCREAMING_SNAKE_CASE = (batch_size, self.unet.config.in_channels // 2, height, width) _SCREAMING_SNAKE_CASE = next(self.unet.parameters() ).dtype _SCREAMING_SNAKE_CASE = randn_tensor(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) _SCREAMING_SNAKE_CASE = image.to(device=self.device , dtype=snake_case__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case__ , device=self.device ) _SCREAMING_SNAKE_CASE = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _SCREAMING_SNAKE_CASE = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _SCREAMING_SNAKE_CASE = {} if accepts_eta: _SCREAMING_SNAKE_CASE = eta for t in self.progress_bar(snake_case__ ): # concat latents and low resolution image in the channel dimension. _SCREAMING_SNAKE_CASE = torch.cat([latents, image] , dim=1 ) _SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual _SCREAMING_SNAKE_CASE = self.unet(snake_case__ , snake_case__ ).sample # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # decode the image latents with the VQVAE _SCREAMING_SNAKE_CASE = self.vqvae.decode(snake_case__ ).sample _SCREAMING_SNAKE_CASE = torch.clamp(snake_case__ , -1.0 , 1.0 ) _SCREAMING_SNAKE_CASE = image / 2 + 0.5 _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
306
lowercase_ : Optional[int] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase_ : list[bool | None] = [None] * 10_00_00_00 lowercase_ : Optional[int] = True lowercase_ : str = False def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _UpperCAmelCase = chain(next_number(snake_case_ ) ) _UpperCAmelCase = number_chain while number < 1000_0000: _UpperCAmelCase = number_chain number *= 10 return number_chain def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000_0000 ): '''simple docstring''' for i in range(1 , snake_case_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
133
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase : """simple docstring""" @staticmethod def A_ ( *_UpperCAmelCase : Dict, **_UpperCAmelCase : Any ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = MODEL_FOR_OBJECT_DETECTION_MAPPING def A_ ( self : List[str], _UpperCAmelCase : Any, _UpperCAmelCase : List[Any], _UpperCAmelCase : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ObjectDetectionPipeline(model=_a, image_processor=_a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def A_ ( self : str, _UpperCAmelCase : List[str], _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png", threshold=0.0 ) self.assertGreater(len(_a ), 0 ) for detected_object in outputs: self.assertEqual( _a, { "score": ANY(_a ), "label": ANY(_a ), "box": {"xmin": ANY(_a ), "ymin": ANY(_a ), "xmax": ANY(_a ), "ymax": ANY(_a )}, }, ) import datasets SCREAMING_SNAKE_CASE__ : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test" ) SCREAMING_SNAKE_CASE__ : Any = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE__ : List[str] = object_detector(_a, threshold=0.0 ) self.assertEqual(len(_a ), len(_a ) ) for outputs in batch_outputs: self.assertGreater(len(_a ), 0 ) for detected_object in outputs: self.assertEqual( _a, { "score": ANY(_a ), "label": ANY(_a ), "box": {"xmin": ANY(_a ), "ymin": ANY(_a ), "xmax": ANY(_a ), "ymax": ANY(_a )}, }, ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def A_ ( self : int ) -> Optional[Any]: """simple docstring""" pass @require_torch def A_ ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Any = AutoFeatureExtractor.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ObjectDetectionPipeline(model=_a, feature_extractor=_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.0 ) self.assertEqual( nested_simplify(_a, decimals=4 ), [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], ) SCREAMING_SNAKE_CASE__ : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ], threshold=0.0, ) self.assertEqual( nested_simplify(_a, decimals=4 ), [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], ], ) @require_torch @slow def A_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE__ : Optional[int] = AutoModelForObjectDetection.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : str = AutoFeatureExtractor.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Any = ObjectDetectionPipeline(model=_a, feature_extractor=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_a, decimals=4 ), [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ) SCREAMING_SNAKE_CASE__ : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_a, decimals=4 ), [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ], ) @require_torch @slow def A_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE__ : Any = pipeline("object-detection", model=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_a, decimals=4 ), [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ) SCREAMING_SNAKE_CASE__ : List[Any] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_a, decimals=4 ), [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ], ) @require_torch @slow def A_ ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0.9985 SCREAMING_SNAKE_CASE__ : Union[str, Any] = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE__ : int = pipeline("object-detection", model=_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=_a ) self.assertEqual( nested_simplify(_a, decimals=4 ), [ {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ) @require_torch @require_pytesseract @slow def A_ ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.9993 SCREAMING_SNAKE_CASE__ : str = pipeline("object-detection", model=_a, threshold=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(_a, decimals=4 ), [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}}, ], )
361
class lowerCamelCase : """simple docstring""" def __init__( self : int, _UpperCAmelCase : Dict, _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = name SCREAMING_SNAKE_CASE__ : Tuple = val def __str__( self : str ) -> List[Any]: """simple docstring""" return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : str, _UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" return self.val < other.val class lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any], _UpperCAmelCase : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.build_heap(_UpperCAmelCase ) def __getitem__( self : Union[str, Any], _UpperCAmelCase : Any ) -> Dict: """simple docstring""" return self.get_value(_UpperCAmelCase ) def A_ ( self : int, _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" return (idx - 1) // 2 def A_ ( self : Optional[Any], _UpperCAmelCase : Any ) -> Dict: """simple docstring""" return idx * 2 + 1 def A_ ( self : str, _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" return idx * 2 + 2 def A_ ( self : Tuple, _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" return self.heap_dict[key] def A_ ( self : Optional[int], _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = len(_UpperCAmelCase ) - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_parent_idx(_UpperCAmelCase ) for idx, i in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = idx SCREAMING_SNAKE_CASE__ : Optional[Any] = i.val for i in range(_UpperCAmelCase, -1, -1 ): self.sift_down(_UpperCAmelCase, _UpperCAmelCase ) return array def A_ ( self : List[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" while True: SCREAMING_SNAKE_CASE__ : str = self.get_left_child_idx(_UpperCAmelCase ) # noqa: E741 SCREAMING_SNAKE_CASE__ : Tuple = self.get_right_child_idx(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = idx if l < len(_UpperCAmelCase ) and array[l] < array[idx]: SCREAMING_SNAKE_CASE__ : List[Any] = l if r < len(_UpperCAmelCase ) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE__ : int = r if smallest != idx: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE__ : Optional[Any] = smallest else: break def A_ ( self : Union[str, Any], _UpperCAmelCase : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_parent_idx(_UpperCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE__ : Dict = p SCREAMING_SNAKE_CASE__ : List[str] = self.get_parent_idx(_UpperCAmelCase ) def A_ ( self : str ) -> List[str]: """simple docstring""" return self.heap[0] def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE__ : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0, self.heap ) return x def A_ ( self : Union[str, Any], _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" self.heap.append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = len(self.heap ) - 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def A_ ( self : Optional[int] ) -> int: """simple docstring""" return len(self.heap ) == 0 def A_ ( self : Any, _UpperCAmelCase : Tuple, _UpperCAmelCase : str ) -> Dict: """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE__ : Tuple = new_value SCREAMING_SNAKE_CASE__ : List[Any] = new_value self.sift_up(self.idx_of_element[node] ) _lowerCamelCase : Tuple = Node('''R''', -1) _lowerCamelCase : int = Node('''B''', 6) _lowerCamelCase : str = Node('''A''', 3) _lowerCamelCase : Optional[Any] = Node('''X''', 1) _lowerCamelCase : str = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowerCamelCase : int = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -1_7) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
191
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Dict = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } __lowerCAmelCase : Optional[Any] = { "b0": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1_408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1_536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1_792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2_048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2_304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2_560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def UpperCAmelCase_ ( __lowerCAmelCase ) -> Optional[int]: __lowercase : Dict = EfficientNetConfig() __lowercase : List[str] = CONFIG_MAP[model_name]['''hidden_dim'''] __lowercase : str = CONFIG_MAP[model_name]['''width_coef'''] __lowercase : Optional[Any] = CONFIG_MAP[model_name]['''depth_coef'''] __lowercase : List[str] = CONFIG_MAP[model_name]['''image_size'''] __lowercase : Tuple = CONFIG_MAP[model_name]['''dropout_rate'''] __lowercase : Tuple = CONFIG_MAP[model_name]['''dw_padding'''] __lowercase : List[Any] = '''huggingface/label-files''' __lowercase : Optional[Any] = '''imagenet-1k-id2label.json''' __lowercase : Tuple = 1_000 __lowercase : List[Any] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase : List[str] = idalabel __lowercase : Tuple = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( ) -> Optional[Any]: __lowercase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase : Optional[Any] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im def UpperCAmelCase_ ( __lowerCAmelCase ) -> List[str]: __lowercase : List[Any] = CONFIG_MAP[model_name]['''image_size'''] __lowercase : Union[str, Any] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=__lowerCAmelCase , ) return preprocessor def UpperCAmelCase_ ( __lowerCAmelCase ) -> Any: __lowercase : Any = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] __lowercase : Dict = sorted(set(__lowerCAmelCase ) ) __lowercase : int = len(__lowerCAmelCase ) __lowercase : List[str] = {b: str(__lowerCAmelCase ) for b, i in zip(__lowerCAmelCase , range(__lowerCAmelCase ) )} __lowercase : Optional[Any] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: __lowercase : Dict = block_name_mapping[b] rename_keys.append((F'block{b}_expand_conv/kernel:0', F'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((F'block{b}_expand_bn/gamma:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((F'block{b}_expand_bn/beta:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (F'block{b}_expand_bn/moving_mean:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (F'block{b}_expand_bn/moving_variance:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (F'block{b}_dwconv/depthwise_kernel:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((F'block{b}_bn/gamma:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((F'block{b}_bn/beta:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (F'block{b}_bn/moving_mean:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (F'block{b}_bn/moving_variance:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((F'block{b}_se_reduce/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((F'block{b}_se_reduce/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((F'block{b}_se_expand/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((F'block{b}_se_expand/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (F'block{b}_project_conv/kernel:0', F'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((F'block{b}_project_bn/gamma:0', F'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((F'block{b}_project_bn/beta:0', F'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (F'block{b}_project_bn/moving_mean:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (F'block{b}_project_bn/moving_variance:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) __lowercase : Dict = {} for item in rename_keys: if item[0] in original_param_names: __lowercase : str = '''efficientnet.''' + item[1] __lowercase : Optional[int] = '''classifier.weight''' __lowercase : Optional[int] = '''classifier.bias''' return key_mapping def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: for key, value in tf_params.items(): if "normalization" in key: continue __lowercase : Optional[int] = key_mapping[key] if "_conv" in key and "kernel" in key: __lowercase : Any = torch.from_numpy(__lowerCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowercase : str = torch.from_numpy(__lowerCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowercase : List[str] = torch.from_numpy(np.transpose(__lowerCAmelCase ) ) else: __lowercase : Any = torch.from_numpy(__lowerCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowerCAmelCase ) @torch.no_grad() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: __lowercase : Tuple = model_classes[model_name]( include_top=__lowerCAmelCase , weights='''imagenet''' , input_tensor=__lowerCAmelCase , input_shape=__lowerCAmelCase , pooling=__lowerCAmelCase , classes=1_000 , classifier_activation='''softmax''' , ) __lowercase : Any = original_model.trainable_variables __lowercase : Dict = original_model.non_trainable_variables __lowercase : List[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowercase : Any = param.numpy() __lowercase : int = list(tf_params.keys() ) # Load HuggingFace model __lowercase : List[str] = get_efficientnet_config(__lowerCAmelCase ) __lowercase : Dict = EfficientNetForImageClassification(__lowerCAmelCase ).eval() __lowercase : List[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) __lowercase : Tuple = rename_keys(__lowerCAmelCase ) replace_params(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Initialize preprocessor and preprocess input image __lowercase : Dict = convert_image_processor(__lowerCAmelCase ) __lowercase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = hf_model(**__lowerCAmelCase ) __lowercase : Dict = outputs.logits.detach().numpy() # Original model inference __lowercase : Optional[Any] = False __lowercase : str = CONFIG_MAP[model_name]['''image_size'''] __lowercase : Tuple = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowercase : Optional[Any] = image.img_to_array(__lowerCAmelCase ) __lowercase : Dict = np.expand_dims(__lowerCAmelCase , axis=0 ) __lowercase : List[Any] = original_model.predict(__lowerCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__lowerCAmelCase ): os.mkdir(__lowerCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(__lowerCAmelCase ) preprocessor.save_pretrained(__lowerCAmelCase ) if push_to_hub: # Push model and image processor to hub print(F'Pushing converted {model_name} to the hub...' ) __lowercase : Optional[int] = F'efficientnet-{model_name}' preprocessor.push_to_hub(__lowerCAmelCase ) hf_model.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") __lowerCAmelCase : List[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
156
def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __lowercase : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
156
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase ={ """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase =["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase =["""CLIPFeatureExtractor"""] lowercase =["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase =[ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase =[ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase =[ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase =logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase ): def __init__( self , *snake_case , **snake_case) -> None: '''simple docstring''' warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case)
242
0
def A__ ( SCREAMING_SNAKE_CASE__) -> Optional[int]: __snake_case , __snake_case: Any = [], [] while len(SCREAMING_SNAKE_CASE__) > 1: __snake_case , __snake_case: List[str] = min(SCREAMING_SNAKE_CASE__), max(SCREAMING_SNAKE_CASE__) start.append(SCREAMING_SNAKE_CASE__) end.append(SCREAMING_SNAKE_CASE__) collection.remove(SCREAMING_SNAKE_CASE__) collection.remove(SCREAMING_SNAKE_CASE__) end.reverse() return start + collection + end if __name__ == "__main__": __UpperCAmelCase : Tuple = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase : List[str] = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
111
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
111
1
def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: Tuple )-> Any: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _snake_case : List[str] = (boundary[1] - boundary[0]) / steps _snake_case : Dict = boundary[0] _snake_case : str = boundary[1] _snake_case : Any = make_points(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _snake_case : Union[str, Any] = 0.0 y += (h / 2.0) * f(lowerCAmelCase__ ) for i in x_i: # print(i) y += h * f(lowerCAmelCase__ ) y += (h / 2.0) * f(lowerCAmelCase__ ) return y def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Any )-> str: _snake_case : Optional[Any] = a + h while x < (b - h): yield x _snake_case : int = x + h def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: # enter your function here _snake_case : List[str] = (x - 0) * (x - 0) return y def lowerCamelCase_ ( )-> Tuple: _snake_case : Union[str, Any] = 0.0 # Lower bound of integration _snake_case : List[Any] = 1.0 # Upper bound of integration _snake_case : Dict = 1_0.0 # define number of steps or resolution _snake_case : Any = [a, b] # define boundary of integration _snake_case : List[str] = method_a(lowerCAmelCase__ , lowerCAmelCase__ ) print(F"""y = {y}""" ) if __name__ == "__main__": main()
361
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase_ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Path , UpperCamelCase : Union[str, None] = None , UpperCamelCase : Union[List[str], None] = None , UpperCamelCase : Union[str, List[str], None] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : List[str] = [file for file in os.listdir(UpperCamelCase ) if os.path.isfile(os.path.join(UpperCamelCase , UpperCamelCase ) )] if identifier is not None: _snake_case : Tuple = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCamelCase , UpperCamelCase ): for n_ in n_identifier: _snake_case : Dict = [file for file in files if n_ not in file] else: _snake_case : Optional[int] = [file for file in files if n_identifier not in file] _snake_case : List[Any] = ignore_files or [] ignore_files.append('__init__.py' ) _snake_case : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , UpperCamelCase ) if only_modules: _snake_case : Any = file.split('.' )[0] try: _snake_case : List[Any] = getattr(UpperCamelCase , UpperCamelCase ) _snake_case : Any = doctest.DocTestSuite(UpperCamelCase ) _snake_case : Tuple = unittest.TextTestRunner().run(UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: _snake_case : Union[str, Any] = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Any = Path('src/transformers' ) _snake_case : Optional[int] = 'modeling' _snake_case : Optional[Any] = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase , ignore_files=UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = Path('src/transformers' ) _snake_case : Dict = 'tokenization' self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = Path('src/transformers' ) _snake_case : Optional[int] = 'configuration' self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Any = Path('src/transformers' ) _snake_case : List[str] = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(UpperCamelCase , n_identifier=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = Path('docs/source' ) _snake_case : Optional[Any] = ['favicon.ico'] self.analyze_directory(UpperCamelCase , ignore_files=UpperCamelCase , only_modules=UpperCamelCase )
260
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : Tuple ) -> Optional[int]: """simple docstring""" __magic_name__ = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ = DisjunctiveConstraint(UpperCamelCase__ ) self.assertTrue(isinstance(dc.token_ids , UpperCamelCase__ ) ) with self.assertRaises(UpperCamelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCamelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowercase ( self : int ) -> List[Any]: """simple docstring""" __magic_name__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCamelCase__ ): DisjunctiveConstraint(UpperCamelCase__ ) # fails here def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = [[1, 2, 3], [1, 2, 4]] __magic_name__ = DisjunctiveConstraint(UpperCamelCase__ ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) __magic_name__ = stepped is True and completed is False and reset is False self.assertTrue(UpperCamelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) __magic_name__ = stepped is True and completed is False and reset is False self.assertTrue(UpperCamelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(3 ) __magic_name__ = stepped is True and completed is True and reset is False self.assertTrue(UpperCamelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" __magic_name__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ = DisjunctiveConstraint(UpperCamelCase__ ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
88
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = 42 class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : str=3 , UpperCamelCase__ : List[Any]=("DownEncoderBlock2D",) , UpperCamelCase__ : Optional[Any]=(64,) , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Union[str, Any]=32 , UpperCamelCase__ : Optional[Any]="silu" , UpperCamelCase__ : List[str]=True , ) -> str: """simple docstring""" super().__init__() __magic_name__ = layers_per_block __magic_name__ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __magic_name__ = None __magic_name__ = nn.ModuleList([] ) # down __magic_name__ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): __magic_name__ = output_channel __magic_name__ = block_out_channels[i] __magic_name__ = i == len(UpperCamelCase__ ) - 1 __magic_name__ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid __magic_name__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out __magic_name__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1E-6 ) __magic_name__ = nn.SiLU() __magic_name__ = 2 * out_channels if double_z else out_channels __magic_name__ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) __magic_name__ = False def _lowercase ( self : List[str] , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" __magic_name__ = x __magic_name__ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ : int ): def custom_forward(*UpperCamelCase__ : str ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: __magic_name__ = down_block(UpperCamelCase__ ) # middle __magic_name__ = self.mid_block(UpperCamelCase__ ) # post-process __magic_name__ = self.conv_norm_out(UpperCamelCase__ ) __magic_name__ = self.conv_act(UpperCamelCase__ ) __magic_name__ = self.conv_out(UpperCamelCase__ ) return sample class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : int=3 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[Any]=("UpDecoderBlock2D",) , UpperCamelCase__ : List[Any]=(64,) , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Optional[int]="silu" , UpperCamelCase__ : Tuple="group" , ) -> Dict: """simple docstring""" super().__init__() __magic_name__ = layers_per_block __magic_name__ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __magic_name__ = None __magic_name__ = nn.ModuleList([] ) __magic_name__ = in_channels if norm_type == """spatial""" else None # mid __magic_name__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up __magic_name__ = list(reversed(UpperCamelCase__ ) ) __magic_name__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): __magic_name__ = output_channel __magic_name__ = reversed_block_out_channels[i] __magic_name__ = i == len(UpperCamelCase__ ) - 1 __magic_name__ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) __magic_name__ = output_channel # out if norm_type == "spatial": __magic_name__ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: __magic_name__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1E-6 ) __magic_name__ = nn.SiLU() __magic_name__ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) __magic_name__ = False def _lowercase ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None ) -> Tuple: """simple docstring""" __magic_name__ = z __magic_name__ = self.conv_in(UpperCamelCase__ ) __magic_name__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ : Optional[int] ): def custom_forward(*UpperCamelCase__ : int ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle __magic_name__ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: __magic_name__ = self.conv_norm_out(UpperCamelCase__ ) else: __magic_name__ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self.conv_act(UpperCamelCase__ ) __magic_name__ = self.conv_out(UpperCamelCase__ ) return sample class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict="random" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Dict=True ) -> Optional[Any]: """simple docstring""" super().__init__() __magic_name__ = n_e __magic_name__ = vq_embed_dim __magic_name__ = beta __magic_name__ = legacy __magic_name__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __magic_name__ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) __magic_name__ = self.used.shape[0] __magic_name__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __magic_name__ = self.re_embed __magic_name__ = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: __magic_name__ = n_e __magic_name__ = sane_index_shape def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" __magic_name__ = inds.shape assert len(UpperCamelCase__ ) > 1 __magic_name__ = inds.reshape(ishape[0] , -1 ) __magic_name__ = self.used.to(UpperCamelCase__ ) __magic_name__ = (inds[:, :, None] == used[None, None, ...]).long() __magic_name__ = match.argmax(-1 ) __magic_name__ = match.sum(2 ) < 1 if self.unknown_index == "random": __magic_name__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __magic_name__ = self.unknown_index return new.reshape(UpperCamelCase__ ) def _lowercase ( self : Optional[Any] , UpperCamelCase__ : str ) -> Tuple: """simple docstring""" __magic_name__ = inds.shape assert len(UpperCamelCase__ ) > 1 __magic_name__ = inds.reshape(ishape[0] , -1 ) __magic_name__ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token __magic_name__ = 0 # simply set to zero __magic_name__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" __magic_name__ = z.permute(0 , 2 , 3 , 1 ).contiguous() __magic_name__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __magic_name__ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) __magic_name__ = self.embedding(UpperCamelCase__ ).view(z.shape ) __magic_name__ = None __magic_name__ = None # compute loss for embedding if not self.legacy: __magic_name__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __magic_name__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __magic_name__ = z + (z_q - z).detach() # reshape back to match original input shape __magic_name__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __magic_name__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __magic_name__ = self.remap_to_used(UpperCamelCase__ ) __magic_name__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __magic_name__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] ) -> int: """simple docstring""" if self.remap is not None: __magic_name__ = indices.reshape(shape[0] , -1 ) # add batch axis __magic_name__ = self.unmap_to_all(UpperCamelCase__ ) __magic_name__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors __magic_name__ = self.embedding(UpperCamelCase__ ) if shape is not None: __magic_name__ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape __magic_name__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Optional[int]: """simple docstring""" __magic_name__ = parameters __magic_name__ , __magic_name__ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) __magic_name__ = torch.clamp(self.logvar , -30.0 , 20.0 ) __magic_name__ = deterministic __magic_name__ = torch.exp(0.5 * self.logvar ) __magic_name__ = torch.exp(self.logvar ) if self.deterministic: __magic_name__ = __magic_name__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _lowercase ( self : Tuple , UpperCamelCase__ : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" __magic_name__ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) __magic_name__ = self.mean + self.std * sample return x def _lowercase ( self : Dict , UpperCamelCase__ : Optional[int]=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict=[1, 2, 3] ) -> Optional[int]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) __magic_name__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.mean
88
1
"""simple docstring""" import os def _lowerCamelCase( a = "matrix.txt" ): with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file: __a = in_file.read() __a = [[int(a ) for cell in row.split("," )] for row in data.strip().splitlines()] __a = [[0 for cell in row] for row in grid] __a = len(grid[0] ) __a = [[0 for i in range(a )] for j in range(a )] __a = grid[0][0] for i in range(1 , a ): __a = grid[0][i] + dp[0][i - 1] for i in range(1 , a ): __a = grid[i][0] + dp[i - 1][0] for i in range(1 , a ): for j in range(1 , a ): __a = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
268
"""simple docstring""" import os def _lowerCamelCase( ): with open(os.path.dirname(a ) + "/grid.txt" ) as f: __a = [] # noqa: E741 for _ in range(2_0 ): l.append([int(a ) for x in f.readline().split()] ) __a = 0 # right for i in range(2_0 ): for j in range(1_7 ): __a = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __a = temp # down for i in range(1_7 ): for j in range(2_0 ): __a = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __a = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): __a = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __a = temp # diagonal 2 for i in range(1_7 ): for j in range(3 , 2_0 ): __a = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __a = temp return maximum if __name__ == "__main__": print(solution())
268
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) a__ : Dict = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class lowercase_ ( unittest.TestCase ): def __a ( self , a , a , a = None , a = None ): UpperCamelCase__ = None UpperCamelCase__ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCamelCase__ = os.path.abspath("examples" ) for item in os.listdir(a ): if item not in EXCLUDE_EXAMPLES: UpperCamelCase__ = os.path.join(a , a ) if os.path.isfile(a ) and ".py" in item_path: with self.subTest( tested_script=a , feature_script=a , tested_section="main()" if parser_only else "training_function()" , ): UpperCamelCase__ = compare_against_test( os.path.join(a , a ) , a , a , a ) UpperCamelCase__ = "\n".join(a ) if special_strings is not None: for string in special_strings: UpperCamelCase__ = diff.replace(a , "" ) self.assertEqual(a , "" ) def __a ( self ): self.one_complete_example("complete_nlp_example.py" , a ) self.one_complete_example("complete_nlp_example.py" , a ) def __a ( self ): UpperCamelCase__ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCamelCase__ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , a , a , a ) self.one_complete_example("complete_cv_example.py" , a , a , a ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class lowercase_ ( a__ ): __UpperCAmelCase = False @classmethod def __a ( cls ): super().setUpClass() UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def __a ( cls ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __a ( self ): UpperCamelCase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def __a ( self ): UpperCamelCase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() UpperCamelCase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def __a ( self ): UpperCamelCase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} '''.split() UpperCamelCase__ = run_command(self._launch_args + testargs , return_stdout=a ) self.assertNotIn("epoch 0:" , a ) self.assertIn("epoch 1:" , a ) def __a ( self ): UpperCamelCase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} '''.split() UpperCamelCase__ = run_command(self._launch_args + testargs , return_stdout=a ) if torch.cuda.is_available(): UpperCamelCase__ = torch.cuda.device_count() else: UpperCamelCase__ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , a ) self.assertIn("epoch 1:" , a ) else: self.assertIn("epoch 0:" , a ) self.assertIn("epoch 1:" , a ) @slow def __a ( self ): UpperCamelCase__ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCamelCase__ = run_command(self._launch_args + testargs , return_stdout=a ) UpperCamelCase__ = re.findall("({.+})" , a ) UpperCamelCase__ = [r for r in results if "accuracy" in r][-1] UpperCamelCase__ = ast.literal_eval(a ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def __a ( self ): UpperCamelCase__ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __a ( self ): with tempfile.TemporaryDirectory() as tmpdir: UpperCamelCase__ = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(a , "tracking" ) ) ) def __a ( self ): UpperCamelCase__ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def __a ( self ): UpperCamelCase__ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
80
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a__ : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase_ ( a__ ): __UpperCAmelCase = ['pixel_values'] def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = None , a = True , a = 1 / 2_55 , a = True , a = None , a = None , a = True , **a , ): super().__init__(**a ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 2_24} UpperCamelCase__ = get_size_dict(a , default_to_square=a ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCamelCase__ = get_size_dict(a , default_to_square=a , param_name="crop_size" ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase__ = do_convert_rgb def __a ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ): UpperCamelCase__ = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase__ = get_resize_output_image_size(a , size=size["shortest_edge"] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): UpperCamelCase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): return rescale(a , scale=a , data_format=a , **a ) def __a ( self , a , a , a , a = None , **a , ): return normalize(a , mean=a , std=a , data_format=a , **a ) def __a ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a , param_name="size" , default_to_square=a ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(a , param_name="crop_size" , default_to_square=a ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase__ = [convert_to_rgb(a ) for image in images] # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a , mean=a , std=a ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a , a ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a )
80
1
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __lowerCAmelCase ( a__ , a__ ) -> Dict: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __a = flax_key_tuple[:-1] + ('''weight''',) __a = torch.permute(a__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a__ ): # linear layer __a = flax_key_tuple[:-1] + ('''weight''',) __a = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __a = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: if "metadata" in layer: __a = layer.split('''metadata''' ) __a = ''''''.join(split_layer[0] )[:-1] __a = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: __a = layer.split('''kvstore''' ) __a = ''''''.join(split_layer[0] )[:-1] __a = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: __a = layer.split('''/''' ) __a = '''/'''.join(split_layer[:-1] ) __a = (split_layer[-1],) if "kvstore/path" in layer: __a = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: __a = '''file''' else: __a = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __lowerCAmelCase ( a__ , a__ ) -> Optional[int]: __a = rename_keys(a__ ) __a = {} for k, v in current_block.items(): __a = v __a = new_current_block torch.save(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ = WEIGHTS_NAME ) -> List[Any]: __a = convert_file_size_to_int(a__ ) __a = [] __a = {} __a = 0 __a = 0 os.makedirs(a__ , exist_ok=a__ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: __a = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] __a = flatten_dict(a__ , sep='''/''' ) __a = {} for layer in checkpoint_info.keys(): __a , __a , __a = get_key_and_tensorstore_dict( a__ , a__ , a__ ) if curr_real_layer_name in all_layers: __a = content else: __a = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __a = torch.tensor(a__ ) __a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __a , __a = rename_base_flax_keys(tuple(key.split('''/''' ) ) , a__ ) __a = '''/'''.join(a__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __a = os.path.join( a__ , weights_name.replace('''.bin''' , F"""-{len(a__ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(a__ , a__ ) sharded_state_dicts.append(current_block.keys() ) del current_block __a = {} __a = 0 __a = raw_weights.to(getattr(a__ , a__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __a = os.path.join(a__ , weights_name.replace('''.bin''' , F"""-{len(a__ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(a__ , a__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __a = {} __a = {} for idx, shard in enumerate(a__ ): __a = weights_name.replace( '''.bin''' , F"""-{idx+1:05d}-of-{len(a__ ):05d}.bin""" ) # len(sharded_state_dicts):05d} __a = os.path.join(a__ , weights_name.replace('''.bin''' , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(a__ , os.path.join(a__ , a__ ) ) __a = shard for key in shard: __a = shard_file # Add the metadata __a = {'''total_size''': total_size} __a = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(a__ , a__ ) , '''w''' , encoding='''utf-8''' ) as f: __a = json.dumps(a__ , indent=2 , sort_keys=a__ ) + '''\n''' f.write(a__ ) return metadata, index if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) A : Optional[Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __lowerCAmelCase ( ) -> Optional[Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __a = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) __a = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) __a = TaTokenizer.from_pretrained('''t5-small''' ) __a = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' __a = tokenizer(a__ , return_tensors='''pt''' ).input_ids __a = model.generate(a__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
361
import os import numpy import onnx def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = a.name __a = b.name __a = '''''' __a = '''''' __a = a == b __a = name_a __a = name_b return res def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> str: for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> Union[str, Any]: __a = list(model.graph.initializer ) __a = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a = inits[i].name __a = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def __lowerCAmelCase ( a__ ) -> str: __a = os.path.dirname(a__ ) __a = os.path.basename(a__ ) __a = onnx.load(os.path.join(a__ , a__ ) ) __a = list(model.graph.initializer ) __a = set() __a = {} __a = [] __a = 0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) __a = inits[j].data_type __a = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , a__ ) total_reduced_size += mem_size __a = inits[i].name __a = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: __a = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) __a = sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) __a = '''optimized_''' + model_file_name __a = os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
33
0
'''simple docstring''' def __UpperCAmelCase ( A : List[str] ) -> List[Any]: UpperCAmelCase_ : Tuple = min(UpperCamelCase__ ) # min() finds the minimum value UpperCAmelCase_ : Tuple = max(UpperCamelCase__ ) # max() finds the maximum value UpperCAmelCase_ : Any = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size UpperCAmelCase_ : List[str] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. UpperCAmelCase_ : List[str] = 0 for count in range(UpperCamelCase__ ): while holes[count] > 0: holes[count] -= 1 UpperCAmelCase_ : int = count + min_val i += 1 def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Tuple = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(UpperCamelCase__ ) print('''Sorted order is:''' , ''' '''.join(UpperCamelCase__ ) ) if __name__ == "__main__": main()
304
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase): UpperCAmelCase__ : Any = parent def snake_case__ ( self): return {} def _UpperCamelCase ( ): UpperCAmelCase__ : List[str] = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" UpperCAmelCase__ : Tuple = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = MarkupLMFeatureExtractionTester(self) @property def snake_case__ ( self): return self.feature_extract_tester.prepare_feat_extract_dict() def snake_case__ ( self): # Initialize feature_extractor UpperCAmelCase__ : List[Any] = self.feature_extraction_class() # Test not batched input UpperCAmelCase__ : Optional[Any] = get_html_strings()[0] UpperCAmelCase__ : Any = feature_extractor(_lowerCamelCase) # fmt: off UpperCAmelCase__ : Dict = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] UpperCAmelCase__ : List[str] = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , _lowerCamelCase) self.assertEqual(encoding.xpaths , _lowerCamelCase) # Test batched UpperCAmelCase__ : int = get_html_strings() UpperCAmelCase__ : Optional[Any] = feature_extractor(_lowerCamelCase) # fmt: off UpperCAmelCase__ : List[str] = expected_nodes + [["""My First Heading""", """My first paragraph."""]] UpperCAmelCase__ : str = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes) , 2) self.assertEqual(len(encoding.xpaths) , 2) self.assertEqual(encoding.nodes , _lowerCamelCase) self.assertEqual(encoding.xpaths , _lowerCamelCase)
163
0
import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase__ = logging.getLogger(__name__) class lowercase_ ( _a ): '''simple docstring''' __snake_case = """masked_bert""" def __init__( self : Optional[int] , __UpperCAmelCase : List[Any]=30_522 , __UpperCAmelCase : List[Any]=768 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : int=12 , __UpperCAmelCase : str=3_072 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Any=512 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : Tuple=1e-1_2 , __UpperCAmelCase : Any=0 , __UpperCAmelCase : List[str]="topK" , __UpperCAmelCase : Union[str, Any]="constant" , __UpperCAmelCase : List[Any]=0.0 , **__UpperCAmelCase : List[str] , ) ->List[str]: """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = pruning_method a = mask_init a = mask_scale
370
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
0
from __future__ import annotations from collections.abc import Iterator class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> None: __UpperCAmelCase = value __UpperCAmelCase = None __UpperCAmelCase = None class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> None: __UpperCAmelCase = tree def lowerCAmelCase_ (self , lowercase__ ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__(self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
"""simple docstring""" def __lowercase ( _a , _a ): snake_case_ : int = len(_a ) snake_case_ : int = len(_a ) snake_case_ : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) snake_case_ : list = [] for char_count in range(_a ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_a ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
354
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ : Union[str, Any] = get_tests_dir('''fixtures''') class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): # A mock response for an HTTP head request to emulate server down snake_case_ : Any = mock.Mock() snake_case_ : Tuple = 500 snake_case_ : Dict = {} snake_case_ : Optional[Any] = HTTPError snake_case_ : Optional[int] = {} # Download this model to make sure it's in the cache. snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowercase_ ) as mock_head: snake_case_ : Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self : Optional[int] ): # This test is for deprecated behavior and can be removed in v5 snake_case_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase): @classmethod def _snake_case ( cls : List[Any] ): snake_case_ : Dict = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _snake_case ( cls : int ): try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def _snake_case ( self : Any ): snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''test-feature-extractor''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): CustomFeatureExtractor.register_for_auto_class() snake_case_ : int = CustomFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) snake_case_ : List[str] = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
155
0
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a : List[Any] = logging.get_logger(__name__) def __magic_name__ ( ) -> str: '''simple docstring''' snake_case_ = os.getenv('''SM_HP_MP_PARAMETERS''', '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. snake_case_ = json.loads(__UpperCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. snake_case_ = os.getenv('''SM_FRAMEWORK_PARAMS''', '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". snake_case_ = json.loads(__UpperCAmelCase ) if not mpi_options.get('''sagemaker_mpi_enabled''', __UpperCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a ( _lowerCamelCase ): snake_case_ = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def A_ ( self : Optional[Any] ): super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , lowercase_ , ) @cached_property def A_ ( self : List[Any] ): logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: snake_case_ = torch.device('''cpu''' ) snake_case_ = 0 elif is_sagemaker_model_parallel_available(): snake_case_ = smp.local_rank() snake_case_ = torch.device('''cuda''' , lowercase_ ) snake_case_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) snake_case_ = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) snake_case_ = torch.device('''cuda''' , self.local_rank ) snake_case_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 snake_case_ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. snake_case_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) snake_case_ = torch.device('''cuda''' , self.local_rank ) snake_case_ = 1 if device.type == "cuda": torch.cuda.set_device(lowercase_ ) return device @property def A_ ( self : Optional[int] ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A_ ( self : Dict ): return not is_sagemaker_model_parallel_available() @property def A_ ( self : Optional[Any] ): return False
56
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _lowercase: Tuple = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a( A : Optional[Any] ) -> str: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a( A : Dict , A : List[Any] , A : str ) -> List[str]: """simple docstring""" return max(metric_fn(A , A ) for gt in ground_truths ) def a( A : str , A : Optional[Any] , A : Optional[Any] ) -> Optional[int]: """simple docstring""" a = [line.strip() for line in open(A , "r" ).readlines()] a = [] if args.gold_data_mode == "qa": a = pd.read_csv(A , sep="\t" , header=A ) for answer_list in data[1]: a = ast.literal_eval(A ) answers.append(A ) else: a = [line.strip() for line in open(A , "r" ).readlines()] a = [[reference] for reference in references] a = a = a = 0 for prediction, ground_truths in zip(A , A ): total += 1 em += metric_max_over_ground_truths(A , A , A ) fa += metric_max_over_ground_truths(A , A , A ) a = 100.0 * em / total a = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def a( A : Dict , A : str , A : List[str] ) -> List[Any]: """simple docstring""" a = args.k a = [line.strip() for line in open(A , "r" ).readlines()] a = [line.strip() for line in open(A , "r" ).readlines()] a = a = 0 for hypo, reference in zip(A , A ): a = set(hypo.split("\t" )[:k] ) a = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def a( A : Dict , A : Any , A : List[Any] ) -> Any: """simple docstring""" def strip_title(A : Any ): if title.startswith("\"" ): a = title[1:] if title.endswith("\"" ): a = title[:-1] return title a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A , return_tensors="pt" , padding=A , truncation=A , )["input_ids"].to(args.device ) a = rag_model.rag.question_encoder(A ) a = question_enc_outputs[0] a = rag_model.retriever( A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a = [] for docs in all_docs: a = [strip_title(A ) for title in docs["title"]] provenance_strings.append("\t".join(A ) ) return provenance_strings def a( A : Union[str, Any] , A : Optional[int] , A : Tuple ) -> Tuple: """simple docstring""" with torch.no_grad(): a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A , return_tensors="pt" , padding=A , truncation=A ) a = inputs_dict.input_ids.to(args.device ) a = inputs_dict.attention_mask.to(args.device ) a = rag_model.generate( # rag_model overwrites generate A , attention_mask=A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a = rag_model.retriever.generator_tokenizer.batch_decode(A , skip_special_tokens=A ) if args.print_predictions: for q, a in zip(A , A ): logger.info("Q: {} - A: {}".format(A , A ) ) return answers def a( ) -> Any: """simple docstring""" a = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=A , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=A , choices=["exact", "compressed", "legacy"] , type=A , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=A , type=A , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=A , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=A , type=A , required=A , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=A , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=A , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=A , type=A , required=A , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=A , type=A , required=A , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=A , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=A , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=A , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=A , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=A , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=A , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a = parser.parse_args() a = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def a( A : Any ) -> Optional[Any]: """simple docstring""" a = {} if args.model_type is None: a = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a = args.n_docs if args.index_name is not None: a = args.index_name if args.index_path is not None: a = args.index_path else: a = BartForConditionalGeneration a = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , A ) a = get_scores if args.eval_mode == "e2e" else get_precision_at_k a = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(A , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(A ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a = RagRetriever.from_pretrained(A , **A ) a = model_class.from_pretrained(A , retriever=A , **A ) model.retriever.init_retrieval() else: a = model_class.from_pretrained(A , **A ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a = [] for line in tqdm(A ): questions.append(line.strip() ) if len(A ) == args.eval_batch_size: a = evaluate_batch_fn(A , A , A ) preds_file.write("\n".join(A ) + "\n" ) preds_file.flush() a = [] if len(A ) > 0: a = evaluate_batch_fn(A , A , A ) preds_file.write("\n".join(A ) ) preds_file.flush() score_fn(A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _lowercase: Optional[int] = get_args() main(args)
227
0
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase ( a_ , a_ ) -> list: """simple docstring""" if len(__lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCamelCase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) A_ : List[str] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCamelCase ) ) ] def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCamelCase ) ) ] def UpperCAmelCase ( a_ ) -> tuple[list, list, list, list]: """simple docstring""" if len(__lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) A_ : int = len(__lowerCamelCase ) A_ : Dict = matrix_length // 2 A_ : List[Any] = [[a[i][j] for j in range(__lowerCamelCase , __lowerCamelCase )] for i in range(__lowerCamelCase )] A_ : Optional[int] = [ [a[i][j] for j in range(__lowerCamelCase , __lowerCamelCase )] for i in range(__lowerCamelCase , __lowerCamelCase ) ] A_ : int = [[a[i][j] for j in range(__lowerCamelCase )] for i in range(__lowerCamelCase )] A_ : Optional[int] = [[a[i][j] for j in range(__lowerCamelCase )] for i in range(__lowerCamelCase , __lowerCamelCase )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase ( a_ ) -> tuple[int, int]: """simple docstring""" return len(__lowerCamelCase ), len(matrix[0] ) def UpperCAmelCase ( a_ ) -> None: """simple docstring""" print("""\n""".join(str(__lowerCamelCase ) for line in matrix ) ) def UpperCAmelCase ( a_ , a_ ) -> list: """simple docstring""" if matrix_dimensions(__lowerCamelCase ) == (2, 2): return default_matrix_multiplication(__lowerCamelCase , __lowerCamelCase ) A_ , A_ , A_ , A_ : Tuple = split_matrix(__lowerCamelCase ) A_ , A_ , A_ , A_ : str = split_matrix(__lowerCamelCase ) A_ : List[Any] = actual_strassen(__lowerCamelCase , matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) ) A_ : Tuple = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) A_ : Optional[Any] = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) A_ : int = actual_strassen(__lowerCamelCase , matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) ) A_ : Optional[Any] = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) A_ : Union[str, Any] = actual_strassen(matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) A_ : List[Any] = actual_strassen(matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) A_ : str = matrix_addition(matrix_subtraction(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) , __lowerCamelCase ) A_ : List[str] = matrix_addition(__lowerCamelCase , __lowerCamelCase ) A_ : List[Any] = matrix_addition(__lowerCamelCase , __lowerCamelCase ) A_ : Dict = matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) , __lowerCamelCase ) # construct the new matrix from our 4 quadrants A_ : Optional[Any] = [] for i in range(len(__lowerCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowerCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase ( a_ , a_ ) -> list: """simple docstring""" if matrix_dimensions(__lowerCamelCase )[1] != matrix_dimensions(__lowerCamelCase )[0]: A_ : List[Any] = ( """Unable to multiply these matrices, please check the dimensions.\n""" F"Matrix A: {matrixa}\n" F"Matrix B: {matrixa}" ) raise Exception(__lowerCamelCase ) A_ : str = matrix_dimensions(__lowerCamelCase ) A_ : List[str] = matrix_dimensions(__lowerCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] A_ : str = max(*__lowerCamelCase , *__lowerCamelCase ) A_ : Dict = int(math.pow(2 , math.ceil(math.loga(__lowerCamelCase ) ) ) ) A_ : List[Any] = matrixa A_ : List[str] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) A_ : Optional[Any] = actual_strassen(__lowerCamelCase , __lowerCamelCase ) # Removing the additional zeros for i in range(0 , __lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCamelCase__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCamelCase__ : str = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
368
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" A_ : Dict = [] for part_id in partition_order: A_ : List[str] = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(a_ ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> int: """simple docstring""" A_ : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : Optional[int] = spark.range(1_0_0 ).repartition(1 ) A_ : Optional[Any] = Spark(a_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" A_ : str = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : List[str] = spark.range(1_0 ).repartition(2 ) A_ : List[str] = [1, 0] A_ : List[Any] = _generate_iterable_examples(a_ , a_ ) # Reverse the partitions. A_ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , a_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A_ , A_ : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> Any: """simple docstring""" A_ : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : Dict = spark.range(1_0 ).repartition(1 ) A_ : int = SparkExamplesIterable(a_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(a_ ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> int: """simple docstring""" A_ : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : Union[str, Any] = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A_ : Optional[int] = lambda a_ : x.reverse() A_ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , [2, 1, 0] ) A_ : Any = SparkExamplesIterable(a_ ).shuffle_data_sources(a_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(a_ ): A_ , A_ : Any = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : List[Any] = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 A_ : str = SparkExamplesIterable(a_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 A_ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(a_ ): A_ , A_ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A_ : Optional[Any] = SparkExamplesIterable(a_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 A_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(a_ ): A_ , A_ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ) -> str: """simple docstring""" A_ : str = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A_ : List[Any] = spark.range(1_0_0 ).repartition(1 ) A_ : str = Spark(a_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
164
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : str = "▁" __lowerCAmelCase : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : str = BigBirdTokenizer A__ : List[str] = BigBirdTokenizerFast A__ : Any = True A__ : str = True def snake_case_ ( self : Dict ): super().setUp() __lowercase : List[Any] = self.tokenizer_class(_snake_case , keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self : int ): __lowercase : Union[str, Any] = '''<s>''' __lowercase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def snake_case_ ( self : Optional[int] ): __lowercase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_snake_case ) , 1004 ) def snake_case_ ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def snake_case_ ( self : List[str] ): if not self.test_rust_tokenizer: return __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Optional[Any] = self.get_rust_tokenizer() __lowercase : Optional[int] = '''I was born in 92000, and this is falsé.''' __lowercase : str = tokenizer.tokenize(_snake_case ) __lowercase : List[str] = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) __lowercase : Union[str, Any] = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) __lowercase : Tuple = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) __lowercase : List[str] = self.get_rust_tokenizer() __lowercase : Dict = tokenizer.encode(_snake_case ) __lowercase : str = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def snake_case_ ( self : Any ): __lowercase : Optional[Any] = BigBirdTokenizer(_snake_case , keep_accents=_snake_case ) __lowercase : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [285, 46, 10, 170, 382] , ) __lowercase : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowercase : List[Any] = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowercase : Union[str, Any] = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def snake_case_ ( self : List[Any] ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def snake_case_ ( self : Union[str, Any] ): __lowercase : int = '''Hello World!''' __lowercase : Dict = [65, 1_8536, 2260, 101, 66] self.assertListEqual(_snake_case , self.big_tokenizer.encode(_snake_case ) ) @slow def snake_case_ ( self : Tuple ): __lowercase : Dict = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __lowercase : List[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_snake_case , self.big_tokenizer.encode(_snake_case ) ) @require_torch @slow def snake_case_ ( self : Tuple ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __lowercase : Tuple = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowercase : str = ''' '''.join(_snake_case ) __lowercase : List[str] = self.big_tokenizer.encode_plus(_snake_case , return_tensors='''pt''' , return_token_type_ids=_snake_case ) __lowercase : Dict = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_snake_case ) __lowercase : List[Any] = BigBirdConfig(attention_type='''original_full''' ) __lowercase : int = BigBirdModel(_snake_case ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_snake_case ) model(**_snake_case ) @slow def snake_case_ ( self : Optional[Any] ): __lowercase : List[str] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __lowercase : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def snake_case_ ( self : Any ): # fmt: off __lowercase : Any = {'''input_ids''': [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
156
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : int = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } __lowerCAmelCase : List[Any] = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } __lowerCAmelCase : Dict = { "jukebox": 512, } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Tuple = VOCAB_FILES_NAMES A__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : List[str] = PRETRAINED_LYRIC_TOKENS_SIZES A__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _snake_case : List[str] , _snake_case : Any , _snake_case : Tuple , _snake_case : Dict=["v3", "v2", "v2"] , _snake_case : Tuple=512 , _snake_case : Any=5 , _snake_case : List[Any]="<|endoftext|>" , **_snake_case : Union[str, Any] , ): __lowercase : Dict = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token super().__init__( unk_token=_snake_case , n_genres=_snake_case , version=_snake_case , max_n_lyric_tokens=_snake_case , **_snake_case , ) __lowercase : List[str] = version __lowercase : Union[str, Any] = max_n_lyric_tokens __lowercase : Dict = n_genres with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : str = json.load(_snake_case ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : Optional[int] = json.load(_snake_case ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : Optional[int] = json.load(_snake_case ) __lowercase : Dict = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase : int = oov.replace(r'''\-\'''' , r'''\-+\'''' ) __lowercase : Union[str, Any] = regex.compile(_snake_case ) __lowercase : int = {v: k for k, v in self.artists_encoder.items()} __lowercase : Tuple = {v: k for k, v in self.genres_encoder.items()} __lowercase : Dict = {v: k for k, v in self.lyrics_encoder.items()} @property def snake_case_ ( self : Tuple ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def snake_case_ ( self : Optional[Any] ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def snake_case_ ( self : int , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict ): __lowercase : Union[str, Any] = [self.artists_encoder.get(_snake_case , 0 ) for artist in list_artists] for genres in range(len(_snake_case ) ): __lowercase : Union[str, Any] = [self.genres_encoder.get(_snake_case , 0 ) for genre in list_genres[genres]] __lowercase : str = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase : int = [[self.lyrics_encoder.get(_snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def snake_case_ ( self : Dict , _snake_case : Any ): return list(_snake_case ) def snake_case_ ( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : List[str] , **_snake_case : Optional[int] ): __lowercase , __lowercase , __lowercase : Optional[int] = self.prepare_for_tokenization(_snake_case , _snake_case , _snake_case ) __lowercase : List[Any] = self._tokenize(_snake_case ) return artist, genre, lyrics def snake_case_ ( self : str , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : bool = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase : Union[str, Any] = artists[idx].lower() __lowercase : str = [genres[idx].lower()] else: __lowercase : Any = self._normalize(artists[idx] ) + '''.v2''' __lowercase : Tuple = [ self._normalize(_snake_case ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase : Optional[int] = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) __lowercase : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' __lowercase : List[Any] = {vocab[index]: index + 1 for index in range(len(_snake_case ) )} __lowercase : List[str] = 0 __lowercase : Any = len(_snake_case ) + 1 __lowercase : str = self.vocab __lowercase : Union[str, Any] = {v: k for k, v in self.vocab.items()} __lowercase : Dict = '''''' else: __lowercase : Tuple = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) __lowercase : List[Any] = self._run_strip_accents(_snake_case ) __lowercase : Tuple = lyrics.replace('''\\''' , '''\n''' ) __lowercase : str = self.out_of_vocab.sub('''''' , _snake_case ), [], [] return artists, genres, lyrics def snake_case_ ( self : Optional[int] , _snake_case : List[str] ): __lowercase : Any = unicodedata.normalize('''NFD''' , _snake_case ) __lowercase : Optional[int] = [] for char in text: __lowercase : Union[str, Any] = unicodedata.category(_snake_case ) if cat == "Mn": continue output.append(_snake_case ) return "".join(_snake_case ) def snake_case_ ( self : Optional[int] , _snake_case : str ): __lowercase : List[str] = ( [chr(_snake_case ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(_snake_case ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(_snake_case ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) __lowercase : Optional[Any] = frozenset(_snake_case ) __lowercase : Union[str, Any] = re.compile(r'''_+''' ) __lowercase : Optional[int] = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) __lowercase : int = pattern.sub('''_''' , _snake_case ).strip('''_''' ) return text def snake_case_ ( self : List[Any] , _snake_case : List[str] ): return " ".join(_snake_case ) def snake_case_ ( self : List[str] , _snake_case : Any , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : bool = False ): # Convert to TensorType if not isinstance(_snake_case , _snake_case ): __lowercase : Optional[Any] = TensorType(_snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf __lowercase : int = tf.constant __lowercase : Optional[int] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch __lowercase : Union[str, Any] = torch.tensor __lowercase : Dict = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 __lowercase : Union[str, Any] = jnp.array __lowercase : Optional[int] = _is_jax else: __lowercase : Tuple = np.asarray __lowercase : str = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase : Union[str, Any] = [inputs] if not is_tensor(_snake_case ): __lowercase : int = as_tensor(_snake_case ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : str , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Tuple="" , _snake_case : Tuple="pt" ): __lowercase : List[str] = [0, 0, 0] __lowercase : List[str] = [artist] * len(self.version ) __lowercase : List[Any] = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase : Tuple = self.tokenize(_snake_case , _snake_case , _snake_case ) __lowercase , __lowercase , __lowercase : List[str] = self._convert_token_to_id(_snake_case , _snake_case , _snake_case ) __lowercase : Optional[Any] = [-INFINITY] * len(full_tokens[-1] ) __lowercase : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def snake_case_ ( self : Optional[int] , _snake_case : str , _snake_case : Optional[str] = None ): if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase : int = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_snake_case ) ) __lowercase : int = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_snake_case ) ) __lowercase : Union[str, Any] = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_snake_case ) ) return (artists_file, genres_file, lyrics_file) def snake_case_ ( self : str , _snake_case : Tuple , _snake_case : str , _snake_case : Dict ): __lowercase : List[str] = self.artists_decoder.get(_snake_case ) __lowercase : Optional[Any] = [self.genres_decoder.get(_snake_case ) for genre in genres_index] __lowercase : Dict = [self.lyrics_decoder.get(_snake_case ) for character in lyric_index] return artist, genres, lyrics
156
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A : Optional[Any] = 16 __A : str = 32 def A_ ( snake_case_ : Accelerator ,snake_case_ : int = 1_6 ): '''simple docstring''' UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase : Optional[int] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(snake_case_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case_ ,max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase : Optional[Any] = datasets.map( snake_case_ ,batched=snake_case_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase : str = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(snake_case_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": UpperCamelCase : Any = 8 else: UpperCamelCase : Optional[Any] = None return tokenizer.pad( snake_case_ ,padding="""longest""" ,max_length=snake_case_ ,pad_to_multiple_of=snake_case_ ,return_tensors="""pt""" ,) # Instantiate dataloaders. UpperCamelCase : str = DataLoader( tokenized_datasets["""train"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ ) UpperCamelCase : Dict = DataLoader( tokenized_datasets["""validation"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A : int = mocked_dataloaders # noqa: F811 def A_ ( snake_case_ : Tuple ,snake_case_ : Dict ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,snake_case_ ) == "1": UpperCamelCase : Union[str, Any] = 2 # New Code # UpperCamelCase : Dict = int(args.gradient_accumulation_steps ) UpperCamelCase : List[Any] = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase : str = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=snake_case_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase : Union[str, Any] = config["""lr"""] UpperCamelCase : int = int(config["""num_epochs"""] ) UpperCamelCase : int = int(config["""seed"""] ) UpperCamelCase : List[Any] = int(config["""batch_size"""] ) UpperCamelCase : Optional[int] = evaluate.load("""glue""" ,"""mrpc""" ) set_seed(snake_case_ ) UpperCamelCase , UpperCamelCase : Dict = get_dataloaders(snake_case_ ,snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase : List[Any] = AdamW(params=model.parameters() ,lr=snake_case_ ) # Instantiate scheduler UpperCamelCase : str = get_linear_schedule_with_warmup( optimizer=snake_case_ ,num_warmup_steps=1_0_0 ,num_training_steps=(len(snake_case_ ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() with LocalSGD( accelerator=snake_case_ ,model=snake_case_ ,local_sgd_steps=snake_case_ ,enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case_ ): UpperCamelCase : Optional[Any] = model(**snake_case_ ) UpperCamelCase : Optional[int] = output.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase : Any = model(**snake_case_ ) UpperCamelCase : Tuple = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=snake_case_ ,references=snake_case_ ,) UpperCamelCase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' ,snake_case_ ) def A_ ( ): '''simple docstring''' UpperCamelCase : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=snake_case_ ,default=snake_case_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) # New Code # parser.add_argument( """--gradient_accumulation_steps""" ,type=snake_case_ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,) parser.add_argument( """--local_sgd_steps""" ,type=snake_case_ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) UpperCamelCase : Dict = parser.parse_args() UpperCamelCase : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(snake_case_ ,snake_case_ ) if __name__ == "__main__": main()
27
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ): UpperCamelCase : Union[str, Any] = parent UpperCamelCase : str = batch_size UpperCamelCase : int = seq_length UpperCamelCase : Optional[Any] = is_training UpperCamelCase : Any = use_input_lengths UpperCamelCase : Tuple = use_token_type_ids UpperCamelCase : List[Any] = use_labels UpperCamelCase : Union[str, Any] = gelu_activation UpperCamelCase : Dict = sinusoidal_embeddings UpperCamelCase : Optional[int] = causal UpperCamelCase : List[Any] = asm UpperCamelCase : int = n_langs UpperCamelCase : Optional[Any] = vocab_size UpperCamelCase : str = n_special UpperCamelCase : Dict = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : str = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : Any = type_sequence_label_size UpperCamelCase : str = initializer_range UpperCamelCase : str = num_labels UpperCamelCase : Union[str, Any] = num_choices UpperCamelCase : List[str] = summary_type UpperCamelCase : int = use_proj UpperCamelCase : List[str] = scope UpperCamelCase : Dict = bos_token_id def a_ ( self ): UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None if self.use_input_lengths: UpperCamelCase : str = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase : Tuple = None if self.use_token_type_ids: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase : int = None UpperCamelCase : Dict = None UpperCamelCase : str = None if self.use_labels: UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float() UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a_ ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model( SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Any = model( SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , ) ((UpperCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : int = self.num_labels UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : List[Any] = self.num_choices UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self ): UpperCamelCase : int = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : List[Any] = config_and_inputs UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowercase : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase : List[Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase : Optional[Any] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCamelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def a_ ( self ): UpperCamelCase : List[Any] = XLMModelTester(self ) UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ): self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( [isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ): # adds PAD dummy token UpperCamelCase : int = min_length + idx + 1 UpperCamelCase : Tuple = min_length + idx + 1 UpperCamelCase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ): self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( [isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ): # adds PAD dummy token UpperCamelCase : List[str] = min_length + idx + 1 UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , ) pass @slow def a_ ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def a_ ( self ): UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president UpperCamelCase : List[Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
27
1
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = GPTSanJapaneseTokenizer __snake_case = False __snake_case = {'do_clean_text': False, 'add_prefix_space': False} def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' super().setUp() # fmt: off A__ : Union[str, Any] =["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on A__ : Dict ={"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 A__ : List[Any] ={"""unk_token""": """<unk>"""} A__ : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def lowercase__ ( self : int , **lowerCAmelCase_ : Tuple ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : int , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Tuple ="""こんにちは、世界。 \nこんばんは、㔺界。😀""" A__ : int ="""こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ) -> int: '''simple docstring''' A__ , A__ : int =self.get_input_output_texts(lowerCAmelCase_ ) A__ : Any =tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) A__ : int =tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' pass # TODO add if relevant def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : Optional[int] =self.get_tokenizer() # Testing tokenization A__ : Any ="""こんにちは、世界。 こんばんは、㔺界。""" A__ : List[Any] =["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] A__ : List[str] =tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens A__ : Any =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] A__ : List[str] =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens A__ : Union[str, Any] =tokens + [tokenizer.unk_token] A__ : Any =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] A__ : Optional[Any] =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' A__ : List[str] =self.get_tokenizer() # Testing tokenization A__ : str ="""こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" A__ : Optional[int] ="""こんにちは、、、、世界。こんばんは、、、、世界。""" A__ : Tuple =tokenizer.encode(lowerCAmelCase_ ) A__ : List[str] =tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ : Optional[int] =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization A__ : Any ="""こんにちは、世界。""" A__ : List[str] ="""こんばんは、㔺界。😀""" A__ : Optional[Any] ="""こんにちは、世界。こんばんは、世界。😀""" A__ : Optional[int] =tokenizer.encode(prefix_text + input_text ) A__ : Any =tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) A__ : Dict =tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.decode(lowerCAmelCase_ ) A__ : List[Any] =tokenizer.decode(lowerCAmelCase_ ) A__ : int =tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization A__ : Union[str, Any] ="""こんにちは、世界。""" A__ : int ="""こんばんは、㔺界。😀""" A__ : Optional[Any] =len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 A__ : List[Any] =len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 A__ : Optional[int] =[1] + [0] * (len_prefix + len_text + 1) A__ : Optional[Any] =[1] * (len_prefix + len_text + 1) + [0] A__ : Union[str, Any] =[1] + [1] * (len_prefix) + [0] * (len_text + 1) A__ : List[str] =tokenizer(prefix_text + input_text ).token_type_ids A__ : Dict =tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids A__ : Tuple =tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' A__ : Optional[Any] =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) A__ : Any =tokenizer.encode("""あンいワ""" ) A__ : str =tokenizer.encode("""""" , prefix_text="""あンいワ""" ) A__ : Union[str, Any] =tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) A__ : str =[["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] A__ : List[Any] =tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) A__ : Any =tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off A__ : int =[[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] A__ : Optional[Any] =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] A__ : Union[str, Any] =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' # tokenizer has no padding token pass
134
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __snake_case : str, __snake_case : dict ) -> str: """simple docstring""" A__ : Optional[Any] =BeautifulSoup(requests.get(__snake_case, params=__snake_case ).content, """html.parser""" ) A__ : List[str] =soup.find("""div""", attrs={"""class""": """gs_ri"""} ) A__ : Tuple =div.find("""div""", attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": __snake_case : Optional[Any] = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
134
1
"""simple docstring""" from math import pi def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(9_0, 1_0))
371
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = ComputeEnvironment.AMAZON_SAGEMAKER __snake_case : List[Any] = True __snake_case : Optional[int] = "ml.p3.2xlarge" __snake_case : List[str] = "accelerate_sagemaker_execution_role" __snake_case : Tuple = "hf-sm" __snake_case : Any = "us-east-1" __snake_case : Union[str, Any] = 1 __snake_case : Dict = "accelerate-sagemaker-1" __snake_case : Tuple = "1.6" __snake_case : List[str] = "4.4" __snake_case : str = "train.py" __snake_case : List[str] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] __snake_case : Optional[int] = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""do_train"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""epochs"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""learning_rate"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""max_steps"""] ,lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
193
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=lowerCamelCase__ , default=lowerCamelCase__ , required=lowerCamelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=lowerCamelCase__ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=lowerCamelCase__ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=lowerCamelCase__ , default=4_2 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=lowerCamelCase__ , default=0 , help='cuda_id.' , ) __lowerCamelCase : Any = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: if not len(lowerCamelCase__ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) __lowerCamelCase , __lowerCamelCase : Optional[int] = imgs[0].size __lowerCamelCase : List[Any] = Image.new('RGB' , size=(cols * w, rows * h) ) __lowerCamelCase , __lowerCamelCase : List[str] = grid.size for i, img in enumerate(lowerCamelCase__ ): grid.paste(lowerCamelCase__ , box=(i % cols * w, i // cols * h) ) return grid def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__="robotic cat with wings" , lowerCamelCase__=7.5 , lowerCamelCase__=5_0 , lowerCamelCase__=1 , lowerCamelCase__=4_2 , ) -> int: __lowerCamelCase : Any = torch.Generator(pipeline.device ).manual_seed(lowerCamelCase__ ) __lowerCamelCase : int = pipeline( lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , generator=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , ).images __lowerCamelCase : Union[str, Any] = int(math.sqrt(lowerCamelCase__ ) ) __lowerCamelCase : str = image_grid(lowerCamelCase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images a =parse_args() # Load models and create wrapper for stable diffusion a =CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") a =CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") a =AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") a =UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") a =StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) a =lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): a =load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: a =unet.to(torch.device("""cuda""", args.cuda_id)) a =pipeline.to(unet.device) a , a =generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) a =os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
73
import qiskit def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> qiskit.result.counts.Counts: __lowerCamelCase : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCamelCase : List[str] = qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowerCamelCase : List[Any] = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
73
1
'''simple docstring''' def a ( __a , __a ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :int = len(lowerCamelCase_ ) UpperCamelCase__ :int = len(lowerCamelCase_ ) UpperCamelCase__ :int = ( first_str_length if first_str_length > second_str_length else second_str_length ) UpperCamelCase__ :list = [] for char_count in range(lowerCamelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(lowerCamelCase_ ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
358
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __snake_case = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase ( A__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = PRETRAINED_INIT_CONFIGURATION _a = ['input_ids', 'attention_mask'] _a = DistilBertTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_="[UNK]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[PAD]" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): UpperCamelCase__ :int = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) UpperCamelCase__ :Optional[Any] = do_lower_case UpperCamelCase__ :Optional[Any] = strip_accents UpperCamelCase__ :List[Any] = tokenize_chinese_chars UpperCamelCase__ :Any = normalizer_class(**UpperCamelCase_ ) UpperCamelCase__ :int = do_lower_case def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :List[str] = [self.sep_token_id] UpperCamelCase__ :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
219
0
class __A: def __init__( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = name __a = val def __str__( self ) -> List[Any]: '''simple docstring''' return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , _snake_case ) -> Optional[Any]: '''simple docstring''' return self.val < other.val class __A: def __init__( self , _snake_case ) -> List[str]: '''simple docstring''' __a = {} __a = {} __a = self.build_heap(_snake_case ) def __getitem__( self , _snake_case ) -> Any: '''simple docstring''' return self.get_value(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' return (idx - 1) // 2 def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' return idx * 2 + 2 def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' return self.heap_dict[key] def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Dict: '''simple docstring''' __a = len(_snake_case ) - 1 __a = self.get_parent_idx(_snake_case ) for idx, i in enumerate(_snake_case ): __a = idx __a = i.val for i in range(_snake_case , -1 , -1 ): self.sift_down(_snake_case , _snake_case ) return array def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' while True: __a = self.get_left_child_idx(_snake_case ) # noqa: E741 __a = self.get_right_child_idx(_snake_case ) __a = idx if l < len(_snake_case ) and array[l] < array[idx]: __a = l if r < len(_snake_case ) and array[r] < array[smallest]: __a = r if smallest != idx: __a , __a = array[smallest], array[idx] ( ( __a ) , ( __a ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) __a = smallest else: break def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_parent_idx(_snake_case ) while p >= 0 and self.heap[p] > self.heap[idx]: __a , __a = self.heap[idx], self.heap[p] __a , __a = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) __a = p __a = self.get_parent_idx(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return self.heap[0] def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a , __a = self.heap[-1], self.heap[0] __a , __a = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) __a = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' self.heap.append(_snake_case ) __a = len(self.heap ) - 1 __a = node.val self.sift_up(len(self.heap ) - 1 ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return len(self.heap ) == 0 def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" __a = new_value __a = new_value self.sift_up(self.idx_of_element[node] ) A : Union[str, Any] = Node('R', -1) A : Union[str, Any] = Node('B', 6) A : List[Any] = Node('A', 3) A : List[Any] = Node('X', 1) A : Union[str, Any] = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A : Union[str, Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -1_7) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
6
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __UpperCamelCase : Optional[Any] = '''scheduler_config.json''' class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 1 lowercase__ = 2 lowercase__ = 3 lowercase__ = 4 lowercase__ = 5 @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = SCHEDULER_CONFIG_NAME lowercase__ = ["dtype"] lowercase__ = [] lowercase__ = True @classmethod def __lowerCAmelCase ( cls : List[Any] ,lowercase_ : Dict[str, Any] = None ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[int]=False ,**lowercase_ : Any ,): lowerCAmelCase__ ,lowerCAmelCase__ : Dict = cls.load_config( pretrained_model_name_or_path=lowercase_ ,subfolder=lowercase_ ,return_unused_kwargs=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = cls.from_config(lowercase_ ,return_unused_kwargs=lowercase_ ,**lowercase_ ) if hasattr(lowercase_ ,'''create_state''' ) and getattr(lowercase_ ,'''has_state''' ,lowercase_ ): lowerCAmelCase__ : List[Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __lowerCAmelCase ( self : Tuple ,lowercase_ : Union[str, os.PathLike] ,lowercase_ : bool = False ,**lowercase_ : str ): self.save_config(save_directory=lowercase_ ,push_to_hub=lowercase_ ,**lowercase_ ) @property def __lowerCAmelCase ( self : List[str] ): return self._get_compatibles() @classmethod def __lowerCAmelCase ( cls : List[Any] ): lowerCAmelCase__ : Tuple = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase__ : Tuple = importlib.import_module(__name__.split('''.''' )[0] ) lowerCAmelCase__ : Union[str, Any] = [ getattr(lowercase_ ,lowercase_ ) for c in compatible_classes_str if hasattr(lowercase_ ,lowercase_ ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( A_ , A_ ): assert len(A_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A_ ) - x.ndim) ) , A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_=0.999 , A_=jnp.floataa ): def alpha_bar(A_ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowerCAmelCase__ : Optional[Any] = [] for i in range(A_ ): lowerCAmelCase__ : str = i / num_diffusion_timesteps lowerCAmelCase__ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(A_ ) / alpha_bar(A_ ) , A_ ) ) return jnp.array(A_ , dtype=A_ ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,lowercase_ : List[Any] ): lowerCAmelCase__ : Optional[int] = scheduler.config if config.trained_betas is not None: lowerCAmelCase__ : Any = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCAmelCase__ : Union[str, Any] = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : int = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : List[Any] = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) lowerCAmelCase__ : str = 1.0 - betas lowerCAmelCase__ : Union[str, Any] = jnp.cumprod(lowercase_ ,axis=0 ) return cls( alphas=lowercase_ ,betas=lowercase_ ,alphas_cumprod=lowercase_ ,) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Any = state.alphas_cumprod lowerCAmelCase__ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase__ : Tuple = sqrt_alpha_prod.flatten() lowerCAmelCase__ : str = broadcast_to_shape_from_left(A_ , original_samples.shape ) lowerCAmelCase__ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase__ : Optional[Any] = sqrt_one_minus_alpha_prod.flatten() lowerCAmelCase__ : Optional[int] = broadcast_to_shape_from_left(A_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) lowerCAmelCase__ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) lowerCAmelCase__ : Union[str, Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
106
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __UpperCAmelCase ( __a : Tuple ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = AutoConfig.from_pretrained(__a ) _a : Union[str, Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=__a ) _a : Optional[Any] = checkpoints.load_tax_checkpoint(__a ) _a : Tuple = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": _a : Optional[int] = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": _a : int = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : Optional[Any] = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): _a : Optional[int] = F"""layers_{str(__a )}""" # Self-Attention _a : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] _a : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] _a : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] _a : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization _a : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: _a : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] _a : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: _a : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] _a : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization _a : str = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning _a : List[Any] = flax_model.params['''encoder''']['''block'''][str(__a )]['''layer'''] _a : Union[str, Any] = tax_attention_key _a : int = tax_attention_out _a : str = tax_attention_query _a : Optional[Any] = tax_attention_value _a : Union[str, Any] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : Dict = tax_global_layer_norm if split_mlp_wi: _a : Any = tax_mlp_wi_a _a : int = tax_mlp_wi_a else: _a : Dict = tax_mlp_wi _a : int = tax_mlp_wo _a : Tuple = tax_mlp_layer_norm _a : List[Any] = flax_model_encoder_layer_block # Only for layer 0: _a : Tuple = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T _a : Tuple = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : int = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T _a : Optional[int] = tax_encoder_global_rel_embedding # Assigning _a : List[Any] = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] _a : Optional[Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _a : str = F"""layers_{str(__a )}""" # Self-Attention _a : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] _a : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] _a : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] _a : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization _a : str = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention _a : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] _a : Optional[int] = tax_enc_dec_attention_module['''key''']['''kernel'''] _a : str = tax_enc_dec_attention_module['''out''']['''kernel'''] _a : List[Any] = tax_enc_dec_attention_module['''query''']['''kernel'''] _a : str = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization _a : Any = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: _a : str = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] _a : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: _a : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] _a : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization _a : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning _a : Optional[Any] = flax_model.params['''decoder''']['''block'''][str(__a )]['''layer'''] _a : List[Any] = tax_attention_key _a : Optional[int] = tax_attention_out _a : str = tax_attention_query _a : Tuple = tax_attention_value _a : List[str] = tax_pre_attention_layer_norm _a : Any = tax_enc_dec_attention_key _a : Dict = tax_enc_dec_attention_out _a : Optional[Any] = tax_enc_dec_attention_query _a : List[str] = tax_enc_dec_attention_value _a : Dict = tax_cross_layer_norm if split_mlp_wi: _a : Optional[int] = tax_mlp_wi_a _a : Dict = tax_mlp_wi_a else: _a : Optional[Any] = tax_mlp_wi _a : Any = tax_mlp_wo _a : Optional[Any] = txa_mlp_layer_norm _a : Union[str, Any] = flax_model_decoder_layer_block # Decoder Normalization _a : Tuple = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] _a : str = txa_decoder_norm # Only for layer 0: _a : Dict = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T _a : str = tax_decoder_rel_embedding # Token Embeddings _a : Optional[Any] = tax_model['''target''']['''token_embedder''']['''embedding'''] _a : Any = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _a : Any = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(__a ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) a__ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
352
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowercase: List[Any] = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: List[str] = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: List[Any] = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _lowercase: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
227
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : Union[str, Any] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = "vit_mae" def __init__( self : Dict , A : List[str]=7_68 , A : Any=12 , A : Union[str, Any]=12 , A : Tuple=30_72 , A : Any="gelu" , A : Tuple=0.0 , A : List[str]=0.0 , A : Tuple=0.02 , A : Tuple=1e-12 , A : int=2_24 , A : Dict=16 , A : int=3 , A : Tuple=True , A : Tuple=16 , A : Optional[Any]=5_12 , A : Union[str, Any]=8 , A : List[Any]=20_48 , A : Dict=0.75 , A : Any=False , **A : Optional[int] , ) -> Union[str, Any]: super().__init__(**A ) lowercase_ : List[Any] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : int = initializer_range lowercase_ : Dict = layer_norm_eps lowercase_ : Optional[Any] = image_size lowercase_ : str = patch_size lowercase_ : Dict = num_channels lowercase_ : Any = qkv_bias lowercase_ : Union[str, Any] = decoder_num_attention_heads lowercase_ : Optional[Any] = decoder_hidden_size lowercase_ : List[str] = decoder_num_hidden_layers lowercase_ : List[Any] = decoder_intermediate_size lowercase_ : Optional[Any] = mask_ratio lowercase_ : Optional[Any] = norm_pix_loss
33
0
from typing import Any def __UpperCamelCase ( _A ): if not input_list: return [] lowerCAmelCase_ = [input_list.count(_A ) for value in input_list] lowerCAmelCase_ = max(_A ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_A ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
365
def __UpperCamelCase ( _A ): lowerCAmelCase_ = [int(_A ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(_A ) == 4 and all(0 <= int(_A ) <= 254 for octet in octets ) if __name__ == "__main__": _A = input().strip() _A = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f"{ip} is a {valid_or_invalid} IP v4 address.")
167
0
"""simple docstring""" from collections.abc import Generator def __lowerCAmelCase (): __lowerCAmelCase , __lowerCAmelCase : List[Any] = 0, 1 while True: __lowerCAmelCase , __lowerCAmelCase : Optional[int] = b, a + b yield b def __lowerCAmelCase (_UpperCamelCase = 1000 ): __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : List[str] = fibonacci_generator() while len(str(next(_UpperCamelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
86
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ): _A : Union[str, Any] = [] for k, v in d.items(): _A : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(snake_case_,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) _A : List[Any] = argparse.Namespace() with open(snake_case_,"""r""" ) as yaml_file: try: _A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader ) _A : Optional[int] = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_,snake_case_,snake_case_ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) ) return config def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = MobileViTVaConfig() _A : Tuple = False # dataset if task_name.startswith("""imagenet1k_""" ): _A : Dict = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : int = 384 else: _A : int = 256 _A : List[str] = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _A : Union[str, Any] = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : str = 384 else: _A : List[Any] = 256 _A : List[str] = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _A : int = 151 _A : int = 512 _A : Optional[int] = """ade20k-id2label.json""" _A : Any = True elif task_name.startswith("""voc_""" ): _A : List[Any] = 21 _A : Dict = 512 _A : Dict = """pascal-voc-id2label.json""" _A : int = True # orig_config _A : Any = load_orig_config_file(snake_case_ ) assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model" _A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 ) assert ( getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 ) if "_deeplabv3" in task_name: _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] ) _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 ) _A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 ) # id2label _A : List[Any] = """huggingface/label-files""" _A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : str = {int(snake_case_ ): v for k, v in idalabel.items()} _A : str = idalabel _A : Dict = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Any = dct.pop(snake_case_ ) _A : Union[str, Any] = val def lowerCAmelCase_ ( snake_case_,snake_case_=False ): if base_model: _A : Optional[int] = """""" else: _A : Dict = """mobilevitv2.""" _A : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": _A : Any = k[8:] else: _A : List[str] = k if ".block." in k: _A : Any = k_new.replace(""".block.""",""".""" ) if ".conv." in k: _A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" ) if ".norm." in k: _A : Any = k_new.replace(""".norm.""",""".normalization.""" ) if "conv_1." in k: _A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" ) if ".red_1x1." in k: _A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: _A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: _A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: _A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _A : Optional[int] = [0, 1] elif i == 4: _A : Union[str, Any] = [0, 1, 2, 3] elif i == 5: _A : Optional[Any] = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: _A : Union[str, Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: _A : List[str] = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" ) if "pre_norm_attn.1." in k: _A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" ) if "pre_norm_ffn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" ) if "pre_norm_ffn.1." in k: _A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" ) if "classifier.1." in k: _A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" ) if "seg_head." in k: _A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" ) if ".aspp_layer." in k: _A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" ) if ".aspp_pool." in k: _A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" ) rename_keys.append((k, k_new) ) return rename_keys def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_,snake_case_ ) def lowerCAmelCase_ ( ): _A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ ) # load original state_dict _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() _A : str = False else: _A : int = MobileViTVaForImageClassification(snake_case_ ).eval() _A : List[Any] = False # remove and rename some keys of load the original model _A : List[Any] = checkpoint remove_unused_keys(snake_case_ ) _A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_,snake_case_,snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 ) _A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" ) _A : Optional[Any] = model(**snake_case_ ) # verify classification model if task_name.startswith("""imagenet""" ): _A : List[Any] = outputs.logits _A : Optional[int] = logits.argmax(-1 ).item() print("""Predicted class:""",model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
26
0
'''simple docstring''' import baseaa def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" return baseaa.aaaencode(string.encode("""utf-8""" ) ) def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" return baseaa.aaadecode(a_ ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' import math def UpperCAmelCase ( a_ ) -> list: """simple docstring""" A_ : List[Any] = [True] * n A_ : List[Any] = False A_ : Union[str, Any] = False A_ : List[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): A_ : Optional[Any] = i * 2 while index < n: A_ : Any = False A_ : str = index + i A_ : List[str] = [2] for i in range(3 , a_ , 2 ): if is_prime[i]: primes.append(a_ ) return primes def UpperCAmelCase ( a_ = 9_9_9_9_6_6_6_6_3_3_3_3 ) -> int: """simple docstring""" A_ : Any = math.floor(math.sqrt(a_ ) ) + 1_0_0 A_ : int = prime_sieve(a_ ) A_ : int = 0 A_ : Union[str, Any] = 0 A_ : List[str] = primes[prime_index] while (last_prime**2) <= limit: A_ : Tuple = primes[prime_index + 1] A_ : List[Any] = last_prime**2 A_ : Union[str, Any] = next_prime**2 # Get numbers divisible by lps(current) A_ : Tuple = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A_ : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A_ : str = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A_ : Any = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
164
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class a__ ( _a ): _a : Tuple = ["""audio_values""", """audio_mask"""] def __init__( self , _A=2_0_4_8 , _A=1 , _A=[1_6, 1_6] , _A=1_2_8 , _A=4_4_1_0_0 , _A=8_6 , _A=2_0_4_8 , _A=0.0 , **_A , ): """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , **_A , ) __lowerCAmelCase = spectrogram_length __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = feature_size // self.patch_size[1] __lowerCAmelCase = n_fft __lowerCAmelCase = sampling_rate // hop_length_to_sampling_rate __lowerCAmelCase = sampling_rate __lowerCAmelCase = padding_value __lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=_A , norm="slaney" , mel_scale="slaney" , ).T def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = spectrogram( _A , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) __lowerCAmelCase = log_spec[:, :-1] __lowerCAmelCase = log_spec - 20.0 __lowerCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , _A , _A = None , _A = True , _A = None , _A = False , _A = False , **_A , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __lowerCAmelCase = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __lowerCAmelCase = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): __lowerCAmelCase = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowerCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _A ): __lowerCAmelCase = [np.asarray(_A , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowerCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowerCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowerCAmelCase = np.array(_A ).astype(np.floataa ) # convert into correct format for padding __lowerCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowerCAmelCase = np.ones([len(_A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowerCAmelCase = padded_audio_features * self.padding_value for i in range(len(_A ) ): __lowerCAmelCase = audio_features[i] __lowerCAmelCase = feature # return as BatchFeature if return_attention_mask: __lowerCAmelCase = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: __lowerCAmelCase = {"audio_values": padded_audio_features} __lowerCAmelCase = BatchFeature(data=_A , tensor_type=_A ) return encoded_inputs
92
"""simple docstring""" def lowercase (snake_case__ : list[int] , snake_case__ : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(snake_case__ ) == len(snake_case__ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = equationa lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = equationa # Calculate the determinants of the matrices lowerCAmelCase = aa * ba - aa * ba lowerCAmelCase = ca * ba - ca * ba lowerCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowerCAmelCase = determinant_x / determinant lowerCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
155
0
'''simple docstring''' from math import sqrt def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Dict = 0 for i in range(1 , int(sqrt(lowerCAmelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCAmelCase_ ): total += i + n // i elif i == sqrt(lowerCAmelCase_ ): total += i return total - n def __lowerCamelCase ( lowerCAmelCase_ = 10000 ) -> int: _a : Union[str, Any] = sum( i for i in range(1 , lowerCAmelCase_ ) if sum_of_divisors(sum_of_divisors(lowerCAmelCase_ ) ) == i and sum_of_divisors(lowerCAmelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
107
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase = 3 def __lowerCamelCase ( lowerCAmelCase_ ) -> int: print('Generating primitive root of p' ) while True: _a : List[Any] = random.randrange(3 , lowerCAmelCase_ ) if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1: continue if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1: continue return g def __lowerCamelCase ( lowerCAmelCase_ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) _a : int = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number. _a : List[str] = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p. _a : Any = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety. _a : List[Any] = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) _a : Tuple = (key_size, e_a, e_a, p) _a : str = (key_size, d) return public_key, private_key def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _a , _a : Dict = generate_key(lowerCAmelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def __lowerCamelCase ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
107
1
from typing import Any class __lowerCAmelCase : def __init__( self: Union[str, Any] , _lowerCAmelCase: Any ): lowercase :List[str] = data lowercase :Any = None class __lowerCAmelCase : def __init__( self: Union[str, Any] ): lowercase :List[Any] = None def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :int = self.head while temp is not None: print(temp.data , end=" " ) lowercase :Tuple = temp.next print() def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Any ): lowercase :Union[str, Any] = Node(_lowerCAmelCase ) lowercase :str = self.head lowercase :Tuple = new_node def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: Dict ): if node_data_a == node_data_a: return else: lowercase :Union[str, Any] = self.head while node_a is not None and node_a.data != node_data_a: lowercase :List[Any] = node_a.next lowercase :str = self.head while node_a is not None and node_a.data != node_data_a: lowercase :int = node_a.next if node_a is None or node_a is None: return lowercase , lowercase :Dict = node_a.data, node_a.data if __name__ == "__main__": _UpperCAmelCase : Tuple = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
236
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): # Return True if there is node that has not iterated. lowercase :Union[str, Any] = [False] * len(lowerCamelCase ) lowercase :Union[str, Any] = [] queue.append(lowerCamelCase ) lowercase :Optional[Any] = True while queue: lowercase :Optional[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase ) lowercase :Dict = True lowercase :Dict = u return visited[t] def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): # This array is filled by BFS and to store path lowercase :Optional[int] = [-1] * (len(lowerCamelCase )) lowercase :int = 0 while bfs(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :int = float("Inf" ) lowercase :Any = sink while s != source: # Find the minimum value in select path lowercase :Any = min(lowerCamelCase, graph[parent[s]][s] ) lowercase :Dict = parent[s] max_flow += path_flow lowercase :Union[str, Any] = sink while v != source: lowercase :List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase :Any = parent[v] return max_flow _UpperCAmelCase : Optional[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _UpperCAmelCase , _UpperCAmelCase : Any = 0, 5 print(ford_fulkerson(graph, source, sink))
236
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = "arrow" , **SCREAMING_SNAKE_CASE_ , ): super().__init__( split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , **_A , ) UpperCamelCase__ = load_from_cache_file UpperCamelCase__ = file_format UpperCamelCase__ = Spark( df=_A , features=_A , cache_dir=_A , working_dir=_A , **_A , ) def UpperCAmelCase_ (self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCamelCase__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_A , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
357
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __magic_name__ ( __a : Any ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __magic_name__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" UpperCamelCase__ = [1, 2, 3] with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=2 ) with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = [1, 2] UpperCamelCase__ = {"""a""": 1, """b""": 2} UpperCamelCase__ = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase__ = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase__ = [2, 3] UpperCamelCase__ = {"""a""": 2, """b""": 3} UpperCamelCase__ = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase__ = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
178
0
'''simple docstring''' from importlib import import_module from .logging import get_logger __lowercase : Tuple = get_logger(__name__) class __UpperCamelCase : def __init__( self , __a , __a=None ): '''simple docstring''' __a : List[Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , __a , getattr(__a , __a ) ) __a : Dict = module._original_module if isinstance(__a , _PatchedModuleObj ) else module class __UpperCamelCase : A_ = [] def __init__( self , __a , __a , __a , __a=None ): '''simple docstring''' __a : int = obj __a : Union[str, Any] = target __a : int = new __a : Dict = target.split('.' )[0] __a : Any = {} __a : Any = attrs or [] def __enter__( self ): '''simple docstring''' *__a , __a : Dict = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__a ) ): try: __a : str = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __a : Optional[int] = getattr(self.obj , __a ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__a , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __a : List[str] = obj_attr # patch at top level setattr(self.obj , __a , _PatchedModuleObj(__a , attrs=self.attrs ) ) __a : List[str] = getattr(self.obj , __a ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__a , __a , _PatchedModuleObj(getattr(__a , __a , __a ) , attrs=self.attrs ) ) __a : str = getattr(__a , __a ) # finally set the target attribute setattr(__a , __a , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __a : Any = getattr(import_module('.'.join(__a ) ) , __a ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __a ) is attr_value: __a : List[Any] = getattr(self.obj , __a ) setattr(self.obj , __a , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __a : str = globals()['__builtins__'][target_attr] setattr(self.obj , __a , self.new ) else: raise RuntimeError(f"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self , *__a ): '''simple docstring''' for attr in list(self.original ): setattr(self.obj , __a , self.original.pop(__a ) ) def __UpperCAmelCase ( self ): '''simple docstring''' self.__enter__() self._active_patches.append(self ) def __UpperCAmelCase ( self ): '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
27
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __lowercase : Tuple = pytest.mark.integration __lowercase : Optional[int] = {'comet'} __lowercase : List[str] = importlib.util.find_spec('fairseq') is not None __lowercase : str = {'code_eval'} __lowercase : List[Any] = os.name == 'nt' __lowercase : Optional[Any] = {'bertscore', 'frugalscore', 'perplexity'} __lowercase : Optional[Any] = importlib.util.find_spec('transformers') is not None def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self : int , _SCREAMING_SNAKE_CASE : List[Any] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def lowerCamelCase (): __a : List[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @local class __UpperCamelCase ( parameterized.TestCase ): A_ = {} A_ = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : int = '[...]' __a : Tuple = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , __a ) ).module_path ) __a : Optional[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=__a ) # check parameters __a : Dict = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__a , metric_module.__name__ ): with self.use_local_metrics(): try: __a : str = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Tuple = '[...]' __a : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , __a ) ).module_path ) # run doctest with self.use_local_metrics(): __a : List[Any] = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__a ): yield else: yield @contextmanager def __UpperCAmelCase ( self ): '''simple docstring''' def load_local_metric(__a , *__a , **__a ): return load_metric(os.path.join('metrics' , __a ) , *__a , **__a ) with patch('datasets.load_metric' ) as mock_load_metric: __a : Dict = load_local_metric yield @classmethod def __UpperCAmelCase ( cls , __a ): '''simple docstring''' def wrapper(__a ): __a : Optional[Any] = contextmanager(__a ) __a : str = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self , __a ): '''simple docstring''' assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: __a : Dict = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): import torch def bert_cos_score_idf(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , *_SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : Optional[int] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_SCREAMING_SNAKE_CASE ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: __a : str = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): def load_from_checkpoint(_SCREAMING_SNAKE_CASE : Optional[int] ): class __UpperCamelCase : def __UpperCAmelCase ( self , __a , *__a , **__a ): '''simple docstring''' assert len(__a ) == 2 __a : Dict = [0.19, 0.92] return scores, sum(__a ) / len(__a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: __a : str = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: __a : int = load_from_checkpoint yield def lowerCamelCase (): __a : Optional[Any] = load_metric(os.path.join('metrics' , 'seqeval' ) ) __a : List[str] = 'ERROR' __a : List[str] = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ): metric.compute(predictions=[] , references=[] , scheme=_SCREAMING_SNAKE_CASE )
27
1
"""simple docstring""" from __future__ import annotations def snake_case_ ( A_ : list[int] ): '''simple docstring''' if len(A_ ) == 0: return array _lowerCamelCase : Dict = min(A_ ), max(A_ ) # Compute the variables _lowerCamelCase : List[str] = _max - _min + 1 _lowerCamelCase : List[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _lowerCamelCase : List[Any] = i - _min _lowerCamelCase : Optional[int] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _lowerCamelCase : Any = 0 for i in range(A_ ): while holes_repeat[i] > 0: _lowerCamelCase : List[str] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input('''Enter numbers separated by comma:\n''') lowerCAmelCase__ = [int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
359
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase__ = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def snake_case_ ( A_ : Any ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def snake_case_ ( A_ : Dict, A_ : Any ): '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : List[str] = False elif args.student_type == "gpt2": _lowerCamelCase : Any = False def snake_case_ ( A_ : Optional[Any], A_ : List[Any] ): '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : Optional[int] = False def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''', action='''store_true''', help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''', type=A_, required=A_, help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''', type=A_, required=A_, help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''', ) parser.add_argument( '''--student_type''', type=A_, choices=['''distilbert''', '''roberta''', '''gpt2'''], required=A_, help='''The student type (DistilBERT, RoBERTa).''', ) parser.add_argument('''--student_config''', type=A_, required=A_, help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''', default=A_, type=A_, help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''', choices=['''bert''', '''roberta''', '''gpt2'''], required=A_, help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''', type=A_, required=A_, help='''The teacher model.''' ) parser.add_argument('''--temperature''', default=2.0, type=A_, help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''', default=0.5, type=A_, help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''', default=0.0, type=A_, help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''', ) parser.add_argument('''--alpha_clm''', default=0.5, type=A_, help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''', default=0.0, type=A_, help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''', default=0.0, type=A_, help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''', action='''store_true''', help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''', default=0.15, type=A_, help='''Proportion of tokens for which we need to make a prediction.''', ) parser.add_argument('''--word_mask''', default=0.8, type=A_, help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''', default=0.1, type=A_, help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''', default=0.1, type=A_, help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''', default=0.7, type=A_, help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''', ) parser.add_argument('''--token_counts''', type=A_, help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''', action='''store_true''', help='''If true, compute the distillation loss only the [MLM] prediction distribution.''', ) parser.add_argument( '''--freeze_pos_embs''', action='''store_true''', help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''', ) parser.add_argument( '''--freeze_token_type_embds''', action='''store_true''', help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''', ) parser.add_argument('''--n_epoch''', type=A_, default=3, help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''', type=A_, default=5, help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''', action='''store_false''', help='''If true, group sequences that have similar length into the same batch. Default is true.''', ) parser.add_argument( '''--gradient_accumulation_steps''', type=A_, default=50, help='''Gradient accumulation for larger training batches.''', ) parser.add_argument('''--warmup_prop''', default=0.05, type=A_, help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''', default=0.0, type=A_, help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''', default=5E-4, type=A_, help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''', default=1E-6, type=A_, help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''', default=5.0, type=A_, help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''', default=0.02, type=A_, help='''Random initialization range.''' ) parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''', ) parser.add_argument( '''--fp16_opt_level''', type=A_, default='''O1''', help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ), ) parser.add_argument('''--n_gpu''', type=A_, default=1, help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''', type=A_, default=-1, help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''', type=A_, default=56, help='''Random seed''' ) parser.add_argument('''--log_interval''', type=A_, default=5_00, help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''', type=A_, default=40_00, help='''Checkpoint interval.''' ) _lowerCamelCase : List[Any] = parser.parse_args() sanity_checks(A_ ) # ARGS # init_gpu_params(A_ ) set_seed(A_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path, '''parameters.json''' ), '''w''' ) as f: json.dump(vars(A_ ), A_, indent=4 ) git_log(args.dump_path ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = MODEL_CLASSES[args.student_type] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _lowerCamelCase : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _lowerCamelCase : List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _lowerCamelCase : Optional[int] = tokenizer.all_special_tokens.index(A_ ) _lowerCamelCase : Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _lowerCamelCase : Optional[Any] = special_tok_ids _lowerCamelCase : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file, '''rb''' ) as fp: _lowerCamelCase : Any = pickle.load(A_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts, '''rb''' ) as fp: _lowerCamelCase : str = pickle.load(A_ ) _lowerCamelCase : List[Any] = np.maximum(A_, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _lowerCamelCase : List[Any] = 0.0 # do not predict special tokens _lowerCamelCase : str = torch.from_numpy(A_ ) else: _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Any = LmSeqsDataset(params=A_, data=A_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _lowerCamelCase : str = student_config_class.from_pretrained(args.student_config ) _lowerCamelCase : Union[str, Any] = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _lowerCamelCase : Dict = student_model_class.from_pretrained(args.student_pretrained_weights, config=A_ ) else: _lowerCamelCase : Optional[Any] = student_model_class(A_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # _lowerCamelCase : int = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=A_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A_, A_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A_, A_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _lowerCamelCase : Optional[int] = Distiller( params=A_, dataset=A_, token_probs=A_, student=A_, teacher=A_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
175
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Tuple ) -> Dict: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCamelCase ): __lowerCAmelCase = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def lowercase ( self : Union[str, Any] ) -> int: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCamelCase ): __lowerCAmelCase = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def lowercase ( self : Dict ) -> str: for model_name in ["bert-base-cased", "bert-large-uncased"]: __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) __lowerCAmelCase = FlaxBertModel.from_pretrained(__lowerCamelCase ) __lowerCAmelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase_ : str ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() @slow def lowercase ( self : str ) -> List[Any]: for model_name in ["roberta-base", "roberta-large"]: __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) __lowerCAmelCase = FlaxRobertaModel.from_pretrained(__lowerCamelCase ) __lowerCAmelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase_ : Any ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() def lowercase ( self : Optional[Any] ) -> Dict: with self.assertRaisesRegex( __lowerCamelCase , 'bert-base is not a local folder and is not a valid model identifier' ): __lowerCAmelCase = FlaxAutoModel.from_pretrained('bert-base' ) def lowercase ( self : Tuple ) -> Tuple: with self.assertRaisesRegex( __lowerCamelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowerCAmelCase = FlaxAutoModel.from_pretrained(__lowerCamelCase , revision='aaaaaa' ) def lowercase ( self : Any ) -> List[str]: with self.assertRaisesRegex( __lowerCamelCase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): __lowerCAmelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def lowercase ( self : List[str] ) -> Any: with self.assertRaisesRegex(__lowerCamelCase , 'Use `from_pt=True` to load this model' ): __lowerCAmelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
284
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a__: Dict = logging.get_logger(__name__) a__: str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__: Any = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } a__: Any = { 'distilbert-base-uncased': 512, 'distilbert-base-uncased-distilled-squad': 512, 'distilbert-base-cased': 512, 'distilbert-base-cased-distilled-squad': 512, 'distilbert-base-german-cased': 512, 'distilbert-base-multilingual-cased': 512, } a__: Optional[Any] = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE = DistilBertTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=True,__lowerCamelCase="[UNK]",__lowerCamelCase="[SEP]",__lowerCamelCase="[PAD]",__lowerCamelCase="[CLS]",__lowerCamelCase="[MASK]",__lowerCamelCase=True,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__( __lowerCamelCase,tokenizer_file=__lowerCamelCase,do_lower_case=__lowerCamelCase,unk_token=__lowerCamelCase,sep_token=__lowerCamelCase,pad_token=__lowerCamelCase,cls_token=__lowerCamelCase,mask_token=__lowerCamelCase,tokenize_chinese_chars=__lowerCamelCase,strip_accents=__lowerCamelCase,**__lowerCamelCase,) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''',__lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''',__lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''',__lowerCamelCase ) != tokenize_chinese_chars ): A__ = getattr(__lowerCamelCase,normalizer_state.pop('''type''' ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**__lowerCamelCase ) A__ = do_lower_case def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = self._tokenizer.model.save(__lowerCamelCase,name=__lowerCamelCase ) return tuple(__lowerCamelCase )
193
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = tf.data.AUTOTUNE def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : List[Any] = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=_a , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=_a , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=_a , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=_a , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=_a , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=_a , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=_a , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=_a , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=_a , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=_a , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=_a , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=_a , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=_a , default=512 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=_a , default=0.1_5 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=_a , required=_a , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=_a , help="""Model ID to upload to on the Hugging Face Hub.""" ) UpperCAmelCase_ : str = parser.parse_args() return args def lowerCamelCase_ ( _a : Tuple ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(_a ) tf.tpu.experimental.initialize_tpu_system(_a ) return tpu def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 for file in file_list: UpperCAmelCase_ : Union[str, Any] = file.split("""/""" )[-1] UpperCAmelCase_ : int = re.search(r"""-\d+-(\d+)\.tfrecord""" , _a ).group(1 ) UpperCAmelCase_ : List[str] = int(_a ) num_samples += sample_count return num_samples def lowerCamelCase_ ( _a : str , _a : Optional[int] , _a : Union[str, Any] , _a : List[Any] , _a : List[str] , _a : str=None ): '''simple docstring''' UpperCAmelCase_ : Dict = count_samples(_a ) UpperCAmelCase_ : Union[str, Any] = tf.data.Dataset.from_tensor_slices(_a ) if shuffle: UpperCAmelCase_ : List[str] = dataset.shuffle(len(_a ) ) UpperCAmelCase_ : Any = tf.data.TFRecordDataset(_a , num_parallel_reads=_a ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ : Any = dataset.apply(tf.data.experimental.assert_cardinality(_a ) ) UpperCAmelCase_ : List[str] = dataset.map(_a , num_parallel_calls=_a ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ : Any = dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ : str = dataset.batch(_a , drop_remainder=_a ) UpperCAmelCase_ : Union[str, Any] = dataset.map(_a , num_parallel_calls=_a ) UpperCAmelCase_ : str = dataset.prefetch(_a ) return dataset def lowerCamelCase_ ( _a : Tuple ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ : List[str] = initialize_tpu(_a ) UpperCAmelCase_ : Tuple = tf.distribute.TPUStrategy(_a ) else: UpperCAmelCase_ : List[Any] = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ : str = AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ : List[str] = tokenizer.vocab_size UpperCAmelCase_ : Union[str, Any] = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(F'''No .tfrecord files found in {args.train_dataset}.''' ) UpperCAmelCase_ : Tuple = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(F'''No .tfrecord files found in {args.eval_dataset}.''' ) UpperCAmelCase_ : str = count_samples(_a ) UpperCAmelCase_ : Optional[int] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ : List[Any] = steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ : Optional[int] = TFAutoModelForMaskedLM.from_config(_a ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = create_optimizer( num_train_steps=_a , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_a , metrics=["""accuracy"""] ) def decode_fn(_a : Tuple ): UpperCAmelCase_ : Union[str, Any] = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_a , _a ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ : Optional[Any] = DataCollatorForLanguageModeling( tokenizer=_a , mlm_probability=args.mlm_probability , mlm=_a , return_tensors="""tf""" ) def mask_with_collator(_a : Optional[Any] ): # TF really needs an isin() function UpperCAmelCase_ : List[str] = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(_a ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_a , ) return batch UpperCAmelCase_ : Any = args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ : int = prepare_dataset( _a , decode_fn=_a , mask_fn=_a , batch_size=_a , shuffle=_a , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ : List[str] = prepare_dataset( _a , decode_fn=_a , mask_fn=_a , batch_size=_a , shuffle=_a , ) UpperCAmelCase_ : int = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_a ) ) model.fit( _a , validation_data=_a , epochs=args.num_epochs , callbacks=_a , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCamelCase_ = parse_args() main(args)
59
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [False] * len(_a ) UpperCAmelCase_ : Any = [-1] * len(_a ) def dfs(_a : Optional[int] , _a : str ): UpperCAmelCase_ : int = True UpperCAmelCase_ : Optional[int] = c for u in graph[v]: if not visited[u]: dfs(_a , 1 - c ) for i in range(len(_a ) ): if not visited[i]: dfs(_a , 0 ) for i in range(len(_a ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCamelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
59
1
from sklearn.metrics import fa_score import datasets A__ : Union[str, Any] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' A__ : Optional[int] = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' A__ : Dict = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase__ ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ), reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''], ) def lowercase__ ( self : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Tuple=None, lowerCamelCase : str=1, lowerCamelCase : Union[str, Any]="binary", lowerCamelCase : Tuple=None ): '''simple docstring''' lowercase__ = fa_score( lowerCamelCase, lowerCamelCase, labels=lowerCamelCase, pos_label=lowerCamelCase, average=lowerCamelCase, sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
207
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [1] lowercase__ , lowercase__ , lowercase__ = 0, 0, 0 lowercase__ = ugly_nums[ia] * 2 lowercase__ = ugly_nums[ia] * 3 lowercase__ = ugly_nums[ia] * 5 for _ in range(1 , lowerCamelCase_ ): lowercase__ = min(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ugly_nums.append(lowerCamelCase_ ) if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(2_00) = }")
207
1
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowerCamelCase__ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def __lowerCAmelCase (_UpperCamelCase ): for pegasus_name, hf_name in PATTERNS: __lowerCAmelCase : List[Any] = k.replace(_UpperCamelCase , _UpperCamelCase ) return k def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCAmelCase : List[Any] = PegasusConfig(**_UpperCamelCase ) __lowerCAmelCase : Dict = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCAmelCase : Optional[int] = torch_model.model.state_dict() __lowerCAmelCase : Union[str, Any] = {} for k, v in tf_weights.items(): __lowerCAmelCase : str = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __lowerCAmelCase : Tuple = v.T __lowerCAmelCase : List[Any] = torch.tensor(_UpperCamelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __lowerCAmelCase : Optional[Any] = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __lowerCAmelCase : List[str] = mapping['shared.weight'] __lowerCAmelCase : List[Any] = mapping['shared.weight'] __lowerCAmelCase : Union[str, Any] = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = torch_model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) __lowerCAmelCase : Tuple = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F"no matches found for the following torch keys {unexpected_missing}" assert extra == [], F"no matches found for the following tf keys {extra}" return torch_model def __lowerCAmelCase (_UpperCamelCase="./ckpt/aeslc/model.ckpt-32000" ): __lowerCAmelCase : Dict = tf.train.list_variables(_UpperCamelCase ) __lowerCAmelCase : Optional[Any] = {} __lowerCAmelCase : Union[str, Any] = ['Adafactor', 'global_step'] for name, shape in tqdm(_UpperCamelCase , desc='converting tf checkpoint to dict' ): __lowerCAmelCase : Optional[int] = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCAmelCase : int = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : int = array return tf_weights def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): # save tokenizer first __lowerCAmelCase : List[str] = Path(_UpperCamelCase ).parent.name __lowerCAmelCase : int = task_specific_params[F"summarization_{dataset}"]['max_position_embeddings'] __lowerCAmelCase : Any = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCAmelCase : List[Any] = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCAmelCase : List[Any] = task_specific_params[F"summarization_{dataset}"] if dataset == "large": __lowerCAmelCase : str = task_specific_params __lowerCAmelCase : Optional[Any] = convert_pegasus(_UpperCamelCase , _UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCAmelCase : Optional[Any] = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(_UpperCamelCase , Path(_UpperCamelCase ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCamelCase__ = parser.parse_args() if args.save_dir is None: lowerCamelCase__ = Path(args.tf_ckpt_path).parent.name lowerCamelCase__ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
355
"""simple docstring""" import qiskit def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCAmelCase : str = qiskit.QuantumCircuit(_UpperCamelCase , _UpperCamelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowerCAmelCase : Optional[int] = qiskit.execute(_UpperCamelCase , _UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": print(f'Total count for various states are: {single_qubit_measure(1, 1)}')
182
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ :Optional[int] = '▁' lowerCAmelCase__ :List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __a ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _a : Optional[int] = BigBirdTokenizer _a : str = BigBirdTokenizerFast _a : Dict = True _a : Optional[Any] = True def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" super().setUp() _UpperCAmelCase = self.tokenizer_class(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = '<s>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1004 ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = BigBirdTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = 'Hello World!' _UpperCAmelCase = [65, 18536, 2260, 101, 66] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off _UpperCAmelCase = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @require_torch @slow def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _UpperCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCAmelCase = ' '.join(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.big_tokenizer.encode_plus(_SCREAMING_SNAKE_CASE , return_tensors='pt' , return_token_type_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = BigBirdConfig(attention_type='original_full' ) _UpperCAmelCase = BigBirdModel(_SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE ) model(**_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) _UpperCAmelCase = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = {'input_ids': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
329
def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = [0] * len(a_ ) __A = [] __A = [1] * len(a_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a_ ) ): if indegree[i] == 0: queue.append(a_ ) while queue: __A = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __A = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(a_ ) print(max(a_ ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE :List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
15
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __snake_case = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __snake_case ( lowerCamelCase__ ): def __init__( self , **snake_case__ ) -> Optional[Any]: '''simple docstring''' super().__init__(**snake_case__ ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(snake_case__ ) def UpperCAmelCase__ ( self , **snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] ={} UpperCAmelCase : Union[str, Any] ={} UpperCAmelCase : List[Any] ={} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase : Optional[Any] =kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: UpperCAmelCase : int =kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: UpperCAmelCase : Union[str, Any] =kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: UpperCAmelCase : List[Any] =kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase : List[str] =kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase : Dict =kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: UpperCAmelCase : Optional[int] =kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: UpperCAmelCase : Union[str, Any] =kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: UpperCAmelCase : int =kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: UpperCAmelCase : str =kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: UpperCAmelCase : Optional[int] =kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: UpperCAmelCase : List[Any] =kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , snake_case__ , *snake_case__ , snake_case__=None , snake_case__=None , **snake_case__ ) -> int: '''simple docstring''' return super().__call__(snake_case__ , *snake_case__ , num_workers=snake_case__ , batch_size=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__=64 , snake_case__ = 0 , snake_case__ = 512 / 1500 , snake_case__ = 32 , snake_case__ = 1 , ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =load_image(snake_case__ ) UpperCAmelCase : Dict =self.image_processor.size['''longest_edge'''] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] =self.image_processor.generate_crop_boxes( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : int =self.image_processor(images=snake_case__ , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase : int =self.get_inference_context() with inference_context(): UpperCAmelCase : Optional[Any] =self._ensure_tensor_on_device(snake_case__ , device=self.device ) UpperCAmelCase : Union[str, Any] =self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) UpperCAmelCase : Optional[int] =image_embeddings UpperCAmelCase : Union[str, Any] =grid_points.shape[1] UpperCAmelCase : List[Any] =points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase : List[str] =input_labels[:, i : i + points_per_batch] UpperCAmelCase : str =i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0.88 , snake_case__=0.95 , snake_case__=0 , snake_case__=1 , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =model_inputs.pop('''input_boxes''' ) UpperCAmelCase : str =model_inputs.pop('''is_last''' ) UpperCAmelCase : Tuple =model_inputs.pop('''original_sizes''' ).tolist() UpperCAmelCase : int =model_inputs.pop('''reshaped_input_sizes''' ).tolist() UpperCAmelCase : Any =self.model(**snake_case__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase : int =model_outputs['''pred_masks'''] UpperCAmelCase : Any =self.image_processor.post_process_masks( snake_case__ , snake_case__ , snake_case__ , snake_case__ , binarize=snake_case__ ) UpperCAmelCase : Optional[Any] =model_outputs['''iou_scores'''] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCAmelCase__ ( self , snake_case__ , snake_case__=False , snake_case__=False , snake_case__=0.7 , ) -> Any: '''simple docstring''' UpperCAmelCase : int =[] UpperCAmelCase : Any =[] UpperCAmelCase : Optional[Any] =[] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) UpperCAmelCase : Union[str, Any] =torch.cat(snake_case__ ) UpperCAmelCase : int =torch.cat(snake_case__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str =self.image_processor.post_process_for_mask_generation( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : str =defaultdict(snake_case__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(snake_case__ ) UpperCAmelCase : Union[str, Any] ={} if output_rle_mask: UpperCAmelCase : int =rle_mask if output_bboxes_mask: UpperCAmelCase : str =bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
78
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowerCAmelCase_ ( __lowerCAmelCase = "isbn/0140328726" )-> dict: '''simple docstring''' UpperCAmelCase : Tuple =olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: UpperCAmelCase : Any =f'''{olid} is not a valid Open Library olid''' raise ValueError(__lowerCAmelCase ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def lowerCAmelCase_ ( __lowerCAmelCase )-> dict: '''simple docstring''' UpperCAmelCase : int ={ '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } UpperCAmelCase : Tuple ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCAmelCase : Optional[int] =[ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] UpperCAmelCase : List[str] =data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : str =''', '''.join(__lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __snake_case = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(f'\nSearching Open Library for ISBN: {isbn}...\n') try: __snake_case = summarize_book(get_openlibrary_data(f'isbn/{isbn}')) print('''\n'''.join(f'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'Sorry, there are no results for ISBN: {isbn}.')
78
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase :Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase :Dict = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowerCAmelCase :List[str] = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } lowerCAmelCase :Optional[Any] = '▁' class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , _A : Dict , _A : Any="<s>" , _A : Optional[int]="</s>" , _A : int="</s>" , _A : Union[str, Any]="<s>" , _A : str="<unk>" , _A : Any="<pad>" , _A : str="<mask>" , _A : List[Any] = None , **_A : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Optional[Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __magic_name__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __magic_name__ : Optional[int] = vocab_file __magic_name__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) __magic_name__ : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} __magic_name__ : str = len(self.sp_model ) - 1 __magic_name__ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __lowerCAmelCase ( self : Any , _A : Tuple , _A : Any = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : Tuple = [self.cls_token_id] __magic_name__ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : Tuple , _A : Union[str, Any] , _A : Tuple = None , _A : int = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __lowerCAmelCase ( self : Union[str, Any] , _A : int , _A : int = None ) -> List[int]: __magic_name__ : Optional[Any] = [self.sep_token_id] __magic_name__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self : List[str] ) -> Tuple: return len(self.sp_model ) def __lowerCAmelCase ( self : Any ) -> List[str]: __magic_name__ : Any = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Tuple , _A : Dict ) -> List[str]: return self.sp_model.encode(_A , out_type=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : List[Any] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : Union[str, Any] = self.sp_model.PieceToId(_A ) return spm_id if spm_id else self.unk_token_id def __lowerCAmelCase ( self : Tuple , _A : Union[str, Any] ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_A ) def __lowerCAmelCase ( self : List[str] , _A : Any ) -> Dict: __magic_name__ : Tuple = [] __magic_name__ : Optional[int] = '''''' __magic_name__ : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token __magic_name__ : Dict = True __magic_name__ : Optional[int] = [] else: current_sub_tokens.append(_A ) __magic_name__ : str = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __getstate__( self : Tuple ) -> List[Any]: __magic_name__ : Dict = self.__dict__.copy() __magic_name__ : Optional[int] = None return state def __setstate__( self : Dict , _A : Union[str, Any] ) -> str: __magic_name__ : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __magic_name__ : List[str] = {} __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : str , _A : int , _A : Dict = None ) -> Tuple[str]: if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Optional[int] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , 'wb' ) as fi: __magic_name__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
331
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _lowerCAmelCase :Tuple = logging.getLogger(__name__) def lowerCamelCase_ (UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : List[Any]=16 , UpperCamelCase__ : int = 10 , UpperCamelCase__ : int = 2 ): def get_dataset(UpperCamelCase__ : List[str] ): _UpperCAmelCase : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(UpperCamelCase__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _UpperCAmelCase : Optional[Any] = get_dataset(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = get_dataset(UpperCamelCase__ ) _UpperCAmelCase : List[str] = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) _UpperCAmelCase : List[str] = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=None ): _UpperCAmelCase : Tuple = [] for epoch in range(UpperCamelCase__ ): # Train quickly model.train() for batch in dataloader: _UpperCAmelCase , _UpperCAmelCase : Dict = batch _UpperCAmelCase : int = model(UpperCamelCase__ ) _UpperCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase__ , UpperCamelCase__ ) accelerator.backward(UpperCamelCase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self ) -> List[Any]: super().__init__() _UpperCAmelCase : List[Any] = nn.Parameter(torch.randn(1 ) ) _UpperCAmelCase : int = nn.Parameter(torch.randn(1 ) ) def __lowerCAmelCase ( self , A ) -> Tuple: return x * self.a + self.b class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _UpperCAmelCase : int = DummyModel() _UpperCAmelCase : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = dummy_dataloaders() _UpperCAmelCase : Any = ProjectConfiguration(total_limit=1 , project_dir=A , automatic_checkpoint_naming=A ) # Train baseline _UpperCAmelCase : Union[str, Any] = Accelerator(project_config=A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = accelerator.prepare( A , A , A , A ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __lowerCAmelCase ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _UpperCAmelCase : Optional[Any] = DummyModel() _UpperCAmelCase : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase , _UpperCAmelCase : Dict = dummy_dataloaders() # Train baseline _UpperCAmelCase : Optional[int] = Accelerator() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = accelerator.prepare( A , A , A , A ) # Save initial _UpperCAmelCase : Union[str, Any] = os.path.join(A , '''initial''' ) accelerator.save_state(A ) ((_UpperCAmelCase) , (_UpperCAmelCase)) : Optional[Any] = model.a.item(), model.b.item() _UpperCAmelCase : str = optimizer.state_dict() _UpperCAmelCase : Tuple = train(3 , A , A , A , A ) ((_UpperCAmelCase) , (_UpperCAmelCase)) : Dict = model.a.item(), model.b.item() _UpperCAmelCase : List[Any] = optimizer.state_dict() # Train partially set_seed(4_2 ) _UpperCAmelCase : Dict = DummyModel() _UpperCAmelCase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = dummy_dataloaders() _UpperCAmelCase : Tuple = Accelerator() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = accelerator.prepare( A , A , A , A ) accelerator.load_state(A ) ((_UpperCAmelCase) , (_UpperCAmelCase)) : Union[str, Any] = model.a.item(), model.b.item() _UpperCAmelCase : List[str] = optimizer.state_dict() self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) _UpperCAmelCase : Union[str, Any] = train(2 , A , A , A , A ) # Save everything _UpperCAmelCase : List[str] = os.path.join(A , '''checkpoint''' ) accelerator.save_state(A ) # Load everything back in and make sure all states work accelerator.load_state(A ) test_rands += train(1 , A , A , A , A ) ((_UpperCAmelCase) , (_UpperCAmelCase)) : Dict = model.a.item(), model.b.item() _UpperCAmelCase : Dict = optimizer.state_dict() self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) def __lowerCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _UpperCAmelCase : List[Any] = DummyModel() _UpperCAmelCase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = dummy_dataloaders() _UpperCAmelCase : List[str] = ProjectConfiguration(automatic_checkpoint_naming=A ) # Train baseline _UpperCAmelCase : str = Accelerator(project_dir=A , project_config=A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = accelerator.prepare( A , A , A , A ) # Save initial accelerator.save_state() ((_UpperCAmelCase) , (_UpperCAmelCase)) : Union[str, Any] = model.a.item(), model.b.item() _UpperCAmelCase : Dict = optimizer.state_dict() _UpperCAmelCase : int = train(3 , A , A , A , A ) ((_UpperCAmelCase) , (_UpperCAmelCase)) : Union[str, Any] = model.a.item(), model.b.item() _UpperCAmelCase : Union[str, Any] = optimizer.state_dict() # Train partially set_seed(4_2 ) _UpperCAmelCase : List[Any] = DummyModel() _UpperCAmelCase : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase , _UpperCAmelCase : Any = dummy_dataloaders() _UpperCAmelCase : List[str] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=A ) _UpperCAmelCase : Tuple = Accelerator(project_dir=A , project_config=A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = accelerator.prepare( A , A , A , A ) accelerator.load_state(os.path.join(A , '''checkpoints''' , '''checkpoint_0''' ) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) : Dict = model.a.item(), model.b.item() _UpperCAmelCase : str = optimizer.state_dict() self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) _UpperCAmelCase : List[str] = train(2 , A , A , A , A ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , A , A , A , A ) ((_UpperCAmelCase) , (_UpperCAmelCase)) : List[str] = model.a.item(), model.b.item() _UpperCAmelCase : Tuple = optimizer.state_dict() self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : List[Any] = torch.tensor([1, 2, 3] ) _UpperCAmelCase : List[str] = torch.tensor([2, 3, 4] ) _UpperCAmelCase : Optional[int] = DummyModel() _UpperCAmelCase : Dict = torch.optim.Adam(net.parameters() ) _UpperCAmelCase : Optional[int] = Accelerator() with self.assertRaises(A ) as ve: accelerator.register_for_checkpointing(A , A , A , A ) _UpperCAmelCase : Dict = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def __lowerCAmelCase ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _UpperCAmelCase : Tuple = DummyModel() _UpperCAmelCase : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase : Optional[int] = torch.optim.lr_scheduler.StepLR(A , step_size=1 , gamma=0.99 ) _UpperCAmelCase , _UpperCAmelCase : str = dummy_dataloaders() _UpperCAmelCase : List[str] = ProjectConfiguration(automatic_checkpoint_naming=A ) # Train baseline _UpperCAmelCase : int = Accelerator(project_dir=A , project_config=A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = accelerator.prepare( A , A , A , A , A ) # Save initial accelerator.save_state() _UpperCAmelCase : List[str] = scheduler.state_dict() train(3 , A , A , A , A , A ) self.assertNotEqual(A , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(A , scheduler.state_dict() ) def __lowerCAmelCase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _UpperCAmelCase : int = DummyModel() _UpperCAmelCase : str = ProjectConfiguration(automatic_checkpoint_naming=A , total_limit=2 ) # Train baseline _UpperCAmelCase : Union[str, Any] = Accelerator(project_dir=A , project_config=A ) _UpperCAmelCase : Optional[Any] = accelerator.prepare(A ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(A , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(A , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(A , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : str = ['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(A , env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase :Dict = '/tmp/accelerate/state_checkpointing' _lowerCAmelCase :Any = DummyModel() _lowerCAmelCase :Tuple = torch.optim.Adam(params=model.parameters(), lr=1E-3) _lowerCAmelCase :Dict = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) _lowerCAmelCase,_lowerCAmelCase :Any = dummy_dataloaders() _lowerCAmelCase :Tuple = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _lowerCAmelCase :Optional[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _lowerCAmelCase,_lowerCAmelCase,_lowerCAmelCase,_lowerCAmelCase,_lowerCAmelCase :str = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _lowerCAmelCase,_lowerCAmelCase :List[Any] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _lowerCAmelCase :int = group['params'][0].device break assert param_device.type == accelerator.device.type _lowerCAmelCase :Dict = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: _lowerCAmelCase :List[Any] = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: _lowerCAmelCase :Union[str, Any] = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
263
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __a ( ) ->Dict: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=UpperCAmelCase , default=UpperCAmelCase , required=UpperCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=UpperCAmelCase , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=UpperCAmelCase , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=UpperCAmelCase , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=UpperCAmelCase , default=0 , help="""cuda_id.""" , ) A = parser.parse_args() return args def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" if not len(UpperCAmelCase ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) A , A = imgs[0].size A = Image.new("""RGB""" , size=(cols * w, rows * h) ) A , A = grid.size for i, img in enumerate(UpperCAmelCase ): grid.paste(UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def __a ( UpperCAmelCase , UpperCAmelCase="robotic cat with wings" , UpperCAmelCase=7.5 , UpperCAmelCase=50 , UpperCAmelCase=1 , UpperCAmelCase=42 , ) ->Optional[int]: """simple docstring""" A = torch.Generator(pipeline.device ).manual_seed(UpperCAmelCase ) A = pipeline( UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=UpperCAmelCase , generator=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , ).images A = int(math.sqrt(UpperCAmelCase ) ) A = image_grid(UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCamelCase : str = parse_args() # Load models and create wrapper for stable diffusion _lowerCamelCase : Any = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') _lowerCamelCase : Dict = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') _lowerCamelCase : Union[str, Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') _lowerCamelCase : Union[str, Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') _lowerCamelCase : int = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCamelCase : Any = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): _lowerCamelCase : Optional[int] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: _lowerCamelCase : str = unet.to(torch.device('cuda', args.cuda_id)) _lowerCamelCase : Union[str, Any] = pipeline.to(unet.device) _lowerCamelCase , _lowerCamelCase : Tuple = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) _lowerCamelCase : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
337
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''yolos''' def __init__(self : Tuple , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=[512, 864] , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Any ): return 1e-4 @property def A (self : int ): return 12
337
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
1
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''T''') def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return (position - 1) // 2 def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return (2 * position) + 1 def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return (2 * position) + 2 class SCREAMING_SNAKE_CASE__ ( Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : list[tuple[T, int]] = [] lowerCAmelCase : dict[T, int] = {} lowerCAmelCase : int = 0 def __len__( self ): """simple docstring""" return self.elements def __repr__( self ): """simple docstring""" return str(self.heap ) def lowercase__ ( self ): """simple docstring""" return self.elements == 0 def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" self.heap.append((elem, weight) ) lowerCAmelCase : Tuple = self.elements self.elements += 1 self._bubble_up(snake_case__ ) def lowercase__ ( self ): """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCAmelCase , lowerCAmelCase : Tuple = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.heap[0] self._bubble_down(snake_case__ ) return elem def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = self.position_map[elem] lowerCAmelCase : Optional[int] = (elem, weight) if position > 0: lowerCAmelCase : Union[str, Any] = get_parent_position(snake_case__ ) lowerCAmelCase , lowerCAmelCase : List[Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(snake_case__ ) else: self._bubble_down(snake_case__ ) else: self._bubble_down(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = self.position_map[elem] if curr_pos == 0: return None lowerCAmelCase : List[str] = get_parent_position(snake_case__ ) lowerCAmelCase , lowerCAmelCase : str = self.heap[curr_pos] lowerCAmelCase , lowerCAmelCase : Tuple = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(snake_case__ , snake_case__ ) return self._bubble_up(snake_case__ ) return None def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = self.position_map[elem] lowerCAmelCase , lowerCAmelCase : List[str] = self.heap[curr_pos] lowerCAmelCase : Optional[Any] = get_child_left_position(snake_case__ ) lowerCAmelCase : Union[str, Any] = get_child_right_position(snake_case__ ) if child_left_position < self.elements and child_right_position < self.elements: lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.heap[child_left_position] lowerCAmelCase , lowerCAmelCase : Dict = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(snake_case__ , snake_case__ ) return self._bubble_down(snake_case__ ) if child_left_position < self.elements: lowerCAmelCase , lowerCAmelCase : int = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(snake_case__ , snake_case__ ) return self._bubble_down(snake_case__ ) else: return None if child_right_position < self.elements: lowerCAmelCase , lowerCAmelCase : Optional[int] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(snake_case__ , snake_case__ ) return self._bubble_down(snake_case__ ) return None def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.heap[nodea_pos][0] lowerCAmelCase : Optional[Any] = self.heap[nodea_pos][0] lowerCAmelCase , lowerCAmelCase : Tuple = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCAmelCase : int = nodea_pos lowerCAmelCase : str = nodea_pos class SCREAMING_SNAKE_CASE__ ( Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : dict[T, dict[T, int]] = {} lowerCAmelCase : int = 0 def __repr__( self ): """simple docstring""" return str(self.connections ) def __len__( self ): """simple docstring""" return self.nodes def lowercase__ ( self , snake_case__ ): """simple docstring""" if node not in self.connections: lowerCAmelCase : List[Any] = {} self.nodes += 1 def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" self.add_node(snake_case__ ) self.add_node(snake_case__ ) lowerCAmelCase : List[Any] = weight lowerCAmelCase : Dict = weight def a__ ( SCREAMING_SNAKE_CASE : GraphUndirectedWeighted[T] , ): '''simple docstring''' lowerCAmelCase : dict[T, int] = {node: maxsize for node in graph.connections} lowerCAmelCase : dict[T, T | None] = {node: None for node in graph.connections} lowerCAmelCase : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization lowerCAmelCase : Optional[Any] = priority_queue.extract_min() lowerCAmelCase : Optional[int] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase : List[str] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE , dist[neighbour] ) lowerCAmelCase : Optional[Any] = node # running prim's algorithm while not priority_queue.is_empty(): lowerCAmelCase : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase : str = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE , dist[neighbour] ) lowerCAmelCase : Tuple = node return dist, parent
133
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] =(DEISMultistepScheduler,) a : str =(("num_inference_steps", 25),) def lowercase__ ( self , **snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**snake_case__ ) return config def lowercase__ ( self , snake_case__=0 , **snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : int = 0.1 * sample lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase : Any = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : List[str] = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = sample, sample for t in range(snake_case__ , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase : Any = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : str = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self , snake_case__=0 , **snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : Optional[int] = 0.1 * sample lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase : int = self.get_scheduler_config() lowerCAmelCase : Any = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : Any = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : int = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self , snake_case__=None , **snake_case__ ): """simple docstring""" if scheduler is None: lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : Any = scheduler_class(**snake_case__ ) lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) lowerCAmelCase : int = 10 lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Any = model(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**snake_case__ ) lowerCAmelCase : int = self.dummy_sample lowerCAmelCase : int = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): lowerCAmelCase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase : int = scheduler.timesteps[5] lowerCAmelCase : str = scheduler.timesteps[6] lowerCAmelCase : str = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase : Dict = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 lowerCAmelCase : List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : str = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : str = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=snake_case__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , algorithm_type="deis" , solver_order=snake_case__ , solver_type=snake_case__ , ) def lowercase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def lowercase__ ( self ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) lowerCAmelCase : Any = self.full_loop( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) assert not torch.isnan(snake_case__ ).any(), "Samples have nan numbers" def lowercase__ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=snake_case__ ) self.check_over_configs(lower_order_final=snake_case__ ) def lowercase__ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=snake_case__ , time_step=0 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.full_loop() lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase : List[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : str = self.get_scheduler_config(thresholding=snake_case__ , dynamic_thresholding_ratio=0 ) lowerCAmelCase : Optional[Any] = scheduler_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = 10 lowerCAmelCase : Tuple = self.dummy_model() lowerCAmelCase : List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Union[str, Any] = model(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample assert sample.dtype == torch.floataa
133
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ShapEImgaImgPipeline UpperCamelCase = ['''image'''] UpperCamelCase = ['''image'''] UpperCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def snake_case_( self ) -> Optional[Any]: return 32 @property def snake_case_( self ) -> Union[str, Any]: return 32 @property def snake_case_( self ) -> int: return self.time_input_dim * 4 @property def snake_case_( self ) -> Tuple: return 8 @property def snake_case_( self ) -> List[Any]: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _SCREAMING_SNAKE_CASE = CLIPVisionModel(A ) return model @property def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = CLIPImageProcessor( crop_size=224 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def snake_case_( self ) -> Optional[int]: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _SCREAMING_SNAKE_CASE = PriorTransformer(**A ) return model @property def snake_case_( self ) -> Any: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _SCREAMING_SNAKE_CASE = ShapERenderer(**A ) return model def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = self.dummy_prior _SCREAMING_SNAKE_CASE = self.dummy_image_encoder _SCREAMING_SNAKE_CASE = self.dummy_image_processor _SCREAMING_SNAKE_CASE = self.dummy_renderer _SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=A , clip_sample=A , clip_sample_range=1.0 , ) _SCREAMING_SNAKE_CASE = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def snake_case_( self , A , A=0 ) -> Tuple: _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(A ) ).to(A ) if str(A ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(A ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=A ).manual_seed(A ) _SCREAMING_SNAKE_CASE = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**A ) _SCREAMING_SNAKE_CASE = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(A ) ) _SCREAMING_SNAKE_CASE = output.images[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _SCREAMING_SNAKE_CASE = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_( self ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = torch_device == """cpu""" _SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=A , relax_max_difference=A , ) def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**A ) _SCREAMING_SNAKE_CASE = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(A ) for key in inputs.keys(): if key in self.batch_params: _SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] _SCREAMING_SNAKE_CASE = pipe(**A , num_images_per_prompt=A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def snake_case_( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) _SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) _SCREAMING_SNAKE_CASE = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _SCREAMING_SNAKE_CASE = torch.Generator(device=A ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe( A , generator=A , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A , A )
58
from numpy import exp, pi, sqrt def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
219
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : List[Any] = ['image_processor', 'tokenizer'] _snake_case : Optional[int] = 'BlipImageProcessor' _snake_case : Optional[int] = 'AutoTokenizer' def __init__( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = False super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = self.image_processor def __call__( self : Any , lowerCAmelCase__ : ImageInput = None , lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : int , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase = self.tokenizer _UpperCamelCase = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) return text_encoding # add pixel_values _UpperCamelCase = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) if text is not None: _UpperCamelCase = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) else: _UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def snake_case__ ( self : str , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Any ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : List[Any] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer.model_input_names _UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
287
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''c'''] ) self.assertEqual(lowerCAmelCase__ , [2] ) # Out indices set to match out features _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(['''a''', '''c'''] , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [0, 2] ) # Out features set to match out indices _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , [0, 2] , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [0, 2] ) # Out features selected from negative indices _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , [-3, -1] , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [-3, -1] ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , lowerCAmelCase__ ) # Out features must be a list with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(lowerCAmelCase__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(lowerCAmelCase__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = BackboneMixin() _UpperCamelCase = ['''a''', '''b''', '''c'''] _UpperCamelCase = ['''a''', '''c'''] _UpperCamelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly _UpperCamelCase = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) _UpperCamelCase = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
287
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCamelCase ( unittest.TestCase ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=30 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=10 ,__UpperCamelCase=0.02 ,) -> Tuple: '''simple docstring''' lowercase_ : Tuple = parent lowercase_ : Union[str, Any] = batch_size lowercase_ : int = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[int] = num_channels lowercase_ : Union[str, Any] = is_training lowercase_ : Dict = use_labels lowercase_ : Optional[int] = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Optional[Any] = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Tuple = hidden_act lowercase_ : int = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : str = type_sequence_label_size lowercase_ : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : str = (image_size // patch_size) ** 2 lowercase_ : Optional[int] = num_patches + 1 def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[Any] = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : List[Any] = FlaxViTModel(config=__UpperCamelCase ) lowercase_ : Dict = model(__UpperCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowercase_ : Union[str, Any] = (self.image_size, self.image_size) lowercase_ : List[Any] = (self.patch_size, self.patch_size) lowercase_ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[Any] = self.type_sequence_label_size lowercase_ : str = FlaxViTForImageClassification(config=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[int] = FlaxViTForImageClassification(__UpperCamelCase ) lowercase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : str = model(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ) : List[Any] = config_and_inputs lowercase_ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _UpperCAmelCase ( self ) -> None: '''simple docstring''' lowercase_ : Optional[Any] = FlaxViTModelTester(self ) lowercase_ : Union[str, Any] = ConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(__UpperCamelCase ) lowercase_ : Tuple = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ : Optional[Any] = self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = model_class(__UpperCamelCase ) @jax.jit def model_jitted(__UpperCamelCase ,**__UpperCamelCase ): return model(pixel_values=__UpperCamelCase ,**__UpperCamelCase ) with self.subTest('JIT Enabled' ): lowercase_ : Optional[int] = model_jitted(**__UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase_ : List[str] = model_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase ,__UpperCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase_ : Optional[int] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) lowercase_ : int = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__UpperCamelCase )
213
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class UpperCamelCase ( lowercase_ ): lowercase = 42 class UpperCamelCase ( lowercase_ , lowercase_ ): @register_to_config def __init__( self ,__UpperCamelCase = 32 ,__UpperCamelCase = 64 ,__UpperCamelCase = 20 ,__UpperCamelCase = 768 ,__UpperCamelCase=77 ,__UpperCamelCase=4 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = "silu" ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = "linear" ,__UpperCamelCase = "prd" ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> List[str]: '''simple docstring''' super().__init__() lowercase_ : Dict = num_attention_heads lowercase_ : Dict = attention_head_dim lowercase_ : Any = num_attention_heads * attention_head_dim lowercase_ : Optional[Any] = additional_embeddings lowercase_ : int = time_embed_dim or inner_dim lowercase_ : Optional[Any] = embedding_proj_dim or embedding_dim lowercase_ : List[str] = clip_embed_dim or embedding_dim lowercase_ : Union[str, Any] = Timesteps(__UpperCamelCase ,__UpperCamelCase ,0 ) lowercase_ : Tuple = TimestepEmbedding(__UpperCamelCase ,__UpperCamelCase ,out_dim=__UpperCamelCase ,act_fn=__UpperCamelCase ) lowercase_ : Optional[Any] = nn.Linear(__UpperCamelCase ,__UpperCamelCase ) if embedding_proj_norm_type is None: lowercase_ : Dict = None elif embedding_proj_norm_type == "layer": lowercase_ : str = nn.LayerNorm(__UpperCamelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) lowercase_ : Tuple = nn.Linear(__UpperCamelCase ,__UpperCamelCase ) if encoder_hid_proj_type is None: lowercase_ : str = None elif encoder_hid_proj_type == "linear": lowercase_ : Optional[int] = nn.Linear(__UpperCamelCase ,__UpperCamelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) lowercase_ : List[Any] = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,__UpperCamelCase ) ) if added_emb_type == "prd": lowercase_ : Union[str, Any] = nn.Parameter(torch.zeros(1 ,1 ,__UpperCamelCase ) ) elif added_emb_type is None: lowercase_ : List[Any] = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) lowercase_ : Dict = nn.ModuleList( [ BasicTransformerBlock( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,dropout=__UpperCamelCase ,activation_fn='gelu' ,attention_bias=__UpperCamelCase ,) for d in range(__UpperCamelCase ) ] ) if norm_in_type == "layer": lowercase_ : Optional[int] = nn.LayerNorm(__UpperCamelCase ) elif norm_in_type is None: lowercase_ : Dict = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) lowercase_ : List[Any] = nn.LayerNorm(__UpperCamelCase ) lowercase_ : Optional[int] = nn.Linear(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0000.0 ) causal_attention_mask.triu_(1 ) lowercase_ : int = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,__UpperCamelCase ,persistent=__UpperCamelCase ) lowercase_ : List[Any] = nn.Parameter(torch.zeros(1 ,__UpperCamelCase ) ) lowercase_ : Optional[int] = nn.Parameter(torch.zeros(1 ,__UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' lowercase_ : Tuple = {} def fn_recursive_add_processors(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): if hasattr(__UpperCamelCase ,'set_processor' ): lowercase_ : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' ,__UpperCamelCase ,__UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return processors def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = len(self.attn_processors.keys() ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__UpperCamelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): if hasattr(__UpperCamelCase ,'set_processor' ): if not isinstance(__UpperCamelCase ,__UpperCamelCase ): module.set_processor(__UpperCamelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' ,__UpperCamelCase ,__UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = True ,) -> Any: '''simple docstring''' lowercase_ : Any = hidden_states.shape[0] lowercase_ : str = timestep if not torch.is_tensor(__UpperCamelCase ): lowercase_ : Any = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(__UpperCamelCase ) and len(timesteps.shape ) == 0: lowercase_ : List[str] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase_ : Optional[int] = timesteps * torch.ones(__UpperCamelCase ,dtype=timesteps.dtype ,device=timesteps.device ) lowercase_ : Any = self.time_proj(__UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowercase_ : List[Any] = timesteps_projected.to(dtype=self.dtype ) lowercase_ : Any = self.time_embedding(__UpperCamelCase ) if self.embedding_proj_norm is not None: lowercase_ : List[str] = self.embedding_proj_norm(__UpperCamelCase ) lowercase_ : Any = self.embedding_proj(__UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowercase_ : Optional[int] = self.encoder_hidden_states_proj(__UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowercase_ : List[Any] = self.proj_in(__UpperCamelCase ) lowercase_ : List[str] = self.positional_embedding.to(hidden_states.dtype ) lowercase_ : Dict = [] lowercase_ : Tuple = 0 if encoder_hidden_states is not None: additional_embeds.append(__UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowercase_ : List[Any] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowercase_ : List[Any] = hidden_states[:, None, :] lowercase_ : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowercase_ : int = self.prd_embedding.to(hidden_states.dtype ).expand(__UpperCamelCase ,-1 ,-1 ) additional_embeds.append(__UpperCamelCase ) lowercase_ : int = torch.cat( __UpperCamelCase ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowercase_ : Optional[Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowercase_ : Any = F.pad( __UpperCamelCase ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) lowercase_ : Dict = hidden_states + positional_embeddings if attention_mask is not None: lowercase_ : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 lowercase_ : str = F.pad(__UpperCamelCase ,(0, self.additional_embeddings) ,value=0.0 ) lowercase_ : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowercase_ : Tuple = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: lowercase_ : Optional[Any] = self.norm_in(__UpperCamelCase ) for block in self.transformer_blocks: lowercase_ : int = block(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : str = self.norm_out(__UpperCamelCase ) if self.prd_embedding is not None: lowercase_ : Tuple = hidden_states[:, -1] else: lowercase_ : List[Any] = hidden_states[:, additional_embeddings_len:] lowercase_ : str = self.proj_to_clip_embeddings(__UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
213
1
"""simple docstring""" import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers A_ = float('''nan''') class lowercase: '''simple docstring''' def __init__( self: int, a_: Any ): '''simple docstring''' _snake_case : Union[str, Any] = sys.stdout _snake_case : int = open(a_, """a""" ) def __getattr__( self: List[str], a_: List[Any] ): '''simple docstring''' return getattr(self.stdout, a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: List[Any] ): '''simple docstring''' self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"""^.*\r""", """""", a_, 0, re.M ) ) def UpperCAmelCase__ (snake_case__ : Union[str, Any]=80 , snake_case__ : Any=False ): """simple docstring""" _snake_case : Optional[Any] = [] # deal with critical env vars _snake_case : Optional[int] = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: _snake_case : List[str] = os.environ.get(snake_case__ , snake_case__ ) if val is not None: cmd.append(F"{key}={val}" ) # python executable (not always needed if the script is executable) _snake_case : Union[str, Any] = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(snake_case__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _snake_case : str = [] _snake_case : Any = """""" while len(snake_case__ ) > 0: current_line += F"{cmd.pop(0 )} " if len(snake_case__ ) == 0 or len(snake_case__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case__ ) _snake_case : Optional[Any] = """""" return "\\\n".join(snake_case__ ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Dict = re.sub(R"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own _snake_case : str = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += F" --output_dir {output_dir}" # ensure we have --overwrite_output_dir _snake_case : Union[str, Any] = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) _snake_case : Optional[Any] = subprocess.run(snake_case__ , capture_output=snake_case__ , text=snake_case__ ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams _snake_case : int = variation.replace(""" """ , """-""" ) with open(Path(snake_case__ ) / F"log.{prefix}.stdout.txt" , """w""" ) as f: f.write(result.stdout ) with open(Path(snake_case__ ) / F"log.{prefix}.stderr.txt" , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(F"{output_dir}/all_results.json" , """r""" , encoding="""utf-8""" ) as f: _snake_case : Optional[int] = json.load(snake_case__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Optional[int] , ): """simple docstring""" _snake_case : Optional[Any] = [] _snake_case : List[str] = [] _snake_case : List[str] = F"{id}: {variation:<{longest_variation_len}}" _snake_case : Optional[int] = F"{preamble}: " _snake_case : int = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case__ ) , desc=snake_case__ , leave=snake_case__ ): _snake_case : Optional[int] = process_run_single( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _snake_case : Any = single_run_metrics[target_metric_key] if not math.isnan(snake_case__ ): metrics.append(snake_case__ ) results.append(snake_case__ ) outcome += "✓" else: outcome += "✘" _snake_case : int = F"\33[2K\r{outcome}" if len(snake_case__ ) > 0: _snake_case : Union[str, Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _snake_case : Optional[int] = round(mean_metrics[target_metric_key] , 2 ) _snake_case : Optional[Any] = F"{outcome} {mean_target}" if len(snake_case__ ) > 1: results_str += F" {tuple(round(snake_case__ , 2 ) for x in results )}" print(snake_case__ ) _snake_case : str = variation return mean_metrics else: print(snake_case__ ) return {variation_key: variation, target_metric_key: nan} def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return F"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" _snake_case : str = pd.DataFrame(snake_case__ ) _snake_case : Dict = """variation""" _snake_case : Any = """diff_%""" _snake_case : Union[str, Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _snake_case : List[str] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case__ ): # as a fallback, use the minimal value as the sentinel _snake_case : Any = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case__ ): _snake_case : Tuple = df.apply( lambda snake_case__ : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns _snake_case : Optional[int] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _snake_case : List[str] = df.reindex(snake_case__ , axis="""columns""" ) # reorder cols # capitalize _snake_case : Dict = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible _snake_case : Optional[int] = df.rename(lambda snake_case__ : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) _snake_case : int = df.rename(lambda snake_case__ : c.replace("""_""" , """\n""" ) , axis="""columns""" ) _snake_case : Dict = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case__ , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case__ , floatfmt=""".2f""" )] print("""\n\n""".join(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=snake_case__ , type=snake_case__ , required=snake_case__ , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=snake_case__ , type=snake_case__ , nargs="""+""" , required=snake_case__ , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=snake_case__ , type=snake_case__ , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=snake_case__ , type=snake_case__ , required=snake_case__ , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=snake_case__ , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=snake_case__ , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=snake_case__ , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=snake_case__ , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) _snake_case : Union[str, Any] = parser.parse_args() _snake_case : List[Any] = args.output_dir Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) _snake_case : Optional[int] = get_base_command(snake_case__ , snake_case__ ) # split each dimension into its --foo variations _snake_case : Any = [list(map(str.strip , re.split(R"""\|""" , snake_case__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _snake_case : Tuple = list(map(str.strip , map(""" """.join , itertools.product(*snake_case__ ) ) ) ) _snake_case : Any = max(len(snake_case__ ) for x in variations ) # split wanted keys _snake_case : List[Any] = args.report_metric_keys.split() # capture prints into a log file for convenience _snake_case : Optional[Any] = F"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(F"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(F"and this script's output is also piped into {report_fn}" ) _snake_case : Optional[int] = Tee(snake_case__ ) print(F"\n*** Running {len(snake_case__ )} benchmarks:" ) print(F"Base command: {' '.join(snake_case__ )}" ) _snake_case : int = """variation""" _snake_case : str = [] for id, variation in enumerate(tqdm(snake_case__ , desc="""Total completion: """ , leave=snake_case__ ) ): _snake_case : Optional[int] = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , args.target_metric_key , snake_case__ , args.repeat_times , snake_case__ , args.verbose , ) ) process_results(snake_case__ , args.target_metric_key , snake_case__ , args.base_variation , snake_case__ ) if __name__ == "__main__": main()
351
"""simple docstring""" from collections.abc import Generator from math import sin def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" if len(snake_case__ ) != 32: raise ValueError("""Input must be of length 32""" ) _snake_case : Optional[int] = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) _snake_case : Optional[Any] = format(snake_case__ , """08x""" )[-8:] _snake_case : Optional[Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" _snake_case : Union[str, Any] = B"""""" for char in message: bit_string += format(snake_case__ , """08b""" ).encode("""utf-8""" ) _snake_case : List[Any] = format(len(snake_case__ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(snake_case__ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" if len(snake_case__ ) % 5_12 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(snake_case__ ) , 5_12 ): _snake_case : List[str] = bit_string[pos : pos + 5_12] _snake_case : List[str] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) _snake_case : Optional[int] = format(snake_case__ , """032b""" ) _snake_case : str = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(snake_case__ , 2 ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" return (a + b) % 2**32 def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" _snake_case : Any = preprocess(snake_case__ ) _snake_case : Optional[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _snake_case : Union[str, Any] = 0x6745_2301 _snake_case : List[Any] = 0xEFCD_AB89 _snake_case : Optional[Any] = 0x98BA_DCFE _snake_case : Optional[int] = 0x1032_5476 _snake_case : Tuple = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(snake_case__ ): _snake_case : Tuple = aa _snake_case : str = ba _snake_case : int = ca _snake_case : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _snake_case : int = d ^ (b & (c ^ d)) _snake_case : Dict = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _snake_case : Tuple = c ^ (d & (b ^ c)) _snake_case : int = (5 * i + 1) % 16 elif i <= 47: _snake_case : List[Any] = b ^ c ^ d _snake_case : Union[str, Any] = (3 * i + 5) % 16 else: _snake_case : Tuple = c ^ (b | not_aa(snake_case__ )) _snake_case : Optional[int] = (7 * i) % 16 _snake_case : Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 _snake_case : List[str] = d _snake_case : List[Any] = c _snake_case : str = b _snake_case : List[str] = sum_aa(snake_case__ , left_rotate_aa(snake_case__ , shift_amounts[i] ) ) # Add hashed chunk to running total _snake_case : Union[str, Any] = sum_aa(snake_case__ , snake_case__ ) _snake_case : str = sum_aa(snake_case__ , snake_case__ ) _snake_case : Any = sum_aa(snake_case__ , snake_case__ ) _snake_case : List[str] = sum_aa(snake_case__ , snake_case__ ) _snake_case : Any = reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
132
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(snake_case__ ,map_location="""cpu""" ) return sd def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=rename_keys_prefix ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = OrderedDict() _SCREAMING_SNAKE_CASE = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _SCREAMING_SNAKE_CASE = key for name_pair in rename_keys_prefix: _SCREAMING_SNAKE_CASE = new_key.replace(name_pair[0] ,name_pair[1] ) _SCREAMING_SNAKE_CASE = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _SCREAMING_SNAKE_CASE = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Optional[Any]: """simple docstring""" assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _SCREAMING_SNAKE_CASE = 'pretraining' if "vcr" in checkpoint_path: _SCREAMING_SNAKE_CASE = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: _SCREAMING_SNAKE_CASE = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: _SCREAMING_SNAKE_CASE = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: _SCREAMING_SNAKE_CASE = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _SCREAMING_SNAKE_CASE = {'visual_embedding_dim': 5_12} _SCREAMING_SNAKE_CASE = 'multichoice' elif "vqa_advanced" in checkpoint_path: _SCREAMING_SNAKE_CASE = {'visual_embedding_dim': 20_48} _SCREAMING_SNAKE_CASE = 'vqa_advanced' elif "vqa" in checkpoint_path: _SCREAMING_SNAKE_CASE = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} _SCREAMING_SNAKE_CASE = 'vqa' elif "nlvr" in checkpoint_path: _SCREAMING_SNAKE_CASE = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } _SCREAMING_SNAKE_CASE = 'nlvr' _SCREAMING_SNAKE_CASE = VisualBertConfig(**snake_case__ ) # Load State Dict _SCREAMING_SNAKE_CASE = load_state_dict(snake_case__ ) _SCREAMING_SNAKE_CASE = get_new_dict(snake_case__ ,snake_case__ ) if model_type == "pretraining": _SCREAMING_SNAKE_CASE = VisualBertForPreTraining(snake_case__ ) elif model_type == "vqa": _SCREAMING_SNAKE_CASE = VisualBertForQuestionAnswering(snake_case__ ) elif model_type == "nlvr": _SCREAMING_SNAKE_CASE = VisualBertForVisualReasoning(snake_case__ ) elif model_type == "multichoice": _SCREAMING_SNAKE_CASE = VisualBertForMultipleChoice(snake_case__ ) model.load_state_dict(snake_case__ ) # Save Checkpoints Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
306
def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): def get_matched_characters(lowerCamelCase : str , lowerCamelCase : str ) -> str: UpperCamelCase_ : Tuple = [] UpperCamelCase_ : List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCamelCase_ : int = int(max(0 , i - limit ) ) UpperCamelCase_ : Dict = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCamelCase ) UpperCamelCase_ : Dict = F"{_stra[0:_stra.index(lowerCamelCase )]} {_stra[_stra.index(lowerCamelCase ) + 1:]}" return "".join(lowerCamelCase ) # matching characters UpperCamelCase_ : str = get_matched_characters(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : str = get_matched_characters(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = len(lowerCamelCase ) # transposition UpperCamelCase_ : int = ( len([(ca, ca) for ca, ca in zip(lowerCamelCase , lowerCamelCase ) if ca != ca] ) // 2 ) if not match_count: UpperCamelCase_ : Union[str, Any] = 0.0 else: UpperCamelCase_ : str = ( 1 / 3 * ( match_count / len(lowerCamelCase ) + match_count / len(lowerCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCamelCase_ : Dict = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
175
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (DDIMParallelScheduler,) __UpperCAmelCase : str = (("eta", 0.0), ("num_inference_steps", 50)) def __snake_case ( self : List[Any] , **lowerCamelCase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowerCamelCase ) return config def __snake_case ( self : List[Any] , **lowerCamelCase : int ) -> Dict: __snake_case : Any = self.scheduler_classes[0] __snake_case : Optional[Any] = self.get_scheduler_config(**lowerCamelCase ) __snake_case : Any = scheduler_class(**lowerCamelCase ) __snake_case : Dict = 10, 0.0 __snake_case : Tuple = self.dummy_model() __snake_case : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for t in scheduler.timesteps: __snake_case : Dict = model(lowerCamelCase , lowerCamelCase ) __snake_case : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def __snake_case ( self : str ) -> Tuple: for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase ) __snake_case : Optional[Any] = self.scheduler_classes[0] __snake_case : List[Any] = self.get_scheduler_config(steps_offset=1 ) __snake_case : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __snake_case ( self : Dict ) -> Union[str, Any]: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def __snake_case ( self : int ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def __snake_case ( self : Any ) -> Dict: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase ) def __snake_case ( self : Any ) -> List[str]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCamelCase ) def __snake_case ( self : Any ) -> List[str]: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> List[Any]: self.check_over_configs(thresholding=lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase , prediction_type=lowerCamelCase , sample_max_value=lowerCamelCase , ) def __snake_case ( self : List[Any] ) -> str: for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Optional[Any]: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCamelCase , num_inference_steps=lowerCamelCase ) def __snake_case ( self : Tuple ) -> Union[str, Any]: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCamelCase , eta=lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Any: __snake_case : int = self.scheduler_classes[0] __snake_case : Any = self.get_scheduler_config() __snake_case : int = scheduler_class(**lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def __snake_case ( self : List[Any] ) -> str: __snake_case : List[Any] = self.scheduler_classes[0] __snake_case : int = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) __snake_case : Any = 10, 0.0 scheduler.set_timesteps(lowerCamelCase ) __snake_case : Optional[int] = self.dummy_model() __snake_case : List[str] = self.dummy_sample_deter __snake_case : str = self.dummy_sample_deter + 0.1 __snake_case : Tuple = self.dummy_sample_deter - 0.1 __snake_case : Optional[Any] = samplea.shape[0] __snake_case : Any = torch.stack([samplea, samplea, samplea] , dim=0 ) __snake_case : Dict = torch.arange(lowerCamelCase )[0:3, None].repeat(1 , lowerCamelCase ) __snake_case : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __snake_case : Tuple = scheduler.batch_step_no_noise(lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCamelCase ) __snake_case : Tuple = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def __snake_case ( self : Tuple ) -> Optional[Any]: __snake_case : Optional[int] = self.full_loop() __snake_case : Any = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def __snake_case ( self : Optional[int] ) -> Any: __snake_case : int = self.full_loop(prediction_type="v_prediction" ) __snake_case : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def __snake_case ( self : List[Any] ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 __snake_case : List[str] = self.full_loop(set_alpha_to_one=lowerCamelCase , beta_start=0.01 ) __snake_case : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def __snake_case ( self : List[Any] ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 __snake_case : Dict = self.full_loop(set_alpha_to_one=lowerCamelCase , beta_start=0.01 ) __snake_case : List[Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
360
import logging from transformers.configuration_utils import PretrainedConfig _snake_case : Optional[Any] = logging.getLogger(__name__) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = "masked_bert" def __init__( self : Optional[int] , lowerCamelCase : Any=30522 , lowerCamelCase : Tuple=768 , lowerCamelCase : str=12 , lowerCamelCase : Dict=12 , lowerCamelCase : List[str]=3072 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : Any=0.1 , lowerCamelCase : Any=0.1 , lowerCamelCase : List[Any]=512 , lowerCamelCase : int=2 , lowerCamelCase : str=0.02 , lowerCamelCase : List[str]=1E-12 , lowerCamelCase : Any=0 , lowerCamelCase : Dict="topK" , lowerCamelCase : List[Any]="constant" , lowerCamelCase : Dict=0.0 , **lowerCamelCase : List[Any] , ) -> Dict: super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) __snake_case : Optional[Any] = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : str = intermediate_size __snake_case : Tuple = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[str] = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : Any = initializer_range __snake_case : str = layer_norm_eps __snake_case : str = pruning_method __snake_case : int = mask_init __snake_case : Any = mask_scale
134
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=13 , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[Any]=512 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Tuple=4 , ): SCREAMING_SNAKE_CASE_: Optional[Any] = parent SCREAMING_SNAKE_CASE_: Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_: Dict = seq_length SCREAMING_SNAKE_CASE_: int = is_training SCREAMING_SNAKE_CASE_: str = use_attention_mask SCREAMING_SNAKE_CASE_: List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_: Any = use_labels SCREAMING_SNAKE_CASE_: Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_: Tuple = hidden_size SCREAMING_SNAKE_CASE_: str = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_: Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Any = max_position_embeddings SCREAMING_SNAKE_CASE_: Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_: Any = type_sequence_label_size SCREAMING_SNAKE_CASE_: Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_: str = num_choices def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_: Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_: Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_: str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_: Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_: List[Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_: Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __lowercase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : str = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: List[str] = FlaxAlbertModelTester(self) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_: int = model_class_name.from_pretrained("albert-base-v2") SCREAMING_SNAKE_CASE_: Dict = model(np.ones((1, 1))) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Dict = FlaxAlbertModel.from_pretrained("albert-base-v2") SCREAMING_SNAKE_CASE_: Tuple = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) SCREAMING_SNAKE_CASE_: str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) SCREAMING_SNAKE_CASE_: str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)[0] SCREAMING_SNAKE_CASE_: Dict = (1, 11, 768) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE) SCREAMING_SNAKE_CASE_: int = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4))
13
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ : str = logging.get_logger(__name__) class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : Any = """AutoTokenizer""" UpperCAmelCase_ : Optional[int] = ["""tokenizer"""] UpperCAmelCase_ : str = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **__SCREAMING_SNAKE_CASE ) ->Tuple: if speaker_embeddings_dict_path is not None: lowerCAmelCase = get_file_from_repo( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) lowerCAmelCase = None else: with open(__SCREAMING_SNAKE_CASE ) as speaker_embeddings_json: lowerCAmelCase = json.load(__SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = None lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return cls(tokenizer=__SCREAMING_SNAKE_CASE , speaker_embeddings=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , __SCREAMING_SNAKE_CASE="speaker_embeddings" , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ) ->int: if self.speaker_embeddings is not None: os.makedirs(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''v2''' ) , exist_ok=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {} lowerCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , __SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__SCREAMING_SNAKE_CASE , ) lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}.npy" ) lowerCAmelCase = tmp_dict with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , '''w''' ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ) ->List[str]: lowerCAmelCase = self.speaker_embeddings[voice_preset] lowerCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) lowerCAmelCase = get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE ) return voice_preset_dict def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None ) ->Tuple: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="pt" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->int: if voice_preset is not None and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE ) else: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not voice_preset.endswith('''.npz''' ): lowerCAmelCase = voice_preset + '''.npz''' lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE ) if voice_preset is not None: self._validate_voice_preset_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCAmelCase = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.tokenizer( __SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) if voice_preset is not None: lowerCAmelCase = voice_preset return encoded_text
338
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase ): """simple docstring""" lowerCAmelCase__ = '''encoder-decoder''' lowerCAmelCase__ = True def __init__( self , **UpperCAmelCase ) -> str: '''simple docstring''' super().__init__(**UpperCAmelCase__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase_ = kwargs.pop("encoder" ) lowercase_ = encoder_config.pop("model_type" ) lowercase_ = kwargs.pop("decoder" ) lowercase_ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowercase_ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = True @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> PretrainedConfig: '''simple docstring''' logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowercase_ = True lowercase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__ ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.encoder.to_dict() lowercase_ = self.decoder.to_dict() lowercase_ = self.__class__.model_type return output
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def UpperCAmelCase ( ): """simple docstring""" A__ = 9 A__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A__ = kruskal(A_ , A_ ) A__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(A_ ) == sorted(A_ )
221
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase_ : List[str] ,lowercase_ : Any=1_0_0 ,lowercase_ : str=1_3 ,lowercase_ : Any=3_0 ,lowercase_ : Optional[int]=2 ,lowercase_ : Dict=3 ,lowercase_ : Optional[int]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Optional[Any]=3_2 ,lowercase_ : List[Any]=5 ,lowercase_ : Any=4 ,lowercase_ : Optional[int]=3_7 ,lowercase_ : List[Any]="gelu" ,lowercase_ : Dict=0.1 ,lowercase_ : List[Any]=0.1 ,lowercase_ : int=1_0 ,lowercase_ : int=0.02 ,lowercase_ : List[str]=3 ,): lowerCAmelCase__ : int = parent lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : List[Any] = batch_size lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : Optional[int] = patch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : str = is_training lowerCAmelCase__ : Optional[Any] = use_labels lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : Union[str, Any] = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Any = (image_size // patch_size) ** 2 lowerCAmelCase__ : str = num_patches + 1 def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : List[str] = BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,) return config, pixel_values, labels def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ,lowercase_ : Dict ,lowercase_ : Any ): lowerCAmelCase__ : Any = FlaxBeitModel(config=lowercase_ ) lowerCAmelCase__ : str = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Dict ,lowercase_ : Any ,lowercase_ : Union[str, Any] ,lowercase_ : Any ): lowerCAmelCase__ : Optional[int] = FlaxBeitForMaskedImageModeling(config=lowercase_ ) lowerCAmelCase__ : str = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowerCAmelCase ( self : List[str] ,lowercase_ : str ,lowercase_ : List[str] ,lowercase_ : str ): lowerCAmelCase__ : Dict = self.type_sequence_label_size lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification(config=lowercase_ ) lowerCAmelCase__ : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ : int = 1 lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification(lowercase_ ) lowerCAmelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : List[str] = model(lowercase_ ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Optional[int] = config_and_inputs lowerCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Tuple = FlaxBeitModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ,hidden_size=3_7 ) def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(lowercase_ ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Union[str, Any] = self._prepare_for_class(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Dict = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : Dict ,**lowercase_ : List[Any] ): return model(pixel_values=lowercase_ ,**lowercase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : Any = model_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : int = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ ,lowercase_ ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def __lowerCAmelCase ( self : List[str] ): for model_class_name in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCAmelCase__ : List[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowercase_ ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self : Dict ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Tuple = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) lowerCAmelCase__ : List[str] = self.default_image_processor lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=lowercase_ ,return_tensors='''np''' ).pixel_values # prepare bool_masked_pos lowerCAmelCase__ : str = np.ones((1, 1_9_6) ,dtype=lowercase_ ) # forward pass lowerCAmelCase__ : Dict = model(pixel_values=lowercase_ ,bool_masked_pos=lowercase_ ) lowerCAmelCase__ : str = outputs.logits # verify the logits lowerCAmelCase__ : Any = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : str = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] ,lowercase_ ,atol=1E-2 ) ) @slow def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[str] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCAmelCase__ : Dict = self.default_image_processor lowerCAmelCase__ : Optional[Any] = prepare_img() lowerCAmelCase__ : Any = image_processor(images=lowercase_ ,return_tensors='''np''' ) # forward pass lowerCAmelCase__ : List[Any] = model(**lowercase_ ) lowerCAmelCase__ : int = outputs.logits # verify the logits lowerCAmelCase__ : Dict = (1, 1_0_0_0) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : Dict = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] ,lowercase_ ,atol=1E-4 ) ) lowerCAmelCase__ : Union[str, Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() ,lowercase_ ) @slow def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) lowerCAmelCase__ : Union[str, Any] = self.default_image_processor lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=lowercase_ ,return_tensors='''np''' ) # forward pass lowerCAmelCase__ : Tuple = model(**lowercase_ ) lowerCAmelCase__ : int = outputs.logits # verify the logits lowerCAmelCase__ : Optional[int] = (1, 2_1_8_4_1) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] ,lowercase_ ,atol=1E-4 ) ) lowerCAmelCase__ : Optional[int] = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() ,lowercase_ )
106
0
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Dict = TransfoXLTokenizer __UpperCamelCase : Tuple = False __UpperCamelCase : Optional[Any] = False def _snake_case (self ): super().setUp() __lowerCAmelCase = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case (self , **__lowercase ): __lowerCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''<unk> UNwanted , running''' __lowerCAmelCase = '''<unk> unwanted, running''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowercase ) __lowerCAmelCase = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__lowercase , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [0, 4, 8, 7] ) def _snake_case (self ): __lowerCAmelCase = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def _snake_case (self ): __lowerCAmelCase = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _snake_case (self ): __lowerCAmelCase = TransfoXLTokenizer(lower_case=__lowercase ) __lowerCAmelCase = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __lowerCAmelCase = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowercase ) , __lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = len(__lowercase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowercase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
1
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __snake_case : Union[str, Any] = """base_with_context""" def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ : Dict = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""])) a_ : str = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""]) , requires_grad=a__) for lyr_num, lyr in enumerate(model.encoders): a_ : List[Any] = weights[f'''layers_{lyr_num}'''] a_ : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""])) a_ : List[Any] = ly_weight["""attention"""] a_ : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T)) a_ : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T)) a_ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T)) a_ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T)) a_ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""])) a_ : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T)) a_ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T)) a_ : int = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T)) a_ : Any = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""])) return model def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T)) a_ : Dict = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""]) , requires_grad=a__) for lyr_num, lyr in enumerate(model.encoders): a_ : Optional[int] = weights[f'''layers_{lyr_num}'''] a_ : List[Any] = ly_weight["""attention"""] a_ : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T)) a_ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T)) a_ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T)) a_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T)) a_ : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""])) a_ : int = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T)) a_ : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T)) a_ : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T)) a_ : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""])) a_ : List[Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""])) return model def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T)) a_ : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T)) a_ : str = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""]) , requires_grad=a__) a_ : Tuple = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T)) for lyr_num, lyr in enumerate(model.decoders): a_ : List[Any] = weights[f'''layers_{lyr_num}'''] a_ : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""])) a_ : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T)) a_ : Tuple = ly_weight["""self_attention"""] a_ : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T)) a_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T)) a_ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T)) a_ : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T)) a_ : str = ly_weight["""MultiHeadDotProductAttention_0"""] a_ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T)) a_ : str = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T)) a_ : str = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T)) a_ : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T)) a_ : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""])) a_ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""])) a_ : Any = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T)) a_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T)) a_ : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T)) a_ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T)) a_ : List[Any] = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""])) a_ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T)) return model def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Tuple = checkpoints.load_tax_checkpoint(args.checkpoint_path) a_ : List[Any] = jnp.tree_util.tree_map(onp.array , a__) a_ : Tuple = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] a_ : List[str] = os.path.join(args.checkpoint_path , """..""" , """config.gin""") a_ : Union[str, Any] = inference.parse_training_gin_file(a__ , a__) a_ : Optional[int] = inference.InferenceModel(args.checkpoint_path , a__) a_ : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""") a_ : Optional[int] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) a_ : List[Any] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) a_ : Any = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) a_ : Any = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , a__) a_ : Optional[int] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , a__) a_ : Union[str, Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , a__) a_ : Union[str, Any] = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""") a_ : Tuple = SpectrogramDiffusionPipeline( notes_encoder=a__ , continuous_encoder=a__ , decoder=a__ , scheduler=a__ , melgan=a__ , ) if args.save: pipe.save_pretrained(args.output_path) if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help="""Path to the original jax model checkpoint.""", ) __snake_case : int = parser.parse_args() main(args)
248
from typing import Any class A__: """simple docstring""" def __init__( self , _lowercase ) -> List[str]: a_ : List[str] = data a_ : Optional[int] = None def __repr__( self ) -> str: return F'''Node({self.data})''' class A__: """simple docstring""" def __init__( self ) -> Optional[Any]: a_ : Dict = None def __iter__( self ) -> Any: a_ : Optional[Any] = self.head while node: yield node.data a_ : Union[str, Any] = node.next def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join([str(_lowercase ) for item in self] ) def __getitem__( self , _lowercase ) -> Any: if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _lowercase , _lowercase ) -> None: if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) a_ : Optional[Any] = self.head for _ in range(_lowercase ): a_ : List[str] = current.next a_ : Any = data def UpperCamelCase__ ( self , _lowercase ) -> None: self.insert_nth(len(self ) , _lowercase ) def UpperCamelCase__ ( self , _lowercase ) -> None: self.insert_nth(0 , _lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase ) -> None: if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) a_ : Optional[int] = Node(_lowercase ) if self.head is None: a_ : int = new_node elif index == 0: a_ : List[Any] = self.head # link new_node to head a_ : Any = new_node else: a_ : Optional[int] = self.head for _ in range(index - 1 ): a_ : Optional[int] = temp.next a_ : Optional[int] = temp.next a_ : int = new_node def UpperCamelCase__ ( self ) -> None: # print every node data print(self ) def UpperCamelCase__ ( self ) -> Any: return self.delete_nth(0 ) def UpperCamelCase__ ( self ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _lowercase = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) a_ : Optional[int] = self.head # default first node if index == 0: a_ : List[Any] = self.head.next else: a_ : List[Any] = self.head for _ in range(index - 1 ): a_ : List[Any] = temp.next a_ : Any = temp.next a_ : Any = temp.next.next return delete_node.data def UpperCamelCase__ ( self ) -> bool: return self.head is None def UpperCamelCase__ ( self ) -> None: a_ : Any = None a_ : Union[str, Any] = self.head while current: # Store the current node's next node. a_ : Dict = current.next # Make the current node's next point backwards a_ : Optional[Any] = prev # Make the previous node be the current node a_ : Optional[int] = current # Make the current node the next node (to progress iteration) a_ : List[str] = next_node # Return prev in order to put the head at the end a_ : Dict = prev def _UpperCAmelCase ( ): '''simple docstring''' a_ : Union[str, Any] = LinkedList() assert linked_list.is_empty() is True assert str(a__) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0): assert len(a__) == i linked_list.insert_nth(a__ , i + 1) assert str(a__) == "->".join(str(a__) for i in range(1 , 1_1)) linked_list.insert_head(0) linked_list.insert_tail(1_1) assert str(a__) == "->".join(str(a__) for i in range(0 , 1_2)) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(a__) == 9 assert str(a__) == "->".join(str(a__) for i in range(1 , 1_0)) assert all(linked_list[i] == i + 1 for i in range(0 , 9)) is True for i in range(0 , 9): a_ : Dict = -i assert all(linked_list[i] == -i for i in range(0 , 9)) is True linked_list.reverse() assert str(a__) == "->".join(str(a__) for i in range(-8 , 1)) def _UpperCAmelCase ( ): '''simple docstring''' a_ : int = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2), """dlrow olleH""", 7, 5_5_5_5, 0, -192.5_5555, """Hello, world!""", 77.9, Node(1_0), None, None, 12.20, ] a_ : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(a__) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(a__) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head a_ : Union[str, Any] = linked_list.delete_head() assert result == -9 assert ( str(a__) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail a_ : Any = linked_list.delete_tail() assert result == 12.2 assert ( str(a__) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list a_ : List[Any] = linked_list.delete_nth(1_0) assert result is None assert ( str(a__) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""")) assert ( str(a__) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(a__) assert ( str(a__) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(a__) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _UpperCAmelCase ( ): '''simple docstring''' from doctest import testmod testmod() a_ : List[Any] = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """).strip()) linked_list.insert_head(input("""Inserting 2nd at head """).strip()) print("""\nPrint list:""") linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """).strip()) linked_list.insert_tail(input("""Inserting 2nd at tail """).strip()) print("""\nPrint list:""") linked_list.print_list() print("""\nDelete head""") linked_list.delete_head() print("""Delete tail""") linked_list.delete_tail() print("""\nPrint list:""") linked_list.print_list() print("""\nReverse linked list""") linked_list.reverse() print("""\nPrint list:""") linked_list.print_list() print("""\nString representation of linked list:""") print(a__) print("""\nReading/changing Node data using indexing:""") print(f'''Element at Position 1: {linked_list[1]}''') a_ : List[Any] = input("""Enter New Value: """).strip() print("""New list:""") print(a__) print(f'''length of linked_list is : {len(a__)}''') if __name__ == "__main__": main()
248
1
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int = 50 ) -> int: '''simple docstring''' __snake_case : List[Any] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
95
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _a : List[Any]= logging.get_logger(__name__) _a : Any= {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _a : int= { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } _a : Optional[Any]= { "junnyu/roformer_chinese_small": 1_536, "junnyu/roformer_chinese_base": 1_536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } _a : str= { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : int = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : Dict = RoFormerTokenizer def __init__(self : List[Any] , _A : Any=None , _A : int=None , _A : Dict=True , _A : List[Any]="[UNK]" , _A : Tuple="[SEP]" , _A : List[Any]="[PAD]" , _A : str="[CLS]" , _A : int="[MASK]" , _A : Optional[int]=True , _A : List[str]=None , **_A : int , ) -> Dict: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) __snake_case : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase' , _A) != do_lower_case or pre_tok_state.get('strip_accents' , _A) != strip_accents ): __snake_case : Union[str, Any] = getattr(_A , pre_tok_state.pop('type')) __snake_case : Union[str, Any] = do_lower_case __snake_case : str = strip_accents __snake_case : Optional[int] = pre_tok_class(**_A) __snake_case : int = do_lower_case def __getstate__(self : Optional[Any]) -> Dict: __snake_case : Optional[int] = self.__dict__.copy() __snake_case : int = BertPreTokenizer() return state def __setstate__(self : Optional[Any] , _A : Optional[Any]) -> Dict: __snake_case : List[str] = d __snake_case : str = self.__dict__['_tokenizer'].get_vocab() __snake_case : int = PreTokenizer.custom(JiebaPreTokenizer(_A)) def _lowercase (self : int , _A : Tuple , _A : Any=None) -> str: __snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase (self : List[str] , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowercase (self : List[Any] , _A : str , _A : Optional[str] = None) -> Tuple[str]: __snake_case : List[Any] = self._tokenizer.model.save(_A , name=_A) return tuple(_A) def _lowercase (self : int , _A : Optional[int] , _A : Tuple=None , _A : Tuple=None , _A : Dict=False , **_A : Optional[int] , ) -> Optional[Any]: __snake_case : Optional[Any] = BertPreTokenizer() return super().save_pretrained(_A , _A , _A , _A , **_A)
95
1
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _lowerCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Optional[Any] = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ , snake_case__="eval" ): __UpperCamelCase : List[str] = os.path.join(snake_case__ , F"{split}_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: return json.load(snake_case__ ) raise ValueError(F"can't find {path}" ) _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_glue.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Any = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_clm_flax.main() __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 1_0_0 ) @slow def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_summarization_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 1_0 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def a_ (self ) -> int: __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_mlm_flax.main() __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 4_2 ) @slow def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_ta_mlm_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def a_ (self ) -> Union[str, Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : Union[str, Any] = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_ner.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_qa.main() __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_f1"] , 3_0 ) self.assertGreaterEqual(result["eval_exact"] , 3_0 )
298
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _lowerCAmelCase = HUGGINGFACE_HUB_CACHE _lowerCAmelCase = '''config.json''' _lowerCAmelCase = '''diffusion_pytorch_model.bin''' _lowerCAmelCase = '''diffusion_flax_model.msgpack''' _lowerCAmelCase = '''model.onnx''' _lowerCAmelCase = '''diffusion_pytorch_model.safetensors''' _lowerCAmelCase = '''weights.pb''' _lowerCAmelCase = '''https://huggingface.co''' _lowerCAmelCase = default_cache_path _lowerCAmelCase = '''diffusers_modules''' _lowerCAmelCase = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) _lowerCAmelCase = ['''fp16''', '''non-ema'''] _lowerCAmelCase = '''.self_attn'''
298
1
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowercase__ = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] lowercase__ = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : Any = { "word_embeddings.weight": "word_embeddings.weight", "word_embeddings.norm.weight": "word_embeddings_layernorm.weight", "word_embeddings.norm.bias": "word_embeddings_layernorm.bias", "weight": "ln_f.weight", "bias": "ln_f.bias", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase_ : Tuple = int(re.match(r".*layer_(\d*).*" , __UpperCamelCase )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def __lowerCamelCase ( __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" if dtype == torch.bool: return 1 / 8 lowerCAmelCase_ : Any = re.search(r"[^\d](\d+)$" , str(__UpperCamelCase ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) lowerCAmelCase_ : Union[str, Any] = int(bit_search.groups()[0] ) return bit_size // 8 def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: """simple docstring""" if bloom_config_file == "": lowerCAmelCase_ : Optional[int] = BloomConfig() else: lowerCAmelCase_ : List[Any] = BloomConfig.from_json_file(__UpperCamelCase ) if shard_model: lowerCAmelCase_ : Union[str, Any] = os.listdir(__UpperCamelCase ) lowerCAmelCase_ : str = sorted(filter(lambda __UpperCamelCase : s.startswith("layer" ) and "model_00" in s , __UpperCamelCase ) ) lowerCAmelCase_ : Dict = {"weight_map": {}, "metadata": {}} lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Dict = BloomConfig() for j, file in enumerate(__UpperCamelCase ): print("Processing file: {}".format(__UpperCamelCase ) ) lowerCAmelCase_ : Any = None for i in range(__UpperCamelCase ): # load all TP files lowerCAmelCase_ : Tuple = file.replace("model_00" , f'''model_0{i}''' ) lowerCAmelCase_ : Dict = torch.load(os.path.join(__UpperCamelCase , __UpperCamelCase ) , map_location="cpu" ) # Rename keys in the transformers names lowerCAmelCase_ : Tuple = list(temp.keys() ) for key in keys: lowerCAmelCase_ : List[str] = temp.pop(__UpperCamelCase ) if tensors is None: lowerCAmelCase_ : Optional[Any] = temp else: for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase_ : Optional[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase_ : Dict = torch.cat([tensors[key], temp[key]] , dim=__UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase_ : Optional[int] = tensors[key] / pretraining_tp torch.save( __UpperCamelCase , os.path.join( __UpperCamelCase , "pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) , str(len(__UpperCamelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCAmelCase_ : List[str] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase_ : str = "pytorch_model_{}-of-{}.bin".format( str(j + 1 ).zfill(5 ) , str(len(__UpperCamelCase ) ).zfill(5 ) ) lowerCAmelCase_ : str = BloomConfig() lowerCAmelCase_ : Optional[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME lowerCAmelCase_ : Tuple = total_size with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) with open(os.path.join(__UpperCamelCase , WEIGHTS_NAME + ".index.json" ) , "w" , encoding="utf-8" ) as f: lowerCAmelCase_ : str = json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + "\n" f.write(__UpperCamelCase ) else: lowerCAmelCase_ : int = BloomModel(__UpperCamelCase ) lowerCAmelCase_ : Any = os.listdir(__UpperCamelCase ) lowerCAmelCase_ : str = sorted(filter(lambda __UpperCamelCase : s.startswith("layer" ) and "model_00" in s , __UpperCamelCase ) ) lowerCAmelCase_ : Tuple = None for i, file in enumerate(__UpperCamelCase ): lowerCAmelCase_ : int = None for i in range(__UpperCamelCase ): # load all TP files lowerCAmelCase_ : Optional[Any] = file.replace("model_00" , f'''model_0{i}''' ) lowerCAmelCase_ : Optional[Any] = torch.load(os.path.join(__UpperCamelCase , __UpperCamelCase ) , map_location="cpu" ) # Rename keys in the transformers names lowerCAmelCase_ : Union[str, Any] = list(temp.keys() ) for key in keys: lowerCAmelCase_ : List[Any] = temp.pop(__UpperCamelCase ) if tensors is None: lowerCAmelCase_ : Tuple = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase_ : Union[str, Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase_ : List[Any] = torch.cat([tensors[key], temp[key]] , dim=__UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase_ : List[str] = tensors[key] / pretraining_tp lowerCAmelCase_ : List[Any] = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: lowerCAmelCase_ : Union[str, Any] = set(other_keys.missing_keys ) else: lowerCAmelCase_ : Dict = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) lowerCAmelCase_ : int = pytorch_dump_folder_path + "/" + WEIGHTS_NAME lowerCAmelCase_ : Optional[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: lowerCAmelCase_ : Tuple = model.to(config.torch_dtype ) torch.save(model.state_dict() , __UpperCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) lowercase__ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
161
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : List[Any] = """lilt""" def __init__( self : Any , a_ : List[str]=3_05_22 , a_ : List[Any]=7_68 , a_ : Tuple=12 , a_ : Tuple=12 , a_ : str=30_72 , a_ : Union[str, Any]="gelu" , a_ : Union[str, Any]=0.1 , a_ : List[Any]=0.1 , a_ : List[Any]=5_12 , a_ : List[str]=2 , a_ : int=0.02 , a_ : Optional[int]=1e-1_2 , a_ : Any=0 , a_ : str="absolute" , a_ : List[Any]=None , a_ : Optional[int]=4 , a_ : str=10_24 , **a_ : Union[str, Any] , ): super().__init__(pad_token_id=a_ , **a_ ) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Tuple = position_embedding_type lowerCAmelCase_ : Union[str, Any] = classifier_dropout lowerCAmelCase_ : Optional[Any] = channel_shrink_ratio lowerCAmelCase_ : Dict = max_ad_position_embeddings
161
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ : Optional[int] = logging.get_logger(__name__) lowercase_ : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : Tuple = "codegen" snake_case_ : Optional[Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , snake_case__ : Any=50_400 , snake_case__ : int=2_048 , snake_case__ : Optional[Any]=2_048 , snake_case__ : Tuple=4_096 , snake_case__ : List[str]=28 , snake_case__ : List[Any]=16 , snake_case__ : int=64 , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]="gelu_new" , snake_case__ : List[Any]=0.0 , snake_case__ : List[str]=0.0 , snake_case__ : Optional[int]=0.0 , snake_case__ : Dict=1e-5 , snake_case__ : int=0.02 , snake_case__ : Union[str, Any]=True , snake_case__ : str=50_256 , snake_case__ : List[str]=50_256 , snake_case__ : Optional[int]=False , **snake_case__ : str , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_ctx _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = n_inner _UpperCAmelCase = rotary_dim _UpperCAmelCase = activation_function _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ ) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : List[str] , snake_case__ : PretrainedConfig , snake_case__ : str = "default" , snake_case__ : List[PatchingSpec] = None , snake_case__ : bool = False , ): """simple docstring""" super().__init__(snake_case__ , task=snake_case__ , patching_specs=snake_case__ , use_past=snake_case__ ) if not getattr(self._config , "pad_token_id" , snake_case__ ): # TODO: how to do that better? _UpperCAmelCase = 0 @property def UpperCamelCase ( self : Tuple ): """simple docstring""" _UpperCAmelCase = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="inputs" ) _UpperCAmelCase = {0: "batch", 1: "past_sequence + sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCamelCase ( self : int ): """simple docstring""" return self._config.n_layer @property def UpperCamelCase ( self : List[str] ): """simple docstring""" return self._config.n_head def UpperCamelCase ( self : List[Any] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): """simple docstring""" _UpperCAmelCase = super(snake_case__ , self ).generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) # We need to order the input in the way they appears in the forward() _UpperCAmelCase = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCAmelCase = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers ) ] _UpperCAmelCase = common_inputs["attention_mask"] if self.use_past: _UpperCAmelCase = ordered_inputs["attention_mask"].dtype _UpperCAmelCase = torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) return ordered_inputs @property def UpperCamelCase ( self : Any ): """simple docstring""" return 13
133
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Dict = logging.get_logger(__name__) lowercase_ : Union[str, Any] = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : int = "ctrl" snake_case_ : Optional[int] = ["past_key_values"] snake_case_ : Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , snake_case__ : List[str]=246_534 , snake_case__ : Optional[Any]=256 , snake_case__ : List[str]=1_280 , snake_case__ : Optional[int]=8_192 , snake_case__ : List[Any]=48 , snake_case__ : Dict=16 , snake_case__ : int=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=1e-6 , snake_case__ : Dict=0.02 , snake_case__ : List[Any]=True , **snake_case__ : List[str] , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = dff _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache super().__init__(**snake_case__ )
133
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = qkv_bias a_ = frequency_stride a_ = time_stride a_ = max_length a_ = num_mel_bins
303
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCamelCase_ = False class __A( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ (self ): UpperCamelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe.dual_guided( prompt="""first prompt""" , image=SCREAMING_SNAKE_CASE_ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = VersatileDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = generator.manual_seed(0 ) UpperCamelCase__ = pipe.dual_guided( prompt="""first prompt""" , image=SCREAMING_SNAKE_CASE_ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCAmelCase_ (self ): UpperCamelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """cyberpunk 2077""" UpperCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe.dual_guided( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCamelCase__ = """A painting of a squirrel eating a burger """ UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe.text_to_image( prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCamelCase__ = pipe.image_variation(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , output_type="""numpy""" ).images UpperCamelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
244
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __magic_name__ ( __a : List[str] , __a : List[Any] , __a : int , __a : Optional[int]=None , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : Tuple=None , ): '''simple docstring''' if attention_mask is None: UpperCamelCase__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase__ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__a ) if decoder_head_mask is None: UpperCamelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__a ) if cross_attn_head_mask is None: UpperCamelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=20 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.eos_token_id # Eos Token UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase__ = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ = self.get_config() UpperCamelCase__ = prepare_mam_aaa_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return config, inputs_dict def UpperCAmelCase_ (self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MaMaaaModel(config=SCREAMING_SNAKE_CASE_ ).get_decoder().to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase__ = inputs_dict["""input_ids"""] UpperCamelCase__ = inputs_dict["""attention_mask"""] UpperCamelCase__ = inputs_dict["""head_mask"""] # first forward pass UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )[ """last_hidden_state""" ] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MaMaaaModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.encoder_last_hidden_state UpperCamelCase__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = model.get_encoder() encoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = model.get_decoder() decoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaDecoder.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertEqual(info["""missing_keys"""] , [] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = copy.deepcopy(self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not self.is_encoder_decoder: UpperCamelCase__ = inputs["""input_ids"""] del inputs["input_ids"] else: UpperCamelCase__ = inputs["""input_ids"""] UpperCamelCase__ = inputs.get("""decoder_input_ids""" , SCREAMING_SNAKE_CASE_ ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase__ = wte(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = wte(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = wte(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): model(**SCREAMING_SNAKE_CASE_ )[0] def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = input_dict["""input_ids"""] UpperCamelCase__ = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval().to(SCREAMING_SNAKE_CASE_ ) if torch_device == "cuda": model.half() model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) model.generate(num_beams=4 , do_sample=SCREAMING_SNAKE_CASE_ , early_stopping=SCREAMING_SNAKE_CASE_ , num_return_sequences=3 ) def __magic_name__ ( __a : List[Any] ): '''simple docstring''' return torch.tensor(__a , dtype=torch.long , device=__a ) lowerCamelCase_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __A( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ (self ): return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) UpperCamelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) UpperCamelCase__ = prepare_mam_aaa_inputs_dict(model.config , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # change to expected output here UpperCamelCase__ = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(SCREAMING_SNAKE_CASE_ ) # change to intended input UpperCamelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) UpperCamelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) UpperCamelCase__ = prepare_mam_aaa_inputs_dict(model.config , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # change to expected output here UpperCamelCase__ = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) UpperCamelCase__ = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) UpperCamelCase__ = model.generate( input_ids=dct["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) , attention_mask=dct["""attention_mask"""].to(SCREAMING_SNAKE_CASE_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) UpperCamelCase__ = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] UpperCamelCase__ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) assert generated == expected_en
244
1
"""simple docstring""" def lowerCamelCase (a_ :int , a_ :int) -> int: lowercase :int = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowercase :int = n - k # Calculate C(n,k) for i in range(a_): result *= n - i result //= i + 1 return result def lowerCamelCase (a_ :int) -> int: return binomial_coefficient(2 * node_count , a_) // (node_count + 1) def lowerCamelCase (a_ :int) -> int: if n < 0: raise ValueError('''factorial() not defined for negative values''') lowercase :Union[str, Any] = 1 for i in range(1 , n + 1): result *= i return result def lowerCamelCase (a_ :int) -> int: return catalan_number(a_) * factorial(a_) if __name__ == "__main__": UpperCAmelCase = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
368
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase (a_ :Optional[int] , a_ :Union[str, Any] , a_ :Optional[Any]=None) -> List[Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" lowercase :int = nn.Parameter(a_) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" lowercase :Tuple = nn.Parameter(a_) def lowerCamelCase (a_ :int , a_ :Any , a_ :Optional[int]) -> List[Any]: # set torch weights for 1-to-1 comparison lowercase :str = np.asarray(weights[0]) lowercase :List[Any] = np.asarray(weights[1]) lowercase :Optional[int] = np.asarray(weights[2]) set_param( torch_layer.self_attention.query_key , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.output.dense , torch.tensor(a_).view(-1 , a_).contiguous().transpose(0 , 1) , ) def lowerCamelCase (a_ :str , a_ :Any , a_ :Union[str, Any]) -> Dict: # set torch weights for 1-to-1 comparison lowercase :str = np.asarray(weights[0]) lowercase :Dict = np.asarray(weights[1]) lowercase :Dict = np.asarray(weights[2]) lowercase :Optional[Any] = np.asarray(weights[3]) set_param( torch_layer.self_attention.query , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.self_attention.key , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.output.dense , torch.tensor(a_).view(-1 , a_).contiguous().transpose(0 , 1) , ) def lowerCamelCase (a_ :Union[str, Any] , a_ :Dict , a_ :Optional[int]) -> Optional[Any]: # layernorm 1 lowercase :Optional[int] = weights[0][0][0] lowercase :Union[str, Any] = np.asarray(layer_norm_a[0]) lowercase :List[str] = np.asarray(layer_norm_a[1]) set_param( torch_block.attention.layer_norm , torch.tensor(a_) , torch.tensor(a_) , ) # lsh weights + output lowercase :Optional[Any] = weights[0][1] if len(a_) < 4: set_layer_weights_in_torch_lsh(a_ , torch_block.attention , a_) else: set_layer_weights_in_torch_local(a_ , torch_block.attention , a_) # intermediate weighs lowercase :Optional[int] = weights[2][0][1][2] # Chunked Feed Forward if len(a_) == 4: lowercase :int = intermediate_weights[2] # layernorm 2 lowercase :int = np.asarray(intermediate_weights[0][0]) lowercase :Union[str, Any] = np.asarray(intermediate_weights[0][1]) set_param( torch_block.feed_forward.layer_norm , torch.tensor(a_) , torch.tensor(a_) , ) # intermediate dense lowercase :Dict = np.asarray(intermediate_weights[1][0]) lowercase :Optional[Any] = np.asarray(intermediate_weights[1][1]) set_param( torch_block.feed_forward.dense.dense , torch.tensor(a_).transpose(0 , 1).contiguous() , torch.tensor(a_) , ) # intermediate out lowercase :Union[str, Any] = np.asarray(intermediate_weights[4][0]) lowercase :Tuple = np.asarray(intermediate_weights[4][1]) set_param( torch_block.feed_forward.output.dense , torch.tensor(a_).transpose(0 , 1).contiguous() , torch.tensor(a_) , ) def lowerCamelCase (a_ :Tuple , a_ :Dict , a_ :Tuple) -> str: # reformer model lowercase :Union[str, Any] = torch_model.reformer # word embeds lowercase :Tuple = np.asarray(weights[1]) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(a_) , ) if isinstance(weights[3] , a_): lowercase :str = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights)): lowercase :List[str] = np.asarray(weights[3][emb_idx][0]) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" lowercase :int = nn.Parameter(torch.tensor(a_)) lowercase :Dict = weights[5] assert len(torch_model_reformer.encoder.layers) * 4 == len( a_), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers): lowercase :Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(a_ , a_ , a_) # output layer norm lowercase :Dict = np.asarray(weights[7][0]) lowercase :Optional[Any] = np.asarray(weights[7][1]) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(a_) , torch.tensor(a_) , ) # output embeddings lowercase :str = np.asarray(weights[9][0]) lowercase :Union[str, Any] = np.asarray(weights[9][1]) set_param( torch_model.lm_head.decoder , torch.tensor(a_).transpose(0 , 1).contiguous() , torch.tensor(a_) , ) def lowerCamelCase (a_ :Optional[Any] , a_ :List[Any] , a_ :Tuple) -> Union[str, Any]: # Initialise PyTorch model lowercase :Optional[Any] = ReformerConfig.from_json_file(a_) print(F"""Building PyTorch model from configuration: {config}""") lowercase :Dict = ReformerModelWithLMHead(a_) with open(a_ , '''rb''') as f: lowercase :Tuple = pickle.load(a_)['''weights'''] set_model_weights_in_torch(a_ , a_ , config.hidden_size) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , a_) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
172
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=32 * 4 , lowerCAmelCase__=32 * 6 , lowerCAmelCase__=4 , lowerCAmelCase__=32 , ) -> Optional[Any]: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_auxiliary_loss SCREAMING_SNAKE_CASE = num_queries SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_size SCREAMING_SNAKE_CASE = max_size SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = mask_feature_size def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCAmelCase__ ) > 0.5 ).float() SCREAMING_SNAKE_CASE = (torch.rand((self.batch_size, self.num_labels) , device=lowerCAmelCase__ ) > 0.5).long() SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __A ( self ) -> List[str]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = output.encoder_hidden_states SCREAMING_SNAKE_CASE = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCAmelCase__ ) , config.decoder_config.decoder_layers ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: with torch.no_grad(): SCREAMING_SNAKE_CASE = MaskFormerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = MaskFormerForInstanceSegmentation(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() def comm_check_on_output(lowerCAmelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ ) comm_check_on_output(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model( pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ) comm_check_on_output(lowerCAmelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : str = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : str = False def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = MaskFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __A ( self ) -> List[str]: self.config_tester.run_common_tests() def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCAmelCase__ , **lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCAmelCase__ ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def __A ( self ) -> Any: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def __A ( self ) -> List[str]: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def __A ( self ) -> Tuple: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __A ( self ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __A ( self ) -> str: pass def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) @slow def __A ( self ) -> Optional[int]: for model_name in ["facebook/maskformer-swin-small-coco"]: SCREAMING_SNAKE_CASE = MaskFormerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCAmelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCAmelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCAmelCase__ ).long(), } SCREAMING_SNAKE_CASE = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ ) self.assertTrue(outputs.loss is not None ) def __A ( self ) -> Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCAmelCase__ , **lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) self.assertTrue(outputs.attentions is not None ) def __A ( self ) -> List[str]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE = self.all_model_classes[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).loss loss.backward() def __A ( self ) -> Any: # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE = self.all_model_classes[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't SCREAMING_SNAKE_CASE = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCAmelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCamelCase = 1E-4 def lowercase () -> Optional[Any]: SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCAmelCase__ , (1, 3, 800, 1_088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(lowerCAmelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(lowerCAmelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(lowerCAmelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowerCAmelCase__ ) .eval() ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCAmelCase__ , (1, 3, 800, 1_088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ ) # masks_queries_logits SCREAMING_SNAKE_CASE = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] SCREAMING_SNAKE_CASE = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) # class_queries_logits SCREAMING_SNAKE_CASE = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(lowerCAmelCase__ ) .eval() ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCAmelCase__ , (1, 3, 800, 1_088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ ) # masks_queries_logits SCREAMING_SNAKE_CASE = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] SCREAMING_SNAKE_CASE = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) # class_queries_logits SCREAMING_SNAKE_CASE = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowerCAmelCase__ ) .eval() ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = inputs['pixel_values'].to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [el.to(lowerCAmelCase__ ) for el in inputs['mask_labels']] SCREAMING_SNAKE_CASE = [el.to(lowerCAmelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ ) self.assertTrue(outputs.loss is not None )
113
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowercase (SCREAMING_SNAKE_CASE_ : BertModel , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Dict: SCREAMING_SNAKE_CASE = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') SCREAMING_SNAKE_CASE = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE_ : str ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return F'bert/{name}' def create_tf_var(SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : tf.Session ): SCREAMING_SNAKE_CASE = tf.dtypes.as_dtype(tensor.dtype ) SCREAMING_SNAKE_CASE = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: SCREAMING_SNAKE_CASE = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): SCREAMING_SNAKE_CASE = torch_tensor.T SCREAMING_SNAKE_CASE = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = session.run(SCREAMING_SNAKE_CASE_ ) print(F'Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}' ) SCREAMING_SNAKE_CASE = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ) -> Any: SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory in which to save tensorflow model' ) SCREAMING_SNAKE_CASE = parser.parse_args(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
113
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=56 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="block_sparse" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , )-> str: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_attention_mask lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_choices lowerCamelCase_ =rescale_embeddings lowerCamelCase_ =attention_type lowerCamelCase_ =use_bias lowerCamelCase_ =block_size lowerCamelCase_ =num_random_blocks def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =None if self.use_attention_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ =BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.prepare_config_and_inputs() lowerCamelCase_ =config_and_inputs lowerCamelCase_ ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase): _UpperCamelCase:Tuple = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) _UpperCamelCase:Any = False _UpperCamelCase:Any = False def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _snake_case ( self )-> str: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _snake_case ( self )-> str: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _snake_case ( self )-> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _snake_case ( self )-> int: super().test_hidden_states_output() @slow def _snake_case ( self )-> List[Any]: for model_class_name in self.all_model_classes: lowerCamelCase_ =model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(_UpperCAmelCase ) def _snake_case ( self )-> Any: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _snake_case ( self )-> Any: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ =self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase_ =model_class(_UpperCAmelCase ) @jax.jit def model_jitted(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): return model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , **_UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): lowerCamelCase_ =model_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase_ =model_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE="outputs" , _SCREAMING_SNAKE_CASE=None )-> Union[str, Any]: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
368
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __UpperCamelCase ( _A : Optional[int] ) ->List[str]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCamelCase_ =k.replace(_A , _A ) if k.startswith("""encoder""" ): lowerCamelCase_ =k.replace(""".attn""" , """.self_attn""" ) lowerCamelCase_ =k.replace("""norm1""" , """self_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): lowerCamelCase_ =k.replace("""norm1""" , """self_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm2""" , """encoder_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm3""" , """final_layer_norm""" ) return k def __UpperCamelCase ( _A : Union[str, Any] ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =[ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: lowerCamelCase_ =sd.pop(_A ) lowerCamelCase_ =k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd lowerCamelCase_ =v __A : Any = ['START'] @torch.no_grad() def __UpperCamelCase ( _A : List[Any] , _A : Union[str, Any] , _A : List[str] ) ->List[str]: """simple docstring""" lowerCamelCase_ =torch.load(_A , map_location="""cpu""" ) lowerCamelCase_ =model["""model"""] lowerCamelCase_ =BlenderbotConfig.from_json_file(_A ) lowerCamelCase_ =BlenderbotForConditionalGeneration(_A ) lowerCamelCase_ =m.model.state_dict().keys() lowerCamelCase_ =[] lowerCamelCase_ ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCamelCase_ =rename_state_dict_key(_A ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCamelCase_ =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_A ) m.model.load_state_dict(_A , strict=_A ) m.half() m.save_pretrained(_A ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) __A : str = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
49
0