code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import cmath import math def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> complex: """simple docstring""" snake_case_ : Optional[int] = math.radians(_UpperCamelCase ) snake_case_ : List[str] = math.radians(_UpperCamelCase ) # Convert voltage and current to rectangular form snake_case_ : Optional[Any] = cmath.rect(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Optional[Any] = cmath.rect(_UpperCamelCase , _UpperCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
279
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __lowerCAmelCase : def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' return None class __lowerCAmelCase : def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' return None class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : Dict = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__magic_name__ , '''tf''' , 12 , **__magic_name__ ) @require_torch @slow def lowerCamelCase (self ) -> int: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__magic_name__ , '''pt''' , 12 , **__magic_name__ ) @require_torch @slow def lowerCamelCase (self ) -> int: '''simple docstring''' from transformers import BertModel snake_case_ : str = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(__magic_name__ ) ) vocab_file.flush() snake_case_ : Optional[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: snake_case_ : str = BertModel(BertConfig(vocab_size=len(__magic_name__ ) ) ) model.save_pretrained(__magic_name__ ) self._test_export(__magic_name__ , '''pt''' , 12 , __magic_name__ ) @require_tf @slow def lowerCamelCase (self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case_ : Tuple = self._test_export(__magic_name__ , '''tf''' , 12 , **__magic_name__ ) snake_case_ : List[str] = quantize(Path(__magic_name__ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__magic_name__ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def lowerCamelCase (self ) -> Any: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case_ : Any = self._test_export(__magic_name__ , '''pt''' , 12 , **__magic_name__ ) snake_case_ : Any = quantize(__magic_name__ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__magic_name__ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Tuple: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: snake_case_ : List[str] = Path(__magic_name__ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) return path except Exception as e: self.fail(__magic_name__ ) @require_torch @require_tokenizers @slow def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' from transformers import BertModel snake_case_ : Optional[Any] = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) snake_case_ : int = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__magic_name__ , __magic_name__ , '''pt''' ) @require_tf @require_tokenizers @slow def lowerCamelCase (self ) -> List[str]: '''simple docstring''' from transformers import TFBertModel snake_case_ : Any = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) snake_case_ : str = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__magic_name__ , __magic_name__ , '''tf''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' snake_case_ : Tuple = FeatureExtractionPipeline(__magic_name__ , __magic_name__ ) snake_case_ : Optional[int] = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = infer_shapes(__magic_name__ , __magic_name__ ) # Assert all variables are present self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __magic_name__ ) self.assertSequenceEqual(variable_names[3:] , __magic_name__ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] snake_case_ : List[str] = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} snake_case_ , snake_case_ : Tuple = ensure_valid_input(FuncContiguousArgs() , __magic_name__ , __magic_name__ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__magic_name__ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__magic_name__ ) , set(__magic_name__ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__magic_name__ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) snake_case_ , snake_case_ : Dict = ensure_valid_input(FuncNonContiguousArgs() , __magic_name__ , __magic_name__ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
279
1
from __future__ import annotations def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: Tuple = len(lowerCamelCase ) // 2 # choose the middle 3 elements UpperCamelCase_: Union[str, Any] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
366
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCamelCase_ : Any = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCamelCase_ : str = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } lowerCamelCase_ : Union[str, Any] = { """RUCAIBox/mvp""": 10_24, } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = ["""input_ids""", """attention_mask"""] __UpperCamelCase : int = MvpTokenizer def __init__( self : Union[str, Any] , snake_case_ : Any=None , snake_case_ : Any=None , snake_case_ : Union[str, Any]=None , snake_case_ : Tuple="replace" , snake_case_ : Dict="<s>" , snake_case_ : Dict="</s>" , snake_case_ : Tuple="</s>" , snake_case_ : int="<s>" , snake_case_ : Tuple="<unk>" , snake_case_ : Optional[int]="<pad>" , snake_case_ : Any="<mask>" , snake_case_ : Union[str, Any]=False , snake_case_ : Optional[int]=True , **snake_case_ : Union[str, Any] , ): super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) UpperCamelCase_: Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , snake_case_ ) != add_prefix_space: UpperCamelCase_: str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) UpperCamelCase_: int = add_prefix_space UpperCamelCase_: int = pre_tok_class(**snake_case_ ) UpperCamelCase_: int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase_: Tuple = """post_processor""" UpperCamelCase_: Optional[int] = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: UpperCamelCase_: Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase_: Union[str, Any] = tuple(state["""sep"""] ) if "cls" in state: UpperCamelCase_: List[Any] = tuple(state["""cls"""] ) UpperCamelCase_: List[str] = False if state.get("""add_prefix_space""" , snake_case_ ) != add_prefix_space: UpperCamelCase_: str = add_prefix_space UpperCamelCase_: Union[str, Any] = True if state.get("""trim_offsets""" , snake_case_ ) != trim_offsets: UpperCamelCase_: Optional[int] = trim_offsets UpperCamelCase_: Any = True if changes_to_apply: UpperCamelCase_: Optional[int] = getattr(snake_case_ , state.pop("""type""" ) ) UpperCamelCase_: Union[str, Any] = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def lowerCAmelCase__ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Dict ): UpperCamelCase_: List[str] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value UpperCamelCase_: Optional[int] = value def lowerCAmelCase__ ( self : Optional[int] , *snake_case_ : Dict , **snake_case_ : Optional[int] ): UpperCamelCase_: Optional[int] = kwargs.get("""is_split_into_words""" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , *snake_case_ : Dict , **snake_case_ : Tuple ): UpperCamelCase_: Any = kwargs.get("""is_split_into_words""" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : str , snake_case_ : Optional[str] = None ): UpperCamelCase_: Optional[int] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Any=None ): UpperCamelCase_: str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): UpperCamelCase_: Tuple = [self.sep_token_id] UpperCamelCase_: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
223
0
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _snake_case ( _snake_case : List[Any]="" ): lowerCAmelCase : List[str] = tempfile.mkdtemp() return os.path.join(_snake_case , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Any = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 lowerCAmelCase : Tuple = AgentAudio(UpperCamelCase_ ) lowerCAmelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(UpperCamelCase_ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(UpperCamelCase_ ) ) # Ensure that the file contains the same value as the original tensor lowerCAmelCase, lowerCAmelCase : str = sf.read(UpperCamelCase_ ) self.assertTrue(torch.allclose(UpperCamelCase_ , torch.tensor(UpperCamelCase_ ) , atol=1E-4 ) ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 lowerCAmelCase : int = get_new_path(suffix='''.wav''' ) sf.write(UpperCamelCase_ , UpperCamelCase_ , 1_6_0_0_0 ) lowerCAmelCase : Optional[int] = AgentAudio(UpperCamelCase_ ) self.assertTrue(torch.allclose(UpperCamelCase_ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , UpperCamelCase_ ) @require_vision @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) lowerCAmelCase : List[str] = AgentImage(UpperCamelCase_ ) lowerCAmelCase : int = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(UpperCamelCase_ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' lowerCAmelCase : Optional[int] = Image.open(UpperCamelCase_ ) lowerCAmelCase : int = AgentImage(UpperCamelCase_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' lowerCAmelCase : Tuple = Image.open(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AgentImage(UpperCamelCase_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCamelCase_ ) ) class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = '''Hey!''' lowerCAmelCase : Dict = AgentText(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , agent_type.to_string() ) self.assertEqual(UpperCamelCase_ , agent_type.to_raw() ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
60
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _snake_case ( _snake_case : int ): for param in module.parameters(): lowerCAmelCase : Optional[int] = False def _snake_case ( ): lowerCAmelCase : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase : Any = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _snake_case ( _snake_case : Dict ): lowerCAmelCase : Optional[int] = plt.imshow(_snake_case ) fig.axes.get_xaxis().set_visible(_snake_case ) fig.axes.get_yaxis().set_visible(_snake_case ) plt.show() def _snake_case ( ): lowerCAmelCase : List[str] = datetime.now() lowerCAmelCase : Union[str, Any] = current_time.strftime('''%H:%M:%S''' ) return timestamp
60
1
"""simple docstring""" from bisect import bisect from itertools import accumulate def __A ( a_ :Optional[int] , a_ :Any , a_ :List[str] , a_ :int) -> str: __a : Union[str, Any] = sorted(zip(a_ , a_) , key=lambda a_: x[0] / x[1] , reverse=a_) __a , __a : Dict = [i[0] for i in r], [i[1] for i in r] __a : List[Any] = list(accumulate(a_)) __a : str = bisect(a_ , a_) return ( 0 if k == 0 else sum(vl[:k]) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k]) ) if __name__ == "__main__": import doctest doctest.testmod()
188
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor''', '''tokenizer'''] __lowerCAmelCase = '''CLIPImageProcessor''' __lowerCAmelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): __a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCAmelCase , ) __a : Any = kwargs.pop('''feature_extractor''' ) __a : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a : Any = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: __a : List[str] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __a : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): __a : Union[str, Any] = self.tokenizer.model_input_names __a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
188
1
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __A : List[str] = TypeVar('''T''') class _UpperCAmelCase ( Generic[T] ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 42 # Cache store of keys SCREAMING_SNAKE_CASE_ : Any = 42 # References of the keys in cache SCREAMING_SNAKE_CASE_ : List[str] = 10 # Maximum capacity of cache def __init__( self : Any , A : List[Any] ) -> None: lowercase_ : List[Any] = deque() lowercase_ : Union[str, Any] = set() if not n: lowercase_ : List[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowercase_ : str = n def A ( self : List[Any] , A : List[Any] ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ : Optional[Any] = self.dq_store.pop() self.key_reference.remove(__lowerCamelCase ) else: self.dq_store.remove(__lowerCamelCase ) self.dq_store.appendleft(__lowerCamelCase ) self.key_reference.add(__lowerCamelCase ) def A ( self : Any ) -> None: for k in self.dq_store: print(__lowerCamelCase ) def __repr__( self : Any ) -> str: return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() __A : Union[str, Any] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
33
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
0
'''simple docstring''' import socket def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __magic_name__ : Union[str, Any] = socket.gethostname() __magic_name__ : int = 1_2312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: __magic_name__ : Optional[int] = sock.recv(1024 ) if not data: break out_file.write(lowerCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
275
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = LxmertTokenizer A_ : List[Any] = LxmertTokenizerFast A_ : int = True A_ : Any = True def __lowerCAmelCase ( self : List[str] ) -> Tuple: super().setUp() __magic_name__ : str = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __magic_name__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : Any , _A : str ) -> List[Any]: __magic_name__ : Dict = 'UNwant\u00E9d,running' __magic_name__ : Dict = 'unwanted, running' return input_text, output_text def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : Optional[Any] = self.tokenizer_class(self.vocab_file ) __magic_name__ : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_A , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 10, 8, 9] ) def __lowerCAmelCase ( self : int ) -> List[Any]: if not self.test_rust_tokenizer: return __magic_name__ : Any = self.get_tokenizer() __magic_name__ : Optional[Any] = self.get_rust_tokenizer() __magic_name__ : Union[str, Any] = 'I was born in 92000, and this is falsé.' __magic_name__ : List[Any] = tokenizer.tokenize(_A ) __magic_name__ : Dict = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) __magic_name__ : Union[str, Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __magic_name__ : List[Any] = self.get_rust_tokenizer() __magic_name__ : str = tokenizer.encode(_A ) __magic_name__ : Optional[int] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A )
275
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _snake_case = pytest.mark.integration _snake_case = {'comet'} _snake_case = importlib.util.find_spec('fairseq') is not None _snake_case = {'code_eval'} _snake_case = os.name == 'nt' _snake_case = {'bertscore', 'frugalscore', 'perplexity'} _snake_case = importlib.util.find_spec('transformers') is not None def _A ( snake_case ) -> Tuple: @wraps(snake_case ) def wrapper(self , snake_case ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , snake_case ) return wrapper def _A ( snake_case ) -> Optional[int]: @wraps(snake_case ) def wrapper(self , snake_case ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , snake_case ) return wrapper def _A ( snake_case ) -> List[Any]: @wraps(snake_case ) def wrapper(self , snake_case ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , snake_case ) return wrapper def _A ( ) -> List[Any]: _lowercase : Any = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @local class a__ ( parameterized.TestCase ): _SCREAMING_SNAKE_CASE : Any = {} _SCREAMING_SNAKE_CASE : Any = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Tuple = "[...]" _lowercase : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _UpperCamelCase ) ).module_path ) _lowercase : Union[str, Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=_UpperCamelCase ) # check parameters _lowercase : str = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_UpperCamelCase , metric_module.__name__ ): with self.use_local_metrics(): try: _lowercase : int = doctest.testmod(_UpperCamelCase , verbose=_UpperCamelCase , raise_on_error=_UpperCamelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Any = "[...]" _lowercase : Dict = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _UpperCamelCase ) ).module_path ) # run doctest with self.use_local_metrics(): _lowercase : str = doctest.testmod(_UpperCamelCase , verbose=_UpperCamelCase , raise_on_error=_UpperCamelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_UpperCamelCase ): yield else: yield @contextmanager def _lowerCamelCase ( self ): """simple docstring""" def load_local_metric(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ): return load_metric(os.path.join("metrics" , _UpperCamelCase ) , *_UpperCamelCase , **_UpperCamelCase ) with patch("datasets.load_metric" ) as mock_load_metric: _lowercase : List[Any] = load_local_metric yield @classmethod def _lowerCamelCase ( cls , _UpperCamelCase ): """simple docstring""" def wrapper(_UpperCamelCase ): _lowercase : str = contextmanager(_UpperCamelCase ) _lowercase : Any = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def _A ( snake_case ) -> List[Any]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class a__ ( lowerCamelCase_ ): def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: _lowercase : List[Any] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def _A ( snake_case ) -> Tuple: import torch def bert_cos_score_idf(snake_case , snake_case , *snake_case , **snake_case ): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: _lowercase : List[str] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def _A ( snake_case ) -> Optional[int]: def load_from_checkpoint(snake_case ): class a__ : def _lowerCamelCase ( self , _UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" assert len(_UpperCamelCase ) == 2 _lowercase : Tuple = [0.1_9, 0.9_2] return scores, sum(_UpperCamelCase ) / len(_UpperCamelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: _lowercase : Union[str, Any] = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: _lowercase : str = load_from_checkpoint yield def _A ( ) -> Optional[Any]: _lowercase : str = load_metric(os.path.join("metrics" , "seqeval" ) ) _lowercase : Optional[int] = "ERROR" _lowercase : Any = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(snake_case , match=re.escape(snake_case ) ): metric.compute(predictions=[] , references=[] , scheme=snake_case )
250
1
'''simple docstring''' def __lowerCamelCase ( __snake_case : int ) -> int: """simple docstring""" assert isinstance(_UpperCAmelCase, _UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: A__ : Optional[Any] =f"The input value of [n={number}] has to be > 0" raise ValueError(_UpperCAmelCase ) else: A__ : Optional[int] =sylvester(number - 1 ) A__ : Tuple =num - 1 A__ : Dict =num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
350
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCamelCase : '''simple docstring''' def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A__ : str =TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : int =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : Union[str, Any] =UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A__ : Dict =DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A__ : Union[str, Any] =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' torch.manual_seed(0 ) A__ : List[Any] =TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : str =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : Dict =UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A__ : Optional[int] =DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A__ : int =DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) A__ : List[str] =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : Tuple =self.get_dummy_components() A__ : str =self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[int] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : str =inputs["""prompt"""] A__ : Optional[int] =inputs["""generator"""] A__ : Optional[Any] =inputs["""num_inference_steps"""] A__ : Union[str, Any] =inputs["""output_type"""] if "image" in inputs: A__ : Union[str, Any] =inputs["""image"""] else: A__ : List[Any] =None if "mask_image" in inputs: A__ : Union[str, Any] =inputs["""mask_image"""] else: A__ : Tuple =None if "original_image" in inputs: A__ : Optional[Any] =inputs["""original_image"""] else: A__ : Tuple =None A__ , A__ : Optional[Any] =pipe.encode_prompt(lowerCAmelCase_ ) # inputs with prompt converted to embeddings A__ : Optional[int] ={ """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A__ : int =image if mask_image is not None: A__ : Tuple =mask_image if original_image is not None: A__ : Optional[int] =original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any =pipe(**lowerCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase_ ) A__ : int =self.pipeline_class.from_pretrained(lowerCAmelCase_ ) pipe_loaded.to(lowerCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase_ , lowerCAmelCase_ ) is None , f"`{optional_component}` did not stay set to None after loading." , ) A__ : Dict =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : int =inputs["""generator"""] A__ : str =inputs["""num_inference_steps"""] A__ : Optional[Any] =inputs["""output_type"""] # inputs with prompt converted to embeddings A__ : List[Any] ={ """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A__ : int =image if mask_image is not None: A__ : int =mask_image if original_image is not None: A__ : Optional[int] =original_image A__ : List[str] =pipe_loaded(**lowerCAmelCase_ )[0] A__ : Union[str, Any] =np.abs(to_np(lowerCAmelCase_ ) - to_np(lowerCAmelCase_ ) ).max() self.assertLess(lowerCAmelCase_ , 1e-4 ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Union[str, Any] =self.get_dummy_components() A__ : int =self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : List[Any] =pipe(**lowerCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase_ ) A__ : List[Any] =self.pipeline_class.from_pretrained(lowerCAmelCase_ ) pipe_loaded.to(lowerCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests A__ : int =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Tuple =pipe_loaded(**lowerCAmelCase_ )[0] A__ : Tuple =np.abs(to_np(lowerCAmelCase_ ) - to_np(lowerCAmelCase_ ) ).max() self.assertLess(lowerCAmelCase_ , 1e-4 )
136
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: __magic_name__ : int = '''ZinengTang/tvlt-base''' __magic_name__ : Union[str, Any] = tempfile.mkdtemp() def __lowerCAmelCase ( self : List[str] , **_A : int ) -> str: return TvltImageProcessor.from_pretrained(self.checkpoint , **_A ) def __lowerCAmelCase ( self : List[Any] , **_A : List[Any] ) -> Union[str, Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : Optional[int] = self.get_image_processor() __magic_name__ : Optional[Any] = self.get_feature_extractor() __magic_name__ : Union[str, Any] = TvltProcessor(image_processor=_A , feature_extractor=_A ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : List[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _A ) self.assertIsInstance(processor.image_processor , _A ) def __lowerCAmelCase ( self : Dict ) -> str: __magic_name__ : str = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_feature_extractor() __magic_name__ : Union[str, Any] = TvltProcessor(image_processor=_A , feature_extractor=_A ) __magic_name__ : Union[str, Any] = np.ones([12000] ) __magic_name__ : str = feature_extractor(_A , return_tensors='np' ) __magic_name__ : int = processor(audio=_A , return_tensors='np' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: __magic_name__ : Any = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_feature_extractor() __magic_name__ : List[str] = TvltProcessor(image_processor=_A , feature_extractor=_A ) __magic_name__ : str = np.ones([3, 224, 224] ) __magic_name__ : Optional[Any] = image_processor(_A , return_tensors='np' ) __magic_name__ : str = processor(images=_A , return_tensors='np' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = self.get_image_processor() __magic_name__ : Optional[int] = self.get_feature_extractor() __magic_name__ : str = TvltProcessor(image_processor=_A , feature_extractor=_A ) __magic_name__ : Optional[int] = np.ones([12000] ) __magic_name__ : int = np.ones([3, 224, 224] ) __magic_name__ : Optional[Any] = processor(audio=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __lowerCAmelCase ( self : int ) -> Dict: __magic_name__ : Optional[int] = self.get_image_processor() __magic_name__ : int = self.get_feature_extractor() __magic_name__ : List[Any] = TvltProcessor(image_processor=_A , feature_extractor=_A ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
331
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 10**12 ) -> int: lowercase__ = 1 lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
269
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase ): @register_to_config def __init__( self : str , a : int = 128 , a : int = 256 , a : float = 2000.0 , a : int = 768 , a : int = 12 , a : int = 12 , a : int = 64 , a : int = 2_048 , a : float = 0.1 , )-> Any: """simple docstring""" super().__init__() lowercase__ = nn.Sequential( nn.Linear(a , d_model * 4 , bias=a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a ) , nn.SiLU() , ) lowercase__ = nn.Embedding(a , a ) lowercase__ = False lowercase__ = nn.Linear(a , a , bias=a ) lowercase__ = nn.Dropout(p=a ) lowercase__ = nn.ModuleList() for lyr_num in range(a ): # FiLM conditional T5 decoder lowercase__ = DecoderLayer(d_model=a , d_kv=a , num_heads=a , d_ff=a , dropout_rate=a ) self.decoders.append(a ) lowercase__ = TaLayerNorm(a ) lowercase__ = nn.Dropout(p=a ) lowercase__ = nn.Linear(a , a , bias=a ) def SCREAMING_SNAKE_CASE_ ( self : str , a : int , a : List[Any] )-> str: """simple docstring""" lowercase__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Dict , a : int , a : int )-> int: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowercase__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowercase__ = self.conditioning_emb(a ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowercase__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowercase__ = torch.broadcast_to( torch.arange(a , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowercase__ = self.position_encoding(a ) lowercase__ = self.continuous_inputs_projection(a ) inputs += position_encodings lowercase__ = self.dropout(a ) # decoder: No padding present. lowercase__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowercase__ = [(x, self.encoder_decoder_mask(a , a )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowercase__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowercase__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowercase__ = lyr( a , conditioning_emb=a , encoder_hidden_states=a , encoder_attention_mask=a , )[0] lowercase__ = self.decoder_norm(a ) lowercase__ = self.post_dropout(a ) lowercase__ = self.spec_out(a ) return spec_out class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Dict , a : List[Any] , a : str , a : Union[str, Any] , a : Optional[int] , a : Optional[int] , a : Tuple=1E-6 )-> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=a , d_kv=a , num_heads=a , dropout_rate=a ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=a , d_kv=a , num_heads=a , dropout_rate=a , layer_norm_epsilon=a , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=a , d_ff=a , dropout_rate=a , layer_norm_epsilon=a ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : str , a : Union[str, Any]=None , a : Dict=None , a : Union[str, Any]=None , a : List[Any]=None , a : List[str]=None , )-> List[Any]: """simple docstring""" lowercase__ = self.layer[0]( a , conditioning_emb=a , attention_mask=a , ) if encoder_hidden_states is not None: lowercase__ = torch.where(encoder_attention_mask > 0 , 0 , -1E1_0 ).to( encoder_hidden_states.dtype ) lowercase__ = self.layer[1]( a , key_value_states=a , attention_mask=a , ) # Apply Film Conditional Feed Forward layer lowercase__ = self.layer[-1](a , a ) return (hidden_states,) class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : List[str] , a : List[Any] , a : Tuple , a : Union[str, Any] , a : int )-> List[str]: """simple docstring""" super().__init__() lowercase__ = TaLayerNorm(a ) lowercase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=a ) lowercase__ = Attention(query_dim=a , heads=a , dim_head=a , out_bias=a , scale_qk=a ) lowercase__ = nn.Dropout(a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : List[Any] , a : Union[str, Any]=None , a : Tuple=None , )-> int: """simple docstring""" lowercase__ = self.layer_norm(a ) if conditioning_emb is not None: lowercase__ = self.FiLMLayer(a , a ) # Self-attention block lowercase__ = self.attention(a ) lowercase__ = hidden_states + self.dropout(a ) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Optional[int] , a : Optional[int] , a : int , a : Optional[int] , a : Dict , a : Any )-> Optional[int]: """simple docstring""" super().__init__() lowercase__ = Attention(query_dim=a , heads=a , dim_head=a , out_bias=a , scale_qk=a ) lowercase__ = TaLayerNorm(a , eps=a ) lowercase__ = nn.Dropout(a ) def SCREAMING_SNAKE_CASE_ ( self : int , a : List[Any] , a : str=None , a : Dict=None , )-> int: """simple docstring""" lowercase__ = self.layer_norm(a ) lowercase__ = self.attention( a , encoder_hidden_states=a , attention_mask=attention_mask.squeeze(1 ) , ) lowercase__ = hidden_states + self.dropout(a ) return layer_output class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Dict , a : str , a : int , a : List[Any] , a : List[str] )-> Dict: """simple docstring""" super().__init__() lowercase__ = TaDenseGatedActDense(d_model=a , d_ff=a , dropout_rate=a ) lowercase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=a ) lowercase__ = TaLayerNorm(a , eps=a ) lowercase__ = nn.Dropout(a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : List[Any] , a : List[Any]=None )-> List[Any]: """simple docstring""" lowercase__ = self.layer_norm(a ) if conditioning_emb is not None: lowercase__ = self.film(a , a ) lowercase__ = self.DenseReluDense(a ) lowercase__ = hidden_states + self.dropout(a ) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Optional[Any] , a : Tuple , a : Tuple , a : Dict )-> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ = nn.Linear(a , a , bias=a ) lowercase__ = nn.Linear(a , a , bias=a ) lowercase__ = nn.Linear(a , a , bias=a ) lowercase__ = nn.Dropout(a ) lowercase__ = NewGELUActivation() def SCREAMING_SNAKE_CASE_ ( self : Any , a : str )-> str: """simple docstring""" lowercase__ = self.act(self.wi_a(a ) ) lowercase__ = self.wi_a(a ) lowercase__ = hidden_gelu * hidden_linear lowercase__ = self.dropout(a ) lowercase__ = self.wo(a ) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Dict , a : Dict , a : Dict=1E-6 )-> Optional[int]: """simple docstring""" super().__init__() lowercase__ = nn.Parameter(torch.ones(a ) ) lowercase__ = eps def SCREAMING_SNAKE_CASE_ ( self : Any , a : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a ) lowercase__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowercase__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : torch.Tensor )-> torch.Tensor: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(a , 3.0 )) )) class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : int , a : Optional[Any] , a : Any )-> Optional[Any]: """simple docstring""" super().__init__() lowercase__ = nn.Linear(a , out_features * 2 , bias=a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Tuple , a : Dict )-> Optional[int]: """simple docstring""" lowercase__ = self.scale_bias(a ) lowercase__ , lowercase__ = torch.chunk(a , 2 , -1 ) lowercase__ = x * (1 + scale) + shift return x
269
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> str: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1 or n <= 1: return insert_next(UpperCAmelCase_ , n - 1 ) rec_insertion_sort(UpperCAmelCase_ , n - 1 ) def __UpperCAmelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> List[Any]: '''simple docstring''' if index >= len(UpperCAmelCase_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __snake_case , __snake_case : Union[str, Any] = ( collection[index], collection[index - 1], ) insert_next(UpperCAmelCase_ , index + 1 ) if __name__ == "__main__": _a : Tuple= input("Enter integers separated by spaces: ") _a : list[int]= [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
172
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__(self : Optional[Any] , _A : Optional[Any] , _A : str=13 , _A : List[Any]=3 , _A : Tuple=True , _A : List[str]=True , _A : Any=0.1 , _A : str=0.1 , _A : Union[str, Any]=2_24 , _A : Dict=10_00 , _A : Optional[int]=[3, 3, 6, 4] , _A : Optional[Any]=[48, 56, 1_12, 2_20] , ) -> List[str]: __snake_case : int = parent __snake_case : str = batch_size __snake_case : int = num_channels __snake_case : Optional[Any] = is_training __snake_case : Tuple = use_labels __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Dict = num_labels __snake_case : Union[str, Any] = image_size __snake_case : int = layer_depths __snake_case : List[str] = embed_dims def _lowercase (self : List[Any]) -> Dict: __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case : int = None if self.use_labels: __snake_case : Tuple = ids_tensor([self.batch_size] , self.num_labels) __snake_case : Optional[int] = self.get_config() return config, pixel_values, labels def _lowercase (self : Union[str, Any]) -> List[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_A , layer_scale_init_value=1E-5 , ) def _lowercase (self : int , _A : Union[str, Any] , _A : Tuple , _A : List[str]) -> Optional[int]: __snake_case : str = SwiftFormerModel(config=_A) model.to(_A) model.eval() __snake_case : Union[str, Any] = model(_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7)) def _lowercase (self : Optional[int] , _A : List[str] , _A : Union[str, Any] , _A : Union[str, Any]) -> int: __snake_case : Optional[int] = self.num_labels __snake_case : Dict = SwiftFormerForImageClassification(_A) model.to(_A) model.eval() __snake_case : List[Any] = model(_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) __snake_case : List[str] = SwiftFormerForImageClassification(_A) model.to(_A) model.eval() __snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case : Union[str, Any] = model(_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowercase (self : Optional[int]) -> int: ((__snake_case) , (__snake_case) , (__snake_case)) : List[Any] = self.prepare_config_and_inputs() __snake_case : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase , lowercase , unittest.TestCase ): UpperCAmelCase : Union[str, Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase : Union[str, Any] = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Any = False UpperCAmelCase : Tuple = False UpperCAmelCase : Tuple = False UpperCAmelCase : Tuple = False def _lowercase (self : int) -> Optional[int]: __snake_case : Dict = SwiftFormerModelTester(self) __snake_case : List[Any] = ConfigTester( self , config_class=_A , has_text_modality=_A , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _lowercase (self : Dict) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds') def _lowercase (self : Optional[int]) -> Optional[int]: pass def _lowercase (self : Dict) -> Optional[int]: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(_A) __snake_case : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear)) def _lowercase (self : str) -> Any: __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(_A) __snake_case : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : int = [*signature.parameters.keys()] __snake_case : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A) def _lowercase (self : List[Any]) -> List[str]: __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A) def _lowercase (self : Optional[int]) -> int: __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A) @slow def _lowercase (self : Union[str, Any]) -> Dict: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Dict = SwiftFormerModel.from_pretrained(_A) self.assertIsNotNone(_A) @unittest.skip(reason='SwiftFormer does not output attentions') def _lowercase (self : Dict) -> int: pass def _lowercase (self : Union[str, Any]) -> List[Any]: def check_hidden_states_output(_A : str , _A : int , _A : str): __snake_case : Optional[int] = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : Optional[int] = model(**self._prepare_for_class(_A , _A)) __snake_case : Optional[int] = outputs.hidden_states __snake_case : Any = 8 self.assertEqual(len(_A) , _A) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_A)): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ]) , ) __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = True check_hidden_states_output(_A , _A , _A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Any = True check_hidden_states_output(_A , _A , _A) def _lowercase (self : List[Any]) -> int: def _config_zero_init(_A : Union[str, Any]): __snake_case : Optional[int] = copy.deepcopy(_A) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_A , _A , 1E-10) if isinstance(getattr(_A , _A , _A) , _A): __snake_case : Optional[int] = _config_zero_init(getattr(_A , _A)) setattr(_A , _A , _A) return configs_no_init __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = _config_zero_init(_A) for model_class in self.all_model_classes: __snake_case : Tuple = model_class(config=_A) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowercase (self : List[str]) -> List[Any]: pass def __UpperCAmelCase ( ) -> List[str]: '''simple docstring''' __snake_case : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _lowercase (self : Dict) -> List[str]: return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs') if is_vision_available() else None @slow def _lowercase (self : Any) -> List[Any]: __snake_case : Any = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs').to(_A) __snake_case : Any = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : Optional[int] = image_processor(images=_A , return_tensors='pt').to(_A) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_A) # verify the logits __snake_case : Optional[Any] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , _A) __snake_case : Optional[int] = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4))
172
1
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowercase_ : int = 128 , lowercase_ : int = 256 , lowercase_ : float = 20_00.0 , lowercase_ : int = 768 , lowercase_ : int = 12 , lowercase_ : int = 12 , lowercase_ : int = 64 , lowercase_ : int = 2048 , lowercase_ : float = 0.1 , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : Any = nn.Sequential( nn.Linear(lowercase_ , d_model * 4 , bias=lowercase_) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowercase_) , nn.SiLU() , ) SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Embedding(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_) SCREAMING_SNAKE_CASE_ : Any = nn.Dropout(p=lowercase_) SCREAMING_SNAKE_CASE_ : str = nn.ModuleList() for lyr_num in range(lowercase_): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE_ : Optional[Any] = DecoderLayer(d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_) self.decoders.append(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = TaLayerNorm(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = nn.Dropout(p=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = torch.mul(query_input.unsqueeze(-1) , key_input.unsqueeze(-2)) return mask.unsqueeze(-3) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype) SCREAMING_SNAKE_CASE_ : Optional[int] = self.conditioning_emb(lowercase_).unsqueeze(1) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE_ : Optional[int] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE_ : int = torch.broadcast_to( torch.arange(lowercase_ , device=decoder_input_tokens.device) , (batch, seq_length) , ) SCREAMING_SNAKE_CASE_ : Any = self.position_encoding(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.continuous_inputs_projection(lowercase_) inputs += position_encodings SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dropout(lowercase_) # decoder: No padding present. SCREAMING_SNAKE_CASE_ : Optional[int] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE_ : List[str] = [(x, self.encoder_decoder_mask(lowercase_ , lowercase_)) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1) for lyr in self.decoders: SCREAMING_SNAKE_CASE_ : int = lyr( lowercase_ , conditioning_emb=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.decoder_norm(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.post_dropout(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.spec_out(lowercase_) return spec_out class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[str]=1e-6): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : Any = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , dropout_rate=lowercase_)) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , dropout_rate=lowercase_ , layer_norm_epsilon=lowercase_ , )) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ , layer_norm_epsilon=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : int=None , lowercase_ : Optional[int]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.layer[0]( lowercase_ , conditioning_emb=lowercase_ , attention_mask=lowercase_ , ) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE_ : Tuple = torch.where(encoder_attention_mask > 0 , 0 , -1e10).to( encoder_hidden_states.dtype) SCREAMING_SNAKE_CASE_ : str = self.layer[1]( lowercase_ , key_value_states=lowercase_ , attention_mask=lowercase_ , ) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE_ : str = self.layer[-1](lowercase_ , lowercase_) return (hidden_states,) class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any]): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : int = TaLayerNorm(lowercase_) SCREAMING_SNAKE_CASE_ : int = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase_) SCREAMING_SNAKE_CASE_ : Any = Attention(query_dim=lowercase_ , heads=lowercase_ , dim_head=lowercase_ , out_bias=lowercase_ , scale_qk=lowercase_) SCREAMING_SNAKE_CASE_ : str = nn.Dropout(lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : List[Any] , lowercase_ : List[str]=None , lowercase_ : Union[str, Any]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.layer_norm(lowercase_) if conditioning_emb is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.FiLMLayer(lowercase_ , lowercase_) # Self-attention block SCREAMING_SNAKE_CASE_ : int = self.attention(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_states + self.dropout(lowercase_) return hidden_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int]): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : Any = Attention(query_dim=lowercase_ , heads=lowercase_ , dim_head=lowercase_ , out_bias=lowercase_ , scale_qk=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = TaLayerNorm(lowercase_ , eps=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Dropout(lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.layer_norm(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.attention( lowercase_ , encoder_hidden_states=lowercase_ , attention_mask=attention_mask.squeeze(1) , ) SCREAMING_SNAKE_CASE_ : Any = hidden_states + self.dropout(lowercase_) return layer_output class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Tuple): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : Any = TaDenseGatedActDense(d_model=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = TaLayerNorm(lowercase_ , eps=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = nn.Dropout(lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[int] , lowercase_ : int=None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.layer_norm(lowercase_) if conditioning_emb is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.film(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.DenseReluDense(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = hidden_states + self.dropout(lowercase_) return hidden_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : str): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_) SCREAMING_SNAKE_CASE_ : Any = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_) SCREAMING_SNAKE_CASE_ : str = nn.Dropout(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = NewGELUActivation() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.act(self.wi_a(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = self.wi_a(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE_ : Optional[int] = self.dropout(lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.wo(lowercase_) return hidden_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[Any]=1e-6): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Parameter(torch.ones(lowercase_)) SCREAMING_SNAKE_CASE_ : int = eps def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = hidden_states.to(torch.floataa).pow(2).mean(-1 , keepdim=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE_ : Any = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : torch.Tensor): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.04_47_15 * torch.pow(lowercase_ , 3.0)))) class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , lowercase_ : List[Any] , lowercase_ : Optional[Any]): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.Linear(lowercase_ , out_features * 2 , bias=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.scale_bias(lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = torch.chunk(lowercase_ , 2 , -1) SCREAMING_SNAKE_CASE_ : Optional[int] = x * (1 + scale) + shift return x
318
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase_ : Union[str, Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : Dict=1): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies def __iter__( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip()) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = start_length SCREAMING_SNAKE_CASE_ : List[Any] = eof_strings SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer def __call__( self : Optional[int] , lowercase_ : Any , lowercase_ : int , **lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.tokenizer.batch_decode(input_ids[:, self.start_length :]) SCREAMING_SNAKE_CASE_ : Tuple = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(lowercase_) def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = re.split('''(%s)''' % '''|'''.join(__a ) , __a ) # last string should be "" return "".join(string_list[:-2] ) def _A (__a , __a , __a , __a , __a , __a=20 , **__a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(__a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__a ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = batch['''ids'''].shape[-1] SCREAMING_SNAKE_CASE_ : Tuple = accelerator.unwrap_model(__a ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__a , **__a ) # each task is generated batch_size times SCREAMING_SNAKE_CASE_ : List[Any] = batch['''task_id'''].repeat(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.pad_across_processes( __a , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE_ : Optional[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__a , __a ): gen_token_dict[task].append(__a ) SCREAMING_SNAKE_CASE_ : int = [[] for _ in range(__a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) code_gens[task].append(remove_last_block(__a ) ) return code_gens def _A () -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser(__a ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE_ : Any = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE_ : str = '''false''' if args.num_workers is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() set_seed(args.seed , device_specific=__a ) # Load model and tokenizer SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.eos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE_ : List[str] = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('''openai_humaneval''' ) SCREAMING_SNAKE_CASE_ : str = load_metric('''code_eval''' ) SCREAMING_SNAKE_CASE_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) SCREAMING_SNAKE_CASE_ : List[str] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = TokenizedDataset(__a , human_eval['''test'''] , n_copies=__a , n_tasks=__a ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(__a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(__a , __a ) SCREAMING_SNAKE_CASE_ : List[Any] = complete_code( __a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE_ : int = [] for task in tqdm(range(__a ) ): SCREAMING_SNAKE_CASE_ : Tuple = human_eval['''test'''][task]['''test'''] SCREAMING_SNAKE_CASE_ : Tuple = f'check({human_eval["test"][task]["entry_point"]})' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = code_eval_metric.compute( references=__a , predictions=__a , num_workers=args.num_workers ) print(f'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__a , __a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
318
1
"""simple docstring""" from math import isqrt def _snake_case ( lowercase__ ): return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase__ ) + 1 ) ) def _snake_case ( lowercase__ = 10**6 ): _lowerCamelCase : str = 0 _lowerCamelCase : int = 1 _lowerCamelCase : Union[str, Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
96
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = DPTConfig() if "large" in checkpoint_url: UpperCAmelCase = 1024 UpperCAmelCase = 4096 UpperCAmelCase = 24 UpperCAmelCase = 16 UpperCAmelCase = [5, 11, 17, 23] UpperCAmelCase = [256, 512, 1024, 1024] UpperCAmelCase = (1, 384, 384) if "ade" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 150 UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = """ade20k-id2label.json""" UpperCAmelCase = json.load(open(cached_download(hf_hub_url(_snake_case , _snake_case , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase = {int(_snake_case ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = [1, 150, 480, 480] return config, expected_shape def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _a ( _snake_case ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: UpperCAmelCase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: UpperCAmelCase = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: UpperCAmelCase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: UpperCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: UpperCAmelCase = name.replace("""proj""" , """projection""" ) if "blocks" in name: UpperCAmelCase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: UpperCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: UpperCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: UpperCAmelCase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: UpperCAmelCase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: UpperCAmelCase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: UpperCAmelCase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: UpperCAmelCase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: UpperCAmelCase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: UpperCAmelCase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: UpperCAmelCase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: UpperCAmelCase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: UpperCAmelCase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: UpperCAmelCase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: UpperCAmelCase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: UpperCAmelCase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: UpperCAmelCase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: UpperCAmelCase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: UpperCAmelCase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: UpperCAmelCase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def _a ( _snake_case , _snake_case ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) UpperCAmelCase = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def _a ( ): """simple docstring""" UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = get_dpt_config(_snake_case ) # load original state_dict from URL UpperCAmelCase = torch.hub.load_state_dict_from_url(_snake_case , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_snake_case ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(_snake_case ) UpperCAmelCase = val # read in qkv matrices read_in_q_k_v(_snake_case , _snake_case ) # load HuggingFace model UpperCAmelCase = DPTForSemanticSegmentation(_snake_case ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # Check outputs on an image UpperCAmelCase = 480 if """ade""" in checkpoint_url else 384 UpperCAmelCase = DPTImageProcessor(size=_snake_case ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(_snake_case , return_tensors="""pt""" ) # forward pass UpperCAmelCase = model(**_snake_case ).logits if """ade""" in checkpoint_url else model(**_snake_case ).predicted_depth # Assert logits UpperCAmelCase = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: UpperCAmelCase = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(_snake_case ) assert ( torch.allclose(outputs[0, 0, :3, :3] , _snake_case , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _snake_case ) ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_snake_case , ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) _UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
365
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(_snake_case , config=_snake_case ) UpperCAmelCase = downstream_dict["""projector.weight"""] UpperCAmelCase = downstream_dict["""projector.bias"""] UpperCAmelCase = downstream_dict["""model.post_net.linear.weight"""] UpperCAmelCase = downstream_dict["""model.post_net.linear.bias"""] return model def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(_snake_case , config=_snake_case ) UpperCAmelCase = downstream_dict["""model.linear.weight"""] UpperCAmelCase = downstream_dict["""model.linear.bias"""] return model def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = WavaVecaForXVector.from_pretrained(_snake_case , config=_snake_case ) UpperCAmelCase = downstream_dict["""connector.weight"""] UpperCAmelCase = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] UpperCAmelCase = downstream_dict["""objective.W"""] return model @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = torch.load(_snake_case , map_location="""cpu""" ) UpperCAmelCase = checkpoint["""Downstream"""] UpperCAmelCase = WavaVecaConfig.from_pretrained(_snake_case ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( _snake_case , return_attention_mask=_snake_case , do_normalize=_snake_case ) UpperCAmelCase = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): UpperCAmelCase = convert_classification(_snake_case , _snake_case , _snake_case ) elif arch.endswith("""ForAudioFrameClassification""" ): UpperCAmelCase = convert_diarization(_snake_case , _snake_case , _snake_case ) elif arch.endswith("""ForXVector""" ): UpperCAmelCase = convert_xvector(_snake_case , _snake_case , _snake_case ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: UpperCAmelCase = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _UpperCamelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
234
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Dict = ["""pixel_values"""] def __init__( self : List[str] , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = True , **__lowerCamelCase : Optional[int] , ): super().__init__(**__lowerCamelCase ) UpperCamelCase :Tuple = size if size is not None else {"""shortest_edge""": 224} UpperCamelCase :Any = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) UpperCamelCase :Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCamelCase :int = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name="""crop_size""" ) UpperCamelCase :Tuple = do_resize UpperCamelCase :Optional[int] = size UpperCamelCase :List[Any] = resample UpperCamelCase :Union[str, Any] = do_center_crop UpperCamelCase :Tuple = crop_size UpperCamelCase :Union[str, Any] = do_rescale UpperCamelCase :Dict = rescale_factor UpperCamelCase :Optional[Any] = do_normalize UpperCamelCase :Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase :str = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase :str = do_convert_rgb def _A ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ): UpperCamelCase :Tuple = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase :int = get_resize_output_image_size(__lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Tuple , ): UpperCamelCase :str = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ): return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : str , ): return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[Any] , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowerCamelCase : List[str] , ): UpperCamelCase :Dict = do_resize if do_resize is not None else self.do_resize UpperCamelCase :List[str] = size if size is not None else self.size UpperCamelCase :str = get_size_dict(__lowerCamelCase , param_name="""size""" , default_to_square=__lowerCamelCase ) UpperCamelCase :Optional[Any] = resample if resample is not None else self.resample UpperCamelCase :List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase :List[str] = crop_size if crop_size is not None else self.crop_size UpperCamelCase :str = get_size_dict(__lowerCamelCase , param_name="""crop_size""" , default_to_square=__lowerCamelCase ) UpperCamelCase :Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase :int = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase :List[str] = image_mean if image_mean is not None else self.image_mean UpperCamelCase :Optional[Any] = image_std if image_std is not None else self.image_std UpperCamelCase :List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase :Dict = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase :Optional[int] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCamelCase :Dict = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: UpperCamelCase :Tuple = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: UpperCamelCase :str = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase :List[str] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase :str = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] UpperCamelCase :Optional[Any] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] UpperCamelCase :str = {"""pixel_values""": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
38
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowercase ( ) -> List[str]: __SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('RGB' ) return image def __lowercase ( a__ ) -> Dict: __SCREAMING_SNAKE_CASE = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def __lowercase ( a__ , a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = dct.pop(a__ ) __SCREAMING_SNAKE_CASE = val def __lowercase ( a__ , a__ ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE = torch.cat((q_bias, torch.zeros_like(a__ , requires_grad=a__ ), v_bias) ) __SCREAMING_SNAKE_CASE = qkv_bias def __lowercase ( a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = 3_64 if 'coco' in model_name else 2_24 __SCREAMING_SNAKE_CASE = BlipaVisionConfig(image_size=a__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=a__ ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=a__ ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE = BlipaConfig(vision_config=a__ , text_config=a__ ) return config, image_size @torch.no_grad() def __lowercase ( a__ , a__=None , a__=False ) -> Any: __SCREAMING_SNAKE_CASE = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __SCREAMING_SNAKE_CASE = tokenizer('\n' , add_special_tokens=a__ ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_blipa_config(a__ , eos_token_id=a__ ) __SCREAMING_SNAKE_CASE = BlipaForConditionalGeneration(a__ ).eval() __SCREAMING_SNAKE_CASE = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model_name_to_original[model_name] # load original model print('Loading original model...' ) __SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = load_model_and_preprocess( name=a__ , model_type=a__ , is_eval=a__ , device=a__ ) original_model.eval() print('Done!' ) # update state dict keys __SCREAMING_SNAKE_CASE = original_model.state_dict() __SCREAMING_SNAKE_CASE = create_rename_keys(a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) if key.startswith('Qformer.bert' ): __SCREAMING_SNAKE_CASE = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __SCREAMING_SNAKE_CASE = key.replace('self' , 'attention' ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __SCREAMING_SNAKE_CASE = key.replace('opt' , 'language' ) if key.startswith('t5' ): __SCREAMING_SNAKE_CASE = key.replace('t5' , 'language' ) __SCREAMING_SNAKE_CASE = val # read in qv biases read_in_q_v_bias(a__ , a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hf_model.load_state_dict(a__ , strict=a__ ) assert len(a__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE = load_demo_image() __SCREAMING_SNAKE_CASE = vis_processors['eval'](a__ ).unsqueeze(0 ).to(a__ ) __SCREAMING_SNAKE_CASE = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(a__ ) # create processor __SCREAMING_SNAKE_CASE = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=a__ , image_std=a__ ) __SCREAMING_SNAKE_CASE = BlipaProcessor(image_processor=a__ , tokenizer=a__ ) __SCREAMING_SNAKE_CASE = processor(images=a__ , return_tensors='pt' ).pixel_values.to(a__ ) # make sure processor creates exact same pixel values assert torch.allclose(a__ , a__ ) original_model.to(a__ ) hf_model.to(a__ ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __SCREAMING_SNAKE_CASE = hf_model(a__ , a__ ).logits else: __SCREAMING_SNAKE_CASE = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __SCREAMING_SNAKE_CASE = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __SCREAMING_SNAKE_CASE = hf_model(a__ , a__ , labels=a__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=a__ ) assert torch.allclose(logits[0, :3, :3] , a__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=a__ ) else: # cast to same type __SCREAMING_SNAKE_CASE = logits.dtype assert torch.allclose(original_logits.to(a__ ) , a__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = tokenizer(a__ , return_tensors='pt' ).input_ids.to(a__ ) __SCREAMING_SNAKE_CASE = original_model.generate({'image': original_pixel_values} ) __SCREAMING_SNAKE_CASE = hf_model.generate( a__ , a__ , do_sample=a__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , a__ ) __SCREAMING_SNAKE_CASE = input_ids.shape[1] __SCREAMING_SNAKE_CASE = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=a__ ) __SCREAMING_SNAKE_CASE = [text.strip() for text in output_text] print('HF generation:' , a__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ : Dict =argparse.ArgumentParser() lowerCAmelCase__ : Union[str, Any] =[ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowerCAmelCase__ : int =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
257
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[int] ) -> Optional[int]: __magic_name__ : int = [] def __lowerCAmelCase ( self : Tuple , _A : str , _A : int , _A : Any , **_A : Optional[int] ) -> Optional[Any]: self.events.append('on_init_end' ) def __lowerCAmelCase ( self : Any , _A : Tuple , _A : List[str] , _A : List[Any] , **_A : List[str] ) -> Any: self.events.append('on_train_begin' ) def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] , _A : str , **_A : Union[str, Any] ) -> List[Any]: self.events.append('on_train_end' ) def __lowerCAmelCase ( self : Tuple , _A : Tuple , _A : Union[str, Any] , _A : Tuple , **_A : List[Any] ) -> Dict: self.events.append('on_epoch_begin' ) def __lowerCAmelCase ( self : Union[str, Any] , _A : List[str] , _A : int , _A : List[Any] , **_A : str ) -> int: self.events.append('on_epoch_end' ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple , _A : Tuple , _A : int , **_A : Optional[Any] ) -> Any: self.events.append('on_step_begin' ) def __lowerCAmelCase ( self : Optional[Any] , _A : int , _A : Dict , _A : Union[str, Any] , **_A : Union[str, Any] ) -> List[str]: self.events.append('on_step_end' ) def __lowerCAmelCase ( self : Dict , _A : Any , _A : Optional[Any] , _A : Optional[Any] , **_A : List[str] ) -> Tuple: self.events.append('on_evaluate' ) def __lowerCAmelCase ( self : Optional[Any] , _A : Tuple , _A : Union[str, Any] , _A : Optional[int] , **_A : Union[str, Any] ) -> Tuple: self.events.append('on_predict' ) def __lowerCAmelCase ( self : Dict , _A : List[str] , _A : Any , _A : Tuple , **_A : List[str] ) -> List[str]: self.events.append('on_save' ) def __lowerCAmelCase ( self : Tuple , _A : Dict , _A : List[Any] , _A : Union[str, Any] , **_A : Optional[int] ) -> str: self.events.append('on_log' ) def __lowerCAmelCase ( self : int , _A : Dict , _A : str , _A : List[Any] , **_A : int ) -> str: self.events.append('on_prediction_step' ) @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Union[str, Any] = tempfile.mkdtemp() def __lowerCAmelCase ( self : str ) -> Any: shutil.rmtree(self.output_dir ) def __lowerCAmelCase ( self : Union[str, Any] , _A : List[Any]=0 , _A : Optional[Any]=0 , _A : Tuple=64 , _A : Any=64 , _A : List[str]=None , _A : Dict=False , **_A : Optional[Any] ) -> Union[str, Any]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __magic_name__ : Tuple = RegressionDataset(length=_A ) __magic_name__ : List[Any] = RegressionDataset(length=_A ) __magic_name__ : Dict = RegressionModelConfig(a=_A , b=_A ) __magic_name__ : Dict = RegressionPreTrainedModel(_A ) __magic_name__ : Optional[Any] = TrainingArguments(self.output_dir , disable_tqdm=_A , report_to=[] , **_A ) return Trainer( _A , _A , train_dataset=_A , eval_dataset=_A , callbacks=_A , ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Any , _A : List[Any] ) -> Optional[int]: self.assertEqual(len(_A ) , len(_A ) ) # Order doesn't matter __magic_name__ : Dict = sorted(_A , key=lambda _A : cb.__name__ if isinstance(_A , _A ) else cb.__class__.__name__ ) __magic_name__ : Union[str, Any] = sorted(_A , key=lambda _A : cb.__name__ if isinstance(_A , _A ) else cb.__class__.__name__ ) for cba, cba in zip(_A , _A ): if isinstance(_A , _A ) and isinstance(_A , _A ): self.assertEqual(_A , _A ) elif isinstance(_A , _A ) and not isinstance(_A , _A ): self.assertEqual(_A , cba.__class__ ) elif not isinstance(_A , _A ) and isinstance(_A , _A ): self.assertEqual(cba.__class__ , _A ) else: self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Any , _A : Optional[Any] ) -> Dict: __magic_name__ : List[str] = ['on_init_end', 'on_train_begin'] __magic_name__ : int = 0 __magic_name__ : Optional[Any] = len(trainer.get_eval_dataloader() ) __magic_name__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(_A ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : Any = self.get_trainer() __magic_name__ : Optional[int] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , _A ) # Callbacks passed at init are added to the default callbacks __magic_name__ : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(_A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _A ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __magic_name__ : Optional[int] = self.get_trainer(disable_tqdm=_A ) __magic_name__ : Optional[int] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , _A ) def __lowerCAmelCase ( self : List[Any] ) -> str: __magic_name__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __magic_name__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(_A ) expected_callbacks.remove(_A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _A ) __magic_name__ : List[Any] = self.get_trainer() __magic_name__ : Any = trainer.pop_callback(_A ) self.assertEqual(cb.__class__ , _A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _A ) trainer.add_callback(_A ) expected_callbacks.insert(0 , _A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _A ) # We can also add, pop, or remove by instance __magic_name__ : str = self.get_trainer() __magic_name__ : int = trainer.callback_handler.callbacks[0] trainer.remove_callback(_A ) expected_callbacks.remove(_A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _A ) __magic_name__ : Dict = self.get_trainer() __magic_name__ : Dict = trainer.callback_handler.callbacks[0] __magic_name__ : Dict = trainer.pop_callback(_A ) self.assertEqual(_A , _A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _A ) trainer.add_callback(_A ) expected_callbacks.insert(0 , _A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Any: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=_A ) __magic_name__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __magic_name__ : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_A , self.get_expected_events(_A ) ) # Independent log/save/eval __magic_name__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __magic_name__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_A , self.get_expected_events(_A ) ) __magic_name__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __magic_name__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_A , self.get_expected_events(_A ) ) __magic_name__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() __magic_name__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(_A , self.get_expected_events(_A ) ) __magic_name__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() __magic_name__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_A , self.get_expected_events(_A ) ) # A bit of everything __magic_name__ : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() __magic_name__ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(_A , self.get_expected_events(_A ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: __magic_name__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(_A ) in warn_mock.call_args[0][0]
275
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :str = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
275
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _a = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCamelCase = datasets.utils.logging.get_logger(__name__) lowerCamelCase = ['names', 'prefix'] lowerCamelCase = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowerCamelCase = ['encoding_errors', 'on_bad_lines'] lowerCamelCase = ['date_format'] @dataclass class A ( datasets.BuilderConfig ): UpperCamelCase__ : str ="," UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : Optional[Union[int, List[int], str]] ="infer" UpperCamelCase__ : Optional[List[str]] =None UpperCamelCase__ : Optional[List[str]] =None UpperCamelCase__ : Optional[Union[int, str, List[int], List[str]]] =None UpperCamelCase__ : Optional[Union[List[int], List[str]]] =None UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[Literal["c", "python", "pyarrow"]] =None UpperCamelCase__ : Dict[Union[int, str], Callable[[Any], Any]] =None UpperCamelCase__ : Optional[list] =None UpperCamelCase__ : Optional[list] =None UpperCamelCase__ : bool =False UpperCamelCase__ : Optional[Union[int, List[int]]] =None UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[Union[str, List[str]]] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : str ="." UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : str ='"' UpperCamelCase__ : int =0 UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : int =0 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : int =10000 UpperCamelCase__ : Optional[datasets.Features] =None UpperCamelCase__ : Optional[str] ="strict" UpperCamelCase__ : Literal["error", "warn", "skip"] ="error" UpperCamelCase__ : Optional[str] =None def lowerCamelCase ( self : List[str] ) -> str: """simple docstring""" if self.delimiter is not None: _lowerCamelCase : Union[str, Any] =self.delimiter if self.column_names is not None: _lowerCamelCase : Dict =self.column_names @property def lowerCamelCase ( self : int ) -> int: """simple docstring""" _lowerCamelCase : Any ={ 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowercase_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): UpperCamelCase__ : List[str] =CsvConfig def lowerCamelCase ( self : Any ) -> Tuple: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase ( self : Tuple , lowercase_ : Any ) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _lowerCamelCase : int =dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowercase_ , (str, list, tuple) ): _lowerCamelCase : List[Any] =data_files if isinstance(lowercase_ , lowercase_ ): _lowerCamelCase : Union[str, Any] =[files] _lowerCamelCase : Union[str, Any] =[dl_manager.iter_files(lowercase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCamelCase : Optional[int] =[] for split_name, files in data_files.items(): if isinstance(lowercase_ , lowercase_ ): _lowerCamelCase : Dict =[files] _lowerCamelCase : Optional[int] =[dl_manager.iter_files(lowercase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={'files': files} ) ) return splits def lowerCamelCase ( self : int , lowercase_ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _lowerCamelCase : List[str] =self.config.features.arrow_schema if all(not require_storage_cast(lowercase_ ) for feature in self.config.features.values() ): # cheaper cast _lowerCamelCase : Optional[int] =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowercase_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowerCamelCase : List[Any] =table_cast(lowercase_ , lowercase_ ) return pa_table def lowerCamelCase ( self : Optional[Any] , lowercase_ : List[Any] ) -> Any: """simple docstring""" _lowerCamelCase : str =self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowerCamelCase : Union[str, Any] =( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowercase_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase_ ) ): _lowerCamelCase : Union[str, Any] =pd.read_csv(lowercase_ , iterator=lowercase_ , dtype=lowercase_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowercase_ ): _lowerCamelCase : Tuple =pa.Table.from_pandas(lowercase_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowercase_ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowercase_ )}: {e}''' ) raise
199
0
from maths.prime_check import is_prime def A ( __UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = f"Input value of [number={number}] must be an integer" raise TypeError(__UpperCAmelCase ) if is_prime(__UpperCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
344
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger("""transformers.models.speecht5""") def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] ): hf_model.apply_weight_norm() snake_case : Optional[Any] = checkpoint["input_conv.weight_g"] snake_case : Union[str, Any] = checkpoint["input_conv.weight_v"] snake_case : List[Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): snake_case : List[Any] = checkpoint[f"""upsamples.{i}.1.weight_g"""] snake_case : Dict = checkpoint[f"""upsamples.{i}.1.weight_v"""] snake_case : Dict = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): snake_case : Union[str, Any] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] snake_case : List[str] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] snake_case : Any = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] snake_case : Any = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] snake_case : Optional[int] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] snake_case : List[Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] snake_case : List[str] = checkpoint["output_conv.1.weight_g"] snake_case : Optional[int] = checkpoint["output_conv.1.weight_v"] snake_case : int = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , ): if config_path is not None: snake_case : Any = SpeechTaHifiGanConfig.from_pretrained(__lowerCamelCase ) else: snake_case : List[Any] = SpeechTaHifiGanConfig() snake_case : Tuple = SpeechTaHifiGan(__lowerCamelCase ) snake_case : Any = torch.load(__lowerCamelCase ) load_weights(orig_checkpoint["model"]["generator"] , __lowerCamelCase , __lowerCamelCase ) snake_case : int = np.load(__lowerCamelCase ) snake_case : List[str] = stats[0].reshape(-1 ) snake_case : Dict = stats[1].reshape(-1 ) snake_case : Optional[Any] = torch.from_numpy(__lowerCamelCase ).float() snake_case : Union[str, Any] = torch.from_numpy(__lowerCamelCase ).float() model.save_pretrained(__lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCamelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
59
__lowerCamelCase = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case : List[Any] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
59
1
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _lowercase = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] _lowercase = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = """ Hello world! cécé herlolip""" _lowercase = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[int] , __lowerCamelCase :List[Any] , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :str ): _lowerCAmelCase = torch.load(__lowerCamelCase , map_location="""cpu""" ) _lowerCAmelCase = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def A (__lowerCamelCase :Any ): _lowerCAmelCase , _lowerCAmelCase = emb.weight.shape _lowerCAmelCase = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _lowerCAmelCase = emb.weight.data return lin_layer @torch.no_grad() def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Dict=None ): if not os.path.exists(__lowerCamelCase ): _lowerCAmelCase = torch.hub.load("""pytorch/fairseq""" , __lowerCamelCase ).eval() else: _lowerCAmelCase = load_xsum_checkpoint(__lowerCamelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _lowerCAmelCase = checkpoint_path.replace(""".""" , """-""" ) _lowerCAmelCase = BartConfig.from_pretrained(__lowerCamelCase ) _lowerCAmelCase = bart.encode(__lowerCamelCase ).unsqueeze(0 ) _lowerCAmelCase = BartTokenizer.from_pretrained(__lowerCamelCase ).encode(__lowerCamelCase , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(__lowerCamelCase , __lowerCamelCase ).all(): raise ValueError( f'converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}' ) if checkpoint_path == "bart.large.mnli": _lowerCAmelCase = bart.state_dict() remove_ignore_keys_(__lowerCamelCase ) _lowerCAmelCase = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = BartForSequenceClassification(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) _lowerCAmelCase = bart.predict("""mnli""" , __lowerCamelCase , return_logits=__lowerCamelCase ) _lowerCAmelCase = model(__lowerCamelCase )[0] # logits else: # no classification heads to worry about _lowerCAmelCase = bart.model.state_dict() remove_ignore_keys_(__lowerCamelCase ) _lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""] _lowerCAmelCase = bart.extract_features(__lowerCamelCase ) if hf_checkpoint_name == "facebook/bart-large": _lowerCAmelCase = BartModel(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) _lowerCAmelCase = model(__lowerCamelCase ).model[0] else: _lowerCAmelCase = BartForConditionalGeneration(__lowerCamelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(__lowerCamelCase ) if hasattr(__lowerCamelCase , """lm_head""" ): _lowerCAmelCase = make_linear_from_emb(model.model.shared ) _lowerCAmelCase = model.model(__lowerCamelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f'`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) _lowercase = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
367
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=32 , _lowercase=3 , _lowercase=4 , _lowercase=[10, 20, 30, 40] , _lowercase=[2, 2, 3, 2] , _lowercase=True , _lowercase=True , _lowercase=37 , _lowercase="gelu" , _lowercase=10 , _lowercase=0.02 , _lowercase=["stage2", "stage3", "stage4"] , _lowercase=3 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_stages _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = out_features _lowerCAmelCase = num_labels _lowerCAmelCase = scope _lowerCAmelCase = num_stages def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowercase ( self ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowercase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowercase , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = UperNetForSemanticSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Dict = (UperNetForSemanticSegmentation,) if is_torch_available() else () _lowercase : Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} _lowercase : Dict = False _lowercase : Optional[Any] = False _lowercase : List[str] = False _lowercase : Union[str, Any] = False _lowercase : List[str] = False _lowercase : List[Any] = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = UperNetModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ): """simple docstring""" return def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): _lowerCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = _config_zero_init(_lowercase ) _lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(config=_lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _lowercase ( self ): """simple docstring""" pass @slow def _lowercase ( self ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def A (): _lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _lowerCAmelCase = Image.open(__lowerCamelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(_lowercase ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) with torch.no_grad(): _lowerCAmelCase = model(**_lowercase ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowercase ) _lowerCAmelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4 ) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(_lowercase ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) with torch.no_grad(): _lowerCAmelCase = model(**_lowercase ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowercase ) _lowerCAmelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4 ) )
229
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __UpperCAmelCase = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git_vision_model''' def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git''' def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings SCREAMING_SNAKE_CASE : int = num_image_with_embedding SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : str = eos_token_id def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
323
1
A_ :Union[str, Any] = [ '''DownloadConfig''', '''DownloadManager''', '''DownloadMode''', '''StreamingDownloadManager''', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
245
def A ( a_ ) -> bool: if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
245
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : int = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __A ( __a ): lowerCAmelCase_ : Optional[Any] = "gpt_neox" def __init__( self : Dict , UpperCAmelCase_ : Any=50432 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Any=44 , UpperCAmelCase_ : Tuple=64 , UpperCAmelCase_ : Optional[int]=24576 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : int=0.25 , UpperCAmelCase_ : str=10000 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : str=2048 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=1E-5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : List[Any] , ): super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Union[str, Any] = rotary_pct lowerCAmelCase : Tuple = rotary_emb_base lowerCAmelCase : Any = attention_dropout lowerCAmelCase : Dict = hidden_dropout lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : str = use_cache lowerCAmelCase : Any = tie_word_embeddings lowerCAmelCase : Optional[int] = use_parallel_residual lowerCAmelCase : Optional[int] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def lowercase__ ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , _UpperCamelCase ) lowerCAmelCase : Any = self.rope_scaling.get('factor' , _UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_UpperCamelCase , _UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
138
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
231
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers SCREAMING_SNAKE_CASE : Dict = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def UpperCamelCase ( _a , _a=None ) -> Optional[int]: '''simple docstring''' require_version(deps[pkg] , _a )
252
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") SCREAMING_SNAKE_CASE : int = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: SCREAMING_SNAKE_CASE : Optional[Any] = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) SCREAMING_SNAKE_CASE : Any = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
252
1
from __future__ import annotations def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(numsa + numsa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = divmod(len(_lowerCAmelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Dict =[float(x) for x in input('Enter the elements of first array: ').split()] __lowerCAmelCase : int =[float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
9
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
0
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __magic_name__: str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __magic_name__: Optional[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names __magic_name__: List[str] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __magic_name__: Dict = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __magic_name__: Optional[int] = "allenai" def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Tuple = dict((re.sub(R"""@@$""", """""", _A ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""", """</w>""", _A ), v) for k, v in d.items() ) __magic_name__ : List[str] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] __magic_name__ : Dict = d[k] # restore return da def UpperCamelCase ( _A, _A ): """simple docstring""" assert os.path.exists(_A ) os.makedirs(_A, exist_ok=_A ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __magic_name__ : List[str] = basename(_A ) __magic_name__ : Tuple = dirname(_A ) __magic_name__ : List[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __magic_name__ : Tuple = cls.hub_models() __magic_name__ : Optional[Any] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} __magic_name__ : Union[str, Any] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'using checkpoint {checkpoint_file}' ) __magic_name__ : Dict = hub_utils.from_pretrained( _A, _A, _A, archive_map=_A, **_A ) __magic_name__ : int = vars(chkpt["""args"""]["""model"""] ) __magic_name__ : Tuple = args["""source_lang"""] __magic_name__ : int = args["""target_lang"""] __magic_name__ : int = dirname(_A ) __magic_name__ : List[Any] = basename(_A ) # dicts __magic_name__ : List[Any] = os.path.join(_A, f'dict.{src_lang}.txt' ) __magic_name__ : List[str] = os.path.join(_A, f'dict.{tgt_lang}.txt' ) __magic_name__ : Tuple = Dictionary.load(_A ) __magic_name__ : List[str] = rewrite_dict_keys(src_dict.indices ) __magic_name__ : str = len(_A ) __magic_name__ : Tuple = os.path.join(_A, """vocab-src.json""" ) print(f'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(_A, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(_A, ensure_ascii=_A, indent=_A ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __magic_name__ : List[Any] = True for k in src_vocab.keys(): if not k.islower(): __magic_name__ : Optional[int] = False break __magic_name__ : List[str] = Dictionary.load(_A ) __magic_name__ : List[str] = rewrite_dict_keys(tgt_dict.indices ) __magic_name__ : int = len(_A ) __magic_name__ : Dict = os.path.join(_A, """vocab-tgt.json""" ) print(f'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(_A, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(_A, ensure_ascii=_A, indent=_A ) ) # merges_file (bpecodes) __magic_name__ : Tuple = os.path.join(_A, VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __magic_name__ : Tuple = os.path.join(_A, _A ) if os.path.exists(_A ): break with open(_A, encoding="""utf-8""" ) as fin: __magic_name__ : List[str] = fin.read() __magic_name__ : Any = re.sub(R""" \d+$""", """""", _A, 0, re.M ) # remove frequency number print(f'Generating {merges_file}' ) with open(_A, """w""", encoding="""utf-8""" ) as fout: fout.write(_A ) # model config __magic_name__ : Optional[Any] = os.path.join(_A, """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", f'need to extend tokenizer to support bpe={args["tokenizer"]}' __magic_name__ : List[Any] = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with __magic_name__ : Union[str, Any] = 5 __magic_name__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __magic_name__ : Tuple = best_score_hparams[model_dir]["""length_penalty"""] else: __magic_name__ : List[str] = 1.0 print(f'Generating {fsmt_model_config_file}' ) with open(_A, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(_A, ensure_ascii=_A, indent=_A ) ) # tokenizer config __magic_name__ : Tuple = os.path.join(_A, _A ) __magic_name__ : Optional[int] = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(f'Generating {fsmt_tokenizer_config_file}' ) with open(_A, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(_A, ensure_ascii=_A, indent=_A ) ) # model __magic_name__ : Dict = chkpt["""models"""][0] __magic_name__ : Any = model.state_dict() # rename keys to start with 'model.' __magic_name__ : Optional[int] = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys __magic_name__ : Optional[Any] = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(_A, _A ) __magic_name__ : Optional[int] = FSMTConfig.from_pretrained(_A ) __magic_name__ : List[Any] = FSMTForConditionalGeneration(_A ) # check that it loads ok model_new.load_state_dict(_A, strict=_A ) # save __magic_name__ : Union[str, Any] = os.path.join(_A, _A ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(_A, _A ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f'cd {data_root}' ) print(f'transformers-cli upload {model_dir}' ) if __name__ == "__main__": __magic_name__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: str = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
359
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __magic_name__: Any = logging.get_logger(__name__) __magic_name__: Dict = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Any = '''blenderbot-small''' lowercase__ : Optional[int] = ['''past_key_values'''] lowercase__ : Dict = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase__=5_02_65 , lowerCAmelCase__=5_12 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=16 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=5_12 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ) -> Tuple: __magic_name__ : Tuple = vocab_size __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Union[str, Any] = d_model __magic_name__ : Optional[int] = encoder_ffn_dim __magic_name__ : Union[str, Any] = encoder_layers __magic_name__ : List[str] = encoder_attention_heads __magic_name__ : List[Any] = decoder_ffn_dim __magic_name__ : str = decoder_layers __magic_name__ : List[str] = decoder_attention_heads __magic_name__ : Union[str, Any] = dropout __magic_name__ : Tuple = attention_dropout __magic_name__ : List[Any] = activation_dropout __magic_name__ : List[Any] = activation_function __magic_name__ : Optional[int] = init_std __magic_name__ : Dict = encoder_layerdrop __magic_name__ : Union[str, Any] = decoder_layerdrop __magic_name__ : Optional[int] = use_cache __magic_name__ : List[Any] = encoder_layers __magic_name__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) class snake_case__ ( _lowerCAmelCase ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Optional[int] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ : List[Any] = {0: """batch"""} __magic_name__ : Dict = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __magic_name__ : List[str] = {0: """batch""", 1: """decoder_sequence"""} __magic_name__ : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __magic_name__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ ,__magic_name__ : Dict = self.num_layers for i in range(lowerCAmelCase__ ): __magic_name__ : Dict = {0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : int = {0: """batch""", 2: """past_sequence + sequence"""} else: __magic_name__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Any = super().outputs else: __magic_name__ : int = super(lowerCAmelCase__ , self ).outputs if self.use_past: __magic_name__ ,__magic_name__ : str = self.num_layers for i in range(lowerCAmelCase__ ): __magic_name__ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : Dict = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: __magic_name__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Generate decoder inputs __magic_name__ : Optional[int] = seq_length if not self.use_past else 1 __magic_name__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __magic_name__ : Dict = dict(**lowerCAmelCase__ , **lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ ,__magic_name__ : List[Any] = common_inputs["""input_ids"""].shape __magic_name__ : Optional[Any] = common_inputs["""decoder_input_ids"""].shape[1] __magic_name__ ,__magic_name__ : str = self.num_attention_heads __magic_name__ : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : Any = decoder_seq_length + 3 __magic_name__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __magic_name__ : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ )] , dim=1 ) __magic_name__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __magic_name__ ,__magic_name__ : List[str] = self.num_layers __magic_name__ : Optional[Any] = min(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = max(lowerCAmelCase__ , lowerCAmelCase__ ) - min_num_layers __magic_name__ : Tuple = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowerCAmelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), ) ) # TODO: test this. __magic_name__ : Union[str, Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowerCAmelCase__ , lowerCAmelCase__ ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: __magic_name__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ ,__magic_name__ : Tuple = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __magic_name__ : List[Any] = seqlen + 2 __magic_name__ ,__magic_name__ : Any = self.num_layers __magic_name__ ,__magic_name__ : int = self.num_attention_heads __magic_name__ : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : Optional[int] = common_inputs["""attention_mask"""].dtype __magic_name__ : Optional[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) __magic_name__ : Tuple = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(lowerCAmelCase__ ) ] return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __magic_name__ : Tuple = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ : str = tokenizer.num_special_tokens_to_add(lowerCAmelCase__ ) __magic_name__ : List[str] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence __magic_name__ : List[Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __magic_name__ : List[str] = dict(tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) elif self.task == "causal-lm": __magic_name__ : str = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) else: __magic_name__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : List[Any] = super()._flatten_past_key_values_(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: __magic_name__ : Tuple = super(lowerCAmelCase__ , self )._flatten_past_key_values_( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
138
0
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __lowercase ( _lowercase , _lowercase ): @register_to_config def __init__(self , A = 1_2_8 , A = 2_5_6 , A = 20_00.0 , A = 7_6_8 , A = 1_2 , A = 1_2 , A = 6_4 , A = 2_0_4_8 , A = 0.1 , ): super().__init__() lowerCamelCase_ : Optional[int] = nn.Sequential( nn.Linear(A , d_model * 4 , bias=A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=A ) , nn.SiLU() , ) lowerCamelCase_ : Optional[Any] = nn.Embedding(A , A ) lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : List[Any] = nn.Linear(A , A , bias=A ) lowerCamelCase_ : List[Any] = nn.Dropout(p=A ) lowerCamelCase_ : List[str] = nn.ModuleList() for lyr_num in range(A ): # FiLM conditional T5 decoder lowerCamelCase_ : List[Any] = DecoderLayer(d_model=A , d_kv=A , num_heads=A , d_ff=A , dropout_rate=A ) self.decoders.append(A ) lowerCamelCase_ : Any = TaLayerNorm(A ) lowerCamelCase_ : Optional[Any] = nn.Dropout(p=A ) lowerCamelCase_ : Optional[int] = nn.Linear(A , A , bias=A ) def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : Tuple = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCAmelCase__ (self , A , A , A ): lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCamelCase_ : List[str] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowerCamelCase_ : Any = self.conditioning_emb(A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCamelCase_ : List[str] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCamelCase_ : Tuple = torch.broadcast_to( torch.arange(A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowerCamelCase_ : Union[str, Any] = self.position_encoding(A ) lowerCamelCase_ : List[str] = self.continuous_inputs_projection(A ) inputs += position_encodings lowerCamelCase_ : Dict = self.dropout(A ) # decoder: No padding present. lowerCamelCase_ : str = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCamelCase_ : Any = [(x, self.encoder_decoder_mask(A , A )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCamelCase_ : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowerCamelCase_ : Any = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowerCamelCase_ : Union[str, Any] = lyr( A , conditioning_emb=A , encoder_hidden_states=A , encoder_attention_mask=A , )[0] lowerCamelCase_ : Dict = self.decoder_norm(A ) lowerCamelCase_ : Any = self.post_dropout(A ) lowerCamelCase_ : Optional[int] = self.spec_out(A ) return spec_out class __lowercase ( nn.Module ): def __init__(self , A , A , A , A , A , A=1E-6 ): super().__init__() lowerCamelCase_ : Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=A , d_kv=A , num_heads=A , dropout_rate=A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=A , d_kv=A , num_heads=A , dropout_rate=A , layer_norm_epsilon=A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=A , d_ff=A , dropout_rate=A , layer_norm_epsilon=A ) ) def UpperCAmelCase__ (self , A , A=None , A=None , A=None , A=None , A=None , ): lowerCamelCase_ : Dict = self.layer[0]( A , conditioning_emb=A , attention_mask=A , ) if encoder_hidden_states is not None: lowerCamelCase_ : Dict = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) lowerCamelCase_ : Dict = self.layer[1]( A , key_value_states=A , attention_mask=A , ) # Apply Film Conditional Feed Forward layer lowerCamelCase_ : Optional[int] = self.layer[-1](A , A ) return (hidden_states,) class __lowercase ( nn.Module ): def __init__(self , A , A , A , A ): super().__init__() lowerCamelCase_ : Optional[int] = TaLayerNorm(A ) lowerCamelCase_ : List[str] = TaFiLMLayer(in_features=d_model * 4 , out_features=A ) lowerCamelCase_ : str = Attention(query_dim=A , heads=A , dim_head=A , out_bias=A , scale_qk=A ) lowerCamelCase_ : Union[str, Any] = nn.Dropout(A ) def UpperCAmelCase__ (self , A , A=None , A=None , ): # pre_self_attention_layer_norm lowerCamelCase_ : int = self.layer_norm(A ) if conditioning_emb is not None: lowerCamelCase_ : Union[str, Any] = self.FiLMLayer(A , A ) # Self-attention block lowerCamelCase_ : Optional[int] = self.attention(A ) lowerCamelCase_ : Tuple = hidden_states + self.dropout(A ) return hidden_states class __lowercase ( nn.Module ): def __init__(self , A , A , A , A , A ): super().__init__() lowerCamelCase_ : Union[str, Any] = Attention(query_dim=A , heads=A , dim_head=A , out_bias=A , scale_qk=A ) lowerCamelCase_ : Any = TaLayerNorm(A , eps=A ) lowerCamelCase_ : Dict = nn.Dropout(A ) def UpperCAmelCase__ (self , A , A=None , A=None , ): lowerCamelCase_ : Tuple = self.layer_norm(A ) lowerCamelCase_ : Optional[Any] = self.attention( A , encoder_hidden_states=A , attention_mask=attention_mask.squeeze(1 ) , ) lowerCamelCase_ : int = hidden_states + self.dropout(A ) return layer_output class __lowercase ( nn.Module ): def __init__(self , A , A , A , A ): super().__init__() lowerCamelCase_ : Tuple = TaDenseGatedActDense(d_model=A , d_ff=A , dropout_rate=A ) lowerCamelCase_ : int = TaFiLMLayer(in_features=d_model * 4 , out_features=A ) lowerCamelCase_ : Tuple = TaLayerNorm(A , eps=A ) lowerCamelCase_ : int = nn.Dropout(A ) def UpperCAmelCase__ (self , A , A=None ): lowerCamelCase_ : List[Any] = self.layer_norm(A ) if conditioning_emb is not None: lowerCamelCase_ : str = self.film(A , A ) lowerCamelCase_ : Tuple = self.DenseReluDense(A ) lowerCamelCase_ : Tuple = hidden_states + self.dropout(A ) return hidden_states class __lowercase ( nn.Module ): def __init__(self , A , A , A ): super().__init__() lowerCamelCase_ : Dict = nn.Linear(A , A , bias=A ) lowerCamelCase_ : Optional[int] = nn.Linear(A , A , bias=A ) lowerCamelCase_ : List[Any] = nn.Linear(A , A , bias=A ) lowerCamelCase_ : Tuple = nn.Dropout(A ) lowerCamelCase_ : int = NewGELUActivation() def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = self.act(self.wi_a(A ) ) lowerCamelCase_ : Union[str, Any] = self.wi_a(A ) lowerCamelCase_ : Dict = hidden_gelu * hidden_linear lowerCamelCase_ : int = self.dropout(A ) lowerCamelCase_ : Optional[int] = self.wo(A ) return hidden_states class __lowercase ( nn.Module ): def __init__(self , A , A=1E-6 ): super().__init__() lowerCamelCase_ : Union[str, Any] = nn.Parameter(torch.ones(A ) ) lowerCamelCase_ : Union[str, Any] = eps def UpperCAmelCase__ (self , A ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 lowerCamelCase_ : List[str] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=A ) lowerCamelCase_ : List[str] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCamelCase_ : List[Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __lowercase ( nn.Module ): def UpperCAmelCase__ (self , A ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(A , 3.0 )) )) class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Union[str, Any] = nn.Linear(A , out_features * 2 , bias=A ) def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : Any = self.scale_bias(A ) lowerCamelCase_, lowerCamelCase_ : Optional[int] = torch.chunk(A , 2 , -1 ) lowerCamelCase_ : Optional[Any] = x * (1 + scale) + shift return x
318
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
1
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _A ( snake_case ) -> List[str]: return 1.0 / (1.0 + np.exp(-_outputs )) def _A ( snake_case ) -> Optional[int]: _lowercase : Optional[Any] = np.max(_outputs , axis=-1 , keepdims=snake_case ) _lowercase : Any = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case ) class a__ ( lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : Dict = """sigmoid""" _SCREAMING_SNAKE_CASE : Optional[int] = """softmax""" _SCREAMING_SNAKE_CASE : List[str] = """none""" @add_end_docstrings( lowerCAmelCase_ , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n ' , ) class a__ ( lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = ClassificationFunction.NONE def __init__( self , **_UpperCamelCase ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowerCamelCase ( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="" , **_UpperCamelCase ): """simple docstring""" _lowercase : Dict = tokenizer_kwargs _lowercase : Optional[int] = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: _lowercase : Any = self.model.config.return_all_scores if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or top_k is None: _lowercase : Tuple = top_k _lowercase : Tuple = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , __SCREAMING_SNAKE_CASE , ) if return_all_scores: _lowercase : str = None else: _lowercase : Dict = 1 if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowercase : Optional[int] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase : Optional[Any] = super().__call__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowercase : Any = "top_k" not in kwargs if isinstance(args[0] , __SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowerCamelCase ( self , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase : Optional[Any] = self.framework if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.tokenizer(**__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , __SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return self.model(**__SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=1 , _UpperCamelCase=True ): """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowercase : str = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowercase : str = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: _lowercase : Any = self.model.config.function_to_apply else: _lowercase : Any = ClassificationFunction.NONE _lowercase : Dict = model_outputs["logits"][0] _lowercase : Union[str, Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowercase : str = sigmoid(__SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowercase : str = softmax(__SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: _lowercase : Union[str, Any] = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowercase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda _UpperCamelCase : x["score"] , reverse=__SCREAMING_SNAKE_CASE ) if top_k is not None: _lowercase : List[Any] = dict_scores[:top_k] return dict_scores
352
'''simple docstring''' import logging from transformers import PretrainedConfig _snake_case = logging.getLogger(__name__) _snake_case = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[str] = 'bertabs' def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=512 , _UpperCamelCase=6 , _UpperCamelCase=512 , _UpperCamelCase=8 , _UpperCamelCase=512 , _UpperCamelCase=0.2 , _UpperCamelCase=6 , _UpperCamelCase=768 , _UpperCamelCase=8 , _UpperCamelCase=2048 , _UpperCamelCase=0.2 , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCamelCase ) _lowercase : List[str] = vocab_size _lowercase : Tuple = max_pos _lowercase : int = enc_layers _lowercase : str = enc_hidden_size _lowercase : Optional[Any] = enc_heads _lowercase : Union[str, Any] = enc_ff_size _lowercase : Tuple = enc_dropout _lowercase : Dict = dec_layers _lowercase : List[str] = dec_hidden_size _lowercase : List[str] = dec_heads _lowercase : str = dec_ff_size _lowercase : str = dec_dropout
199
0
import math def lowerCAmelCase__ ( a__: int ) -> str: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while num > 0: _UpperCAmelCase = num % 8 _UpperCAmelCase = octal + (remainder * math.floor(math.pow(1_0 , a__ ) )) counter += 1 _UpperCAmelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(a__ )}''' def lowerCAmelCase__ ( ) -> None: '''simple docstring''' print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(6_5 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(2_1_6 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(5_1_2 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
329
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [] for step in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(a__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , a__ ) _UpperCAmelCase = torch.load(a__ ) scheduler.load_state_dict(a__ ) return lrs @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , ) for _ in range(1000 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __a ( unittest.TestCase ): _a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None _a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _a : List[Any] = 10 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _UpperCAmelCase , _UpperCAmelCase = data _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListAlmostEqual( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule _UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' ) class __a : def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = fn def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
329
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class snake_case ( UpperCAmelCase ): __magic_name__ = '''segformer''' def __init__( self : Optional[Any] , A : int=3 , A : Any=4 , A : Dict=[2, 2, 2, 2] , A : List[Any]=[8, 4, 2, 1] , A : Union[str, Any]=[3_2, 6_4, 1_6_0, 2_5_6] , A : Union[str, Any]=[7, 3, 3, 3] , A : List[str]=[4, 2, 2, 2] , A : Dict=[1, 2, 5, 8] , A : Tuple=[4, 4, 4, 4] , A : Any="gelu" , A : int=0.0 , A : Union[str, Any]=0.0 , A : Optional[Any]=0.1 , A : int=0.02 , A : Optional[Any]=0.1 , A : Tuple=1E-6 , A : int=2_5_6 , A : List[str]=2_5_5 , **A : int , ): '''simple docstring''' super().__init__(**A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , A , ) _A : List[Any] = num_channels _A : Union[str, Any] = num_encoder_blocks _A : Tuple = depths _A : Tuple = sr_ratios _A : Tuple = hidden_sizes _A : Optional[Any] = patch_sizes _A : List[str] = strides _A : List[Any] = mlp_ratios _A : Any = num_attention_heads _A : str = hidden_act _A : Tuple = hidden_dropout_prob _A : int = attention_probs_dropout_prob _A : Union[str, Any] = classifier_dropout_prob _A : List[Any] = initializer_range _A : List[str] = drop_path_rate _A : int = layer_norm_eps _A : Union[str, Any] = decoder_hidden_size _A : Dict = kwargs.get('reshape_last_stage' , A ) _A : Any = semantic_loss_ignore_index class snake_case ( UpperCAmelCase ): __magic_name__ = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self : str ): '''simple docstring''' return 1E-4 @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return 1_2
351
"""simple docstring""" import os import sys _UpperCamelCase : str = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _UpperCamelCase : int = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def snake_case (*A_ :Optional[int] , **A_ :int ): '''simple docstring''' return AutoConfig.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def snake_case (*A_ :Optional[int] , **A_ :List[Any] ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModel.__doc__ ) def snake_case (*A_ :Optional[Any] , **A_ :Tuple ): '''simple docstring''' return AutoModel.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def snake_case (*A_ :str , **A_ :Optional[int] ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def snake_case (*A_ :Optional[Any] , **A_ :Dict ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def snake_case (*A_ :Dict , **A_ :str ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def snake_case (*A_ :Dict , **A_ :List[Any] ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A_ , **A_ )
186
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' print('Loading config file...' ) def flatten_yaml_as_dict(lowercase__ , lowercase__="" , lowercase__="." ): __lowercase= [] for k, v in d.items(): __lowercase= parent_key + sep + k if parent_key else k if isinstance(lowercase__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowercase__ , lowercase__ , sep=lowercase__ ).items() ) else: items.append((new_key, v) ) return dict(lowercase__ ) __lowercase= argparse.Namespace() with open(lowercase__ , 'r' ) as yaml_file: try: __lowercase= yaml.load(lowercase__ , Loader=yaml.FullLoader ) __lowercase= flatten_yaml_as_dict(lowercase__ ) for k, v in flat_cfg.items(): setattr(lowercase__ , lowercase__ , lowercase__ ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(lowercase__ , str(lowercase__ ) ) ) return config def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' __lowercase= MobileViTVaConfig() __lowercase= False # dataset if task_name.startswith('imagenet1k_' ): __lowercase= 1_0_0_0 if int(task_name.strip().split('_' )[-1] ) == 3_8_4: __lowercase= 3_8_4 else: __lowercase= 2_5_6 __lowercase= 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): __lowercase= 2_1_0_0_0 if int(task_name.strip().split('_' )[-1] ) == 3_8_4: __lowercase= 3_8_4 else: __lowercase= 2_5_6 __lowercase= 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): __lowercase= 1_5_1 __lowercase= 5_1_2 __lowercase= 'ade20k-id2label.json' __lowercase= True elif task_name.startswith('voc_' ): __lowercase= 2_1 __lowercase= 5_1_2 __lowercase= 'pascal-voc-id2label.json' __lowercase= True # orig_config __lowercase= load_orig_config_file(lowercase__ ) assert getattr(lowercase__ , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" __lowercase= getattr(lowercase__ , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(lowercase__ , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __lowercase= getattr(lowercase__ , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __lowercase= getattr(lowercase__ , 'model.segmentation.output_stride' , 1_6 ) if "_deeplabv3" in task_name: __lowercase= getattr(lowercase__ , 'model.segmentation.deeplabv3.aspp_rates' , [1_2, 2_4, 3_6] ) __lowercase= getattr(lowercase__ , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_1_2 ) __lowercase= getattr(lowercase__ , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label __lowercase= 'huggingface/label-files' __lowercase= json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) __lowercase= {int(lowercase__ ): v for k, v in idalabel.items()} __lowercase= idalabel __lowercase= {v: k for k, v in idalabel.items()} return config def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' __lowercase= dct.pop(lowercase__ ) __lowercase= val def _lowerCamelCase( lowercase__ , lowercase__=False ) -> Optional[Any]: '''simple docstring''' if base_model: __lowercase= '' else: __lowercase= 'mobilevitv2.' __lowercase= [] for k in state_dict.keys(): if k[:8] == "encoder.": __lowercase= k[8:] else: __lowercase= k if ".block." in k: __lowercase= k_new.replace('.block.' , '.' ) if ".conv." in k: __lowercase= k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: __lowercase= k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: __lowercase= k_new.replace('conv_1.' , F'{model_prefix}conv_stem.' ) for i in [1, 2]: if F'layer_{i}.' in k: __lowercase= k_new.replace(F'layer_{i}.' , F'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: __lowercase= k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: __lowercase= k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F'layer_{i}.0.' in k: __lowercase= k_new.replace(F'layer_{i}.0.' , F'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if F'layer_{i}.1.local_rep.0.' in k: __lowercase= k_new.replace(F'layer_{i}.1.local_rep.0.' , F'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if F'layer_{i}.1.local_rep.1.' in k: __lowercase= k_new.replace(F'layer_{i}.1.local_rep.1.' , F'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: __lowercase= [0, 1] elif i == 4: __lowercase= [0, 1, 2, 3] elif i == 5: __lowercase= [0, 1, 2] for j in j_in: if F'layer_{i}.1.global_rep.{j}.' in k: __lowercase= k_new.replace( F'layer_{i}.1.global_rep.{j}.' , F'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if F'layer_{i}.1.global_rep.{j+1}.' in k: __lowercase= k_new.replace( F'layer_{i}.1.global_rep.{j+1}.' , F'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if F'layer_{i}.1.conv_proj.' in k: __lowercase= k_new.replace(F'layer_{i}.1.conv_proj.' , F'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: __lowercase= k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: __lowercase= k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: __lowercase= k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: __lowercase= k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: __lowercase= k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: __lowercase= k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: __lowercase= k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: __lowercase= k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: __lowercase= k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def _lowerCamelCase( lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(lowercase__ ) for k in keys_to_ignore: state_dict.pop(lowercase__ , lowercase__ ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= get_mobilevitva_config(lowercase__ , lowercase__ ) # load original state_dict __lowercase= torch.load(lowercase__ , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): __lowercase= MobileViTVaForSemanticSegmentation(lowercase__ ).eval() __lowercase= False else: __lowercase= MobileViTVaForImageClassification(lowercase__ ).eval() __lowercase= False # remove and rename some keys of load the original model __lowercase= checkpoint remove_unused_keys(lowercase__ ) __lowercase= create_rename_keys(lowercase__ , base_model=lowercase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # load modified state_dict model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __lowercase= MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) __lowercase= image_processor(images=prepare_img() , return_tensors='pt' ) __lowercase= model(**lowercase__ ) # verify classification model if task_name.startswith('imagenet' ): __lowercase= outputs.logits __lowercase= logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant __lowercase= torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
295
from collections.abc import Sequence def _lowerCamelCase( lowercase__ , lowercase__ = False ) -> float: '''simple docstring''' if not arr: return 0 __lowercase= 0 if allow_empty_subarrays else float('-inf' ) __lowercase= 0.0 for num in arr: __lowercase= max(0 if allow_empty_subarrays else num , curr_sum + num ) __lowercase= max(lowercase__ , lowercase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
295
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _snake_case = datasets.utils.logging.get_logger(__name__) _snake_case = ['names', 'prefix'] _snake_case = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _snake_case = ['encoding_errors', 'on_bad_lines'] _snake_case = ['date_format'] @dataclass class a__ ( datasets.BuilderConfig ): _SCREAMING_SNAKE_CASE : str = "," _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[Union[int, List[int], str]] = "infer" _SCREAMING_SNAKE_CASE : Optional[List[str]] = None _SCREAMING_SNAKE_CASE : Optional[List[str]] = None _SCREAMING_SNAKE_CASE : Optional[Union[int, str, List[int], List[str]]] = None _SCREAMING_SNAKE_CASE : Optional[Union[List[int], List[str]]] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : Optional[Literal["c", "python", "pyarrow"]] = None _SCREAMING_SNAKE_CASE : Dict[Union[int, str], Callable[[Any], Any]] = None _SCREAMING_SNAKE_CASE : Optional[list] = None _SCREAMING_SNAKE_CASE : Optional[list] = None _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : Optional[Union[int, List[int]]] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[Union[str, List[str]]] = None _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : str = "." _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : str = '"' _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : int = 1_0000 _SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None _SCREAMING_SNAKE_CASE : Optional[str] = "strict" _SCREAMING_SNAKE_CASE : Literal["error", "warn", "skip"] = "error" _SCREAMING_SNAKE_CASE : Optional[str] = None def _lowerCamelCase ( self ): """simple docstring""" if self.delimiter is not None: _lowercase : Union[str, Any] = self.delimiter if self.column_names is not None: _lowercase : List[str] = self.column_names @property def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _UpperCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class a__ ( datasets.ArrowBasedBuilder ): _SCREAMING_SNAKE_CASE : str = CsvConfig def _lowerCamelCase ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _lowercase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCamelCase , (str, list, tuple) ): _lowercase : Tuple = data_files if isinstance(_UpperCamelCase , _UpperCamelCase ): _lowercase : Dict = [files] _lowercase : Tuple = [dl_manager.iter_files(_UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _lowercase : str = [] for split_name, files in data_files.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): _lowercase : List[str] = [files] _lowercase : Dict = [dl_manager.iter_files(_UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCamelCase , gen_kwargs={"files": files} ) ) return splits def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if self.config.features is not None: _lowercase : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(_UpperCamelCase ) for feature in self.config.features.values() ): # cheaper cast _lowercase : Dict = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_UpperCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowercase : Optional[int] = table_cast(_UpperCamelCase , _UpperCamelCase ) return pa_table def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[int] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowercase : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_UpperCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCamelCase ) ): _lowercase : Any = pd.read_csv(_UpperCamelCase , iterator=_UpperCamelCase , dtype=_UpperCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_UpperCamelCase ): _lowercase : Tuple = pa.Table.from_pandas(_UpperCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_UpperCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_UpperCamelCase )}: {e}''' ) raise
199
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[Any] = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE : str = 'OwlViTImageProcessor' _SCREAMING_SNAKE_CASE : List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" _lowercase : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCamelCase , ) _lowercase : Optional[int] = kwargs.pop("feature_extractor" ) _lowercase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="max_length" , _UpperCamelCase="np" , **_UpperCamelCase ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(_UpperCamelCase , _UpperCamelCase ) or (isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(text[0] , _UpperCamelCase )): _lowercase : int = [self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase )] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(text[0] , _UpperCamelCase ): _lowercase : str = [] # Maximum number of queries across batch _lowercase : str = max([len(_UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCamelCase ) != max_num_queries: _lowercase : List[Any] = t + [" "] * (max_num_queries - len(_UpperCamelCase )) _lowercase : Tuple = self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) encodings.append(_UpperCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _lowercase : List[Any] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _lowercase : Union[str, Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : int = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _lowercase : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _lowercase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _lowercase : Optional[int] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : List[str] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _lowercase : Optional[int] = BatchEncoding() _lowercase : List[Any] = input_ids _lowercase : Dict = attention_mask if query_images is not None: _lowercase : int = BatchEncoding() _lowercase : Any = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ).pixel_values _lowercase : Any = query_pixel_values if images is not None: _lowercase : str = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if text is not None and images is not None: _lowercase : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _lowercase : Optional[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCamelCase ) , tensor_type=_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_object_detection(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCamelCase , ) return self.image_processor
199
1
'''simple docstring''' from maths.prime_check import is_prime def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if not isinstance(a_ , a_ ): A_ : int = F"Input value of [number={number}] must be an integer" raise TypeError(a_ ) if is_prime(a_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' a : Union[str, Any] = JukeboxTokenizer a : Optional[int] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" import torch UpperCamelCase__ : Tuple = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) UpperCamelCase__ : List[str] = tokenizer(**self.metas )['input_ids'] # fmt: off UpperCamelCase__ : Dict = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" import torch UpperCamelCase__ : str = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) UpperCamelCase__ : Dict = tokenizer(**self.metas )['input_ids'] # fmt: off UpperCamelCase__ : Optional[int] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2] ) )
365
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase_ = logging.getLogger(__name__) def lowerCAmelCase_ ( ) -> Any: UpperCamelCase__ : Dict = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=__UpperCAmelCase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=__UpperCAmelCase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=__UpperCAmelCase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=__UpperCAmelCase , default=1000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=__UpperCAmelCase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=__UpperCAmelCase , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=__UpperCAmelCase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) UpperCamelCase__ : Any = parser.parse_args() return args def lowerCAmelCase_ ( __UpperCAmelCase: Tuple ) -> Any: def fn(__UpperCAmelCase: Dict ): return tokenizer(examples['''text'''] ) return fn def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> Dict: UpperCamelCase__ : Optional[int] = [] for i in range(len(tokenized_data['''input_ids'''] ) ): UpperCamelCase__ : Dict = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } UpperCamelCase__ : int = tf.train.Features(feature=__UpperCAmelCase ) UpperCamelCase__ : Tuple = tf.train.Example(features=__UpperCAmelCase ) UpperCamelCase__ : List[Any] = example.SerializeToString() records.append(__UpperCAmelCase ) return records def lowerCAmelCase_ ( __UpperCAmelCase: Tuple ) -> int: UpperCamelCase__ : str = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCamelCase__ : int = min(len(__UpperCAmelCase ) , args.limit ) UpperCamelCase__ : Optional[int] = dataset.select(range(__UpperCAmelCase ) ) print(f"Limiting the dataset to {args.limit} entries." ) UpperCamelCase__ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCamelCase__ : Dict = os.path.join(args.output_dir , args.split ) if not os.path.exists(__UpperCAmelCase ): os.makedirs(__UpperCAmelCase ) else: UpperCamelCase__ : Tuple = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCamelCase__ : Optional[int] = tokenize_function(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = dataset.map(__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__UpperCAmelCase: Optional[Any] ): # Concatenate all texts. UpperCamelCase__ : int = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCamelCase__ : List[Any] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCamelCase__ : Any = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCamelCase__ : Dict = { k: [t[i : i + args.max_length] for i in range(0 , __UpperCAmelCase , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCamelCase__ : Optional[Any] = dataset_tokenized.map(__UpperCAmelCase , batched=__UpperCAmelCase , batch_size=1000 , num_proc=4 ) UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : Optional[Any] = 0 for shard in range(0 , len(__UpperCAmelCase ) , args.shard_size ): UpperCamelCase__ : Optional[int] = grouped_dataset[shard : shard + args.shard_size] UpperCamelCase__ : Any = len(dataset_snapshot['''input_ids'''] ) UpperCamelCase__ : Optional[int] = os.path.join(__UpperCAmelCase , f"dataset-{shard_count}-{records_containing}.tfrecord" ) UpperCamelCase__ : List[str] = get_serialized_examples(__UpperCAmelCase ) with tf.io.TFRecordWriter(__UpperCAmelCase ) as out_file: for i in range(len(__UpperCAmelCase ) ): UpperCamelCase__ : str = serialized_examples[i] out_file.write(__UpperCAmelCase ) print('''Wrote file {} containing {} records'''.format(__UpperCAmelCase , __UpperCAmelCase ) ) shard_count += 1 total_records += records_containing with open(f"split-{args.split}-records-count.txt" , '''w''' ) as f: print(f"Total {args.split} records: {total_records}" , file=__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = parse_args() main(args)
247
0
'''simple docstring''' import random from typing import Any def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Union[str, Any]: for _ in range(len(a__ ) ): lowerCamelCase__ : Tuple = random.randint(0 , len(a__ ) - 1 ) lowerCamelCase__ : List[str] = random.randint(0 , len(a__ ) - 1 ) lowerCamelCase__ : str = data[b], data[a] return data if __name__ == "__main__": _A : Optional[int] =[0, 1, 2, 3, 4, 5, 6, 7] _A : Optional[int] =["""python""", """says""", """hello""", """!"""] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
41
from __future__ import annotations def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = str(a__) return len(a__) == 9 and set(a__) == set("""123456789""") def _UpperCAmelCase ( ): '''simple docstring''' for base_num in range(9_9_9_9 , 4_9_9_9 , -1): a_ : Dict = 1_0_0_0_0_2 * base_num if is_9_pandigital(a__): return candidate for base_num in range(3_3_3 , 9_9 , -1): a_ : Tuple = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(a__): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
248
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : Optional[Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def a__ ( UpperCAmelCase : Vector , UpperCAmelCase : Vector ) -> Optional[Any]: return np.sqrt(np.sum((np.asarray(__lowerCamelCase ) - np.asarray(__lowerCamelCase )) ** 2 ) ) def a__ ( UpperCAmelCase : Vector , UpperCAmelCase : Vector ) -> List[Any]: return sum((va - va) ** 2 for va, va in zip(__lowerCamelCase , __lowerCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def a__ ( ) -> Optional[int]: from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
360
def a__ ( UpperCAmelCase : int ) -> bool: if not isinstance(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : List[str] = f'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCAmelCase ) if number < 0: return False UpperCAmelCase : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
99
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )-> List[Any]: '''simple docstring''' UpperCAmelCase : Any ={ '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } UpperCAmelCase , UpperCAmelCase : Optional[int] =input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase : int =f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCAmelCase ) assert base_extractor.is_extractable(__lowerCAmelCase ) UpperCAmelCase : str =tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(__lowerCAmelCase , __lowerCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase : List[str] =file_path.read_text(encoding='''utf-8''' ) else: UpperCAmelCase : Optional[Any] =output_path.read_text(encoding='''utf-8''' ) UpperCAmelCase : List[str] =text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )-> str: '''simple docstring''' UpperCAmelCase : Any ={ '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } UpperCAmelCase : Optional[int] =input_paths[compression_format] if input_path is None: UpperCAmelCase : Any =f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCAmelCase ) UpperCAmelCase : Dict =Extractor.infer_extractor_format(__lowerCAmelCase ) assert extractor_format is not None UpperCAmelCase : List[Any] =tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase : Tuple =file_path.read_text(encoding='''utf-8''' ) else: UpperCAmelCase : List[str] =output_path.read_text(encoding='''utf-8''' ) UpperCAmelCase : List[Any] =text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' import tarfile UpperCAmelCase : Optional[int] =tmp_path / '''data_dot_dot''' directory.mkdir() UpperCAmelCase : Tuple =directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(__lowerCAmelCase , '''w''' ) as f: f.add(__lowerCAmelCase , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' import tarfile UpperCAmelCase : List[str] =tmp_path / '''data_sym_link''' directory.mkdir() UpperCAmelCase : str =directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=__lowerCAmelCase ) with tarfile.TarFile(__lowerCAmelCase , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Tuple: '''simple docstring''' UpperCAmelCase : Dict ={ '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } UpperCAmelCase : Tuple =insecure_tar_files[insecure_tar_file] UpperCAmelCase : int =tmp_path / '''extracted''' TarExtractor.extract(__lowerCAmelCase , __lowerCAmelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Dict =tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase : Union[str, Any] =( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(__lowerCAmelCase ) assert zipfile.is_zipfile(str(__lowerCAmelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__lowerCAmelCase ) # but we're right
348
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) # TODO Update this __snake_case = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Tuple = """esm""" def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : List[str] =vocab_size UpperCAmelCase : str =hidden_size UpperCAmelCase : List[Any] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : str =intermediate_size UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : int =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : Union[str, Any] =layer_norm_eps UpperCAmelCase : Dict =position_embedding_type UpperCAmelCase : Optional[Any] =use_cache UpperCAmelCase : int =emb_layer_norm_before UpperCAmelCase : List[str] =token_dropout UpperCAmelCase : Optional[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase : Optional[Any] =EsmFoldConfig() elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ ) UpperCAmelCase : Tuple =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase : Any =get_default_vocab_list() else: UpperCAmelCase : Tuple =vocab_list else: UpperCAmelCase : Optional[int] =None UpperCAmelCase : Union[str, Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , snake_case__ ): UpperCAmelCase : str =self.esmfold_config.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.trunk is None: UpperCAmelCase : str =TrunkConfig() elif isinstance(self.trunk , snake_case__ ): UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =asdict(self ) UpperCAmelCase : Any =self.trunk.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.structure_module is None: UpperCAmelCase : Any =StructureModuleConfig() elif isinstance(self.structure_module , snake_case__ ): UpperCAmelCase : str =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =asdict(self ) UpperCAmelCase : Tuple =self.structure_module.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1E-8 __lowerCamelCase : float = 1E5 def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
348
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __lowerCamelCase : Tuple = input('''Enter image url: ''').strip() print(F"""Downloading image from {url} ...""") __lowerCamelCase : Optional[Any] = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image __lowerCamelCase : List[Any] = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] __lowerCamelCase : Optional[int] = requests.get(image_url).content __lowerCamelCase : Optional[int] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
204
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __snake_case ( unittest.TestCase ): def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) SCREAMING_SNAKE_CASE__ = Vector() def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_lowercase ) , """(0,0,0,0,0,1)""" ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3, 4] ) self.assertEqual(len(_lowercase ) , 4 ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2] ) SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3, 4, 5] ) SCREAMING_SNAKE_CASE__ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE__ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([2, -1, 4] ) # for test of dot product SCREAMING_SNAKE_CASE__ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __a ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __a ( self : str ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _lowercase , _lowercase ) ) , """(3,4,7)""" ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE__ = x.copy() self.assertEqual(str(_lowercase ) , str(_lowercase ) ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_lowercase ) , """(0,1,0)""" ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(_lowercase ) ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_lowercase , _lowercase ) ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_lowercase , _lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(_lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __a ( self : Any ): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
204
1
'''simple docstring''' import math def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 while num > 0: UpperCAmelCase__ = num % 8 UpperCAmelCase__ = octal + (remainder * math.floor(math.pow(10 , SCREAMING_SNAKE_CASE__ ) )) counter += 1 UpperCAmelCase__ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(SCREAMING_SNAKE_CASE__ )}''' def _UpperCamelCase ( ): '''simple docstring''' print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
346
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCamelCase ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase__ = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCamelCase ( ): '''simple docstring''' assert _test_patching.open is open UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ): pass def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__""" UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase__ = """__test_patch_submodule_successive_join__""" UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__""" UpperCAmelCase__ = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass
346
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCamelCase ( self : Union[str, Any] ) ->List[Any]: lowerCamelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=A ).to(A ) lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase__ : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids lowerCamelCase__ : Optional[int] = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids lowerCamelCase__ : Dict = model(input_ids.to(A ) , labels=labels.to(A ) ).loss lowerCamelCase__ : Tuple = -(labels.shape[-1] * loss.item()) lowerCamelCase__ : int = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
265
import pprint import requests _A : Any = 'https://zenquotes.io/api' def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _A : Optional[Any] = random_quotes() pprint.pprint(response)
265
1
'''simple docstring''' a_ = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a_ = [{'type': 'code', 'content': INSTALL_CONTENT}] a_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
152
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets a_ = datasets.logging.get_logger(__name__) a_ = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' a_ = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' a_ = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' a_ = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __magic_name__ ( self : Any ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def __magic_name__ ( self : str , __lowercase : Any ) -> List[Any]: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) SCREAMING_SNAKE_CASE__ : Tuple ='''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE__ : Dict =self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE__ : Dict =self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer SCREAMING_SNAKE_CASE__ : List[str] =dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) SCREAMING_SNAKE_CASE__ : Any =score.BleurtScorer(os.path.join(__lowercase , __lowercase ) ) def __magic_name__ ( self : Union[str, Any] , __lowercase : Any , __lowercase : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ : int =self.scorer.score(references=__lowercase , candidates=__lowercase ) return {"scores": scores}
152
1
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __UpperCamelCase = logging.getLogger(__name__) __UpperCamelCase = tf.data.AUTOTUNE def UpperCAmelCase ( ) -> Dict: snake_case_ = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=SCREAMING_SNAKE_CASE__ , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=SCREAMING_SNAKE_CASE__ , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=SCREAMING_SNAKE_CASE__ , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=SCREAMING_SNAKE_CASE__ , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=SCREAMING_SNAKE_CASE__ , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=SCREAMING_SNAKE_CASE__ , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=SCREAMING_SNAKE_CASE__ , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=SCREAMING_SNAKE_CASE__ , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=1e-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=SCREAMING_SNAKE_CASE__ , default=1e-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE__ , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=SCREAMING_SNAKE_CASE__ , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=SCREAMING_SNAKE_CASE__ , help='Model ID to upload to on the Hugging Face Hub.' ) snake_case_ = parser.parse_args() return args def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: try: if args.tpu_name: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(SCREAMING_SNAKE_CASE__ ) tf.tpu.experimental.initialize_tpu_system(SCREAMING_SNAKE_CASE__ ) return tpu def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = 0 for file in file_list: snake_case_ = file.split('/' )[-1] snake_case_ = re.search(R'-\d+-(\d+)\.tfrecord' , SCREAMING_SNAKE_CASE__ ).group(1 ) snake_case_ = int(SCREAMING_SNAKE_CASE__ ) num_samples += sample_count return num_samples def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Dict: snake_case_ = count_samples(SCREAMING_SNAKE_CASE__ ) snake_case_ = tf.data.Dataset.from_tensor_slices(SCREAMING_SNAKE_CASE__ ) if shuffle: snake_case_ = dataset.shuffle(len(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = tf.data.TFRecordDataset(SCREAMING_SNAKE_CASE__ , num_parallel_reads=SCREAMING_SNAKE_CASE__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case_ = dataset.apply(tf.data.experimental.assert_cardinality(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.map(SCREAMING_SNAKE_CASE__ , num_parallel_calls=SCREAMING_SNAKE_CASE__ ) if shuffle: assert shuffle_buffer_size is not None snake_case_ = dataset.shuffle(args.shuffle_buffer_size ) snake_case_ = dataset.batch(SCREAMING_SNAKE_CASE__ , drop_remainder=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.map(SCREAMING_SNAKE_CASE__ , num_parallel_calls=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.prefetch(SCREAMING_SNAKE_CASE__ ) return dataset def UpperCAmelCase ( UpperCAmelCase ) -> str: if not args.no_tpu: snake_case_ = initialize_tpu(SCREAMING_SNAKE_CASE__ ) snake_case_ = tf.distribute.TPUStrategy(SCREAMING_SNAKE_CASE__ ) else: snake_case_ = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) snake_case_ = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case_ = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case_ = tokenizer.vocab_size snake_case_ = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) snake_case_ = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) snake_case_ = count_samples(SCREAMING_SNAKE_CASE__ ) snake_case_ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case_ = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case_ = TFAutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case_ , snake_case_ = create_optimizer( num_train_steps=SCREAMING_SNAKE_CASE__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=SCREAMING_SNAKE_CASE__ , metrics=['accuracy'] ) def decode_fn(UpperCAmelCase ): snake_case_ = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case_ = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE__ , mlm_probability=args.mlm_probability , mlm=SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) def mask_with_collator(UpperCAmelCase ): # TF really needs an isin() function snake_case_ = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) snake_case_ , snake_case_ = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(SCREAMING_SNAKE_CASE__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=SCREAMING_SNAKE_CASE__ , ) return batch snake_case_ = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case_ = prepare_dataset( SCREAMING_SNAKE_CASE__ , decode_fn=SCREAMING_SNAKE_CASE__ , mask_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , shuffle_buffer_size=args.shuffle_buffer_size , ) snake_case_ = prepare_dataset( SCREAMING_SNAKE_CASE__ , decode_fn=SCREAMING_SNAKE_CASE__ , mask_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , ) snake_case_ = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=SCREAMING_SNAKE_CASE__ ) ) model.fit( SCREAMING_SNAKE_CASE__ , validation_data=SCREAMING_SNAKE_CASE__ , epochs=args.num_epochs , callbacks=SCREAMING_SNAKE_CASE__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __UpperCamelCase = parse_args() main(args)
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): snake_case_ = None class __SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): snake_case_ = PandasConfig def __magic_name__ ( self : Tuple ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def __magic_name__ ( self : List[str] , __lowercase : Union[str, Any] ) -> Any: if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE__ : List[str] =dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase_ , (str, list, tuple) ): SCREAMING_SNAKE_CASE__ : Dict =data_files if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ : int =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE__ : List[str] =[dl_manager.iter_files(UpperCAmelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE__ : Any =[] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ : Optional[int] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE__ : List[str] =[dl_manager.iter_files(UpperCAmelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase_ , gen_kwargs={'''files''': files} ) ) return splits def __magic_name__ ( self : str , __lowercase : pa.Table ) -> Tuple: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE__ : int =table_cast(UpperCAmelCase_ , self.config.features.arrow_schema ) return pa_table def __magic_name__ ( self : Any , __lowercase : str ) -> Any: for i, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase_ ) ): with open(UpperCAmelCase_ , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : List[Any] =pa.Table.from_pandas(pd.read_pickle(UpperCAmelCase_ ) ) yield i, self._cast_table(UpperCAmelCase_ )
152
import os def _lowercase ( ) -> List[str]: '''simple docstring''' with open(os.path.dirname(UpperCamelCase_ ) + '/p022_names.txt' ) as file: SCREAMING_SNAKE_CASE__ = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE__ = names.replace('"' , '' ).split(',' ) names.sort() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i, name in enumerate(UpperCamelCase_ ): for letter in name: name_score += ord(UpperCamelCase_ ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE__ = 0 return total_score if __name__ == "__main__": print(solution())
176
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A : List[str] = logging.get_logger(__name__) A : Union[str, Any] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] ="deberta-v2" def __init__( self , __a=12_81_00 , __a=15_36 , __a=24 , __a=24 , __a=61_44 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=0 , __a=0.0_2 , __a=1e-7 , __a=False , __a=-1 , __a=0 , __a=True , __a=None , __a=0 , __a="gelu" , **__a , ): super().__init__(**_lowerCAmelCase ) __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = relative_attention __lowerCAmelCase = max_relative_positions __lowerCAmelCase = pad_token_id __lowerCAmelCase = position_biased_input # Backwards compatibility if type(_lowerCAmelCase ) == str: __lowerCAmelCase = [x.strip() for x in pos_att_type.lower().split("|" )] __lowerCAmelCase = pos_att_type __lowerCAmelCase = vocab_size __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = kwargs.get("pooler_hidden_size" , _lowerCAmelCase ) __lowerCAmelCase = pooler_dropout __lowerCAmelCase = pooler_hidden_act class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' @property def snake_case ( self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def snake_case ( self ): return 12 def snake_case ( self , __a , __a = -1 , __a = -1 , __a = -1 , __a = False , __a = None , __a = 3 , __a = 40 , __a = 40 , __a = None , ): __lowerCAmelCase = super().generate_dummy_inputs(preprocessor=_lowerCAmelCase , framework=_lowerCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
370
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [False] * len(_UpperCamelCase ) __lowerCAmelCase = [] queue.append(_UpperCamelCase ) __lowerCAmelCase = True while queue: __lowerCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCamelCase ) __lowerCAmelCase = True __lowerCAmelCase = u return visited[t] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [-1] * (len(_UpperCamelCase )) __lowerCAmelCase = 0 while bfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = float("Inf" ) __lowerCAmelCase = sink while s != source: # Find the minimum value in select path __lowerCAmelCase = min(_UpperCamelCase , graph[parent[s]][s] ) __lowerCAmelCase = parent[s] max_flow += path_flow __lowerCAmelCase = sink while v != source: __lowerCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowerCAmelCase = parent[v] return max_flow A : Optional[Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] A , A : Optional[Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
259
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase__ : str = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
112
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Any = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
112
1
def lowerCamelCase_ ( _a : int , _a : int ): '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(_a , int(b / 2 ) ) * actual_power(_a , int(b / 2 ) ) else: return a * actual_power(_a , int(b / 2 ) ) * actual_power(_a , int(b / 2 ) ) def lowerCamelCase_ ( _a : int , _a : int ): '''simple docstring''' if b < 0: return 1 / actual_power(_a , _a ) return actual_power(_a , _a ) if __name__ == "__main__": print(power(-2, -3))
59
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class _snake_case ( __snake_case , __snake_case ): '''simple docstring''' A__ : Optional[Any] = "dinat" A__ : Any = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Any ,lowerCamelCase_: Any=4 ,lowerCamelCase_: Union[str, Any]=3 ,lowerCamelCase_: Union[str, Any]=64 ,lowerCamelCase_: Optional[int]=[3, 4, 6, 5] ,lowerCamelCase_: int=[2, 4, 8, 16] ,lowerCamelCase_: Optional[int]=7 ,lowerCamelCase_: Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] ,lowerCamelCase_: Tuple=3.0 ,lowerCamelCase_: Any=True ,lowerCamelCase_: int=0.0 ,lowerCamelCase_: Optional[Any]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Optional[Any]=0.0_2 ,lowerCamelCase_: List[Any]=1e-5 ,lowerCamelCase_: int=0.0 ,lowerCamelCase_: int=None ,lowerCamelCase_: str=None ,**lowerCamelCase_: Dict ,) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Tuple = num_channels UpperCAmelCase_ : Union[str, Any] = embed_dim UpperCAmelCase_ : int = depths UpperCAmelCase_ : List[Any] = len(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = num_heads UpperCAmelCase_ : Tuple = kernel_size UpperCAmelCase_ : int = dilations UpperCAmelCase_ : Optional[Any] = mlp_ratio UpperCAmelCase_ : Optional[Any] = qkv_bias UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Any = layer_norm_eps UpperCAmelCase_ : List[str] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[Any] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Optional[int] = layer_scale_init_value UpperCAmelCase_ : List[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 ,len(lowerCamelCase_ ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ ,out_indices=lowerCamelCase_ ,stage_names=self.stage_names )
59
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class lowerCamelCase : '''simple docstring''' __snake_case = MBartConfig __snake_case = {} __snake_case = 'gelu' def __init__( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]=13 , lowerCAmelCase_ : Optional[int]=7 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=99 , lowerCAmelCase_ : Optional[int]=32 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]=37 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Dict=20 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Union[str, Any]=0 , ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[Any] =parent A__ : Dict =batch_size A__ : Optional[int] =seq_length A__ : List[str] =is_training A__ : Tuple =use_labels A__ : int =vocab_size A__ : Dict =hidden_size A__ : str =num_hidden_layers A__ : Any =num_attention_heads A__ : Optional[int] =intermediate_size A__ : str =hidden_dropout_prob A__ : str =attention_probs_dropout_prob A__ : Tuple =max_position_embeddings A__ : Optional[int] =eos_token_id A__ : Optional[int] =pad_token_id A__ : Any =bos_token_id def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ : Optional[int] =tf.concat([input_ids, eos_tensor] , axis=1 ) A__ : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : List[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ : List[str] =prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def lowercase__ ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =TFMBartModel(config=lowerCAmelCase_ ).get_decoder() A__ : Optional[Any] =inputs_dict["""input_ids"""] A__ : Optional[Any] =input_ids[:1, :] A__ : str =inputs_dict["""attention_mask"""][:1, :] A__ : str =inputs_dict["""head_mask"""] A__ : List[Any] =1 # first forward pass A__ : Optional[Any] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) A__ , A__ : Union[str, Any] =outputs.to_tuple() A__ : Optional[Any] =past_key_values[1] def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : int, __snake_case : Union[str, Any]=None, __snake_case : int=None, __snake_case : int=None, __snake_case : Optional[Any]=None, __snake_case : str=None, ) -> List[Any]: """simple docstring""" if attention_mask is None: A__ : Dict =tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: A__ : Optional[int] =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: A__ : Optional[Any] =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ : Any =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __snake_case = (TFMBartForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def lowercase__ ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' A__ : Optional[Any] =TFMBartModelTester(self ) A__ : Tuple =ConfigTester(self , config_class=lowerCAmelCase_ ) def lowercase__ ( self : int ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' A__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = [ ' UN Chief Says There Is No Military Solution in Syria', ] __snake_case = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] __snake_case = 'facebook/mbart-large-en-ro' @cached_property def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowercase__ ( self : Any , **lowerCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' A__ : Any =self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple =self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors="""tf""" ) A__ : Optional[int] =self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) A__ : Tuple =self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' self._assert_generated_batch_equal_expected()
134
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=13 , lowerCAmelCase_ : Optional[int]=7 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=99 , lowerCAmelCase_ : List[Any]=32 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Dict=64 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : str=5_12 , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Union[str, Any]=1 , ) -> List[Any]: '''simple docstring''' A__ : Dict =parent A__ : Optional[int] =batch_size A__ : List[Any] =seq_length A__ : Any =is_training A__ : List[str] =use_input_mask A__ : str =use_token_type_ids A__ : Tuple =use_labels A__ : Tuple =vocab_size A__ : Optional[Any] =hidden_size A__ : Dict =num_hidden_layers A__ : str =num_attention_heads A__ : int =intermediate_size A__ : Union[str, Any] =hidden_act A__ : List[Any] =hidden_dropout_prob A__ : Union[str, Any] =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : Any =type_vocab_size A__ : Any =type_sequence_label_size A__ : int =initializer_range A__ : str =num_labels A__ : Optional[int] =num_choices A__ : Optional[int] =scope A__ : List[str] =q_groups A__ : Dict =k_groups A__ : Any =v_groups A__ : Optional[Any] =post_attention_groups A__ : Optional[int] =intermediate_groups A__ : Optional[int] =output_groups def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[int] =None if self.use_input_mask: A__ : str =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] =None A__ : Tuple =None A__ : Dict =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : int =ids_tensor([self.batch_size] , self.num_choices ) A__ : str =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =SqueezeBertModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ) -> str: '''simple docstring''' A__ : Union[str, Any] =SqueezeBertForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' A__ : str =SqueezeBertForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : Dict =self.num_labels A__ : int =SqueezeBertForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ) -> Optional[int]: '''simple docstring''' A__ : str =self.num_labels A__ : int =SqueezeBertForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.num_choices A__ : Dict =SqueezeBertForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Any =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Optional[Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' A__ : Any =self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) : Any =config_and_inputs A__ : str ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __snake_case = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __snake_case = False __snake_case = True __snake_case = False def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : Optional[Any] =SqueezeBertModelTester(self ) A__ : int =ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' A__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCAmelCase_ ) def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCAmelCase_ ) @slow def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : int =SqueezeBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' A__ : List[str] =SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) A__ : List[str] =torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) A__ : Tuple =model(lowerCAmelCase_ )[0] A__ : Union[str, Any] =torch.Size((1, 3) ) self.assertEqual(output.shape , lowerCAmelCase_ ) A__ : Tuple =torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) )
134
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ : Tuple = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCAmelCase_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
350
"""simple docstring""" def _lowerCAmelCase ( ): '''simple docstring''' return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
248
0
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase__ : str = datasets.utils.logging.get_logger(__name__) class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" _snake_case : List[str] = None _snake_case : Tuple = None class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" _snake_case : Dict = datasets.Audio() _snake_case : Optional[Any] = 'audio' _snake_case : str = AudioFolderConfig _snake_case : Union[str, Any] = 4_2 # definition at the bottom of the script _snake_case : Tuple = AudioClassification(audio_column='audio' , label_column='label' ) lowercase__ : Tuple = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowercase__ : Dict = AUDIO_EXTENSIONS
324
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_attention_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_choices def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_attention_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None if self.use_token_type_ids: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = FlaxRoFormerModelTester(self ) @slow def _lowerCAmelCase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_a ) lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowerCamelCase = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase = model(_a )[0] lowerCamelCase = 50_000 lowerCamelCase = (1, 6, vocab_size) self.assertEqual(output.shape , _a ) lowerCamelCase = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
291
0
import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = x _A : Optional[Any] = y for step in range(snake_case_ ): # noqa: B007 _A : List[Any] = a * a - b * b + x _A : str = 2 * a * b + y _A : int = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( snake_case_ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCAmelCase_ ( snake_case_ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case_,1,1 ) ) def lowerCAmelCase_ ( snake_case_ = 800,snake_case_ = 600,snake_case_ = -0.6,snake_case_ = 0,snake_case_ = 3.2,snake_case_ = 50,snake_case_ = True,): _A : Union[str, Any] = Image.new("""RGB""",(image_width, image_height) ) _A : List[str] = img.load() # loop through the image-coordinates for image_x in range(snake_case_ ): for image_y in range(snake_case_ ): # determine the figure-coordinates based on the image-coordinates _A : Dict = figure_width / image_width * image_height _A : Optional[int] = figure_center_x + (image_x / image_width - 0.5) * figure_width _A : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height _A : Optional[int] = get_distance(snake_case_,snake_case_,snake_case_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _A : Optional[Any] = get_color_coded_rgb(snake_case_ ) else: _A : Any = get_black_and_white_rgb(snake_case_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _snake_case = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
343
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _A : Tuple = [[0.0, 0.0], [0.0, 0.0]] _A , _A : List[str] = matrix[1][1], matrix[0][0] _A , _A : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _A : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A : List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): _A : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
343
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowercase : Dict = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) lowercase : Dict = 'sshleifer/student_marian_en_ro_6_1' lowercase : Optional[int] = 'sshleifer/tiny-mbart' @require_torch class A ( __snake_case ): def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , ) -> str: """simple docstring""" A : str = self.run_trainer( eval_steps=1 , max_len=12 , model_name=SCREAMING_SNAKE_CASE , num_train_epochs=1 , distributed=SCREAMING_SNAKE_CASE , extra_args_str=SCREAMING_SNAKE_CASE , predict_with_generate=SCREAMING_SNAKE_CASE , do_train=SCREAMING_SNAKE_CASE , do_eval=SCREAMING_SNAKE_CASE , do_predict=SCREAMING_SNAKE_CASE , ) A : List[Any] = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history if not do_eval: return A : Dict = [log for log in logs if '''eval_loss''' in log.keys()] A : List[str] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats A : Tuple = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , SCREAMING_SNAKE_CASE ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE ) @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> int: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=SCREAMING_SNAKE_CASE ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick( distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=SCREAMING_SNAKE_CASE ) @require_apex @require_torch_gpu def __lowerCAmelCase ( self ) -> int: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Any = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } A : Any = experiments[experiment_id] A : Any = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} A : Union[str, Any] = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**SCREAMING_SNAKE_CASE , extra_args_str=data['''extra_args_str'''] ) A : int = len(re.findall(SCREAMING_SNAKE_CASE , cl.err ) ) self.assertEqual(SCREAMING_SNAKE_CASE , data['''n_matches'''] ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = self.run_trainer( eval_steps=2 , max_len=128 , model_name=SCREAMING_SNAKE_CASE , learning_rate=3e-4 , num_train_epochs=10 , distributed=SCREAMING_SNAKE_CASE , ) # Check metrics A : Union[str, Any] = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history A : Union[str, Any] = [log for log in logs if '''eval_loss''' in log.keys()] A : List[str] = eval_metrics[0] A : List[Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , SCREAMING_SNAKE_CASE ) # test if do_predict saves generations and metrics A : int = os.listdir(SCREAMING_SNAKE_CASE ) A : Optional[int] = {os.path.basename(SCREAMING_SNAKE_CASE ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(SCREAMING_SNAKE_CASE ) -> Tuple[int, float]: A : Optional[int] = '''--skip_memory_metrics 0''' A : List[Any] = self.run_trainer( max_len=128 , model_name=SCREAMING_SNAKE_CASE , learning_rate=3e-4 , num_train_epochs=1 , optim=SCREAMING_SNAKE_CASE , distributed=SCREAMING_SNAKE_CASE , extra_args_str=SCREAMING_SNAKE_CASE , do_eval=SCREAMING_SNAKE_CASE , do_predict=SCREAMING_SNAKE_CASE , n_gpus_to_use=1 , ) # Check metrics A : str = TrainerState.load_from_json(Path(SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history A : Union[str, Any] = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) A : int = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) A : List[Any] = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss A, A, A : List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) A, A, A : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) A : Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb A : Union[str, Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig A : Optional[Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb A : str = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings A : List[str] = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' F' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and' F' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB' , ) self.assertGreater( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' F' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and' F' gpu_total_mem_bnb={gpu_total_mem_bnb}MB' , ) self.assertEqual( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , F'loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}' ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 3e-3 , SCREAMING_SNAKE_CASE = "adafactor" , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , ) -> Tuple: """simple docstring""" A : Tuple = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' A : Dict = self.get_auto_remove_tmp_dir() A : int = F'\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(SCREAMING_SNAKE_CASE )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(SCREAMING_SNAKE_CASE )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '.split() A : Any = F'\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(SCREAMING_SNAKE_CASE )}\n '.split() A : Optional[Any] = ''' --do_predict '''.split() A : Union[str, Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'--optim {optim}'.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: A : Dict = get_gpu_count() A : Tuple = get_torch_dist_unique_port() A : str = F'\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '.split() A : str = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(SCREAMING_SNAKE_CASE , env=self.get_env() ) else: A : List[str] = ['''run_translation.py'''] + args with patch.object(SCREAMING_SNAKE_CASE , '''argv''' , SCREAMING_SNAKE_CASE ): main() return output_dir
3
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case_ = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
0
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Optional[Any] , _A : Optional[Any] , _A : int , _A : Union[str, Any]) -> Union[str, Any]: self.assertEqual(len(_A) , len(_A)) for a, b in zip(_A , _A): self.assertAlmostEqual(_A , _A , delta=_A) def _lowercase (self : int) -> int: __snake_case : Optional[int] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0])]) accumulator([tf.constant([-2.0, 1.0])]) accumulator([tf.constant([-1.0, 2.0])]) with self.assertRaises(_A): accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) self.assertEqual(accumulator.step , 3) self.assertEqual(len(accumulator.gradients) , 1) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2) accumulator.reset() self.assertEqual(accumulator.step , 0) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2) def _lowercase (self : Optional[Any]) -> Union[str, Any]: __snake_case : Any = None ops.enable_eager_execution_internal() __snake_case : Tuple = tf.config.list_physical_devices('CPU') if len(_A) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()]) __snake_case : Union[str, Any] = tf.config.list_logical_devices(device_type='CPU') __snake_case : Dict = tf.distribute.MirroredStrategy(devices=devices[:2]) with strategy.scope(): __snake_case : Dict = GradientAccumulator() __snake_case : Any = tf.Variable([4.0, 3.0]) __snake_case , __snake_case : Dict = create_optimizer(5E-5 , 10 , 5) __snake_case : Optional[int] = tf.Variable([0.0, 0.0] , trainable=_A) def accumulate_on_replica(_A : Tuple): accumulator([gradient]) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable]))) @tf.function def accumulate(_A : Optional[Any] , _A : Union[str, Any]): with strategy.scope(): __snake_case : Tuple = strategy.experimental_local_results(_A) local_variables[0].assign(_A) local_variables[1].assign(_A) strategy.run(_A , args=(gradient_placeholder,)) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_A) def _check_local_values(_A : Tuple , _A : List[Any]): __snake_case : Optional[Any] = strategy.experimental_local_results(accumulator._gradients[0]) self.assertListAlmostEqual(values[0].value() , _A , tol=1E-2) self.assertListAlmostEqual(values[1].value() , _A , tol=1E-2) accumulate([1.0, 2.0] , [-1.0, 1.0]) accumulate([3.0, -1.0] , [-1.0, -1.0]) accumulate([-2.0, 2.0] , [3.0, -2.0]) self.assertEqual(accumulator.step , 3) _check_local_values([2.0, 3.0] , [1.0, -2.0]) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2) accumulator.reset() self.assertEqual(accumulator.step , 0) _check_local_values([0.0, 0.0] , [0.0, 0.0])
95
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _a : Dict= logging.get_logger(__name__) class UpperCamelCase ( lowercase ): def __init__(self : List[str] , *_A : Dict , **_A : Optional[Any]) -> None: warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _A , ) super().__init__(*_A , **_A)
95
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
214
def __lowerCamelCase ( UpperCAmelCase_ : int = 100_0000 ): """simple docstring""" a :Any = set(range(3 , UpperCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCAmelCase_ , UpperCAmelCase_ ) ) ) a :Union[str, Any] = [float(UpperCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
94
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
0
def SCREAMING_SNAKE_CASE_ ( __A : int , __A : Any ) -> str: """simple docstring""" return abs(lowerCamelCase__ ) if a == 0 else greatest_common_divisor(b % a , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : List[str] ) -> Union[str, Any]: """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. a_ : Optional[Any] = y, x % y return abs(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" try: a_ : str = input('Enter two integers separated by comma (,): ' ).split(',' ) a_ : Union[str, Any] = int(nums[0] ) a_ : Optional[Any] = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(lowerCamelCase__ , lowerCamelCase__ )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowerCamelCase__ , lowerCamelCase__ )}""" ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
32
'''simple docstring''' from math import pow def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count A_ : Optional[int] = int(pow(lowerCamelCase__ , lowerCamelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n A_, A_ : int = backtrack( lowerCamelCase__ , lowerCamelCase__ , current_number + 1 , lowerCamelCase__ , lowerCamelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. A_, A_ : int = backtrack( lowerCamelCase__ , lowerCamelCase__ , current_number + 1 , lowerCamelCase__ , lowerCamelCase__ ) return current_sum, solutions_count def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowerCamelCase__ , lowerCamelCase__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
206
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCamelCase__ ( snake_case_ : Optional[int] ) -> List[Any]: return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowerCamelCase__ ( ) -> List[str]: __snake_case = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=snake_case_ ) __snake_case = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(snake_case_ ) EnvironmentCommand.register_subcommand(snake_case_ ) TestCommand.register_subcommand(snake_case_ ) RunBeamCommand.register_subcommand(snake_case_ ) DummyDataCommand.register_subcommand(snake_case_ ) # Parse args __snake_case , __snake_case = parser.parse_known_args() if not hasattr(snake_case_ , '''func''' ): parser.print_help() exit(1 ) __snake_case = parse_unknown_args(snake_case_ ) # Run __snake_case = args.func(snake_case_ , **snake_case_ ) service.run() if __name__ == "__main__": main()
238
from __future__ import annotations snake_case_ = 'Muhammad Umer Farooq' snake_case_ = 'MIT' snake_case_ = '1.0.0' snake_case_ = 'Muhammad Umer Farooq' snake_case_ = 'contact@muhammadumerfarooq.me' snake_case_ = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Dict , a__ : str ): """simple docstring""" super().__init__() __snake_case = [] __snake_case = domain def a (self : Tuple , a__ : str , a__ : list[tuple[str, str | None]] ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , a__ ) self.urls.append(a__ ) def lowerCamelCase__ ( snake_case_ : str ) -> str: return ".".join(get_sub_domain_name(snake_case_ ).split('''.''' )[-2:] ) def lowerCamelCase__ ( snake_case_ : str ) -> str: return parse.urlparse(snake_case_ ).netloc def lowerCamelCase__ ( snake_case_ : str = "https://github.com" ) -> list[str]: __snake_case = get_domain_name(snake_case_ ) # Initialize the parser __snake_case = Parser(snake_case_ ) try: # Open URL __snake_case = requests.get(snake_case_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(snake_case_ ) # Get the valid email. __snake_case = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(snake_case_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(snake_case_ ) if __name__ == "__main__": snake_case_ = emails_from_url('https://github.com') print(F'{len(emails)} emails found:') print('\n'.join(sorted(emails)))
238
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=2 , lowercase_=8 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=16 , lowercase_=5 , lowercase_=2 , lowercase_=36 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Any = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : int = use_input_mask UpperCAmelCase_ : Optional[Any] = use_token_type_ids UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : int = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[str] = num_choices UpperCAmelCase_ : Any = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Tuple = None if self.use_input_mask: UpperCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Any = None if self.use_token_type_ids: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[Any] = None if self.use_labels: UpperCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.get_config() UpperCAmelCase_ : List[Any] = 300 return config def UpperCamelCase__ ( self ): """simple docstring""" ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : str = True UpperCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = MraModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase_ : Optional[int] = model(lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase_ : Tuple = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = MraModel(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[str] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) UpperCAmelCase_ : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , encoder_hidden_states=lowercase_ , ) UpperCAmelCase_ : Dict = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = MraForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = MraForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : int = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = self.num_labels UpperCAmelCase_ : Dict = MraForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : int = MraForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = self.num_choices UpperCAmelCase_ : List[Any] = MraForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase_ : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Dict = () def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = MraModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Tuple = type self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = MraModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason="MRA does not output attentions" ) def UpperCamelCase__ ( self ): """simple docstring""" return @require_torch class A_ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) UpperCAmelCase_ : List[str] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(lowercase_ )[0] UpperCAmelCase_ : str = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase_ : Optional[Any] = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) UpperCAmelCase_ : Optional[int] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(lowercase_ )[0] UpperCAmelCase_ : Dict = 5_0265 UpperCAmelCase_ : str = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase_ : Optional[int] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) UpperCAmelCase_ : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ : str = model(lowercase_ )[0] UpperCAmelCase_ : List[str] = 5_0265 UpperCAmelCase_ : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase_ : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
61
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __snake_case ( ): """simple docstring""" A_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } A_ = Dataset.from_dict(__UpperCamelCase ) return dataset class _a ( snake_case_ ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = get_dataset() A_ = make_duplicate_clusters(UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __A ( self : List[Any] ): A_ = get_dataset() A_ , A_ = deduplicate_dataset(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 2 ) print(UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , UpperCAmelCase )
312
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """Salesforce/blip-image-captioning-base""" _lowerCAmelCase = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) _lowerCAmelCase = """image_captioner""" _lowerCAmelCase = AutoModelForVisionaSeq _lowerCAmelCase = ["""image"""] _lowerCAmelCase = ["""text"""] def __init__( self , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: requires_backends(self , ['vision'] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: return self.pre_processor(images=__magic_name__ , return_tensors='pt' ) def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[Any]: return self.model.generate(**__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
104
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A () -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _A () -> Any: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _A () -> Dict: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase__ ): http_head('https://huggingface.co' )
104
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('foo.json',)] ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = GenerationConfig( do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCamelCase , config_name=_UpperCamelCase ) UpperCAmelCase_ : str = GenerationConfig.from_pretrained(_UpperCamelCase , config_name=_UpperCamelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _UpperCamelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Optional[int] = AutoConfig.from_pretrained('gpt2' ) UpperCAmelCase_ : Tuple = GenerationConfig.from_model_config(_UpperCamelCase ) UpperCAmelCase_ : int = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = GenerationConfig() UpperCAmelCase_ : int = { 'max_new_tokens': 1_0_2_4, 'foo': 'bar', } UpperCAmelCase_ : List[Any] = copy.deepcopy(_UpperCamelCase ) UpperCAmelCase_ : Tuple = generation_config.update(**_UpperCamelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_UpperCamelCase , {'foo': 'bar'} ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : int = GenerationConfig() UpperCAmelCase_ : Union[str, Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : List[str] = GenerationConfig.from_pretrained(_UpperCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) UpperCAmelCase_ : Tuple = GenerationConfig.from_model_config(_UpperCamelCase ) assert not hasattr(_UpperCamelCase , 'foo' ) # no new kwargs should be initialized if from config def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : List[Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _UpperCamelCase ) self.assertEqual(default_config.num_beams , 1 ) UpperCAmelCase_ : List[Any] = GenerationConfig( do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _UpperCamelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : str = GenerationConfig.from_pretrained(_UpperCamelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _UpperCamelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ) -> Optional[int]: UpperCAmelCase_ : Dict = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = GenerationConfig( do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) UpperCAmelCase_ : Optional[int] = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCamelCase , repo_id='test-generation-config' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) UpperCAmelCase_ : Optional[int] = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : List[str] = GenerationConfig( do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCamelCase , repo_id='valid_org/test-generation-config-org' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) )
29
from math import factorial __snake_case = {str(digit): factorial(digit) for digit in range(10)} def _A ( SCREAMING_SNAKE_CASE__ : int ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(SCREAMING_SNAKE_CASE__ ) ) def _A ( SCREAMING_SNAKE_CASE__ : int = 60 , SCREAMING_SNAKE_CASE__ : int = 1000000 ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length UpperCamelCase :Any = 0 # the cached sizes of the previous chains UpperCamelCase :dict[int, int] = {} for start_chain_element in range(1 , SCREAMING_SNAKE_CASE__ ): # The temporary set will contain the elements of the chain UpperCamelCase :List[Any] = set() UpperCamelCase :Any = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCamelCase :Optional[Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(SCREAMING_SNAKE_CASE__ ) chain_set_length += 1 UpperCamelCase :List[Any] = digit_factorial_sum(SCREAMING_SNAKE_CASE__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCamelCase :Any = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
259
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return str(lowerCAmelCase_ ) == str(lowerCAmelCase_ )[::-1] def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return int(lowerCAmelCase_ ) + int(str(lowerCAmelCase_ )[::-1] ) def UpperCAmelCase__ (lowerCAmelCase_ = 1_0000 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for num in range(1 , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = num while iterations < 50: __SCREAMING_SNAKE_CASE = sum_reverse(lowerCAmelCase_ ) iterations += 1 if is_palindrome(lowerCAmelCase_ ): break else: lychrel_nums.append(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) if __name__ == "__main__": print(F"{solution() = }")
195
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a__ : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: __SCREAMING_SNAKE_CASE = R".*/layers_(\d+)" __SCREAMING_SNAKE_CASE = key if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = R"(encoder|decoder)\/" if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).groups() if groups[0] == "encoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase_ ) elif groups[0] == "decoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""{key} -> {new_key}""" ) __SCREAMING_SNAKE_CASE = s_dict.pop(lowerCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __SCREAMING_SNAKE_CASE = s_dict[key].shape[0] __SCREAMING_SNAKE_CASE = s_dict[key] for idx in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = expert_weihts[idx] print(f"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(lowerCAmelCase_ ) return s_dict a__ : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' import regex as re with open(lowerCAmelCase_ , "r" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __SCREAMING_SNAKE_CASE = float(lowerCAmelCase_ ) if "." in value else int(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase_ )[0] __SCREAMING_SNAKE_CASE = str(activation[1] ) __SCREAMING_SNAKE_CASE = num_experts __SCREAMING_SNAKE_CASE = SwitchTransformersConfig(**lowerCAmelCase_ ) return config def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="./" , lowerCAmelCase_=8 ): '''simple docstring''' print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) if gin_file is not None: __SCREAMING_SNAKE_CASE = convert_gin_to_config(lowerCAmelCase_ , lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = flax_params["target"] __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ , sep="/" ) __SCREAMING_SNAKE_CASE = rename_keys(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = unflatten_dict(lowerCAmelCase_ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') a__ : Tuple = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
195
1
"""simple docstring""" import math def lowerCamelCase__ ( _lowerCamelCase : Any ) -> Union[str, Any]: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( _lowerCamelCase : List[Any] = 0.1 ) -> Union[str, Any]: lowerCamelCase_ = 3 lowerCamelCase_ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
183
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowercase__ = get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = """dummy_data""" lowerCamelCase__ = """datasets""" lowerCamelCase__ = False def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , lowercase = True , lowercase = None , ): _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Dict = dataset_name _lowerCamelCase : Union[str, Any] = cache_dir _lowerCamelCase : Dict = use_local_dummy_data _lowerCamelCase : Tuple = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : str = str(lowercase ) # to be downloaded _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : int = None @property def A_ ( self ): if self._dummy_file is None: _lowerCamelCase : Tuple = self.download_dummy_data() return self._dummy_file @property def A_ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def A_ ( self ): return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def A_ ( self ): _lowerCamelCase : List[str] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : int = cached_path( lowercase , cache_dir=self.cache_dir , extract_compressed_file=lowercase , force_extract=lowercase ) return os.path.join(lowercase , self.dummy_file_name ) @property def A_ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def A_ ( self ): if self._bucket_url is None: _lowerCamelCase : List[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def A_ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def A_ ( self , lowercase , *lowercase ): if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase , lowercase ): return self.create_dummy_data_dict(lowercase , lowercase ) elif isinstance(lowercase , (list, tuple) ): return self.create_dummy_data_list(lowercase , lowercase ) else: return self.create_dummy_data_single(lowercase , lowercase ) def A_ ( self , lowercase , *lowercase ): return self.download_and_extract(lowercase ) def A_ ( self , lowercase , lowercase ): return self.download_and_extract(lowercase ) def A_ ( self , lowercase , *lowercase , **lowercase ): return path def A_ ( self ): return {} def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[int] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase , lowercase ): for single_url in single_urls: download_callback(lowercase ) else: _lowerCamelCase : List[Any] = single_urls download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase , lowercase ): _lowerCamelCase : List[Any] = [os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) for x in single_urls] else: _lowerCamelCase : Optional[int] = single_urls _lowerCamelCase : List[Any] = os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) _lowerCamelCase : int = value # make sure that values are unique if all(isinstance(lowercase , lowercase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , lowercase ) ) for url in data_url ) _lowerCamelCase : int = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : List[str] = [data_url[0]] * len(lowercase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : str = os.path.join(lowercase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(lowercase ) return dummy_data_list def A_ ( self , lowercase , lowercase ): for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Tuple = os.path.join(lowercase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(lowercase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def A_ ( self ): pass def A_ ( self ): pass def A_ ( self , lowercase ): def _iter_archive_members(lowercase ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : str = Path(self.dummy_file ).parent _lowerCamelCase : Union[str, Any] = path.relative_to(lowercase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase ) _lowerCamelCase : Optional[int] = Path(lowercase ) _lowerCamelCase : Dict = _iter_archive_members(lowercase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(lowercase ).as_posix(), file_path.open('rb' ) def A_ ( self , lowercase ): if not isinstance(lowercase , lowercase ): _lowerCamelCase : List[str] = [paths] for path in paths: if os.path.isfile(lowercase ): if os.path.basename(lowercase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase ): if os.path.basename(lowercase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(lowercase ): if filename.startswith(('.', '__') ): continue yield os.path.join(lowercase , lowercase )
96
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = (DDPMParallelScheduler,) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**lowerCAmelCase__ ) return config def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , sample_max_value=lowerCAmelCase__ , ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**lowerCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_model() SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE_ : Any = samplea.shape[0] SCREAMING_SNAKE_CASE_ : int = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE_ : str = torch.arange(lowerCAmelCase__ )[0:3, None].repeat(1 , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.batch_step_no_noise(lowerCAmelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1E-2 assert abs(result_mean.item() - 0.5_005 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_model() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase__ ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ : str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = pred_prev_sample SCREAMING_SNAKE_CASE_ : int = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : int = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : str = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_model() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase__ ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE_ : int = pred_prev_sample SCREAMING_SNAKE_CASE_ : List[str] = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase__ ): if i == len(lowerCAmelCase__ ) - 1: SCREAMING_SNAKE_CASE_ : Optional[int] = -1 else: SCREAMING_SNAKE_CASE_ : List[str] = timesteps[i + 1] SCREAMING_SNAKE_CASE_ : Tuple = scheduler.previous_timestep(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = prev_t.item() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase__ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = [1_0_0, 8_7, 5_0, 1, 0] SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase__ , timesteps=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase__ )
162
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowerCAmelCase__ : Optional[Any] ='src/transformers' lowerCAmelCase__ : int ='docs/source/en/tasks' def a__ ( A__, A__, A__ ): with open(A__, 'r', encoding='utf-8', newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE_ : Any = 0 while not lines[start_index].startswith(A__ ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : int = start_index while not lines[end_index].startswith(A__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ : Any =direct_transformers_import(TRANSFORMERS_PATH) lowerCAmelCase__ : Dict ={ 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowerCAmelCase__ : Union[str, Any] ={ 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = TASK_GUIDE_TO_MODELS[task_guide] SCREAMING_SNAKE_CASE_ : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(A__, set() ) SCREAMING_SNAKE_CASE_ : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def a__ ( A__, A__=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = _find_text_in_file( filename=os.path.join(A__, A__ ), start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->', end_prompt='<!--End of the generated tip-->', ) SCREAMING_SNAKE_CASE_ : str = get_model_list_for_task(A__ ) if current_list != new_list: if overwrite: with open(os.path.join(A__, A__ ), 'w', encoding='utf-8', newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ : int =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ : Union[str, Any] =parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
162
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=36 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> Optional[int]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = embedding_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_hidden_groups UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ) -> str: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = AlbertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) UpperCamelCase = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = AlbertForPreTraining(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCamelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , sentence_order_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = AlbertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = AlbertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCamelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = AlbertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = AlbertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.num_choices UpperCamelCase = AlbertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) ,( UpperCamelCase ) ,( UpperCamelCase ) ,( UpperCamelCase ) ,( UpperCamelCase ) ,( UpperCamelCase ) ,( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a_ ( __a , __a , unittest.TestCase ): lowercase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> List[Any]: """simple docstring""" UpperCamelCase = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ ) UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = AlbertModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def A__ ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @slow def A__ ( self ) -> Optional[Any]: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = AlbertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class a_ ( unittest.TestCase ): @slow def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowerCAmelCase__ ) UpperCamelCase = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
321
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Tuple = ['''keras_nlp'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""keras_nlp"""])
100
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __A ( A_ ): """simple docstring""" UpperCamelCase__ : Optional[Any] =4_2 UpperCamelCase__ : List[str] =jnp.floataa UpperCamelCase__ : Any =True def __lowercase ( self ): """simple docstring""" super().setup() __UpperCamelCase : Optional[int] =nn.Dense(5 , dtype=self.dtype ) def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =super().__call__(*_lowerCamelCase , **_lowerCamelCase ) __UpperCamelCase : Optional[Any] =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __A ( A_ ): """simple docstring""" UpperCamelCase__ : Union[str, Any] =FlaxBigBirdForNaturalQuestionsModule def A ( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) -> Any: def cross_entropy(snake_case_ ,snake_case_ ,snake_case_=None ): __UpperCamelCase : Tuple =logits.shape[-1] __UpperCamelCase : Tuple =(labels[..., None] == jnp.arange(__lowerCamelCase )[None]).astype('f4' ) __UpperCamelCase : Optional[Any] =jax.nn.log_softmax(__lowerCamelCase ,axis=-1 ) __UpperCamelCase : Tuple =-jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: __UpperCamelCase : Dict =reduction(__lowerCamelCase ) return loss __UpperCamelCase : List[Any] =partial(__lowerCamelCase ,reduction=jnp.mean ) __UpperCamelCase : Optional[int] =cross_entropy(__lowerCamelCase ,__lowerCamelCase ) __UpperCamelCase : Any =cross_entropy(__lowerCamelCase ,__lowerCamelCase ) __UpperCamelCase : List[str] =cross_entropy(__lowerCamelCase ,__lowerCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __A : """simple docstring""" UpperCamelCase__ : Optional[int] ="""google/bigbird-roberta-base""" UpperCamelCase__ : Any =3_0_0_0 UpperCamelCase__ : Union[str, Any] =1_0_5_0_0 UpperCamelCase__ : int =1_2_8 UpperCamelCase__ : Dict =3 UpperCamelCase__ : Tuple =1 UpperCamelCase__ : List[str] =5 # tx_args UpperCamelCase__ : Dict =3E-5 UpperCamelCase__ : Union[str, Any] =0.0 UpperCamelCase__ : Optional[Any] =2_0_0_0_0 UpperCamelCase__ : Optional[Any] =0.0095 UpperCamelCase__ : int ="""bigbird-roberta-natural-questions""" UpperCamelCase__ : str ="""training-expt""" UpperCamelCase__ : Optional[Any] ="""data/nq-training.jsonl""" UpperCamelCase__ : Optional[int] ="""data/nq-validation.jsonl""" def __lowercase ( self ): """simple docstring""" os.makedirs(self.base_dir , exist_ok=_lowerCamelCase ) __UpperCamelCase : List[Any] =os.path.join(self.base_dir , self.save_dir ) __UpperCamelCase : Optional[Any] =self.batch_size_per_device * jax.device_count() @dataclass class __A : """simple docstring""" UpperCamelCase__ : List[Any] =4_2 UpperCamelCase__ : Any =4_0_9_6 # no dynamic padding on TPUs def __call__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =self.collate_fn(_lowerCamelCase ) __UpperCamelCase : Optional[Any] =jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase ) return batch def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Dict =self.fetch_inputs(features['input_ids'] ) __UpperCamelCase : Dict ={ 'input_ids': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), 'attention_mask': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =[self._fetch_inputs(_lowerCamelCase ) for ids in input_ids] return zip(*_lowerCamelCase ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =[1 for _ in range(len(_lowerCamelCase ) )] while len(_lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def A ( snake_case_ ,snake_case_ ,snake_case_=None ) -> str: if seed is not None: __UpperCamelCase : Any =dataset.shuffle(seed=__lowerCamelCase ) for i in range(len(__lowerCamelCase ) // batch_size ): __UpperCamelCase : Optional[Any] =dataset[i * batch_size : (i + 1) * batch_size] yield dict(__lowerCamelCase ) @partial(jax.pmap ,axis_name='batch' ) def A ( snake_case_ ,snake_case_ ,**snake_case_ ) -> Union[str, Any]: def loss_fn(snake_case_ ): __UpperCamelCase : Any =model_inputs.pop('start_labels' ) __UpperCamelCase : Dict =model_inputs.pop('end_labels' ) __UpperCamelCase : Union[str, Any] =model_inputs.pop('pooled_labels' ) __UpperCamelCase : int =state.apply_fn(**__lowerCamelCase ,params=__lowerCamelCase ,dropout_rng=__lowerCamelCase ,train=__lowerCamelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] =outputs return state.loss_fn( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,) __UpperCamelCase , __UpperCamelCase : Optional[Any] =jax.random.split(__lowerCamelCase ) __UpperCamelCase : Tuple =jax.value_and_grad(__lowerCamelCase ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] =grad_fn(state.params ) __UpperCamelCase : List[str] =jax.lax.pmean({'loss': loss} ,axis_name='batch' ) __UpperCamelCase : List[Any] =jax.lax.pmean(__lowerCamelCase ,'batch' ) __UpperCamelCase : Optional[int] =state.apply_gradients(grads=__lowerCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name='batch' ) def A ( snake_case_ ,**snake_case_ ) -> Any: __UpperCamelCase : Optional[Any] =model_inputs.pop('start_labels' ) __UpperCamelCase : Any =model_inputs.pop('end_labels' ) __UpperCamelCase : List[Any] =model_inputs.pop('pooled_labels' ) __UpperCamelCase : List[str] =state.apply_fn(**__lowerCamelCase ,params=state.params ,train=__lowerCamelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple =outputs __UpperCamelCase : int =state.loss_fn(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) __UpperCamelCase : List[Any] =jax.lax.pmean({'loss': loss} ,axis_name='batch' ) return metrics class __A ( train_state.TrainState ): """simple docstring""" UpperCamelCase__ : Dict =struct.field(pytree_node=A_ ) @dataclass class __A : """simple docstring""" UpperCamelCase__ : Optional[int] =4_2 UpperCamelCase__ : Dict =4_2 UpperCamelCase__ : Tuple =4_2 UpperCamelCase__ : int =4_2 UpperCamelCase__ : Union[str, Any] =4_2 UpperCamelCase__ : Tuple =4_2 UpperCamelCase__ : List[str] =None def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" __UpperCamelCase : Dict =model.params __UpperCamelCase : Union[str, Any] =TrainState.create( apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , ) if ckpt_dir is not None: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[Any] =restore_checkpoint(_lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : int ={ 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } __UpperCamelCase , __UpperCamelCase : Optional[Any] =build_tx(**_lowerCamelCase ) __UpperCamelCase : Optional[int] =train_state.TrainState( step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , ) __UpperCamelCase : List[str] =args __UpperCamelCase : Union[str, Any] =data_collator __UpperCamelCase : List[Any] =lr __UpperCamelCase : List[str] =params __UpperCamelCase : int =jax_utils.replicate(_lowerCamelCase ) return state def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.args __UpperCamelCase : int =len(_lowerCamelCase ) // args.batch_size __UpperCamelCase : List[str] =jax.random.PRNGKey(0 ) __UpperCamelCase : List[Any] =jax.random.split(_lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): __UpperCamelCase : Optional[Any] =jnp.array(0 , dtype=jnp.floataa ) __UpperCamelCase : Optional[int] =get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase ) __UpperCamelCase : Optional[Any] =0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=f'Running EPOCH-{epoch}' ): __UpperCamelCase : Union[str, Any] =self.data_collator(_lowerCamelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str =self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: __UpperCamelCase : List[str] =jax_utils.unreplicate(state.step ) __UpperCamelCase : Union[str, Any] =running_loss.item() / i __UpperCamelCase : str =self.scheduler_fn(state_step - 1 ) __UpperCamelCase : Union[str, Any] =self.evaluate(_lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : Any ={ 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(_lowerCamelCase ) ) self.logger.log(_lowerCamelCase , commit=_lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=_lowerCamelCase ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =get_batched_dataset(_lowerCamelCase , self.args.batch_size ) __UpperCamelCase : List[Any] =len(_lowerCamelCase ) // self.args.batch_size __UpperCamelCase : Tuple =jnp.array(0 , dtype=jnp.floataa ) __UpperCamelCase : Optional[int] =0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='Evaluating ... ' ): __UpperCamelCase : List[Any] =self.data_collator(_lowerCamelCase ) __UpperCamelCase : Any =self.val_step_fn(_lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =jax_utils.unreplicate(_lowerCamelCase ) print(f'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' ) self.model_save_fn(_lowerCamelCase , params=state.params ) with open(os.path.join(_lowerCamelCase , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCamelCase , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , 'data_collator.joblib' ) ) with open(os.path.join(_lowerCamelCase , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , _lowerCamelCase ) print('DONE' ) def A ( snake_case_ ,snake_case_ ) -> Tuple: print(F'RESTORING CHECKPOINT FROM {save_dir}' ,end=' ... ' ) with open(os.path.join(__lowerCamelCase ,'flax_model.msgpack' ) ,'rb' ) as f: __UpperCamelCase : Optional[Any] =from_bytes(state.params ,f.read() ) with open(os.path.join(__lowerCamelCase ,'opt_state.msgpack' ) ,'rb' ) as f: __UpperCamelCase : List[str] =from_bytes(state.opt_state ,f.read() ) __UpperCamelCase : Tuple =joblib.load(os.path.join(__lowerCamelCase ,'args.joblib' ) ) __UpperCamelCase : List[Any] =joblib.load(os.path.join(__lowerCamelCase ,'data_collator.joblib' ) ) with open(os.path.join(__lowerCamelCase ,'training_state.json' ) ,'r' ) as f: __UpperCamelCase : Tuple =json.load(__lowerCamelCase ) __UpperCamelCase : Optional[int] =training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def A ( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) -> List[Any]: __UpperCamelCase : int =num_train_steps - warmup_steps __UpperCamelCase : str =optax.linear_schedule(init_value=__lowerCamelCase ,end_value=__lowerCamelCase ,transition_steps=__lowerCamelCase ) __UpperCamelCase : List[Any] =optax.linear_schedule(init_value=__lowerCamelCase ,end_value=1e-7 ,transition_steps=__lowerCamelCase ) __UpperCamelCase : Optional[int] =optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def A ( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) -> List[str]: def weight_decay_mask(snake_case_ ): __UpperCamelCase : Union[str, Any] =traverse_util.flatten_dict(__lowerCamelCase ) __UpperCamelCase : List[Any] ={k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(__lowerCamelCase ) __UpperCamelCase : Dict =scheduler_fn(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) __UpperCamelCase : Tuple =optax.adamw(learning_rate=__lowerCamelCase ,weight_decay=__lowerCamelCase ,mask=__lowerCamelCase ) return tx, lr
368
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ :int = logging.get_logger(__name__) A_ :List[str] = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( a ): """simple docstring""" UpperCamelCase__ : List[Any] ="""xlm-roberta-xl""" def __init__( self , lowerCamelCase__=250880 , lowerCamelCase__=2560 , lowerCamelCase__=36 , lowerCamelCase__=32 , lowerCamelCase__=10240 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=514 , lowerCamelCase__=1 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-05 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Any =vocab_size __UpperCamelCase : Optional[int] =hidden_size __UpperCamelCase : Tuple =num_hidden_layers __UpperCamelCase : List[Any] =num_attention_heads __UpperCamelCase : Tuple =hidden_act __UpperCamelCase : str =intermediate_size __UpperCamelCase : str =hidden_dropout_prob __UpperCamelCase : List[str] =attention_probs_dropout_prob __UpperCamelCase : Any =max_position_embeddings __UpperCamelCase : List[str] =type_vocab_size __UpperCamelCase : Union[str, Any] =initializer_range __UpperCamelCase : Tuple =layer_norm_eps __UpperCamelCase : Dict =position_embedding_type __UpperCamelCase : Dict =use_cache __UpperCamelCase : Optional[int] =classifier_dropout class __A ( a ): """simple docstring""" @property def __lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": __UpperCamelCase : int ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase : Optional[Any] ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
245
0
import math def _SCREAMING_SNAKE_CASE ( a ) -> list[int]: __A : List[str] = [] __A : Any = 2 __A : Union[str, Any] = int(math.sqrt(a ) ) # Size of every segment __A : Any = [True] * (end + 1) __A : List[Any] = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): __A : Optional[int] = False start += 1 prime += in_prime __A : Any = end + 1 __A : Any = min(2 * end , a ) while low <= n: __A : List[Any] = [True] * (high - low + 1) for each in in_prime: __A : List[str] = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): __A : Optional[int] = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) __A : Optional[int] = high + 1 __A : Tuple = min(high + end , a ) return prime print(sieve(10**6))
280
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : List[str] = '''▁''' UpperCAmelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[int] = BertGenerationTokenizer UpperCamelCase : str = False UpperCamelCase : Tuple = True def UpperCAmelCase_ ( self ): super().setUp() __A : Tuple = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self ): __A : str = '<s>' __A : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCAmelCase_ ( self ): __A : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(_A ) , 1002 ) def UpperCAmelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCAmelCase_ ( self ): __A : str = BertGenerationTokenizer(_A , keep_accents=_A ) __A : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) __A : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __A : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __A : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase_ ( self ): return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def UpperCAmelCase_ ( self ): __A : List[Any] = 'Hello World!' __A : Optional[Any] = [18536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCAmelCase_ ( self ): __A : Dict = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) __A : int = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCAmelCase_ ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __A : Tuple = list(self.big_tokenizer.get_vocab().keys() )[:10] __A : List[Any] = ' '.join(_A ) __A : Union[str, Any] = self.big_tokenizer.encode_plus(_A , return_tensors='pt' , return_token_type_ids=_A ) __A : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_A ) __A : int = BertGenerationConfig() __A : List[str] = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCAmelCase_ ( self ): # fmt: off __A : str = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
280
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : Dict ) -> Union[str, Any]: __A : str = checkpoint __A : Optional[int] = {} __A : Optional[Any] = vae_state_dict['encoder.conv_in.weight'] __A : Dict = vae_state_dict['encoder.conv_in.bias'] __A : Optional[Any] = vae_state_dict['encoder.conv_out.weight'] __A : Dict = vae_state_dict['encoder.conv_out.bias'] __A : Dict = vae_state_dict['encoder.norm_out.weight'] __A : Optional[Any] = vae_state_dict['encoder.norm_out.bias'] __A : str = vae_state_dict['decoder.conv_in.weight'] __A : List[Any] = vae_state_dict['decoder.conv_in.bias'] __A : Tuple = vae_state_dict['decoder.conv_out.weight'] __A : Optional[Any] = vae_state_dict['decoder.conv_out.bias'] __A : Any = vae_state_dict['decoder.norm_out.weight'] __A : Union[str, Any] = vae_state_dict['decoder.norm_out.bias'] __A : Optional[Any] = vae_state_dict['quant_conv.weight'] __A : List[str] = vae_state_dict['quant_conv.bias'] __A : List[str] = vae_state_dict['post_quant_conv.weight'] __A : List[str] = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only __A : Tuple = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) __A : Optional[int] = { layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(__snake_case ) } # Retrieves the keys for the decoder up blocks only __A : List[Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) __A : Optional[int] = { layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(__snake_case ) } for i in range(__snake_case ): __A : Any = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: __A : Any = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.weight' ) __A : List[Any] = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.bias' ) __A : Optional[int] = renew_vae_resnet_paths(__snake_case ) __A : Optional[int] = {'old': f'down.{i}.block', 'new': f'down_blocks.{i}.resnets'} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) __A : Optional[int] = [key for key in vae_state_dict if 'encoder.mid.block' in key] __A : Optional[int] = 2 for i in range(1 , num_mid_res_blocks + 1 ): __A : Optional[Any] = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] __A : Dict = renew_vae_resnet_paths(__snake_case ) __A : str = {'old': f'mid.block_{i}', 'new': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) __A : Union[str, Any] = [key for key in vae_state_dict if 'encoder.mid.attn' in key] __A : Tuple = renew_vae_attention_paths(__snake_case ) __A : Tuple = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) conv_attn_to_linear(__snake_case ) for i in range(__snake_case ): __A : Dict = num_up_blocks - 1 - i __A : Optional[int] = [ key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key ] if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: __A : Dict = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.weight' ] __A : Union[str, Any] = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.bias' ] __A : int = renew_vae_resnet_paths(__snake_case ) __A : List[Any] = {'old': f'up.{block_id}.block', 'new': f'up_blocks.{i}.resnets'} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) __A : str = [key for key in vae_state_dict if 'decoder.mid.block' in key] __A : str = 2 for i in range(1 , num_mid_res_blocks + 1 ): __A : Optional[Any] = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] __A : List[Any] = renew_vae_resnet_paths(__snake_case ) __A : List[str] = {'old': f'mid.block_{i}', 'new': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) __A : List[Any] = [key for key in vae_state_dict if 'decoder.mid.attn' in key] __A : Optional[Any] = renew_vae_attention_paths(__snake_case ) __A : int = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) conv_attn_to_linear(__snake_case ) return new_checkpoint def _lowerCAmelCase ( __snake_case : str , __snake_case : str , ) -> Dict: # Only support V1 __A : Union[str, Any] = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) __A : List[Any] = io.BytesIO(r.content ) __A : List[Any] = OmegaConf.load(__snake_case ) __A : List[str] = 5_12 __A : Dict = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open __A : List[Any] = {} with safe_open(__snake_case , framework='pt' , device='cpu' ) as f: for key in f.keys(): __A : Any = f.get_tensor(__snake_case ) else: __A : Optional[int] = torch.load(__snake_case , map_location=__snake_case )['state_dict'] # Convert the VAE model. __A : Optional[Any] = create_vae_diffusers_config(__snake_case , image_size=__snake_case ) __A : Any = custom_convert_ldm_vae_checkpoint(__snake_case , __snake_case ) __A : int = AutoencoderKL(**__snake_case ) vae.load_state_dict(__snake_case ) vae.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowercase__ : Any = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
190
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase__ : Dict = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase__ : Any = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _lowerCAmelCase ( __snake_case : Any ) -> Optional[Any]: __A : Dict = (images / 2 + 0.5).clamp(0 , 1 ) __A : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Dict = numpy_to_pil(__snake_case ) return images def _lowerCAmelCase ( __snake_case : List[Any] ) -> Optional[Any]: if images.ndim == 3: __A : List[Any] = images[None, ...] __A : List[str] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A : str = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __A : str = [Image.fromarray(__snake_case ) for image in images] return pil_images
190
1
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu a : Any = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: a : Dict = json.load(f) @require_torch class a ( unittest.TestCase ): def A_ ( self : int , lowercase_ : int ): return FSMTTokenizer.from_pretrained(lowercase_ ) def A_ ( self : Tuple , lowercase_ : List[Any] ): snake_case_ = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def A_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[str] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality snake_case_ = F"facebook/wmt19-{pair}" snake_case_ = self.get_tokenizer(lowercase_ ) snake_case_ = self.get_model(lowercase_ ) snake_case_ = bleu_data[pair]['''src'''] snake_case_ = bleu_data[pair]['''tgt'''] snake_case_ = tokenizer(lowercase_ , return_tensors='''pt''' , truncation=lowercase_ , padding='''longest''' ).to(lowercase_ ) snake_case_ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case_ = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) snake_case_ = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['''bleu'''] , lowercase_ )
56
'''simple docstring''' import re from filelock import FileLock try: import nltk a : Union[str, Any] = True except (ImportError, ModuleNotFoundError): a : Any = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' re.sub('''<n>''', '''''', __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
56
1
"""simple docstring""" import torch def lowerCAmelCase( )-> str: """simple docstring""" if torch.cuda.is_available(): UpperCamelCase_ = torch.cuda.device_count() else: UpperCamelCase_ = 0 print(f"Successfully ran on {num_gpus} GPUs" ) if __name__ == "__main__": main()
366
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = 1_0_0 )-> int: """simple docstring""" UpperCamelCase_ = (n * (n + 1) // 2) ** 2 UpperCamelCase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
60
0
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[Any]: if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowerCAmelCase = 1 lowerCAmelCase = 1 while repunit: lowerCAmelCase = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0_0_0 ) -> int: lowerCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(snake_case__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'{solution() = }')
338
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , snake_case__ ) A : Dict = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: A : Dict = dataset_size < in_memory_max_size else: A : Tuple = False A : int = is_small_dataset(snake_case__ ) assert result == expected
3
0
"""simple docstring""" from math import factorial _UpperCamelCase = {str(d): factorial(d) for d in range(10)} def _a ( _snake_case ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(_snake_case ) ) def _a ( ): """simple docstring""" UpperCAmelCase = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _snake_case ) if sum_of_digit_factorial(_snake_case ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
234
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _UpperCamelCase = logging.get_logger("""transformers.models.speecht5""") _UpperCamelCase = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } _UpperCamelCase = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } _UpperCamelCase = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } _UpperCamelCase = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } _UpperCamelCase = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } _UpperCamelCase = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } _UpperCamelCase = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } _UpperCamelCase = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } _UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _UpperCamelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCamelCase = [] _UpperCamelCase = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" for attribute in key.split(""".""" ): UpperCAmelCase = getattr(_snake_case , _snake_case ) if weight_type is not None: UpperCAmelCase = getattr(_snake_case , _snake_case ).shape else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "running_mean": UpperCAmelCase = value elif weight_type == "running_var": UpperCAmelCase = value elif weight_type == "num_batches_tracked": UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _a ( _snake_case , _snake_case ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase , UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] if task == "s2t": UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase = MAPPING_S2T UpperCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase = None UpperCAmelCase = MAPPING_T2S UpperCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase = MAPPING_S2S UpperCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_snake_case , _snake_case ): logger.info(F'''{name} was ignored''' ) continue UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase , UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: UpperCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(_snake_case )[0].split(""".""" )[-2] UpperCAmelCase = mapped_key.replace("""*""" , _snake_case ) if "weight_g" in name: UpperCAmelCase = """weight_g""" elif "weight_v" in name: UpperCAmelCase = """weight_v""" elif "bias" in name: UpperCAmelCase = """bias""" elif "weight" in name: UpperCAmelCase = """weight""" elif "running_mean" in name: UpperCAmelCase = """running_mean""" elif "running_var" in name: UpperCAmelCase = """running_var""" elif "num_batches_tracked" in name: UpperCAmelCase = """num_batches_tracked""" else: UpperCAmelCase = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase = name.split(""".""" ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , ): """simple docstring""" if config_path is not None: UpperCAmelCase = SpeechTaConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = SpeechTaConfig() if task == "s2t": UpperCAmelCase = config.max_text_positions UpperCAmelCase = SpeechTaForSpeechToText(_snake_case ) elif task == "t2s": UpperCAmelCase = 1876 UpperCAmelCase = 600 UpperCAmelCase = config.max_speech_positions UpperCAmelCase = SpeechTaForTextToSpeech(_snake_case ) elif task == "s2s": UpperCAmelCase = 1876 UpperCAmelCase = config.max_speech_positions UpperCAmelCase = SpeechTaForSpeechToSpeech(_snake_case ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: UpperCAmelCase = SpeechTaTokenizer(_snake_case , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken("""<mask>""" , lstrip=_snake_case , rstrip=_snake_case ) UpperCAmelCase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = SpeechTaProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) processor.save_pretrained(_snake_case ) UpperCAmelCase = torch.load(_snake_case ) recursively_load_weights(fairseq_checkpoint["""model"""] , _snake_case , _snake_case ) model.save_pretrained(_snake_case ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCamelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
234
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _A : str =TypeVar('''T''') class _lowercase ( Generic[T] ): def __init__( self: List[str] , UpperCamelCase__: T ): lowerCamelCase__ : List[Any] = data lowerCamelCase__ : int = None def __str__( self: List[str] ): return F'''{self.data}''' class _lowercase ( Generic[T] ): def __init__( self: Union[str, Any] ): lowerCamelCase__ : List[Any] = None def __iter__( self: List[str] ): lowerCamelCase__ : List[str] = self.top while node: yield node.data lowerCamelCase__ : int = node.next def __str__( self: Optional[Any] ): return "->".join([str(__lowercase ) for item in self] ) def __len__( self: Any ): return len(tuple(iter(self ) ) ) def lowerCamelCase_ ( self: Any ): return self.top is None def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: T ): lowerCamelCase__ : Dict = Node(__lowercase ) if not self.is_empty(): lowerCamelCase__ : Optional[int] = self.top lowerCamelCase__ : Optional[Any] = node def lowerCamelCase_ ( self: Optional[Any] ): if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , __lowercase ) lowerCamelCase__ : Union[str, Any] = self.top lowerCamelCase__ : List[str] = self.top.next return pop_node.data def lowerCamelCase_ ( self: Optional[Any] ): if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Any = None if __name__ == "__main__": from doctest import testmod testmod()
41
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a , __a , __a = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None __a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] __a = 0 __a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
302
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : int | float | str ) -> tuple[int, int]: """simple docstring""" try: A__ : List[str] =float(__snake_case ) except ValueError: raise ValueError("""Please enter a valid number""" ) A__ : Tuple =decimal - int(__snake_case ) if fractional_part == 0: return int(__snake_case ), 1 else: A__ : int =len(str(__snake_case ).split(""".""" )[1] ) A__ : Optional[int] =int(decimal * (10**number_of_frac_digits) ) A__ : str =10**number_of_frac_digits A__ : Dict =denominator, numerator while True: A__ : Tuple =dividend % divisor if remainder == 0: break A__ : Optional[Any] =divisor, remainder A__ : List[str] =numerator / divisor, denominator / divisor return int(__snake_case ), int(__snake_case ) if __name__ == "__main__": print(F"""{decimal_to_fraction(2) = }""") print(F"""{decimal_to_fraction(89.0) = }""") print(F"""{decimal_to_fraction('67') = }""") print(F"""{decimal_to_fraction('45.0') = }""") print(F"""{decimal_to_fraction(1.5) = }""") print(F"""{decimal_to_fraction('6.25') = }""") print(F"""{decimal_to_fraction('78td') = }""")
357
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInstructPixaPixPipeline __snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS __snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Dict ) -> str: '''simple docstring''' torch.manual_seed(0 ) A__ : int =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A__ : str =PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) A__ : Dict =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A__ : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) A__ : Tuple =CLIPTextModel(lowerCAmelCase_ ) A__ : int =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : Union[str, Any] ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=0 ) -> str: '''simple docstring''' A__ : Optional[Any] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) A__ : str =image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : List[str] =Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ) if str(lowerCAmelCase_ ).startswith("""mps""" ): A__ : Any =torch.manual_seed(lowerCAmelCase_ ) else: A__ : int =torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) A__ : Optional[Any] ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Any =self.get_dummy_components() A__ : List[str] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Dict =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : List[Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : List[Any] =sd_pipe(**lowerCAmelCase_ ).images A__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Tuple =np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[str] =self.get_dummy_components() A__ : Union[str, Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Union[str, Any] =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Optional[int] ="""french fries""" A__ : Tuple =sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) A__ : Union[str, Any] =output.images A__ : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Tuple =np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : str ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : str =self.get_dummy_components() A__ : List[Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Union[str, Any] =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Tuple =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Dict =[inputs["""prompt"""]] * 2 A__ : Optional[int] =np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 A__ : List[str] =torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ).to(lowerCAmelCase_ ) A__ : Union[str, Any] =image / 2 + 0.5 A__ : Optional[int] =image.permute(0 , 3 , 1 , 2 ) A__ : Dict =image.repeat(2 , 1 , 1 , 1 ) A__ : int =sd_pipe(**lowerCAmelCase_ ).images A__ : List[Any] =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A__ : List[Any] =np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : Optional[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[str] =self.get_dummy_components() A__ : List[str] =EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) A__ : str =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : int =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Union[str, Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Optional[Any] =sd_pipe(**lowerCAmelCase_ ).images A__ : Tuple =image[0, -3:, -3:, -1] A__ : List[str] =[round(lowerCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCAmelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A__ : Any =np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' A__ : Union[str, Any] =self.get_dummy_components() A__ : Optional[Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Any =VaeImageProcessor(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ ) A__ : Dict =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : str =pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type="""pt""" ) )[0] A__ : List[Any] =components["""vae"""] A__ : Dict =self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A__ : List[Any] =vae.encode(inputs[image_param] ).latent_dist.mode() A__ : Optional[Any] =pipe(**lowerCAmelCase_ )[0] A__ : Dict =np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase_ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int , lowerCAmelCase_ : int=0 ) -> List[str]: '''simple docstring''' A__ : List[Any] =torch.manual_seed(lowerCAmelCase_ ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) A__ : List[Any] ={ """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Optional[Any] =self.get_inputs() A__ : Optional[Any] =pipe(**lowerCAmelCase_ ).images A__ : Tuple =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : Dict =np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : List[str] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ ) A__ : str =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Union[str, Any] =self.get_inputs() A__ : Tuple =pipe(**lowerCAmelCase_ ).images A__ : List[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : List[Any] =np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ ) A__ : str =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Optional[Any] =self.get_inputs() A__ : List[str] =pipe(**lowerCAmelCase_ ).images A__ : List[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : Any =np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =0 def callback_fn(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor ) -> None: A__ : Any =True nonlocal number_of_steps number_of_steps += 1 if step == 1: A__ : List[str] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ : Optional[Any] =latents[0, -3:, -3:, -1] A__ : Tuple =np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A__ : List[Any] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ : Dict =latents[0, -3:, -3:, -1] A__ : List[Any] =np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A__ : List[str] =False A__ : Optional[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) A__ : int =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Optional[Any] =self.get_inputs() pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Dict =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) A__ : Union[str, Any] =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : List[str] =self.get_inputs() A__ : Dict =pipe(**lowerCAmelCase_ ) A__ : List[str] =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A__ : int =inputs["""image"""].resize((5_04, 5_04) ) A__ : Optional[int] ="""timbrooks/instruct-pix2pix""" A__ : List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Dict =pipe(**lowerCAmelCase_ ) A__ : Dict =output.images[0] A__ : int =image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) A__ : Dict =np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
136
0
from __future__ import annotations class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = text, pattern SCREAMING_SNAKE_CASE_ : List[str] = len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE_ : Dict = self.mismatch_in_text(UpperCAmelCase_ ) if mismatch_index == -1: positions.append(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE_ : str = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase : Dict = '''ABAABA''' lowerCAmelCase : List[Any] = '''AB''' lowerCAmelCase : Dict = BoyerMooreSearch(text, pattern) lowerCAmelCase : str = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
253
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b, 2 ) for a, b in zip(_UpperCAmelCase, _UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: lowerCAmelCase : List[Any] = ( 'Wrong input data\'s dimensions... ' f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(_UpperCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase : Dict = ( 'Wrong input data\'s shape... ' f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(_UpperCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: lowerCAmelCase : Any = ( 'Input data have different datatype... ' f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(_UpperCAmelCase ) lowerCAmelCase : int = [] for value in value_array: lowerCAmelCase : Tuple = euclidean(_UpperCAmelCase, dataset[0] ) lowerCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase : Dict = euclidean(_UpperCAmelCase, _UpperCAmelCase ) if dist > temp_dist: lowerCAmelCase : Tuple = temp_dist lowerCAmelCase : Tuple = dataset_value.tolist() answer.append([vector, dist] ) return answer def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return np.dot(_UpperCAmelCase, _UpperCAmelCase ) / (norm(_UpperCAmelCase ) * norm(_UpperCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
138
0
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , 0 , -1 ): UpperCamelCase = False for j in range(_SCREAMING_SNAKE_CASE , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCamelCase , UpperCamelCase = unsorted[j - 1], unsorted[j] UpperCamelCase = True for j in range(_SCREAMING_SNAKE_CASE ): if unsorted[j] > unsorted[j + 1]: UpperCamelCase , UpperCamelCase = unsorted[j + 1], unsorted[j] UpperCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(f'''{cocktail_shaker_sort(unsorted) = }''')
358
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowerCamelCase : def __init__(self ) -> None: UpperCamelCase = [2, 1, 2, -1] UpperCamelCase = [1, 2, 3, 4] def snake_case_ (self ) -> list[float]: UpperCamelCase = len(self.first_signal ) UpperCamelCase = len(self.second_signal ) UpperCamelCase = max(__a , __a ) # create a zero matrix of max_length x max_length UpperCamelCase = [[0] * max_length for i in range(__a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__a ): UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(__a ) for j, item in enumerate(__a ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase = np.matmul(np.transpose(__a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
244
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = tempfile.mkdtemp() snake_case : Tuple = BlipImageProcessor() snake_case : Optional[int] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) snake_case : Dict = BlipaProcessor(snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : str , **snake_case__ : int ) -> Union[str, Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def _SCREAMING_SNAKE_CASE (self : str , **snake_case__ : Any ) -> Union[str, Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' snake_case : Dict = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case : Tuple = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE (self : List[str] ) -> str: '''simple docstring''' snake_case : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case : Union[str, Any] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) snake_case : Dict = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Any: '''simple docstring''' snake_case : List[str] = self.get_image_processor() snake_case : str = self.get_tokenizer() snake_case : Optional[Any] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Optional[Any] = self.prepare_image_inputs() snake_case : Optional[int] = image_processor(snake_case__ , return_tensors="np" ) snake_case : List[Any] = processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Tuple: '''simple docstring''' snake_case : int = self.get_image_processor() snake_case : Tuple = self.get_tokenizer() snake_case : List[str] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Union[str, Any] = "lower newer" snake_case : int = processor(text=snake_case__ ) snake_case : List[str] = tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : int = self.get_image_processor() snake_case : List[Any] = self.get_tokenizer() snake_case : List[str] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : int = "lower newer" snake_case : str = self.prepare_image_inputs() snake_case : Union[str, Any] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = self.get_image_processor() snake_case : List[str] = self.get_tokenizer() snake_case : Tuple = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : Dict = processor.batch_decode(snake_case__ ) snake_case : str = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' snake_case : int = self.get_image_processor() snake_case : int = self.get_tokenizer() snake_case : Optional[int] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : List[str] = "lower newer" snake_case : int = self.prepare_image_inputs() snake_case : Dict = processor(text=snake_case__ , images=snake_case__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
59
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : Optional[Any]=None , **snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) snake_case : Optional[Any] = model snake_case : Dict = kwargs.get("model_save_dir" , snake_case__ ) snake_case : int = kwargs.get("latest_model_name" , snake_case__ ) def __call__(self : Tuple , **snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = {k: np.array(snake_case__ ) for k, v in kwargs.items()} return self.model.run(snake_case__ , snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : Union[str, Path] , snake_case__ : Optional[int]=None , snake_case__ : Optional[int]=None ) -> Any: '''simple docstring''' if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) snake_case : Optional[int] = "CPUExecutionProvider" return ort.InferenceSession(snake_case__ , providers=[provider] , sess_options=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Union[str, Path] , snake_case__ : Optional[str] = None , **snake_case__ : Any ) -> List[Any]: '''simple docstring''' snake_case : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME snake_case : Any = self.model_save_dir.joinpath(self.latest_model_name ) snake_case : str = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) snake_case : List[str] = self.model_save_dir.joinpath(snake_case__ ) if src_path.exists(): snake_case : Tuple = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Optional[int] , ) -> str: '''simple docstring''' if os.path.isfile(snake_case__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) # saving model weights/files self._save_pretrained(snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Tuple , snake_case__ : Union[str, Path] , snake_case__ : Optional[Union[bool, str, None]] = None , snake_case__ : Optional[Union[str, None]] = None , snake_case__ : bool = False , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional["ort.SessionOptions"] = None , **snake_case__ : Tuple , ) -> Tuple: '''simple docstring''' snake_case : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(snake_case__ ): snake_case : Any = OnnxRuntimeModel.load_model( os.path.join(snake_case__ , snake_case__ ) , provider=snake_case__ , sess_options=snake_case__ ) snake_case : Union[str, Any] = Path(snake_case__ ) # load model from hub else: # download model snake_case : Dict = hf_hub_download( repo_id=snake_case__ , filename=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , ) snake_case : List[Any] = Path(snake_case__ ).parent snake_case : Union[str, Any] = Path(snake_case__ ).name snake_case : Dict = OnnxRuntimeModel.load_model(snake_case__ , provider=snake_case__ , sess_options=snake_case__ ) return cls(model=snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Optional[Any] , snake_case__ : Union[str, Path] , snake_case__ : bool = True , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , **snake_case__ : Dict , ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = None if len(str(snake_case__ ).split("@" ) ) == 2: snake_case , snake_case : int = model_id.split("@" ) return cls._from_pretrained( model_id=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , use_auth_token=snake_case__ , **snake_case__ , )
59
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCAmelCase = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCAmelCase = [0, 25, 50] __UpperCAmelCase = [25, 50, 75] __UpperCAmelCase = fuzz.membership.trimf(X, abca) __UpperCAmelCase = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCAmelCase = np.ones(75) __UpperCAmelCase = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCAmelCase = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCAmelCase = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCAmelCase = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCAmelCase = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCAmelCase = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCAmelCase = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCAmelCase = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCAmelCase = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
366
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : int=18 , lowerCAmelCase : int=30 , lowerCAmelCase : Optional[int]=4_00 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=None , lowerCAmelCase : List[str]=True , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=True , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} __lowerCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowerCAmelCase : str = parent __lowerCAmelCase : List[str] = batch_size __lowerCAmelCase : int = num_channels __lowerCAmelCase : List[str] = image_size __lowerCAmelCase : Optional[int] = min_resolution __lowerCAmelCase : List[str] = max_resolution __lowerCAmelCase : List[Any] = do_resize __lowerCAmelCase : Optional[int] = size __lowerCAmelCase : List[Any] = do_center_crop __lowerCAmelCase : Optional[Any] = crop_size __lowerCAmelCase : int = do_flip_channel_order def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[str] =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_flip_channel_order""" ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input __lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : str = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input __lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Tuple = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input __lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Tuple = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
139
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case : Dict = logging.get_logger(__name__) def _lowercase ( __snake_case ) -> List[Any]: __lowerCAmelCase : str = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowerCAmelCase : str = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" ,__snake_case ) if matches: __lowerCAmelCase : List[Any] = float(matches[1] ) __lowerCAmelCase : Tuple = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowerCAmelCase : Optional[int] = 1_001 __lowerCAmelCase : str = "imagenet-1k-id2label.json" __lowerCAmelCase : Optional[Any] = "huggingface/label-files" __lowerCAmelCase : Dict = json.load(open(hf_hub_download(__snake_case ,__snake_case ,repo_type="dataset" ) ,"r" ) ) __lowerCAmelCase : List[str] = {int(__snake_case ) + 1: v for k, v in idalabel.items()} __lowerCAmelCase : str = "background" __lowerCAmelCase : int = idalabel __lowerCAmelCase : int = {v: k for k, v in idalabel.items()} return config def _lowercase ( ) -> List[Any]: __lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase : Optional[Any] = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw ) return im @torch.no_grad() def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case=False ) -> List[str]: __lowerCAmelCase : List[Any] = get_mobilenet_va_config(__snake_case ) # Load 🤗 model __lowerCAmelCase : Tuple = MobileNetVaForImageClassification(__snake_case ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__snake_case ,__snake_case ,__snake_case ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowerCAmelCase : Any = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} ,size={"shortest_edge": config.image_size + 32} ,) __lowerCAmelCase : Tuple = image_processor(images=prepare_img() ,return_tensors="pt" ) __lowerCAmelCase : Any = model(**__snake_case ) __lowerCAmelCase : List[Any] = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": __lowerCAmelCase : Tuple = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": __lowerCAmelCase : Any = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: __lowerCAmelCase : Union[str, Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] ,__snake_case ,atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: print("Pushing to the hub..." ) __lowerCAmelCase : str = "google/" + model_name image_processor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case : Tuple = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
269
"""simple docstring""" import os from math import logaa def _lowercase ( __snake_case = "base_exp.txt" ) -> int: __lowerCAmelCase : float = 0 __lowerCAmelCase : Any = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ) ,__snake_case ) ) ): __lowerCAmelCase , __lowerCAmelCase : List[str] = list(map(__snake_case ,line.split("," ) ) ) if x * logaa(__snake_case ) > largest: __lowerCAmelCase : Tuple = x * logaa(__snake_case ) __lowerCAmelCase : Optional[Any] = i + 1 return result if __name__ == "__main__": print(solution())
269
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 'gpt_neo' UpperCAmelCase_ = ['past_key_values'] UpperCAmelCase_ = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Tuple , lowercase__ : Optional[int]=50_257 , lowercase__ : int=2_048 , lowercase__ : Optional[Any]=2_048 , lowercase__ : Optional[int]=24 , lowercase__ : str=[[["global", "local"], 12]] , lowercase__ : Any=16 , lowercase__ : Tuple=None , lowercase__ : List[Any]=256 , lowercase__ : List[str]="gelu_new" , lowercase__ : Optional[int]=0.0 , lowercase__ : int=0.0 , lowercase__ : List[str]=0.0 , lowercase__ : List[str]=0.1 , lowercase__ : Union[str, Any]=1e-5 , lowercase__ : int=0.02 , lowercase__ : Optional[Any]=True , lowercase__ : Optional[Any]=50_256 , lowercase__ : Any=50_256 , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_layers lowerCAmelCase__ = num_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = window_size lowerCAmelCase__ = activation_function lowerCAmelCase__ = resid_dropout lowerCAmelCase__ = embed_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = classifier_dropout lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = use_cache lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = attention_types lowerCAmelCase__ = self.expand_attention_types_params(lowercase__) if len(self.attention_layers) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F"""but is `len(config.attention_layers) = {len(self.attention_layers)}`, """ F"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.') super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) @staticmethod def __snake_case ( lowercase__ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): import torch lowerCAmelCase__ = input.size() lowerCAmelCase__ = len(lowerCAmelCase__ ) lowerCAmelCase__ = shape[dimension] lowerCAmelCase__ = torch.arange(0 , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = torch.div(sizedim - size , lowerCAmelCase__ , rounding_mode='floor' ) + 1 lowerCAmelCase__ = torch.arange(lowerCAmelCase__ ) + low_indices[:min_length][:, None] lowerCAmelCase__ = [slice(lowerCAmelCase__ )] * rank lowerCAmelCase__ = indices lowerCAmelCase__ = input[s] lowerCAmelCase__ = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): import torch lowerCAmelCase__ = torch.arange(1 , lowerCAmelCase__ ) lowerCAmelCase__ = torch.remainder(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = remainders == 0 lowerCAmelCase__ = candidates[divisor_indices] lowerCAmelCase__ = torch.max(lowerCAmelCase__ ) return largest_divisor, torch.div(lowerCAmelCase__ , lowerCAmelCase__ , rounding_mode='floor' ) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction='inputs') lowerCAmelCase__ = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCAmelCase__ = {0: 'batch', 1: 'sequence'} return common_inputs @property def __snake_case ( self : Optional[int]): '''simple docstring''' return self._config.num_heads def __snake_case ( self : Optional[int] , lowercase__ : PreTrainedTokenizer , lowercase__ : int = -1 , lowercase__ : int = -1 , lowercase__ : bool = False , lowercase__ : Optional[TensorType] = None , ): '''simple docstring''' lowerCAmelCase__ = super(lowercase__ , self).generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch lowerCAmelCase__ , lowerCAmelCase__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCAmelCase__ = seqlen + 2 lowerCAmelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ = [ (torch.zeros(lowercase__), torch.zeros(lowercase__)) for _ in range(self.num_layers) ] lowerCAmelCase__ = common_inputs['attention_mask'] if self.use_past: lowerCAmelCase__ = ordered_inputs['attention_mask'].dtype lowerCAmelCase__ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__)] , dim=1) return ordered_inputs @property def __snake_case ( self : List[Any]): '''simple docstring''' return 13
119
from __future__ import annotations lowerCAmelCase__ = tuple[int, int, int] lowerCAmelCase__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowerCAmelCase__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- lowerCAmelCase__ = 'EGZWVONAHDCLFQMSIPJBYUKXTR' lowerCAmelCase__ = 'FOBHMDKEXQNRAULPGSJVTYICZW' lowerCAmelCase__ = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- lowerCAmelCase__ = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- lowerCAmelCase__ = 'RMDJXFUWGISLHVTCQNKYPBEZOA' lowerCAmelCase__ = 'SGLCPQWZHKXAREONTFBVIYJUDM' lowerCAmelCase__ = 'HVSICLTYKQUBXDWAJZOMFGPREN' lowerCAmelCase__ = 'RZWQHFMVDBKICJLNTUXAGYPSOE' lowerCAmelCase__ = 'LFKIJODBEGAMQPXVUHYSTCZRWN' lowerCAmelCase__ = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(lowerCAmelCase__ ) )) < 3: lowerCAmelCase__ = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(lowerCAmelCase__ ) # Checks if rotor positions are valid lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rotpos if not 0 < rotorposa <= len(lowerCAmelCase__ ): lowerCAmelCase__ = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): lowerCAmelCase__ = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): lowerCAmelCase__ = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCAmelCase__ ) # Validates string and returns dict lowerCAmelCase__ = _plugboard(lowerCAmelCase__ ) return rotpos, rotsel, pbdict def __lowerCamelCase ( lowerCAmelCase__ ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = F"""Plugboard setting isn't type string ({type(lowerCAmelCase__ )})""" raise TypeError(lowerCAmelCase__ ) elif len(lowerCAmelCase__ ) % 2 != 0: lowerCAmelCase__ = F"""Odd number of symbols ({len(lowerCAmelCase__ )})""" raise Exception(lowerCAmelCase__ ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique lowerCAmelCase__ = set() for i in pbstring: if i not in abc: lowerCAmelCase__ = F"""'{i}' not in list of symbols""" raise Exception(lowerCAmelCase__ ) elif i in tmppbl: lowerCAmelCase__ = F"""Duplicate symbol ({i})""" raise Exception(lowerCAmelCase__ ) else: tmppbl.add(lowerCAmelCase__ ) del tmppbl # Created the dictionary lowerCAmelCase__ = {} for j in range(0 , len(lowerCAmelCase__ ) - 1 , 2 ): lowerCAmelCase__ = pbstring[j + 1] lowerCAmelCase__ = pbstring[j] return pb def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = (rotora, rotora, rotora) , lowerCAmelCase__ = "" , ): lowerCAmelCase__ = text.upper() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _validator( lowerCAmelCase__ , lowerCAmelCase__ , plugb.upper() ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rotor_position lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCAmelCase__ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCAmelCase__ = plugboard[symbol] # rotor ra -------------------------- lowerCAmelCase__ = abc.index(lowerCAmelCase__ ) + rotorposa lowerCAmelCase__ = rotora[index % len(lowerCAmelCase__ )] # rotor rb -------------------------- lowerCAmelCase__ = abc.index(lowerCAmelCase__ ) + rotorposa lowerCAmelCase__ = rotora[index % len(lowerCAmelCase__ )] # rotor rc -------------------------- lowerCAmelCase__ = abc.index(lowerCAmelCase__ ) + rotorposa lowerCAmelCase__ = rotora[index % len(lowerCAmelCase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCAmelCase__ = reflector[symbol] # 2nd rotors lowerCAmelCase__ = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] lowerCAmelCase__ = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] lowerCAmelCase__ = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCAmelCase__ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): lowerCAmelCase__ = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): lowerCAmelCase__ = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): lowerCAmelCase__ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCAmelCase__ ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = 'This is my Python script that emulates the Enigma machine from WWII.' lowerCAmelCase__ = (1, 1, 1) lowerCAmelCase__ = 'pictures' lowerCAmelCase__ = (rotora, rotora, rotora) lowerCAmelCase__ = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
119
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def snake_case( __magic_name__ ) -> List[Any]: '''simple docstring''' lowercase : Tuple = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F"""{test_file} instead.""" ) lowercase : Dict = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) lowercase : str = components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowercase : Dict = '''.'''.join(__magic_name__ ) return test_module_path def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] = get_module_path(__magic_name__ ) lowercase : Tuple = importlib.import_module(__magic_name__ ) return test_module def snake_case( __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] = [] lowercase : Any = get_test_module(__magic_name__ ) for attr in dir(__magic_name__ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__magic_name__ , __magic_name__ ) ) # sort with class names return sorted(__magic_name__ , key=lambda __magic_name__ : x.__name__ ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [] lowercase : List[str] = get_test_module(__magic_name__ ) for attr in dir(__magic_name__ ): lowercase : Optional[int] = getattr(__magic_name__ , __magic_name__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowercase : Any = getattr(__magic_name__ , '''all_model_classes''' , [] ) if len(__magic_name__ ) > 0: test_classes.append(__magic_name__ ) # sort with class names return sorted(__magic_name__ , key=lambda __magic_name__ : x.__name__ ) def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] = get_test_classes(__magic_name__ ) lowercase : List[str] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__magic_name__ , key=lambda __magic_name__ : x.__name__ ) def snake_case( __magic_name__ ) -> Any: '''simple docstring''' lowercase : Optional[int] = test_class() if hasattr(__magic_name__ , '''setUp''' ): test.setUp() lowercase : Dict = None if hasattr(__magic_name__ , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowercase : Optional[Any] = test.model_tester.__class__ return model_tester def snake_case( __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[str] = get_test_classes(__magic_name__ ) lowercase : Tuple = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__magic_name__ ) # sort with class names return sorted(__magic_name__ , key=lambda __magic_name__ : x.__name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = get_test_classes_for_model(__magic_name__ , __magic_name__ ) lowercase : Dict = [] for test_class in test_classes: lowercase : Any = get_model_tester_from_test_class(__magic_name__ ) if tester_class is not None: tester_classes.append(__magic_name__ ) # sort with class names return sorted(__magic_name__ , key=lambda __magic_name__ : x.__name__ ) def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[int] = get_test_classes(__magic_name__ ) lowercase : Any = {test_class: get_model_tester_from_test_class(__magic_name__ ) for test_class in test_classes} return test_tester_mapping def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Tuple = get_model_classes(__magic_name__ ) lowercase : int = { model_class: get_test_classes_for_model(__magic_name__ , __magic_name__ ) for model_class in model_classes } return model_test_mapping def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = get_model_classes(__magic_name__ ) lowercase : Tuple = { model_class: get_tester_classes_for_model(__magic_name__ , __magic_name__ ) for model_class in model_classes } return model_to_tester_mapping def snake_case( __magic_name__ ) -> str: '''simple docstring''' if isinstance(__magic_name__ , __magic_name__ ): return o elif isinstance(__magic_name__ , __magic_name__ ): return o.__name__ elif isinstance(__magic_name__ , (list, tuple) ): return [to_json(__magic_name__ ) for x in o] elif isinstance(__magic_name__ , __magic_name__ ): return {to_json(__magic_name__ ): to_json(__magic_name__ ) for k, v in o.items()} else: return o
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
1
'''simple docstring''' from __future__ import annotations def _snake_case ( A , A = None ) -> list[list[str]]: lowerCAmelCase__ = word_bank or [] # create a table lowerCAmelCase__ = len(A ) + 1 lowerCAmelCase__ = [] for _ in range(A ): table.append([] ) # seed value lowerCAmelCase__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(A )] == word: lowerCAmelCase__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(A )]: combination.reverse() return table[len(A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
228
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __UpperCAmelCase = { '''junnyu/roformer_chinese_small''': 1_536, '''junnyu/roformer_chinese_base''': 1_536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } __UpperCAmelCase = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( a__ ): '''simple docstring''' lowercase__ : int = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Tuple = RoFormerTokenizer def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Tuple: super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , lowerCamelCase_ ) != do_lower_case or pre_tok_state.get('''strip_accents''' , lowerCamelCase_ ) != strip_accents ): lowerCAmelCase__ = getattr(lowerCamelCase_ , pre_tok_state.pop('''type''' ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = pre_tok_class(**lowerCamelCase_ ) lowerCAmelCase__ = do_lower_case def __getstate__( self ) -> Any: lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = BertPreTokenizer() return state def __setstate__( self , lowerCamelCase_ ) -> List[Any]: lowerCAmelCase__ = d lowerCAmelCase__ = self.__dict__['''_tokenizer'''].get_vocab() lowerCAmelCase__ = PreTokenizer.custom(JiebaPreTokenizer(lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Union[str, Any]: lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: lowerCAmelCase__ = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=False , **lowerCamelCase_ , ) -> Union[str, Any]: lowerCAmelCase__ = BertPreTokenizer() return super().save_pretrained(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ )
228
1
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __a = datasets.utils.logging.get_logger(__name__) class UpperCAmelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" lowercase = None lowercase = None class UpperCAmelCase_ ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" lowercase = datasets.Audio() lowercase = "audio" lowercase = AudioFolderConfig lowercase = 42 # definition at the bottom of the script lowercase = AudioClassification(audio_column="audio" , label_column="label" ) __a = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] __a = AUDIO_EXTENSIONS
35
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCAmelCase_ ( _lowercase : Dict , _lowercase : str , _lowercase : str , _lowercase : Optional[Any]=1024) -> List[Any]: """simple docstring""" a__ , a__ : Optional[int] = [], [] a__ : Union[str, Any] = list(zip(_lowercase , _lowercase)) a__ , a__ : List[Any] = sorted_examples[0] def is_too_big(_lowercase : Tuple): return tok(_lowercase , return_tensors="""pt""").input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): a__ : Tuple = new_src + """ """ + src a__ : Any = new_tgt + """ """ + tgt if is_too_big(_lowercase) or is_too_big(_lowercase): # cant fit, finalize example finished_src.append(_lowercase) finished_tgt.append(_lowercase) a__ , a__ : List[Any] = src, tgt else: # can fit, keep adding a__ , a__ : Tuple = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_lowercase) finished_tgt.append(_lowercase) return finished_src, finished_tgt def lowerCAmelCase_ ( _lowercase : str , _lowercase : Path , _lowercase : Any , _lowercase : str) -> Tuple: """simple docstring""" a__ : Any = Path(_lowercase) save_path.mkdir(exist_ok=_lowercase) for split in ["train"]: a__ , a__ : List[Any] = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' a__ : Dict = [x.rstrip() for x in Path(_lowercase).open().readlines()] a__ : Optional[Any] = [x.rstrip() for x in Path(_lowercase).open().readlines()] a__ , a__ : List[Any] = pack_examples(_lowercase , _lowercase , _lowercase , _lowercase) print(F'''packed {split} split from {len(_lowercase)} examples -> {len(_lowercase)}.''') Path(save_path / F'''{split}.source''').open("""w""").write("""\n""".join(_lowercase)) Path(save_path / F'''{split}.target''').open("""w""").write("""\n""".join(_lowercase)) for split in ["val", "test"]: a__ , a__ : Any = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(_lowercase , save_path / F'''{split}.source''') shutil.copyfile(_lowercase , save_path / F'''{split}.target''') def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" a__ : Tuple = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=_lowercase , help="""like facebook/bart-large-cnn,t5-base, etc.""") parser.add_argument("""--max_seq_len""" , type=_lowercase , default=128) parser.add_argument("""--data_dir""" , type=_lowercase) parser.add_argument("""--save_path""" , type=_lowercase) a__ : List[Any] = parser.parse_args() a__ : List[Any] = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(_lowercase , Path(args.data_dir) , args.max_seq_len , args.save_path) if __name__ == "__main__": packer_cli()
170
0
'''simple docstring''' import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class a : def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ = True , __magic_name__ = False ) -> str: _a = scheduler _a = optimizers if isinstance(__magic_name__ , (list, tuple) ) else [optimizers] _a = split_batches _a = step_with_optimizer _a = GradientState() def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__magic_name__ , **__magic_name__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__magic_name__ , **__magic_name__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _a = AcceleratorState().num_processes for _ in range(__magic_name__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__magic_name__ , **__magic_name__ ) else: self.scheduler.step(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.scheduler.get_last_lr() def __UpperCAmelCase ( self ) -> Any: return self.scheduler.state_dict() def __UpperCAmelCase ( self , __magic_name__ ) -> Any: self.scheduler.load_state_dict(__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: return self.scheduler.get_lr() def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[str]: return self.scheduler.print_lr(*__magic_name__ , **__magic_name__ )
363
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable a_ : List[Any] = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
104
0
def __lowerCAmelCase ( a__ , a__ , a__ ) -> int: def count_of_possible_combinations(a__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> int: def count_of_possible_combinations_with_dp_array( a__ , a__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __a = sum( count_of_possible_combinations_with_dp_array(target - item , a__ ) for item in array ) __a = answer return answer __a = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> int: __a = [0] * (target + 1) __a = 1 for i in range(1 , target + 1 ): for j in range(a__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() A : Dict = 3 A : Any = 5 A : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
6
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ , lowercase__ : Optional[int] = [], [] while len(UpperCAmelCase ) > 1: lowercase__ , lowercase__ : List[str] = min(UpperCAmelCase ), max(UpperCAmelCase ) start.append(UpperCAmelCase ) end.append(UpperCAmelCase ) collection.remove(UpperCAmelCase ) collection.remove(UpperCAmelCase ) end.reverse() return start + collection + end if __name__ == "__main__": __a: Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() __a: Tuple = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
198
0
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __a ( lowerCAmelCase__ ): def __init__( self , a__ , a__ , a__ = None , a__ = None , a__ = False , **a__ , ): super().__init__(features=a__ , cache_dir=a__ , keep_in_memory=a__ , **a__ ) _lowerCamelCase = Sql( cache_dir=a__ , features=a__ , sql=a__ , con=a__ , **a__ , ) def snake_case_ ( self ): _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None self.builder.download_and_prepare( download_config=a__ , download_mode=a__ , verification_mode=a__ , base_path=a__ , ) # Build dataset for splits _lowerCamelCase = self.builder.as_dataset( split='train' , verification_mode=a__ , in_memory=self.keep_in_memory ) return dataset class __a : def __init__( self , a__ , a__ , a__ , a__ = None , a__ = None , **a__ , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) _lowerCamelCase = dataset _lowerCamelCase = name _lowerCamelCase = con _lowerCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCamelCase = num_proc _lowerCamelCase = to_sql_kwargs def snake_case_ ( self ): _lowerCamelCase = self.to_sql_kwargs.pop('sql' , a__ ) _lowerCamelCase = self.to_sql_kwargs.pop('con' , a__ ) _lowerCamelCase = self.to_sql_kwargs.pop('index' , a__ ) _lowerCamelCase = self._write(index=a__ , **self.to_sql_kwargs ) return written def snake_case_ ( self , a__ ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = args _lowerCamelCase = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _lowerCamelCase = query_table( table=self.dataset.data , key=slice(a__ , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowerCamelCase = batch.to_pandas() _lowerCamelCase = df.to_sql(self.name , self.con , index=a__ , **a__ ) return num_rows or len(a__ ) def snake_case_ ( self , a__ , **a__ ): _lowerCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _lowerCamelCase , _lowerCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a__ , a__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
80
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A_ : str =logging.get_logger(__name__) A_ : int =OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) A_ : Optional[int] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> Any: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowerCamelCase = model_type_to_module_name(snake_case ) _lowerCamelCase = importlib.import_module(f'.{module_name}' , 'transformers.models' ) try: return getattr(snake_case , snake_case ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case , '__name__' , snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowerCamelCase = importlib.import_module('transformers' ) if hasattr(snake_case , snake_case ): return getattr(snake_case , snake_case ) return None def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, os.PathLike] , snake_case : Optional[Union[str, os.PathLike]] = None , snake_case : bool = False , snake_case : bool = False , snake_case : Optional[Dict[str, str]] = None , snake_case : Optional[Union[bool, str]] = None , snake_case : Optional[str] = None , snake_case : bool = False , **snake_case : List[str] , )-> Optional[int]: _lowerCamelCase = get_file_from_repo( snake_case , snake_case , cache_dir=snake_case , force_download=snake_case , resume_download=snake_case , proxies=snake_case , use_auth_token=snake_case , revision=snake_case , local_files_only=snake_case , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(snake_case , encoding='utf-8' ) as reader: return json.load(snake_case ) class __a : def __init__( self ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(a__ ) def snake_case_ ( cls , a__ , **a__ ): _lowerCamelCase = kwargs.pop('config' , a__ ) _lowerCamelCase = kwargs.pop('trust_remote_code' , a__ ) _lowerCamelCase = True _lowerCamelCase , _lowerCamelCase = ImageProcessingMixin.get_image_processor_dict(a__ , **a__ ) _lowerCamelCase = config_dict.get('image_processor_type' , a__ ) _lowerCamelCase = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): _lowerCamelCase = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowerCamelCase = config_dict.pop('feature_extractor_type' , a__ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _lowerCamelCase = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): _lowerCamelCase = config_dict['auto_map']['AutoFeatureExtractor'] _lowerCamelCase = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a__ , a__ ): _lowerCamelCase = AutoConfig.from_pretrained(a__ , **a__ ) # It could be in `config.image_processor_type`` _lowerCamelCase = getattr(a__ , 'image_processor_type' , a__ ) if hasattr(a__ , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: _lowerCamelCase = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _lowerCamelCase = image_processor_class_from_name(a__ ) _lowerCamelCase = image_processor_auto_map is not None _lowerCamelCase = image_processor_class is not None or type(a__ ) in IMAGE_PROCESSOR_MAPPING _lowerCamelCase = resolve_trust_remote_code( a__ , a__ , a__ , a__ ) if has_remote_code and trust_remote_code: _lowerCamelCase = get_class_from_dynamic_module( a__ , a__ , **a__ ) _lowerCamelCase = kwargs.pop('code_revision' , a__ ) if os.path.isdir(a__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a__ , **a__ ) elif image_processor_class is not None: return image_processor_class.from_dict(a__ , **a__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a__ ) in IMAGE_PROCESSOR_MAPPING: _lowerCamelCase = IMAGE_PROCESSOR_MAPPING[type(a__ )] return image_processor_class.from_dict(a__ , **a__ ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def snake_case_ ( a__ , a__ ): IMAGE_PROCESSOR_MAPPING.register(a__ , a__ )
80
1
def _UpperCamelCase ( lowercase__ = 1000 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = 1, 1 __SCREAMING_SNAKE_CASE : List[str] = [] for i in range(1 , n + 1 ): __SCREAMING_SNAKE_CASE : Optional[Any] = prev_numerator + 2 * prev_denominator __SCREAMING_SNAKE_CASE : List[Any] = prev_numerator + prev_denominator if len(str(lowercase__ ) ) > len(str(lowercase__ ) ): result.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = numerator __SCREAMING_SNAKE_CASE : List[Any] = denominator return len(lowercase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
9
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCamelCase__ = get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=0 ): os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCAmelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCAmelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCAmelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving model to {ckpt_dir}""" ) __lowerCAmelCase = {"model": state_dict} dist_cp.save_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(SCREAMING_SNAKE_CASE_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __lowerCAmelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading model from {input_model_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCAmelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading model from {input_model_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCAmelCase = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) __lowerCAmelCase = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , planner=DefaultLoadPlanner() , ) __lowerCAmelCase = state_dict["model"] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str=0 ): os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCAmelCase = FSDP.optim_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCAmelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCAmelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCAmelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: __lowerCAmelCase = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) __lowerCAmelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , ) __lowerCAmelCase = optim_state["optimizer"] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) __lowerCAmelCase = FSDP.optim_state_dict_to_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) optimizer.load_state_dict(SCREAMING_SNAKE_CASE_ )
92
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'visual_bert' def __init__( self : int , lowerCAmelCase : Optional[int]=3_0522 , lowerCAmelCase : str=768 , lowerCAmelCase : Dict=512 , lowerCAmelCase : Dict=12 , lowerCAmelCase : Dict=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : int=512 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : Optional[int]=1e-12 , lowerCAmelCase : int=False , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Optional[int]=1 , lowerCAmelCase : str=0 , lowerCAmelCase : Optional[int]=2 , **lowerCAmelCase : Dict , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = visual_embedding_dim lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = bypass_transformer lowerCAmelCase = special_visual_initialize
155
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
155
1
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _snake_case ( lowerCAmelCase__ ): def __init__( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : str=None , **UpperCAmelCase : Any ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[str] = eval_examples __lowerCamelCase : Dict = post_process_function def lowerCamelCase__ ( self : str , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : str=None , UpperCAmelCase : str = "eval" ): __lowerCamelCase : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset __lowerCamelCase : Optional[int] = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowerCamelCase : int = self.compute_metrics __lowerCamelCase : Any = None __lowerCamelCase : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowerCamelCase : Dict = time.time() try: __lowerCamelCase : List[Any] = eval_loop( _SCREAMING_SNAKE_CASE , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , metric_key_prefix=_SCREAMING_SNAKE_CASE , ) finally: __lowerCamelCase : str = compute_metrics __lowerCamelCase : List[str] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowerCamelCase : List[str] = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions ) __lowerCamelCase : Optional[Any] = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __lowerCamelCase : str = metrics.pop(_SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) else: __lowerCamelCase : Tuple = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_SCREAMING_SNAKE_CASE ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowerCamelCase : Tuple = self.callback_handler.on_evaluate(self.args , self.state , self.control , _SCREAMING_SNAKE_CASE ) return metrics def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int] = "test" ): __lowerCamelCase : Optional[int] = self.get_test_dataloader(_SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. __lowerCamelCase : List[Any] = self.compute_metrics __lowerCamelCase : List[Any] = None __lowerCamelCase : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowerCamelCase : str = time.time() try: __lowerCamelCase : Optional[Any] = eval_loop( _SCREAMING_SNAKE_CASE , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , metric_key_prefix=_SCREAMING_SNAKE_CASE , ) finally: __lowerCamelCase : str = compute_metrics __lowerCamelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowerCamelCase : Optional[Any] = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions , "predict" ) __lowerCamelCase : Tuple = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __lowerCamelCase : List[Any] = metrics.pop(_SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_SCREAMING_SNAKE_CASE )
355
"""simple docstring""" def lowercase_ ( _lowerCamelCase: int ) -> int: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Input value must be an 'int' type" ) __lowerCamelCase : Dict = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
64
0
def __A ( __lowerCAmelCase )-> int: """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) _UpperCAmelCase = 0 _UpperCAmelCase = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: _UpperCAmelCase = [int(__lowerCAmelCase ) for i in num_string] _UpperCAmelCase = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] _UpperCAmelCase = str(__lowerCAmelCase ) steps += 1 return steps def __A ( __lowerCAmelCase )-> int: """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) _UpperCAmelCase = 0 _UpperCAmelCase = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: _UpperCAmelCase = [int(__lowerCAmelCase ) for i in num_string] _UpperCAmelCase = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] _UpperCAmelCase = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
39
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def UpperCAmelCase_ (self ): UpperCamelCase__ = 10 UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps[0] UpperCamelCase__ = scheduler.timesteps[1] UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ (self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [1_06, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 1, 0] UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
244
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
343
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
1
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> int: # Load checkpoint __lowerCamelCase : str = torch.load(_lowerCAmelCase ,map_location='cpu' ) __lowerCamelCase : Union[str, Any] = chkpt['model'] # We have the base model one level deeper than the original XLM repository __lowerCamelCase : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowerCamelCase : Optional[Any] = v else: __lowerCamelCase : Any = v __lowerCamelCase : int = chkpt['params'] __lowerCamelCase : List[str] = {n: v for n, v in config.items() if not isinstance(_lowerCAmelCase ,(torch.FloatTensor, numpy.ndarray) )} __lowerCamelCase : List[Any] = chkpt['dico_word2id'] __lowerCamelCase : str = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' ,'' ): i for s, i in vocab.items()} # Save pytorch-model __lowerCamelCase : List[str] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __lowerCamelCase : List[str] = pytorch_dump_folder_path + '/' + CONFIG_NAME __lowerCamelCase : int = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(_lowerCAmelCase ,_lowerCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(_lowerCAmelCase ,indent=2 ) + '\n' ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(_lowerCAmelCase ,indent=2 ) + '\n' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
208
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ ="""xlm-roberta""" def __init__( self : Any , _a : Optional[Any]=3_0522 , _a : Optional[Any]=768 , _a : int=12 , _a : Tuple=12 , _a : str=3072 , _a : List[Any]="gelu" , _a : int=0.1 , _a : Optional[int]=0.1 , _a : Optional[int]=512 , _a : List[Any]=2 , _a : Optional[Any]=0.02 , _a : str=1e-12 , _a : str=1 , _a : str=0 , _a : Optional[Any]=2 , _a : Optional[int]="absolute" , _a : int=True , _a : Tuple=None , **_a : Any , ) -> Dict: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) __lowerCamelCase : int = vocab_size __lowerCamelCase : Union[str, Any] = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : Optional[int] = num_attention_heads __lowerCamelCase : List[str] = hidden_act __lowerCamelCase : Any = intermediate_size __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : List[Any] = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : Tuple = type_vocab_size __lowerCamelCase : Optional[int] = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : str = position_embedding_type __lowerCamelCase : List[Any] = use_cache __lowerCamelCase : int = classifier_dropout class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def _lowercase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
208
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase: Union[str, Any] = logging.get_logger(__name__) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] = b.T lowercase : str = np.sum(np.square(_UpperCAmelCase ) , axis=1 ) lowercase : Union[str, Any] = np.sum(np.square(_UpperCAmelCase ) , axis=0 ) lowercase : int = np.matmul(_UpperCAmelCase , _UpperCAmelCase ) lowercase : str = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' lowercase : Any = x.reshape(-1 , 3 ) lowercase : List[Any] = squared_euclidean_distance(_UpperCAmelCase , _UpperCAmelCase ) return np.argmin(_UpperCAmelCase , axis=1 ) class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = ['pixel_values'] def __init__( self : Optional[int], lowerCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None, lowerCAmelCase : bool = True, lowerCAmelCase : Dict[str, int] = None, lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR, lowerCAmelCase : bool = True, lowerCAmelCase : bool = True, **lowerCAmelCase : Dict, ) -> None: super().__init__(**lowerCAmelCase ) lowercase : Dict = size if size is not None else {'height': 256, 'width': 256} lowercase : int = get_size_dict(lowerCAmelCase ) lowercase : Optional[Any] = np.array(lowerCAmelCase ) if clusters is not None else None lowercase : Optional[int] = do_resize lowercase : int = size lowercase : Optional[Any] = resample lowercase : str = do_normalize lowercase : str = do_color_quantize def lowercase ( self : Any, lowerCAmelCase : np.ndarray, lowerCAmelCase : Dict[str, int], lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR, lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : Dict, ) -> np.ndarray: lowercase : Dict = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowerCAmelCase, size=(size['height'], size['width']), resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Optional[int], lowerCAmelCase : np.ndarray, lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: lowercase : str = rescale(image=lowerCAmelCase, scale=1 / 127.5, data_format=lowerCAmelCase ) lowercase : Tuple = image - 1 return image def lowercase ( self : int, lowerCAmelCase : ImageInput, lowerCAmelCase : bool = None, lowerCAmelCase : Dict[str, int] = None, lowerCAmelCase : PILImageResampling = None, lowerCAmelCase : bool = None, lowerCAmelCase : Optional[bool] = None, lowerCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None, lowerCAmelCase : Optional[Union[str, TensorType]] = None, lowerCAmelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST, **lowerCAmelCase : Tuple, ) -> PIL.Image.Image: lowercase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowercase : str = size if size is not None else self.size lowercase : Tuple = get_size_dict(lowerCAmelCase ) lowercase : int = resample if resample is not None else self.resample lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : int = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowercase : Dict = clusters if clusters is not None else self.clusters lowercase : List[str] = np.array(lowerCAmelCase ) lowercase : Any = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = [to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: lowercase : str = [self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images] if do_normalize: lowercase : int = [self.normalize(image=lowerCAmelCase ) for image in images] if do_color_quantize: lowercase : List[Any] = [to_channel_dimension_format(lowerCAmelCase, ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowercase : Optional[Any] = np.array(lowerCAmelCase ) lowercase : Optional[Any] = color_quantize(lowerCAmelCase, lowerCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) lowercase : List[str] = images.shape[0] lowercase : str = images.reshape(lowerCAmelCase, -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. lowercase : Tuple = list(lowerCAmelCase ) else: lowercase : str = [to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowercase : Dict = {'input_ids': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
53
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _UpperCamelCase: Any = logging.get_logger(__name__) class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = ['pixel_values'] def __init__( self : Tuple, lowerCAmelCase : bool = True, lowerCAmelCase : Union[int, float] = 1 / 255, lowerCAmelCase : bool = True, lowerCAmelCase : int = 8, **lowerCAmelCase : Optional[int], ) -> None: super().__init__(**lowerCAmelCase ) lowercase : Dict = do_rescale lowercase : Tuple = rescale_factor lowercase : List[str] = do_pad lowercase : int = pad_size def lowercase ( self : List[Any], lowerCAmelCase : np.ndarray, lowerCAmelCase : float, lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : int ) -> np.ndarray: return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Union[str, Any], lowerCAmelCase : np.ndarray, lowerCAmelCase : int, lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None ) -> List[Any]: lowercase , lowercase : Tuple = get_image_size(lowerCAmelCase ) lowercase : Optional[Any] = (old_height // size + 1) * size - old_height lowercase : Dict = (old_width // size + 1) * size - old_width return pad(lowerCAmelCase, ((0, pad_height), (0, pad_width)), mode='symmetric', data_format=lowerCAmelCase ) def lowercase ( self : Any, lowerCAmelCase : ImageInput, lowerCAmelCase : Optional[bool] = None, lowerCAmelCase : Optional[float] = None, lowerCAmelCase : Optional[bool] = None, lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[Union[str, TensorType]] = None, lowerCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST, **lowerCAmelCase : Any, ) -> List[Any]: lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Any = do_pad if do_pad is not None else self.do_pad lowercase : int = pad_size if pad_size is not None else self.pad_size lowercase : Tuple = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. lowercase : Dict = [to_numpy_array(lowerCAmelCase ) for image in images] if do_rescale: lowercase : Optional[int] = [self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images] if do_pad: lowercase : List[str] = [self.pad(lowerCAmelCase, size=lowerCAmelCase ) for image in images] lowercase : Optional[int] = [to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowercase : Tuple = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
53
1
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm __a: Optional[int] = 20_48 __a: Union[str, Any] = 40_96 __a: List[Any] = 42 __a: List[Any] = os.environ.pop("""PROCESS_TRAIN""", """false""") __a: Optional[Any] = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def __UpperCamelCase ( UpperCAmelCase ): def choose_first(UpperCAmelCase , UpperCAmelCase=False ): assert isinstance(UpperCAmelCase , UpperCAmelCase ) if len(UpperCAmelCase ) == 1: lowercase__ : str = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowercase__ : List[str] = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a lowercase__ : str = {'''id''': example['''id''']} lowercase__ : Any = example['''annotations'''] lowercase__ : List[str] = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: lowercase__ : int = ['''yes'''] if 1 in yes_no_answer else ['''no'''] lowercase__ : Dict = [] lowercase__ : str = [] lowercase__ : Tuple = ['''<cls>'''] else: lowercase__ : Tuple = ['''short'''] lowercase__ : Any = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available lowercase__ : int = ['''long'''] lowercase__ : List[str] = choose_first(annotation['''long_answer'''] , is_long_answer=UpperCAmelCase ) lowercase__ : Optional[int] = [] answer.update(UpperCAmelCase ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: lowercase__ : Optional[Any] = True else: lowercase__ : Optional[int] = False lowercase__ : List[Any] = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , UpperCAmelCase ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ): lowercase__ : Optional[int] = _get_single_answer(UpperCAmelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowercase__ : Any = example['''document''']['''tokens'''] lowercase__ : List[Any] = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(UpperCAmelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowercase__ : Any = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 lowercase__ : List[str] = example['''document''']['''tokens'''] lowercase__ : Optional[int] = answer['''start_token'''] lowercase__ : Optional[int] = answer['''end_token'''] lowercase__ : Any = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowercase__ : Union[str, Any] = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: lowercase__ : Any = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] lowercase__ : Any = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] lowercase__ : str = ''' '''.join([old[i] for i in range(len(UpperCAmelCase ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , UpperCAmelCase , end='''\n''' ) print('''Old:''' , UpperCAmelCase , end='''\n\n''' ) return { "context": " ".join(UpperCAmelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=2048 , UpperCAmelCase=4096 , UpperCAmelCase=True ): # overlap will be of doc_stride - q_len lowercase__ : Tuple = get_context_and_ans(UpperCAmelCase , assertion=UpperCAmelCase ) lowercase__ : List[str] = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowercase__ : Optional[Any] = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids lowercase__ : Any = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowercase__ : List[Any] = [] lowercase__ : Any = [] lowercase__ : int = input_ids[:q_len] lowercase__ : Any = range(UpperCAmelCase , len(UpperCAmelCase ) , max_length - doc_stride ) for i in doc_start_indices: lowercase__ : Optional[Any] = i + max_length - q_len lowercase__ : Dict = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCAmelCase ), "end_token": [-100] * len(UpperCAmelCase ), "category": category, }, } lowercase__ : Optional[Any] = out['''context'''].split() lowercase__ : List[Any] = splitted_context[answer['''end_token''']] lowercase__ : int = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=UpperCAmelCase , ).input_ids ) lowercase__ : List[Any] = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=UpperCAmelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowercase__ : int = len(tokenizer(UpperCAmelCase , add_special_tokens=UpperCAmelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowercase__ : List[Any] = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive lowercase__ : Tuple = answer['''start_token'''] lowercase__ : List[Any] = answer['''end_token'''] if assertion: lowercase__ : Union[str, Any] = tokenizer.decode(UpperCAmelCase ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , UpperCAmelCase , end='''\n\n''' ) if len(UpperCAmelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowercase__ : List[str] = input_ids[:q_len] lowercase__ : Tuple = range(UpperCAmelCase , len(UpperCAmelCase ) , max_length - doc_stride ) lowercase__ : List[str] = [] lowercase__ : Dict = [] lowercase__ : List[Any] = [] lowercase__ : List[Any] = [] # null, yes, no, long, short for i in doc_start_indices: lowercase__ : Optional[int] = i + max_length - q_len lowercase__ : Tuple = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowercase__ : Optional[int] = start_token - i + q_len lowercase__ : Any = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: lowercase__ : Any = -100 lowercase__ : List[str] = -100 answers_category.append('''null''' ) lowercase__ : Dict = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCAmelCase ) answers_end_token.append(UpperCAmelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(UpperCAmelCase ) ) print('''Old:''' , tokenizer.decode(UpperCAmelCase ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=2048 , UpperCAmelCase=4096 , UpperCAmelCase=False ): lowercase__ : Dict = get_strided_contexts_and_ans( UpperCAmelCase , UpperCAmelCase , doc_stride=UpperCAmelCase , max_length=UpperCAmelCase , assertion=UpperCAmelCase , ) return example def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): with jsonlines.open(UpperCAmelCase , '''a''' ) as writer: for example in tqdm(UpperCAmelCase , total=len(UpperCAmelCase ) , desc='''Saving samples ... ''' ): lowercase__ : Union[str, Any] = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __a: Optional[Any] = load_dataset("""natural_questions""") __a: Optional[int] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") __a: int = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] __a: Tuple = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } __a: str = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __a: int = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) __a: int = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
198
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a: List[str] = logging.get_logger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["pixel_values"] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , **__lowerCAmelCase , ) -> None: super().__init__(**__lowerCAmelCase ) lowercase__ : Optional[int] = size if size is not None else {'''height''': 384, '''width''': 384} lowercase__ : Optional[Any] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase__ : Dict = do_resize lowercase__ : int = size lowercase__ : int = resample lowercase__ : Tuple = do_rescale lowercase__ : int = rescale_factor lowercase__ : int = do_normalize lowercase__ : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Tuple = do_convert_rgb def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: lowercase__ : Union[str, Any] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) lowercase__ : Any = (size['''height'''], size['''width''']) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> str: return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ) -> PIL.Image.Image: lowercase__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowercase__ : Any = resample if resample is not None else self.resample lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Dict = image_mean if image_mean is not None else self.image_mean lowercase__ : Dict = image_std if image_std is not None else self.image_std lowercase__ : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase__ : str = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : Optional[Any] = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase__ : Any = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: lowercase__ : Tuple = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_rescale: lowercase__ : List[str] = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: lowercase__ : Tuple = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] lowercase__ : List[str] = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] lowercase__ : Optional[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowerCAmelCase ) return encoded_outputs
198
1
from statistics import mean import numpy as np def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> list: lowerCAmelCase_ = 0 # Number of processes finished lowerCAmelCase_ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowerCAmelCase_ = [0] * no_of_process # List to include calculation results lowerCAmelCase_ = [0] * no_of_process # Sort by arrival time. lowerCAmelCase_ = [burst_time[i] for i in np.argsort(a_ )] lowerCAmelCase_ = [process_name[i] for i in np.argsort(a_ )] arrival_time.sort() while no_of_process > finished_process_count: lowerCAmelCase_ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowerCAmelCase_ = arrival_time[i] lowerCAmelCase_ = 0 # Index showing the location of the process being performed lowerCAmelCase_ = 0 # Saves the current response ratio. lowerCAmelCase_ = 0 for i in range(0 , a_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowerCAmelCase_ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowerCAmelCase_ = temp lowerCAmelCase_ = i # Calculate the turn around time lowerCAmelCase_ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowerCAmelCase_ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> list: lowerCAmelCase_ = [0] * no_of_process for i in range(0 , a_ ): lowerCAmelCase_ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCamelCase_ = 5 lowerCamelCase_ = ["""A""", """B""", """C""", """D""", """E"""] lowerCamelCase_ = [1, 2, 3, 4, 5] lowerCamelCase_ = [1, 2, 3, 4, 5] lowerCamelCase_ = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCamelCase_ = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
14
import baseaa def lowerCamelCase ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase ( a_ ) -> str: return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase_ = """Hello World!""" lowerCamelCase_ = baseaa_encode(test) print(encoded) lowerCamelCase_ = baseaa_decode(encoded) print(decoded)
14
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Any = logging.get_logger(__name__) A_ :int = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[int] ="""vit_msn""" def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-06 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__=3 , lowerCamelCase__=True , **lowerCamelCase__ , ): """simple docstring""" super().__init__(**lowerCamelCase__ ) __UpperCamelCase : int =hidden_size __UpperCamelCase : List[Any] =num_hidden_layers __UpperCamelCase : Union[str, Any] =num_attention_heads __UpperCamelCase : List[str] =intermediate_size __UpperCamelCase : Union[str, Any] =hidden_act __UpperCamelCase : str =hidden_dropout_prob __UpperCamelCase : Union[str, Any] =attention_probs_dropout_prob __UpperCamelCase : Union[str, Any] =initializer_range __UpperCamelCase : Tuple =layer_norm_eps __UpperCamelCase : Optional[Any] =image_size __UpperCamelCase : Optional[int] =patch_size __UpperCamelCase : Any =num_channels __UpperCamelCase : str =qkv_bias
71
A_ :str = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
71
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: UpperCamelCase__ : List[str] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def SCREAMING_SNAKE_CASE ( ) -> str: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
196
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ) -> None: if start is None: UpperCamelCase__ : Union[str, Any] = 0 if end is None: UpperCamelCase__ : List[Any] = len(__lowerCAmelCase ) - 1 if start >= end: return UpperCamelCase__ : Union[str, Any] = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: UpperCamelCase__ , UpperCamelCase__ : Optional[int] = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
196
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Dict = x UpperCAmelCase__ : int = y for step in range(A__ ): # noqa: B007 UpperCAmelCase__ : Union[str, Any] = a * a - b * b + x UpperCAmelCase__ : Tuple = 2 * a * b + y UpperCAmelCase__ : Any = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( UpperCamelCase__ ): if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def _UpperCamelCase ( UpperCamelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(A__ , 1 , 1 ) ) def _UpperCamelCase ( UpperCamelCase__ = 8_0_0 , UpperCamelCase__ = 6_0_0 , UpperCamelCase__ = -0.6 , UpperCamelCase__ = 0 , UpperCamelCase__ = 3.2 , UpperCamelCase__ = 5_0 , UpperCamelCase__ = True , ): UpperCAmelCase__ : str = Image.new("""RGB""" , (image_width, image_height) ) UpperCAmelCase__ : List[str] = img.load() # loop through the image-coordinates for image_x in range(A__ ): for image_y in range(A__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase__ : str = figure_width / image_width * image_height UpperCAmelCase__ : Any = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase__ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase__ : int = get_distance(A__ , A__ , A__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase__ : List[Any] = get_color_coded_rgb(A__ ) else: UpperCAmelCase__ : Any = get_black_and_white_rgb(A__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __A =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
163
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase__ = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
0
"""simple docstring""" from typing import Any class __snake_case : def __init__( self , lowercase) -> List[Any]: '''simple docstring''' a__: Tuple = data a__: Optional[int] = None def __repr__( self) -> str: '''simple docstring''' return f'Node({self.data})' class __snake_case : def __init__( self) -> List[str]: '''simple docstring''' a__: List[Any] = None def __iter__( self) -> Any: '''simple docstring''' a__: Any = self.head while node: yield node.data a__: Optional[Any] = node.next def __len__( self) -> int: '''simple docstring''' return sum(1 for _ in self) def __repr__( self) -> str: '''simple docstring''' return "->".join([str(lowercase) for item in self]) def __getitem__( self , lowercase) -> Any: '''simple docstring''' if not 0 <= index < len(self): raise ValueError('list index out of range.') for i, node in enumerate(self): if i == index: return node return None def __setitem__( self , lowercase , lowercase) -> None: '''simple docstring''' if not 0 <= index < len(self): raise ValueError('list index out of range.') a__: Union[str, Any] = self.head for _ in range(lowercase): a__: Optional[int] = current.next a__: int = data def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' self.insert_nth(len(self) , lowercase) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' self.insert_nth(0 , lowercase) def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' if not 0 <= index <= len(self): raise IndexError('list index out of range') a__: Optional[int] = Node(lowercase) if self.head is None: a__: str = new_node elif index == 0: a__: Dict = self.head # link new_node to head a__: Union[str, Any] = new_node else: a__: Dict = self.head for _ in range(index - 1): a__: str = temp.next a__: Tuple = temp.next a__: Optional[int] = new_node def lowerCamelCase_ ( self) -> None: # print every node data '''simple docstring''' print(self) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' return self.delete_nth(0) def lowerCamelCase_ ( self) -> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self) - 1) def lowerCamelCase_ ( self , lowercase = 0) -> Any: '''simple docstring''' if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError('List index out of range.') a__: str = self.head # default first node if index == 0: a__: Optional[Any] = self.head.next else: a__: Optional[Any] = self.head for _ in range(index - 1): a__: int = temp.next a__: Union[str, Any] = temp.next a__: Optional[int] = temp.next.next return delete_node.data def lowerCamelCase_ ( self) -> bool: '''simple docstring''' return self.head is None def lowerCamelCase_ ( self) -> None: '''simple docstring''' a__: Optional[int] = None a__: List[Any] = self.head while current: # Store the current node's next node. a__: Tuple = current.next # Make the current node's next point backwards a__: Union[str, Any] = prev # Make the previous node be the current node a__: Any = current # Make the current node the next node (to progress iteration) a__: List[str] = next_node # Return prev in order to put the head at the end a__: Any = prev def __a ( ) ->None: a__: Optional[int] = LinkedList() assert linked_list.is_empty() is True assert str(_SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(_SCREAMING_SNAKE_CASE , i + 1 ) assert str(_SCREAMING_SNAKE_CASE ) == "->".join(str(_SCREAMING_SNAKE_CASE ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_SCREAMING_SNAKE_CASE ) == "->".join(str(_SCREAMING_SNAKE_CASE ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_SCREAMING_SNAKE_CASE ) == 9 assert str(_SCREAMING_SNAKE_CASE ) == "->".join(str(_SCREAMING_SNAKE_CASE ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): a__: Dict = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_SCREAMING_SNAKE_CASE ) == "->".join(str(_SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def __a ( ) ->None: a__: int = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -192.55_555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] a__: List[Any] = LinkedList() for i in test_input: linked_list.insert_tail(_SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head a__: Union[str, Any] = linked_list.delete_head() assert result == -9 assert ( str(_SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail a__: List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list a__: Optional[Any] = linked_list.delete_nth(10 ) assert result is None assert ( str(_SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_SCREAMING_SNAKE_CASE ) assert ( str(_SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __a ( ) ->Union[str, Any]: from doctest import testmod testmod() a__: Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_SCREAMING_SNAKE_CASE ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) a__: Any = input('Enter New Value: ' ).strip() print('New list:' ) print(_SCREAMING_SNAKE_CASE ) print(F'length of linked_list is : {len(_SCREAMING_SNAKE_CASE )}' ) if __name__ == "__main__": main()
353
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np lowercase__ = re.compile(r'\b(a|an|the)\b', re.UNICODE) lowercase__ = None def __a ( ) ->List[Any]: a__: Dict = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_SCREAMING_SNAKE_CASE , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_SCREAMING_SNAKE_CASE , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__: Optional[Any] = bool(qa['answers']['text'] ) return qid_to_has_ans def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE ): return ARTICLES_REGEX.sub(' ' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE ): a__: Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[int]: if not s: return [] return normalize_answer(_SCREAMING_SNAKE_CASE ).split() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: a__: Any = get_tokens(_SCREAMING_SNAKE_CASE ) a__: Optional[int] = get_tokens(_SCREAMING_SNAKE_CASE ) a__: Optional[int] = collections.Counter(_SCREAMING_SNAKE_CASE ) & collections.Counter(_SCREAMING_SNAKE_CASE ) a__: Tuple = sum(common.values() ) if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a__: Any = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) a__: Optional[int] = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) a__: Dict = (2 * precision * recall) / (precision + recall) return fa def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: a__: Union[str, Any] = {} a__: Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__: Optional[int] = qa['id'] a__: List[Any] = [t for t in qa['answers']['text'] if normalize_answer(_SCREAMING_SNAKE_CASE )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a__: str = [''] if qid not in preds: print(F'Missing prediction for {qid}' ) continue a__: Any = preds[qid] # Take max over all gold answers a__: List[str] = max(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) a__: Optional[int] = max(compute_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) return exact_scores, fa_scores def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: List[str] = {} for qid, s in scores.items(): a__: List[Any] = na_probs[qid] > na_prob_thresh if pred_na: a__: Optional[int] = float(not qid_to_has_ans[qid] ) else: a__: Optional[Any] = s return new_scores def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Tuple: if not qid_list: a__: str = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: a__: Optional[Any] = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: for k in new_eval: a__: List[Any] = new_eval[k] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: plt.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_SCREAMING_SNAKE_CASE ) plt.savefig(_SCREAMING_SNAKE_CASE ) plt.clf() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->List[str]: a__: Optional[int] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) a__: Dict = 0.0 a__: Optional[int] = 1.0 a__: Tuple = 0.0 a__: Tuple = [1.0] a__: Optional[Any] = [0.0] a__: Optional[Any] = 0.0 for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid_to_has_ans[qid]: true_pos += scores[qid] a__: Optional[Any] = true_pos / float(i + 1 ) a__: int = true_pos / float(_SCREAMING_SNAKE_CASE ) if i == len(_SCREAMING_SNAKE_CASE ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_SCREAMING_SNAKE_CASE ) recalls.append(_SCREAMING_SNAKE_CASE ) if out_image: plot_pr_curve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"ap": 100.0 * avg_prec} def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: if out_image_dir and not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) a__: Any = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a__: Optional[Any] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) a__: List[str] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) a__: Optional[Any] = {k: float(_SCREAMING_SNAKE_CASE ) for k, v in qid_to_has_ans.items()} a__: List[Any] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'pr_exact' ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'pr_f1' ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'pr_oracle' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: if not qid_list: return a__: Any = [na_probs[k] for k in qid_list] a__: List[str] = np.ones_like(_SCREAMING_SNAKE_CASE ) / float(len(_SCREAMING_SNAKE_CASE ) ) plt.hist(_SCREAMING_SNAKE_CASE , weights=_SCREAMING_SNAKE_CASE , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(_SCREAMING_SNAKE_CASE , F'na_prob_hist_{name}.png' ) ) plt.clf() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__: str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a__: List[Any] = num_no_ans a__: Union[str, Any] = cur_score a__: Optional[Any] = 0.0 a__: str = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid not in scores: continue if qid_to_has_ans[qid]: a__: Tuple = scores[qid] else: if preds[qid]: a__: Optional[Any] = -1 else: a__: Optional[int] = 0 cur_score += diff if cur_score > best_score: a__: Dict = cur_score a__: Optional[int] = na_probs[qid] return 100.0 * best_score / len(_SCREAMING_SNAKE_CASE ), best_thresh def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__ , a__: str = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__ , a__: Optional[int] = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: List[Any] = best_exact a__: Dict = exact_thresh a__: Optional[int] = best_fa a__: str = fa_thresh def __a ( ) ->int: with open(OPTS.data_file ) as f: a__: Tuple = json.load(_SCREAMING_SNAKE_CASE ) a__: Union[str, Any] = dataset_json['data'] with open(OPTS.pred_file ) as f: a__: Dict = json.load(_SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a__: Dict = json.load(_SCREAMING_SNAKE_CASE ) else: a__: Optional[Any] = {k: 0.0 for k in preds} a__: List[Any] = make_qid_to_has_ans(_SCREAMING_SNAKE_CASE ) # maps qid to True/False a__: Optional[int] = [k for k, v in qid_to_has_ans.items() if v] a__: Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a__ , a__: Optional[Any] = get_raw_scores(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Any = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) a__: Dict = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) a__: str = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if has_ans_qids: a__: List[str] = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'HasAns' ) if no_ans_qids: a__: Optional[Any] = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: print(json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) if __name__ == "__main__": lowercase__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
203
0
import os from distutils.util import strtobool def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Tuple ): """simple docstring""" for e in env_keys: SCREAMING_SNAKE_CASE_ : Dict = int(os.environ.get(lowerCAmelCase , -1 ) ) if val >= 0: return val return default def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = os.environ.get(lowerCAmelCase , str(lowerCAmelCase ) ) return strtobool(lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Tuple="no" ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = os.environ.get(lowerCAmelCase , str(lowerCAmelCase ) ) return value
18
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: list ): if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(_lowerCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_lowerCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
112
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowercase_ = logging.get_logger(__name__) lowercase_ = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class _snake_case ( lowercase__): UpperCamelCase__ : int ="""dpt""" def __init__( self : Optional[int], __lowercase : Union[str, Any]=768, __lowercase : int=12, __lowercase : str=12, __lowercase : Union[str, Any]=3072, __lowercase : int="gelu", __lowercase : Dict=0.0, __lowercase : Optional[Any]=0.0, __lowercase : Optional[Any]=0.02, __lowercase : List[str]=1e-1_2, __lowercase : int=384, __lowercase : int=16, __lowercase : Optional[Any]=3, __lowercase : int=False, __lowercase : str=True, __lowercase : List[Any]=[2, 5, 8, 11], __lowercase : List[Any]="project", __lowercase : List[Any]=[4, 2, 1, 0.5], __lowercase : List[str]=[96, 192, 384, 768], __lowercase : Optional[int]=256, __lowercase : Dict=-1, __lowercase : int=False, __lowercase : Union[str, Any]=True, __lowercase : Optional[int]=0.4, __lowercase : str=255, __lowercase : Dict=0.1, __lowercase : List[Any]=[1, 1024, 24, 24], __lowercase : Optional[Any]=[0, 1], __lowercase : Dict=None, **__lowercase : List[Any], ): super().__init__(**__A ) lowercase__ = hidden_size lowercase__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) lowercase__ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } lowercase__ = BitConfig(**__A ) elif isinstance(__A, __A ): logger.info("Initializing the config with a `BiT` backbone." ) lowercase__ = BitConfig(**__A ) elif isinstance(__A, __A ): lowercase__ = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowercase__ = backbone_featmap_shape lowercase__ = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be \'project\' when using `DPT-hybrid` mode." ) else: lowercase__ = None lowercase__ = None lowercase__ = [] lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of [\'ignore\', \'add\', \'project\']" ) lowercase__ = readout_type lowercase__ = reassemble_factors lowercase__ = neck_hidden_sizes lowercase__ = fusion_hidden_size lowercase__ = head_in_index lowercase__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = semantic_loss_ignore_index lowercase__ = semantic_classifier_dropout def A__ ( self : Any ): lowercase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase__ = self.backbone_config.to_dict() lowercase__ = self.__class__.model_type return output
359
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowercase_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] lowercase_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class _snake_case ( lowercase__): UpperCamelCase__ : Optional[int] ="""whisper""" UpperCamelCase__ : Optional[int] =["""past_key_values"""] UpperCamelCase__ : Optional[Any] ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any], __lowercase : List[str]=5_1865, __lowercase : Dict=80, __lowercase : List[Any]=6, __lowercase : Union[str, Any]=4, __lowercase : Tuple=6, __lowercase : Dict=4, __lowercase : List[Any]=1536, __lowercase : Tuple=1536, __lowercase : Any=0.0, __lowercase : List[str]=0.0, __lowercase : List[Any]=5_0257, __lowercase : List[str]=True, __lowercase : str=True, __lowercase : int="gelu", __lowercase : Tuple=256, __lowercase : Tuple=0.0, __lowercase : List[Any]=0.0, __lowercase : Optional[int]=0.0, __lowercase : List[Any]=0.02, __lowercase : Union[str, Any]=False, __lowercase : str=1500, __lowercase : Optional[int]=448, __lowercase : Optional[Any]=5_0256, __lowercase : Tuple=5_0256, __lowercase : Any=5_0256, __lowercase : Union[str, Any]=None, __lowercase : Any=[220, 5_0256], __lowercase : List[Any]=False, __lowercase : int=256, __lowercase : int=False, __lowercase : Tuple=0.05, __lowercase : int=10, __lowercase : Dict=2, __lowercase : List[Any]=0.0, __lowercase : Optional[int]=10, __lowercase : Union[str, Any]=0, __lowercase : Tuple=7, **__lowercase : Union[str, Any], ): lowercase__ = vocab_size lowercase__ = num_mel_bins lowercase__ = d_model lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = encoder_ffn_dim lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase__ = classifier_proj_size lowercase__ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks lowercase__ = median_filter_width super().__init__( pad_token_id=__lowercase, bos_token_id=__lowercase, eos_token_id=__lowercase, is_encoder_decoder=__lowercase, decoder_start_token_id=__lowercase, suppress_tokens=__lowercase, begin_suppress_tokens=__lowercase, **__lowercase, ) class _snake_case ( lowercase__): @property def A__ ( self : str ): lowercase__ = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowercase__ = {0: "batch"} else: lowercase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowercase, direction="inputs" ) return common_inputs def A__ ( self : int, __lowercase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], __lowercase : int = -1, __lowercase : int = -1, __lowercase : bool = False, __lowercase : Optional["TensorType"] = None, __lowercase : int = 2_2050, __lowercase : float = 5.0, __lowercase : int = 220, ): lowercase__ = OrderedDict() lowercase__ = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=__lowercase, framework=__lowercase, sampling_rate=__lowercase, time_duration=__lowercase, frequency=__lowercase, ) lowercase__ = encoder_inputs["input_features"].shape[2] lowercase__ = encoder_sequence_length // 2 if self.use_past else seq_length lowercase__ = super().generate_dummy_inputs( preprocessor.tokenizer, __lowercase, __lowercase, __lowercase, __lowercase ) lowercase__ = encoder_inputs.pop("input_features" ) lowercase__ = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowercase__ = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def A__ ( self : int ): return 1e-3
224
0