code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (UpperCamelCase__ ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
309
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a__: Optional[int] = logging.get_logger(__name__) a__: int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__: Optional[Any] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a__: List[str] = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } a__: Optional[Any] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BertTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=True,__lowerCamelCase="[UNK]",__lowerCamelCase="[SEP]",__lowerCamelCase="[PAD]",__lowerCamelCase="[CLS]",__lowerCamelCase="[MASK]",__lowerCamelCase=True,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__( __lowerCamelCase,tokenizer_file=__lowerCamelCase,do_lower_case=__lowerCamelCase,unk_token=__lowerCamelCase,sep_token=__lowerCamelCase,pad_token=__lowerCamelCase,cls_token=__lowerCamelCase,mask_token=__lowerCamelCase,tokenize_chinese_chars=__lowerCamelCase,strip_accents=__lowerCamelCase,**__lowerCamelCase,) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''',__lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''',__lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''',__lowerCamelCase ) != tokenize_chinese_chars ): A__ = getattr(__lowerCamelCase,normalizer_state.pop('''type''' ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**__lowerCamelCase ) A__ = do_lower_case def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = self._tokenizer.model.save(__lowerCamelCase,name=__lowerCamelCase ) return tuple(__lowerCamelCase )
193
0
"""simple docstring""" import math def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: return math.pow(lowerCamelCase__ , 2 ) - a def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: return 2 * x def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Union[str, Any]: lowercase__: str = 2.0 while start <= a: lowercase__: List[Any] = math.pow(lowerCamelCase__ , 2 ) return start def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = 9_9_9_9 , __UpperCAmelCase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> Union[str, Any]: if a < 0: raise ValueError('''math domain error''' ) lowercase__: Optional[int] = get_initial_point(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ): lowercase__: Any = value lowercase__: int = value - fx(lowerCamelCase__ , lowerCamelCase__ ) / fx_derivative(lowerCamelCase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() # fmt: off lowerCamelCase_ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCamelCase_ = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) lowerCamelCase_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCamelCase_ = {"unk_token": "<unk>"} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowerCamelCase ) ) lowerCamelCase_ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCamelCase_ = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **_lowerCamelCase ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **_lowerCamelCase ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) lowerCamelCase_ = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase_ = self.get_image_processor(do_normalize=_lowerCamelCase ) lowerCamelCase_ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(_lowerCamelCase , return_tensors="np" ) lowerCamelCase_ = processor(images=_lowerCamelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowerCamelCase_ = "lower newer" lowerCamelCase_ = processor(text=_lowerCamelCase , return_tensors="np" ) lowerCamelCase_ = tokenizer(_lowerCamelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowerCamelCase_ = "lower newer" lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = "google/owlvit-base-patch32" lowerCamelCase_ = OwlViTProcessor.from_pretrained(_lowerCamelCase ) lowerCamelCase_ = ["cat", "nasa badge"] lowerCamelCase_ = processor(text=_lowerCamelCase ) lowerCamelCase_ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = "google/owlvit-base-patch32" lowerCamelCase_ = OwlViTProcessor.from_pretrained(_lowerCamelCase ) lowerCamelCase_ = [["cat", "nasa badge"], ["person"]] lowerCamelCase_ = processor(text=_lowerCamelCase ) lowerCamelCase_ = 16 lowerCamelCase_ = len(_lowerCamelCase ) lowerCamelCase_ = max([len(_lowerCamelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = "google/owlvit-base-patch32" lowerCamelCase_ = OwlViTProcessor.from_pretrained(_lowerCamelCase ) lowerCamelCase_ = ["cat", "nasa badge"] lowerCamelCase_ = processor(text=_lowerCamelCase ) lowerCamelCase_ = 16 lowerCamelCase_ = inputs["input_ids"] lowerCamelCase_ = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(images=_lowerCamelCase , query_images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(_lowerCamelCase ) lowerCamelCase_ = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
55
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Optional[int]: _snake_case = checkpoints.load_tax_checkpoint(__lowerCamelCase ) _snake_case = flatten_dict(__lowerCamelCase ) return flax_params def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> Optional[int]: _snake_case = {} _snake_case = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } _snake_case = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _snake_case = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _snake_case = new_key.replace(__lowerCamelCase , __lowerCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _snake_case = new_key.replace(__lowerCamelCase , __lowerCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __lowerCamelCase ) _snake_case = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __lowerCamelCase ) _snake_case = flax_dict[key] _snake_case = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _snake_case = torch.from_numpy(converted_dict[key].T ) else: _snake_case = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=False ) -> int: _snake_case = get_flax_param(__lowerCamelCase ) if not use_large: _snake_case = PixaStructVisionConfig() _snake_case = PixaStructTextConfig() else: _snake_case = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) _snake_case = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) _snake_case = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__lowerCamelCase ) _snake_case = PixaStructForConditionalGeneration(__lowerCamelCase ) _snake_case = rename_and_convert_flax_params(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) _snake_case = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) _snake_case = PixaStructImageProcessor() _snake_case = PixaStructProcessor(image_processor=__lowerCamelCase , tokenizer=__lowerCamelCase ) if use_large: _snake_case = 40_96 _snake_case = True # mkdir if needed os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) print('''Model saved in {}'''.format(__lowerCamelCase ) ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') UpperCAmelCase__ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
288
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE : List[Any] = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class UpperCamelCase ( tr.AbstractTransform ): '''simple docstring''' def __init__( self , UpperCamelCase_ = " " ): lowercase_ :Union[str, Any] = sentence_delimiter def UpperCamelCase ( self , UpperCamelCase_ ): return list(UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :List[str] = [] for sent_idx, sentence in enumerate(UpperCamelCase_ ): chars.extend(self.process_string(UpperCamelCase_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase_ ) - 1: chars.append(self.sentence_delimiter ) return chars SCREAMING_SNAKE_CASE : List[str] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE : List[str] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE : Dict = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" SCREAMING_SNAKE_CASE : List[Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" SCREAMING_SNAKE_CASE : str = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): if concatenate_texts: return jiwer.compute_measures( UpperCamelCase_ , UpperCamelCase_ , truth_transform=UpperCamelCase_ , hypothesis_transform=UpperCamelCase_ , )["wer"] lowercase_ :Tuple = 0 lowercase_ :Union[str, Any] = 0 for prediction, reference in zip(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Union[str, Any] = jiwer.compute_measures( UpperCamelCase_ , UpperCamelCase_ , truth_transform=UpperCamelCase_ , hypothesis_transform=UpperCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
252
def UpperCamelCase ( _a ) -> list: '''simple docstring''' if any(not isinstance(_a , _a ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(_a ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_a , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
252
1
'''simple docstring''' __A = [ (1_000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def _A ( lowercase__ ): lowercase__ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} lowercase__ = 0 lowercase__ = 0 while place < len(lowercase__ ): if (place + 1 < len(lowercase__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _A ( lowercase__ ): lowercase__ = [] for arabic, roman in ROMAN: ((lowercase__) , (lowercase__)) = divmod(lowercase__ , lowercase__ ) result.append(roman * factor ) if number == 0: break return "".join(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
164
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class A ( __UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase : Union[str, Any] = """convnextv2""" def __init__( self , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="gelu" , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=0.0 , lowerCamelCase__=224 , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) lowercase__ = num_channels lowercase__ = patch_size lowercase__ = num_stages lowercase__ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes lowercase__ = [3, 3, 9, 3] if depths is None else depths lowercase__ = hidden_act lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = drop_path_rate lowercase__ = image_size lowercase__ = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] lowercase__ , lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
164
1
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _lowercase : Any = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase__ ( snake_case_ :Tuple ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :int , snake_case_ :str ): return max(metric_fn(snake_case_ , snake_case_ ) for gt in ground_truths ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Optional[Any] , snake_case_ :Tuple ): __UpperCAmelCase = [line.strip() for line in open(snake_case_ , '''r''' ).readlines()] __UpperCAmelCase = [] if args.gold_data_mode == "qa": __UpperCAmelCase = pd.read_csv(snake_case_ , sep='''\t''' , header=snake_case_ ) for answer_list in data[1]: __UpperCAmelCase = ast.literal_eval(snake_case_ ) answers.append(snake_case_ ) else: __UpperCAmelCase = [line.strip() for line in open(snake_case_ , '''r''' ).readlines()] __UpperCAmelCase = [[reference] for reference in references] __UpperCAmelCase = __UpperCAmelCase = __UpperCAmelCase = 0 for prediction, ground_truths in zip(snake_case_ , snake_case_ ): total += 1 em += metric_max_over_ground_truths(snake_case_ , snake_case_ , snake_case_ ) fa += metric_max_over_ground_truths(snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = 100.0 * em / total __UpperCAmelCase = 100.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :Union[str, Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = args.k __UpperCAmelCase = [line.strip() for line in open(snake_case_ , '''r''' ).readlines()] __UpperCAmelCase = [line.strip() for line in open(snake_case_ , '''r''' ).readlines()] __UpperCAmelCase = __UpperCAmelCase = 0 for hypo, reference in zip(snake_case_ , snake_case_ ): __UpperCAmelCase = set(hypo.split('''\t''' )[:k] ) __UpperCAmelCase = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase = 100.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :Union[str, Any] ): def strip_title(snake_case_ :Union[str, Any] ): if title.startswith('''"''' ): __UpperCAmelCase = title[1:] if title.endswith('''"''' ): __UpperCAmelCase = title[:-1] return title __UpperCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case_ , return_tensors='''pt''' , padding=snake_case_ , truncation=snake_case_ , )['''input_ids'''].to(args.device ) __UpperCAmelCase = rag_model.rag.question_encoder(snake_case_ ) __UpperCAmelCase = question_enc_outputs[0] __UpperCAmelCase = rag_model.retriever( snake_case_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) __UpperCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase = [] for docs in all_docs: __UpperCAmelCase = [strip_title(snake_case_ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(snake_case_ ) ) return provenance_strings def lowercase__ ( snake_case_ :List[Any] , snake_case_ :str , snake_case_ :Optional[int] ): with torch.no_grad(): __UpperCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case_ , return_tensors='''pt''' , padding=snake_case_ , truncation=snake_case_ ) __UpperCAmelCase = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase = rag_model.generate( # rag_model overwrites generate snake_case_ , attention_mask=snake_case_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=snake_case_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) if args.print_predictions: for q, a in zip(snake_case_ , snake_case_ ): logger.info('''Q: {} - A: {}'''.format(snake_case_ , snake_case_ ) ) return answers def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=snake_case_ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=snake_case_ , choices=['''exact''', '''compressed''', '''legacy'''] , type=snake_case_ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=snake_case_ , type=snake_case_ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=snake_case_ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=snake_case_ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=snake_case_ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=snake_case_ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=snake_case_ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=snake_case_ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=snake_case_ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=snake_case_ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=snake_case_ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def lowercase__ ( snake_case_ :Optional[Any] ): __UpperCAmelCase = {} if args.model_type is None: __UpperCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): __UpperCAmelCase = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration __UpperCAmelCase = args.n_docs if args.index_name is not None: __UpperCAmelCase = args.index_name if args.index_path is not None: __UpperCAmelCase = args.index_path else: __UpperCAmelCase = BartForConditionalGeneration __UpperCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , snake_case_ ) __UpperCAmelCase = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k __UpperCAmelCase = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(snake_case_ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(snake_case_ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): __UpperCAmelCase = RagRetriever.from_pretrained(snake_case_ , **snake_case_ ) __UpperCAmelCase = model_class.from_pretrained(snake_case_ , retriever=snake_case_ , **snake_case_ ) model.retriever.init_retrieval() else: __UpperCAmelCase = model_class.from_pretrained(snake_case_ , **snake_case_ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: __UpperCAmelCase = [] for line in tqdm(snake_case_ ): questions.append(line.strip() ) if len(snake_case_ ) == args.eval_batch_size: __UpperCAmelCase = evaluate_batch_fn(snake_case_ , snake_case_ , snake_case_ ) preds_file.write('''\n'''.join(snake_case_ ) + '''\n''' ) preds_file.flush() __UpperCAmelCase = [] if len(snake_case_ ) > 0: __UpperCAmelCase = evaluate_batch_fn(snake_case_ , snake_case_ , snake_case_ ) preds_file.write('''\n'''.join(snake_case_ ) ) preds_file.flush() score_fn(snake_case_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _lowercase : str = get_args() main(args)
86
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowercase : str = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : int = 14 ): if group not in primes: raise ValueError('''Unsupported Group''' ) __UpperCAmelCase = primes[group]['''prime'''] __UpperCAmelCase = primes[group]['''generator'''] __UpperCAmelCase = int(hexlify(urandom(32 ) ) , base=16 ) def a ( self : int ): return hex(self.__private_key )[2:] def a ( self : Dict ): __UpperCAmelCase = pow(self.generator , self.__private_key , self.prime ) return hex(_lowercase )[2:] def a ( self : Union[str, Any] , _lowercase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowercase , (self.prime - 1) // 2 , self.prime ) == 1 ) def a ( self : Optional[Any] , _lowercase : str ): __UpperCAmelCase = int(_lowercase , base=16 ) if not self.is_valid_public_key(_lowercase ): raise ValueError('''Invalid public key''' ) __UpperCAmelCase = pow(_lowercase , self.__private_key , self.prime ) return shaaaa(str(_lowercase ).encode() ).hexdigest() @staticmethod def a ( _lowercase : int , _lowercase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowercase , (prime - 1) // 2 , _lowercase ) == 1 ) @staticmethod def a ( _lowercase : str , _lowercase : str , _lowercase : int = 14 ): __UpperCAmelCase = int(_lowercase , base=16 ) __UpperCAmelCase = int(_lowercase , base=16 ) __UpperCAmelCase = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(_lowercase , _lowercase ): raise ValueError('''Invalid public key''' ) __UpperCAmelCase = pow(_lowercase , _lowercase , _lowercase ) return shaaaa(str(_lowercase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
86
1
from collections.abc import Callable import numpy as np def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> np.array: '''simple docstring''' UpperCAmelCase__ = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase__ = np.zeros((n + 1,) ) UpperCAmelCase__ = ya UpperCAmelCase__ = xa for k in range(__A ): UpperCAmelCase__ = y[k] + step_size * ode_func(__A, y[k] ) UpperCAmelCase__ = y[k] + ( (step_size / 2) * (ode_func(__A, y[k] ) + ode_func(x + step_size, __A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
65
"""simple docstring""" from math import pi, sqrt, tan def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) lowercase_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(__lowerCAmelCase , 2 ) * torus_radius * tube_radius def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) lowercase_ = (sidea + sidea + sidea) / 2 lowercase_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
136
0
def UpperCamelCase( lowercase_ ) -> bool: '''simple docstring''' snake_case_ = 0 for ch in input_str: snake_case_ = ord(lowercase_ ) snake_case_ = pow(2 , lowercase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
356
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCamelCase : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=True , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ) -> Union[str, Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_multiple_size snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = weight_tying snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def lowerCAmelCase_ ( self ) -> str: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self ) -> Optional[int]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.prepare_config_and_inputs() snake_case_ = True return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: snake_case_ = GPTNeoXJapaneseModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase ) snake_case_ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: snake_case_ = True snake_case_ = GPTNeoXJapaneseModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: snake_case_ = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: snake_case_ = True snake_case_ = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model(lowerCamelCase , attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase ) snake_case_ = output_from_no_past["""hidden_states"""][0] snake_case_ = model( lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["""hidden_states"""][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( __snake_case , __snake_case , unittest.TestCase ): lowerCamelCase_ : Any = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase_ : str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase_ : Any = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase_ : Tuple = False lowerCamelCase_ : Dict = False lowerCamelCase_ : Tuple = False lowerCamelCase_ : Optional[int] = False def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ = GPTNeoXJapaneseModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> str: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> str: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: # This regression test was failing with PyTorch < 1.3 snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case_ = """abeja/gpt-neox-japanese-2.7b""" snake_case_ = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] snake_case_ = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] snake_case_ = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase ) snake_case_ = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase ) snake_case_ = [] for prompt in prompts: snake_case_ = tokenizer(lowerCamelCase , return_tensors="""pt""" ).input_ids snake_case_ = model.generate(lowerCamelCase , max_length=50 ) snake_case_ = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase , lowerCamelCase )
34
0
from statistics import mean import numpy as np def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list: """simple docstring""" A__ = 0 # Number of processes finished A__ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. A__ = [0] * no_of_process # List to include calculation results A__ = [0] * no_of_process # Sort by arrival time. A__ = [burst_time[i] for i in np.argsort(lowercase_ )] A__ = [process_name[i] for i in np.argsort(lowercase_ )] arrival_time.sort() while no_of_process > finished_process_count: A__ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: A__ = arrival_time[i] A__ = 0 # Index showing the location of the process being performed A__ = 0 # Saves the current response ratio. A__ = 0 for i in range(0 , lowercase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: A__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: A__ = temp A__ = i # Calculate the turn around time A__ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. A__ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list: """simple docstring""" A__ = [0] * no_of_process for i in range(0 , lowercase_ ): A__ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _lowerCamelCase : List[Any] = 5 _lowerCamelCase : Any = ["""A""", """B""", """C""", """D""", """E"""] _lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5] _lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5] _lowerCamelCase : Union[str, Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _lowerCamelCase : Tuple = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
14
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
1
'''simple docstring''' from collections import defaultdict class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> Any: _snake_case = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _snake_case = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCAmelCase ) ) ] _snake_case = defaultdict(UpperCAmelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _snake_case = (1 << len(UpperCAmelCase )) - 1 def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _snake_case = self.count_ways_until(UpperCAmelCase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. _snake_case = total_ways_util return self.dp[mask][task_no] def lowercase (self , UpperCAmelCase ) -> Tuple: # Store the list of persons for each task for i in range(len(UpperCAmelCase ) ): for j in task_performed[i]: self.task[j].append(UpperCAmelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __lowerCAmelCase = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __lowerCAmelCase = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
270
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase (self ) -> Dict: _snake_case, _snake_case = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case, _snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case = controlnet_params _snake_case = """bird""" _snake_case = jax.device_count() _snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) _snake_case = pipe.prepare_image_inputs([canny_image] * num_samples ) _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(UpperCAmelCase , jax.device_count() ) _snake_case = replicate(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case = images[0, 253:256, 253:256, -1] _snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowercase (self ) -> Optional[int]: _snake_case, _snake_case = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case, _snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case = controlnet_params _snake_case = """Chef in the kitchen""" _snake_case = jax.device_count() _snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) _snake_case = pipe.prepare_image_inputs([pose_image] * num_samples ) _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(UpperCAmelCase , jax.device_count() ) _snake_case = replicate(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case = images[0, 253:256, 253:256, -1] _snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
270
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self :Dict ,__lowercase :Dict ,__lowercase :Dict=1_3 ,__lowercase :List[Any]=3_0 ,__lowercase :int=2 ,__lowercase :List[Any]=3 ,__lowercase :Optional[int]=True ,__lowercase :str=True ,__lowercase :str=3_2 ,__lowercase :Optional[int]=5 ,__lowercase :Optional[Any]=4 ,__lowercase :List[str]=3_7 ,__lowercase :Union[str, Any]="gelu" ,__lowercase :Dict=0.1 ,__lowercase :List[Any]=0.1 ,__lowercase :Any=1_0 ,__lowercase :List[str]=0.02 ,__lowercase :List[str]=None ,__lowercase :Union[str, Any]=2 ,): snake_case__ : Union[str, Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : List[str] = image_size snake_case__ : Tuple = patch_size snake_case__ : str = num_channels snake_case__ : Optional[int] = is_training snake_case__ : Optional[Any] = use_labels snake_case__ : Tuple = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Optional[int] = intermediate_size snake_case__ : Optional[int] = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : Optional[int] = type_sequence_label_size snake_case__ : str = initializer_range snake_case__ : Any = scope snake_case__ : List[Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Any = (image_size // patch_size) ** 2 snake_case__ : List[str] = num_patches + 1 def __lowerCamelCase ( self :int ): snake_case__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : Dict = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self :Any ): return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def __lowerCamelCase ( self :str ,__lowercase :Dict ,__lowercase :str ,__lowercase :List[str] ): snake_case__ : Optional[int] = ViTModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Optional[Any] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[Any] ,__lowercase :List[Any] ,__lowercase :Union[str, Any] ): snake_case__ : Any = ViTForMaskedImageModeling(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Optional[Any] = model(__lowercase ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ : List[str] = 1 snake_case__ : Optional[Any] = ViTForMaskedImageModeling(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = model(__lowercase ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Tuple ,__lowercase :Optional[int] ,__lowercase :Any ): snake_case__ : Tuple = self.type_sequence_label_size snake_case__ : str = ViTForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Dict = model(__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : Optional[int] = 1 snake_case__ : Union[str, Any] = ViTForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : List[Any] = model(__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowerCamelCase ( self :List[str] ): snake_case__ : str = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Any = config_and_inputs snake_case__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : str = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __lowerCAmelCase : str = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : str = True __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Tuple = False def __lowerCamelCase ( self :Optional[int] ): snake_case__ : str = ViTModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self ,config_class=__lowercase ,has_text_modality=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __lowerCamelCase ( self :Dict ): pass def __lowerCamelCase ( self :Dict ): snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[Any] = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) snake_case__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase ,nn.Linear ) ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(__lowercase ) snake_case__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__lowercase ) def __lowerCamelCase ( self :Dict ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowerCamelCase ( self :Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowercase ) def __lowerCamelCase ( self :Dict ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def __lowerCamelCase ( self :Union[str, Any] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : int = ViTModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def _lowerCAmelCase ( ) -> Any: """simple docstring""" snake_case__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self :List[Any] ): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCamelCase ( self :Tuple ): snake_case__ : str = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(__lowercase ) snake_case__ : int = self.default_image_processor snake_case__ : Union[str, Any] = prepare_img() snake_case__ : List[Any] = image_processor(images=__lowercase ,return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): snake_case__ : Tuple = model(**__lowercase ) # verify the logits snake_case__ : Union[str, Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,__lowercase ) snake_case__ : Optional[Any] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowercase ,atol=1e-4 ) ) @slow def __lowerCamelCase ( self :Tuple ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. snake_case__ : List[Any] = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(__lowercase ) snake_case__ : Optional[Any] = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' ,size=4_8_0 ) snake_case__ : int = prepare_img() snake_case__ : List[str] = image_processor(images=__lowercase ,return_tensors='''pt''' ) snake_case__ : List[str] = inputs.pixel_values.to(__lowercase ) # forward pass with torch.no_grad(): snake_case__ : Any = model(__lowercase ,interpolate_pos_encoding=__lowercase ) # verify the logits snake_case__ : Tuple = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape ,__lowercase ) snake_case__ : int = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__lowercase ,atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __lowerCamelCase ( self :Any ): snake_case__ : str = ViTModel.from_pretrained('''facebook/dino-vits8''' ,torch_dtype=torch.floataa ,device_map='''auto''' ) snake_case__ : Dict = self.default_image_processor snake_case__ : Any = prepare_img() snake_case__ : int = image_processor(images=__lowercase ,return_tensors='''pt''' ) snake_case__ : Tuple = inputs.pixel_values.to(__lowercase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case__ : Any = model(__lowercase )
230
from torch import nn class a ( nn.Module ): def __init__( self :Tuple ,__lowercase :Optional[int] ,__lowercase :int ): super().__init__() snake_case__ : Optional[Any] = class_size snake_case__ : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) snake_case__ : Dict = nn.Linear(__lowercase ,__lowercase ) def __lowerCamelCase ( self :str ,__lowercase :int ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) snake_case__ : Optional[Any] = self.mlp(__lowercase ) return logits
230
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase : Tuple = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=1_8 , A=3_0 , A=4_0_0 , A=None , A=True , A=True , A=None , ) -> Any: snake_case : List[Any] = size if size is not None else {"""height""": 2_0, """width""": 2_0} snake_case : Optional[Any] = parent snake_case : Union[str, Any] = batch_size snake_case : Union[str, Any] = num_channels snake_case : Any = image_size snake_case : Optional[int] = min_resolution snake_case : Any = max_resolution snake_case : Tuple = size snake_case : Optional[int] = do_normalize snake_case : Optional[Any] = do_convert_rgb snake_case : List[Any] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] snake_case : Any = patch_size if patch_size is not None else {"""height""": 1_6, """width""": 1_6} def UpperCAmelCase ( self ) -> Dict: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase ( self ) -> Any: snake_case : Dict = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" snake_case : Tuple = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __lowercase (__lowerCamelCase , unittest.TestCase ): """simple docstring""" _snake_case = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[int] = PixaStructImageProcessingTester(self ) @property def UpperCAmelCase ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_convert_rgb""" ) ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Dict = self.image_processor_tester.prepare_dummy_image() snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) snake_case : List[str] = 2_0_4_8 snake_case : Any = image_processor(UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1e-3 , rtol=1e-3 ) ) def UpperCAmelCase ( self ) -> str: # Initialize image_processor snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input snake_case : Dict = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case : Dict = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case : List[Any] = image_processor( UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase ( self ) -> Any: # Initialize image_processor snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input snake_case : Dict = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 snake_case : List[Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCamelCase_ ): snake_case : List[Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches snake_case : List[str] = """Hello""" snake_case : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ , header_text=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case : Optional[int] = image_processor( UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ , header_text=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase ( self ) -> Tuple: # Initialize image_processor snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) snake_case : List[str] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case : Any = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case : Any = image_processor( UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processor snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input snake_case : Union[str, Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case : Optional[int] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case : int = image_processor( UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __lowercase (__lowerCamelCase , unittest.TestCase ): """simple docstring""" _snake_case = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ) -> int: snake_case : int = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case : Union[str, Any] = 3 @property def UpperCAmelCase ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> List[str]: snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_convert_rgb""" ) ) def UpperCAmelCase ( self ) -> List[str]: # Initialize image_processor snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input snake_case : int = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case : str = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case : List[str] = image_processor( UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
357
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) lowerCamelCase : Tuple = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class __lowercase (UpperCamelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase ( A ) -> List[str]: snake_case : Union[str, Any] = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=A , required=A , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=A , required=A , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=A , required=A , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=A , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=A , default=A , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=A ) def __init__( self , A , A , A , A , A , *A , ) -> List[Any]: snake_case : Any = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"""Loading model {model_type}""" ) snake_case : int = model_type snake_case : Any = tf_checkpoint snake_case : int = pytorch_dump_output snake_case : List[str] = config snake_case : Tuple = finetuning_task_name def UpperCAmelCase ( self ) -> int: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) if "ckpt" in self._tf_checkpoint.lower(): snake_case : List[Any] = self._tf_checkpoint snake_case : Tuple = """""" else: snake_case : Tuple = self._tf_checkpoint snake_case : Tuple = """""" convert_transfo_xl_checkpoint_to_pytorch( A , self._config , self._pytorch_dump_output , A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
176
0
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any=False ) -> str: SCREAMING_SNAKE_CASE = OmegaConf.load(SCREAMING_SNAKE_CASE_ ) if display: print(yaml.dump(OmegaConf.to_container(SCREAMING_SNAKE_CASE_ ) ) ) return config def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Tuple=None ) -> Any: if conf_path is None: SCREAMING_SNAKE_CASE = './model_checkpoints/vqgan_only.yaml' SCREAMING_SNAKE_CASE = load_config(SCREAMING_SNAKE_CASE_ , display=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = VQModel(**config.model.params ) if ckpt_path is None: SCREAMING_SNAKE_CASE = './model_checkpoints/vqgan_only.pt' SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location=SCREAMING_SNAKE_CASE_ ) if ".ckpt" in ckpt_path: SCREAMING_SNAKE_CASE = sd['state_dict'] model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) del sd return model def lowercase (SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.encode(SCREAMING_SNAKE_CASE_ ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) SCREAMING_SNAKE_CASE = model.decode(SCREAMING_SNAKE_CASE_ ) return xrec def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any=False ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = string.rsplit('.' , 1 ) if reload: SCREAMING_SNAKE_CASE = importlib.import_module(SCREAMING_SNAKE_CASE_ ) importlib.reload(SCREAMING_SNAKE_CASE_ ) return getattr(importlib.import_module(SCREAMING_SNAKE_CASE_ , package=SCREAMING_SNAKE_CASE_ ) , cls ) def lowercase (SCREAMING_SNAKE_CASE_ : Any ) -> Dict: if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : int=True ) -> Any: SCREAMING_SNAKE_CASE = instantiate_from_config(SCREAMING_SNAKE_CASE_ ) if sd is not None: model.load_state_dict(SCREAMING_SNAKE_CASE_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Any: # load the specified checkpoint if ckpt: SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) SCREAMING_SNAKE_CASE = pl_sd['global_step'] print(F'loaded model from global step {global_step}.' ) else: SCREAMING_SNAKE_CASE = {'state_dict': None} SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=SCREAMING_SNAKE_CASE_ , eval_mode=SCREAMING_SNAKE_CASE_ )['model'] return model, global_step
113
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def __A ( self ) -> Dict: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=lowerCAmelCase__ , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase__ ) class lowerCAmelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def __A ( self ) -> int: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=lowerCAmelCase__ , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase__ ) def lowercase () -> str: return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def lowercase () -> Optional[Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' @require_beam def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = DummyBeamDataset(cache_dir=lowerCAmelCase__ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) SCREAMING_SNAKE_CASE = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase__ ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def __A ( self ) -> int: import apache_beam as beam SCREAMING_SNAKE_CASE = beam.io.parquetio.WriteToParquet SCREAMING_SNAKE_CASE = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = DummyBeamDataset(cache_dir=lowerCAmelCase__ , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: SCREAMING_SNAKE_CASE = partial(lowerCAmelCase__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) SCREAMING_SNAKE_CASE = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def __A ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = DummyBeamDataset(cache_dir=lowerCAmelCase__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __A ( self ) -> int: SCREAMING_SNAKE_CASE = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = NestedBeamDataset(cache_dir=lowerCAmelCase__ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) SCREAMING_SNAKE_CASE = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase__ ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
113
1
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->str: return 1 / (1 + np.exp(-z )) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ) ->Any: return (-y * np.log(_UpperCAmelCase ) - (1 - y) * np.log(1 - h )).mean() def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->Any: A__ : Tuple = np.dot(_UpperCAmelCase, _UpperCAmelCase ) return np.sum(y * scores - np.log(1 + np.exp(_UpperCAmelCase ) ) ) def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any]=7_0_0_0_0 ) ->Any: A__ : List[str] = np.zeros(x.shape[1] ) for iterations in range(_UpperCAmelCase ): A__ : Any = np.dot(_UpperCAmelCase, _UpperCAmelCase ) A__ : Any = sigmoid_function(_UpperCAmelCase ) A__ : Union[str, Any] = np.dot(x.T, h - y ) / y.size A__ : Union[str, Any] = theta - alpha * gradient # updating the weights A__ : Optional[Any] = np.dot(_UpperCAmelCase, _UpperCAmelCase ) A__ : List[Any] = sigmoid_function(_UpperCAmelCase ) A__ : str = cost_function(_UpperCAmelCase, _UpperCAmelCase ) if iterations % 1_0_0 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A_ = datasets.load_iris() A_ = iris.data[:, :2] A_ = (iris.target != 0) * 1 A_ = 0.1 A_ = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Optional[Any]: return sigmoid_function( np.dot(_UpperCAmelCase, _UpperCAmelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') (A_) = (x[:, 0].min(), x[:, 0].max()) (A_) = (x[:, 1].min(), x[:, 1].max()) (A_) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A_ = np.c_[xxa.ravel(), xxa.ravel()] A_ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
365
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ): '''simple docstring''' A__ : Union[str, Any] = parent A__ : Optional[Any] = batch_size A__ : Dict = seq_length A__ : str = is_training A__ : Tuple = use_input_mask A__ : Dict = use_token_type_ids A__ : Dict = use_labels A__ : int = vocab_size A__ : List[str] = hidden_size A__ : Union[str, Any] = num_hidden_layers A__ : int = num_attention_heads A__ : List[str] = intermediate_size A__ : int = hidden_act A__ : str = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : Any = max_position_embeddings A__ : Optional[int] = type_vocab_size A__ : int = type_sequence_label_size A__ : Optional[Any] = initializer_range A__ : int = num_labels A__ : Optional[int] = num_choices A__ : Optional[int] = scope def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = None if self.use_input_mask: A__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = None if self.use_token_type_ids: A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : List[str] = None A__ : Union[str, Any] = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.get_config() A__ : List[str] = 300 return config def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Tuple = self.prepare_config_and_inputs() A__ : List[str] = True A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ): '''simple docstring''' A__ : List[str] = MraModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A__ : List[str] = model(snake_case , token_type_ids=snake_case ) A__ : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ): '''simple docstring''' A__ : Dict = True A__ : Optional[Any] = MraModel(snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , ) A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : Dict = MraForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Optional[Any] = MraForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Union[str, Any] = MraForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ): '''simple docstring''' A__ : List[str] = self.num_choices A__ : str = MraForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Dict = config_and_inputs A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = () def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[Any] = MraModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : List[str] = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : Any ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : str = MraModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip(reason="""MRA does not output attentions""" ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : List[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case ) A__ : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Dict = 5_0265 A__ : List[str] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : List[Any] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Union[str, Any] = 5_0265 A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : Optional[int] = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
296
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A__ : Optional[Any] ={ '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any =[ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys A__ : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : List[str] =logging.get_logger(__name__) A__ : Any ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : Any ={ '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } A__ : Optional[int] ={ '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } A__ : Optional[int] ={ '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[Any] = VOCAB_FILES_NAMES _lowercase: Tuple = PRETRAINED_VOCAB_FILES_MAP _lowercase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: str = PRETRAINED_INIT_CONFIGURATION _lowercase: List[Any] = RoFormerTokenizer def __init__( self : Dict , __snake_case : str=None , __snake_case : Tuple=None , __snake_case : List[Any]=True , __snake_case : str="[UNK]" , __snake_case : Tuple="[SEP]" , __snake_case : str="[PAD]" , __snake_case : str="[CLS]" , __snake_case : Any="[MASK]" , __snake_case : Dict=True , __snake_case : str=None , **__snake_case : Optional[Any] , ) -> Union[str, Any]: super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , __snake_case ) != do_lower_case or pre_tok_state.get("""strip_accents""" , __snake_case ) != strip_accents ): _lowerCAmelCase = getattr(__snake_case , pre_tok_state.pop("""type""" ) ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = strip_accents _lowerCAmelCase = pre_tok_class(**__snake_case ) _lowerCAmelCase = do_lower_case def __getstate__( self : int ) -> Optional[int]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = BertPreTokenizer() return state def __setstate__( self : Tuple , __snake_case : Tuple ) -> List[str]: _lowerCAmelCase = d _lowerCAmelCase = self.__dict__["""_tokenizer"""].get_vocab() _lowerCAmelCase = PreTokenizer.custom(JiebaPreTokenizer(__snake_case ) ) def lowercase__ ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[int]=None ) -> Optional[Any]: _lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: _lowerCAmelCase = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowercase__ ( self : Dict , __snake_case : Dict , __snake_case : int=None , __snake_case : List[Any]=None , __snake_case : List[Any]=False , **__snake_case : Dict , ) -> str: _lowerCAmelCase = BertPreTokenizer() return super().save_pretrained(__snake_case , __snake_case , __snake_case , __snake_case , **__snake_case )
70
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class _lowercase ( snake_case_ ): lowercase = 'gptsan-japanese' lowercase = [ 'past_key_values', ] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , snake_case : Union[str, Any]=3_6_0_0_0 , snake_case : List[str]=1_2_8_0 , snake_case : int=1_0_2_4 , snake_case : Optional[Any]=8_1_9_2 , snake_case : Dict=4_0_9_6 , snake_case : Any=1_2_8 , snake_case : Optional[int]=1_0 , snake_case : List[Any]=0 , snake_case : int=1_6 , snake_case : Optional[int]=1_6 , snake_case : List[Any]=1_2_8 , snake_case : Optional[Any]=0.0 , snake_case : Optional[Any]=1e-5 , snake_case : Union[str, Any]=False , snake_case : int=0.0 , snake_case : Any="float32" , snake_case : List[Any]=False , snake_case : List[Any]=False , snake_case : List[Any]=False , snake_case : int=0.002 , snake_case : Dict=False , snake_case : int=True , snake_case : Optional[Any]=3_5_9_9_8 , snake_case : Optional[int]=3_5_9_9_5 , snake_case : Optional[int]=3_5_9_9_9 , **snake_case : Tuple , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = vocab_size UpperCamelCase_ : Any = max_position_embeddings UpperCamelCase_ : Dict = d_model UpperCamelCase_ : Dict = d_ff UpperCamelCase_ : List[str] = d_ext UpperCamelCase_ : Any = d_spout UpperCamelCase_ : Any = num_switch_layers UpperCamelCase_ : Any = num_ext_layers UpperCamelCase_ : List[Any] = num_switch_layers + num_ext_layers UpperCamelCase_ : List[Any] = num_heads UpperCamelCase_ : Optional[Any] = num_experts UpperCamelCase_ : int = expert_capacity UpperCamelCase_ : List[str] = dropout_rate UpperCamelCase_ : str = layer_norm_epsilon UpperCamelCase_ : List[str] = router_bias UpperCamelCase_ : Optional[int] = router_jitter_noise UpperCamelCase_ : List[str] = router_dtype UpperCamelCase_ : Any = router_ignore_padding_tokens UpperCamelCase_ : Optional[int] = output_hidden_states UpperCamelCase_ : str = output_attentions UpperCamelCase_ : int = initializer_factor UpperCamelCase_ : str = output_router_logits UpperCamelCase_ : List[str] = use_cache super().__init__( separator_token_id=snake_case , pad_token_id=snake_case , eos_token_id=snake_case , **snake_case , )
366
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self : List[Any] , snake_case : List[str] , snake_case : str=1_3 , snake_case : Any=3_0 , snake_case : Tuple=2 , snake_case : List[Any]=3 , snake_case : str=True , snake_case : List[Any]=True , snake_case : List[Any]=3_2 , snake_case : Union[str, Any]=5 , snake_case : Dict=4 , snake_case : str=3_7 , snake_case : Optional[int]="gelu" , snake_case : Any=0.1 , snake_case : Optional[Any]=0.1 , snake_case : Union[str, Any]=1_0 , snake_case : List[str]=0.02 , snake_case : Optional[int]=3 , snake_case : str=0.6 , snake_case : Any=None , ) -> Dict: """simple docstring""" UpperCamelCase_ : int = parent UpperCamelCase_ : Optional[Any] = batch_size UpperCamelCase_ : List[str] = image_size UpperCamelCase_ : Optional[Any] = patch_size UpperCamelCase_ : Optional[int] = num_channels UpperCamelCase_ : Union[str, Any] = is_training UpperCamelCase_ : Dict = use_labels UpperCamelCase_ : Tuple = hidden_size UpperCamelCase_ : str = num_hidden_layers UpperCamelCase_ : Tuple = num_attention_heads UpperCamelCase_ : Any = intermediate_size UpperCamelCase_ : Dict = hidden_act UpperCamelCase_ : Tuple = hidden_dropout_prob UpperCamelCase_ : Dict = attention_probs_dropout_prob UpperCamelCase_ : Any = type_sequence_label_size UpperCamelCase_ : str = initializer_range UpperCamelCase_ : Tuple = mask_ratio UpperCamelCase_ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase_ : List[Any] = (image_size // patch_size) ** 2 UpperCamelCase_ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: """simple docstring""" UpperCamelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : List[str] = None if self.use_labels: UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Dict , snake_case : List[str] , snake_case : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = ViTMAEModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Tuple = model(snake_case ) UpperCamelCase_ : Tuple = (self.image_size // self.patch_size) ** 2 UpperCamelCase_ : Tuple = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase_ : Optional[int] = 1 UpperCamelCase_ : Dict = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_ : Tuple = model(snake_case ) UpperCamelCase_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : int = config_and_inputs UpperCamelCase_ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" UpperCamelCase_ : Any = ViTMAEModelTester(self ) UpperCamelCase_ : Tuple = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Any = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : List[str] = model_class(snake_case ) UpperCamelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Union[str, Any] = [*signature.parameters.keys()] UpperCamelCase_ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : List[str] , snake_case : Optional[int] , snake_case : Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase_ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase_ : int = torch.from_numpy(snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase_ : Tuple = pt_noise super().check_pt_tf_models(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Tuple = model_class(snake_case ) model.to(snake_case ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ : str = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCamelCase_ : Any = outputs[0].cpu().numpy() UpperCamelCase_ : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case ) UpperCamelCase_ : Union[str, Any] = model_class.from_pretrained(snake_case ) model.to(snake_case ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ : Any = model(**self._prepare_for_class(snake_case , snake_case ) ) # Make sure we don't have nans UpperCamelCase_ : Optional[Any] = after_outputs[0].cpu().numpy() UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : Dict = ViTMAEModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __lowercase ( ): UpperCamelCase_ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ : List[str] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(snake_case ) UpperCamelCase_ : Tuple = self.default_image_processor UpperCamelCase_ : Union[str, Any] = prepare_img() UpperCamelCase_ : Optional[int] = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase_ : int = ViTMAEConfig() UpperCamelCase_ : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase_ : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase_ : str = model(**snake_case , noise=torch.from_numpy(snake_case ).to(device=snake_case ) ) # verify the logits UpperCamelCase_ : Dict = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCamelCase_ : Union[str, Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case ) , atol=1e-4 ) )
50
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =1, 1 _SCREAMING_SNAKE_CASE =[] for i in range(1 , n + 1 ): _SCREAMING_SNAKE_CASE =prev_numerator + 2 * prev_denominator _SCREAMING_SNAKE_CASE =prev_numerator + prev_denominator if len(str(_UpperCamelCase ) ) > len(str(_UpperCamelCase ) ): result.append(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =numerator _SCREAMING_SNAKE_CASE =denominator return len(_UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
47
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : List[str]=9_9 , __UpperCamelCase : int=3_2 , __UpperCamelCase : str=5 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Any=3_7 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : str=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : int=2 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : List[str]=None , )->Union[str, Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int )->str: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowercase__ ( self : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict )->str: _UpperCAmelCase = DistilBertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] )->Dict: _UpperCAmelCase = DistilBertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Optional[Any]: _UpperCAmelCase = DistilBertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : str )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = DistilBertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->List[str]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = DistilBertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[str] )->Optional[int]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = DistilBertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = self.prepare_config_and_inputs() (_UpperCAmelCase) = config_and_inputs _UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase__ = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def lowercase__ ( self : Tuple )->List[str]: _UpperCAmelCase = DistilBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 ) def lowercase__ ( self : Union[str, Any] )->Any: self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def lowercase__ ( self : Tuple )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def lowercase__ ( self : Dict )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def lowercase__ ( self : Tuple )->List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) @slow def lowercase__ ( self : Optional[Any] )->str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = DistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def lowercase__ ( self : Optional[int] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCAmelCase = True _UpperCAmelCase = model_class(config=lowerCAmelCase__ ) _UpperCAmelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = torch.jit.trace( lowerCAmelCase__ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , '''traced_model.pt''' ) ) _UpperCAmelCase = torch.jit.load(os.path.join(lowerCAmelCase__ , '''traced_model.pt''' ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict['''input_ids'''].to(lowerCAmelCase__ ) , inputs_dict['''attention_mask'''].to(lowerCAmelCase__ ) ) @require_torch class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Optional[Any]: _UpperCAmelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _UpperCAmelCase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] _UpperCAmelCase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
367
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCAmelCase : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.0_1), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __lowercase ( unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls ) -> int: '''simple docstring''' lowerCamelCase = TOKEN HfFolder.save_token(A ) @classmethod def __A ( cls ) -> Any: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) lowerCamelCase = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , repo_id="""test-config""" , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) lowerCamelCase = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id="""valid_org/test-config-org""" , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) lowerCamelCase = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase = c.n_embd + 1 # int lowerCamelCase = c.resid_pdrop + 1.0 # float lowerCamelCase = not c.scale_attn_weights # bool lowerCamelCase = c.summary_type + """foo""" # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(A , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(A , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(A , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(A , c.summary_type , """mismatch for key: summary_type""" ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = PretrainedConfig() lowerCamelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( A , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) lowerCamelCase = [key for key, value in config_common_kwargs.items() if value == getattr(A , A )] if len(A ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" F' {", ".join(A )}.' ) def __A ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) lowerCamelCase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = mock.Mock() lowerCamelCase = 5_00 lowerCamelCase = {} lowerCamelCase = HTTPError lowerCamelCase = {} # Download this model to make sure it's in the cache. lowerCamelCase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head: lowerCamelCase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = AutoConfig.from_pretrained("""bert-base-cased""" ) lowerCamelCase = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(A ) lowerCamelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(A , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase = AutoConfig.from_pretrained(A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase = ["""config.42.0.0.json"""] lowerCamelCase = 7_68 configuration.save_pretrained(A ) shutil.move(os.path.join(A , """config.4.0.0.json""" ) , os.path.join(A , """config.42.0.0.json""" ) ) lowerCamelCase = AutoConfig.from_pretrained(A ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = """hf-internal-testing/test-two-configs""" import transformers as new_transformers lowerCamelCase = """v4.0.0""" lowerCamelCase , lowerCamelCase = new_transformers.models.auto.AutoConfig.from_pretrained( A , return_unused_kwargs=A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase = """v3.0.0""" lowerCamelCase = old_transformers.models.auto.AutoConfig.from_pretrained(A ) self.assertEqual(old_configuration.hidden_size , 7_68 )
252
def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str]=0 ): '''simple docstring''' return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[column] ) def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : List[str]=float("""inf""" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any]=float("""inf""" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowerCamelCase__ ): for j in range(max(0 , i - 6 ) , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowerCamelCase__ , lowerCamelCase__ ) # recursion lowerCamelCase = points_counts // 2 lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[:mid] , lowerCamelCase__ ) lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) lowerCamelCase = min(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCamelCase__ ) lowerCamelCase = dis_between_closest_in_strip( lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) return min(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = column_based_sort(lowerCamelCase__ , column=0 ) lowerCamelCase = column_based_sort(lowerCamelCase__ , column=1 ) return ( closest_pair_of_points_sqr( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase : Dict = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
252
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __SCREAMING_SNAKE_CASE : snake_case : CommonSchedulerState # setable values snake_case : jnp.ndarray snake_case : jnp.ndarray snake_case : Optional[int] = None @classmethod def _lowerCamelCase ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return cls(common=__lowerCAmelCase , init_noise_sigma=__lowerCAmelCase , timesteps=__lowerCAmelCase ) @dataclass class __SCREAMING_SNAKE_CASE ( _a ): snake_case : DDPMSchedulerState class __SCREAMING_SNAKE_CASE ( _a , _a ): snake_case : str = [e.name for e in FlaxKarrasDiffusionSchedulers] snake_case : jnp.dtype @property def _lowerCamelCase ( self ): return True @register_to_config def __init__( self , __lowerCAmelCase = 1000 , __lowerCAmelCase = 0.0001 , __lowerCAmelCase = 0.02 , __lowerCAmelCase = "linear" , __lowerCAmelCase = None , __lowerCAmelCase = "fixed_small" , __lowerCAmelCase = True , __lowerCAmelCase = "epsilon" , __lowerCAmelCase = jnp.floataa , ): UpperCamelCase__ = dtype def _lowerCamelCase ( self , __lowerCAmelCase = None ): if common is None: UpperCamelCase__ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCamelCase__ = jnp.array(1.0 , dtype=self.dtype ) UpperCamelCase__ = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__lowerCAmelCase , init_noise_sigma=__lowerCAmelCase , timesteps=__lowerCAmelCase , ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ): return sample def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = () ): UpperCamelCase__ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCamelCase__ = (jnp.arange(0 , __lowerCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__lowerCAmelCase , timesteps=__lowerCAmelCase , ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ): UpperCamelCase__ = state.common.alphas_cumprod[t] UpperCamelCase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCamelCase__ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCamelCase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCamelCase__ = jnp.clip(__lowerCAmelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCamelCase__ = jnp.log(jnp.clip(__lowerCAmelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCamelCase__ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCamelCase__ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCamelCase__ = variance UpperCamelCase__ = state.common.betas[t] UpperCamelCase__ = (predicted_variance + 1) / 2 UpperCamelCase__ = frac * max_log + (1 - frac) * min_log return variance def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True , ): UpperCamelCase__ = timestep if key is None: UpperCamelCase__ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCamelCase__ , UpperCamelCase__ = jnp.split(__lowerCAmelCase , sample.shape[1] , axis=1 ) else: UpperCamelCase__ = None # 1. compute alphas, betas UpperCamelCase__ = state.common.alphas_cumprod[t] UpperCamelCase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCamelCase__ = 1 - alpha_prod_t UpperCamelCase__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCamelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCamelCase__ = model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCamelCase__ = jnp.clip(__lowerCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase__ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCamelCase__ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCamelCase__ = jax.random.split(__lowerCAmelCase , num=1 ) UpperCamelCase__ = jax.random.normal(__lowerCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__lowerCAmelCase , __lowerCAmelCase , predicted_variance=__lowerCAmelCase ) ** 0.5) * noise UpperCamelCase__ = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCamelCase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__lowerCAmelCase , state=__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): return add_noise_common(state.common , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): return get_velocity_common(state.common , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
87
1
__UpperCamelCase : str = """Input must be a string of 8 numbers plus letter""" __UpperCamelCase : List[Any] = """TRWAGMYFPDXBNJZSQVHLCKE""" def a_ ( _A ) -> bool: """simple docstring""" if not isinstance(_A , _A ): snake_case__ = f'''Expected string as input, found {type(_A ).__name__}''' raise TypeError(_A ) snake_case__ = spanish_id.replace('-' , '' ).upper() if len(_A ) != 9: raise ValueError(_A ) try: snake_case__ = int(spanish_id_clean[0:8] ) snake_case__ = spanish_id_clean[8] except ValueError as ex: raise ValueError(_A ) from ex if letter.isdigit(): raise ValueError(_A ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
307
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __SCREAMING_SNAKE_CASE( ctypes.Structure ): # _fields is a specific attr expected by ctypes _UpperCAmelCase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ) -> Any: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ) -> Tuple: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ) -> str: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
307
1
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
360
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'xlm-prophetnet' __lowercase : Optional[int] = ['past_key_values'] __lowercase : int = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 3_0522 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2 , **_SCREAMING_SNAKE_CASE , ) -> int: A_ = vocab_size A_ = hidden_size A_ = encoder_ffn_dim A_ = num_encoder_layers A_ = num_encoder_attention_heads A_ = decoder_ffn_dim A_ = num_decoder_layers A_ = num_decoder_attention_heads A_ = max_position_embeddings A_ = init_std # Normal(0, this parameter) A_ = activation_function # parameters for xlmprophetnet A_ = ngram A_ = num_buckets A_ = relative_max_distance A_ = disable_ngram_loss A_ = eps # 3 Types of Dropout A_ = attention_dropout A_ = activation_dropout A_ = dropout A_ = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , add_cross_attention=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def __A ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
18
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : Optional[Any] = re.compile(r"""\s+""") def A_ ( _lowerCAmelCase ) -> Optional[int]: return {"hash": hashlib.mda(re.sub(_a , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Dict = [len(_a ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_a ), "line_max": max(_a )} def A_ ( _lowerCAmelCase ) -> List[str]: UpperCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase , _lowerCAmelCase=5 ) -> Optional[Any]: UpperCamelCase : Tuple = ["auto-generated", "autogenerated", "automatically generated"] UpperCamelCase : List[str] = example["content"].splitlines() for _, line in zip(range(_a ) , _a ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 ) -> str: UpperCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] UpperCamelCase : Tuple = example["content"].splitlines() UpperCamelCase : Dict = 0 UpperCamelCase : Union[str, Any] = 0 # first test for _, line in zip(range(_a ) , _a ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test UpperCamelCase : Union[str, Any] = example["content"].count("\n" ) UpperCamelCase : str = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase ) -> int: UpperCamelCase : str = ["def ", "class ", "for ", "while "] UpperCamelCase : str = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase , _lowerCAmelCase=4 ) -> str: UpperCamelCase : Optional[Any] = example["content"].splitlines() UpperCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase ) -> Any: UpperCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_a )["input_ids"] UpperCamelCase : int = len(example["content"] ) / len(_a ) return {"ratio": ratio} def A_ ( _lowerCAmelCase ) -> Dict: UpperCamelCase : int = {} results.update(get_hash(_a ) ) results.update(line_stats(_a ) ) results.update(alpha_stats(_a ) ) results.update(char_token_ratio(_a ) ) results.update(is_autogenerated(_a ) ) results.update(is_config_or_test(_a ) ) results.update(has_no_keywords(_a ) ) results.update(has_few_assignments(_a ) ) return results def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: if not check_uniques(_a , _a ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase ) -> List[Any]: with open(_a , "rb" ) as f_in: with gzip.open(str(_a ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_a , _a ) os.unlink(_a ) # Settings __lowerCamelCase : List[str] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : Any = parser.parse_args() if args.num_workers is None: __lowerCamelCase : Dict = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : str = time.time() __lowerCamelCase : Optional[int] = load_dataset(args.dataset_name, split="""train""") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing __lowerCamelCase : List[Any] = time.time() __lowerCamelCase : str = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes __lowerCamelCase : str = set(ds.unique("""hash""")) __lowerCamelCase : Union[str, Any] = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics __lowerCamelCase : Union[str, Any] = time.time() __lowerCamelCase : Dict = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : Any = time.time() __lowerCamelCase , __lowerCamelCase : Optional[Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file __lowerCamelCase : Dict = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) __lowerCamelCase : Optional[Any] = output_dir / """data""" data_dir.mkdir(exist_ok=True) __lowerCamelCase : Tuple = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Optional[int] = str(data_dir / f"""file-{file_number+1:012}.json""") __lowerCamelCase : List[str] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
52
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A =input('Enter image url: ').strip() print(f"""Downloading image from {url} ...""") A =BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A =soup.find('meta', {'property': 'og:image'})['content'] A =requests.get(image_url).content A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
34
0
import functools from typing import Any def _a ( UpperCAmelCase , UpperCAmelCase ) -> bool: """simple docstring""" # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or len(UpperCAmelCase ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all( isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie lowerCamelCase__ : dict[str, Any] = {} lowerCamelCase__ : Union[str, Any] = '''WORD_KEEPER''' for word in words: lowerCamelCase__ : List[str] = trie for c in word: if c not in trie_node: lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : str = trie_node[c] lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Tuple = len(UpperCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(UpperCAmelCase ) -> bool: if index == len_string: return True lowerCamelCase__ : Union[str, Any] = trie for i in range(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[Any] = trie_node.get(string[i] , UpperCAmelCase ) if trie_node is None: return False if trie_node.get(UpperCAmelCase , UpperCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
265
from math import ceil, sqrt def _a ( UpperCAmelCase = 1000000 ) -> int: """simple docstring""" lowerCamelCase__ : Any = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__ : List[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__ : Union[str, Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
265
1
import re import string import numpy as np import datasets __UpperCamelCase : Union[str, Any] = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ __UpperCamelCase : Union[str, Any] = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ __UpperCamelCase : Any = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE( datasets.Metric ): def lowerCAmelCase_ ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: str , UpperCamelCase: str , UpperCamelCase: List[Any]=None , UpperCamelCase: Optional[int]=False , UpperCamelCase: Any=False , UpperCamelCase: Optional[int]=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case__ = np.array([re.sub(UpperCamelCase , '' , UpperCamelCase ) for x in predictions] ) snake_case__ = np.array([re.sub(UpperCamelCase , '' , UpperCamelCase ) for x in references] ) else: snake_case__ = np.asarray(UpperCamelCase ) snake_case__ = np.asarray(UpperCamelCase ) if ignore_case: snake_case__ = np.char.lower(UpperCamelCase ) snake_case__ = np.char.lower(UpperCamelCase ) if ignore_punctuation: snake_case__ = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case__ = np.char.translate(UpperCamelCase , table=UpperCamelCase ) snake_case__ = np.char.translate(UpperCamelCase , table=UpperCamelCase ) if ignore_numbers: snake_case__ = string.digits.maketrans('' , '' , string.digits ) snake_case__ = np.char.translate(UpperCamelCase , table=UpperCamelCase ) snake_case__ = np.char.translate(UpperCamelCase , table=UpperCamelCase ) snake_case__ = predictions == references return {"exact_match": np.mean(UpperCamelCase ) * 1_00}
307
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> None: snake_case__ = [2, 1, 2, -1] snake_case__ = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case__ = len(self.first_signal ) snake_case__ = len(self.second_signal ) snake_case__ = max(UpperCamelCase , UpperCamelCase ) # create a zero matrix of max_length x max_length snake_case__ = [[0] * max_length for i in range(UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase ): snake_case__ = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase ) for j, item in enumerate(UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal snake_case__ = np.matmul(np.transpose(UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Any , _lowercase : List[Any] , _lowercase : List[Any]=7 , _lowercase : int=3 , _lowercase : str=30 , _lowercase : List[str]=4_00 , _lowercase : Dict=True , _lowercase : int=None , _lowercase : List[str]=True , _lowercase : Optional[Any]=[0.5, 0.5, 0.5] , _lowercase : Union[str, Any]=[0.5, 0.5, 0.5] , _lowercase : Tuple=True , _lowercase : Optional[Any]=1 / 2_55 , _lowercase : str=True , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def __a ( self : List[str] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self : List[Any] , _lowercase : int , _lowercase : Dict=False ): """simple docstring""" if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(_lowercase , Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size["""shortest_edge"""] * h / w ) SCREAMING_SNAKE_CASE__ = self.size["""shortest_edge"""] elif w > h: SCREAMING_SNAKE_CASE__ = self.size["""shortest_edge"""] SCREAMING_SNAKE_CASE__ = int(self.size["""shortest_edge"""] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size["""shortest_edge"""] SCREAMING_SNAKE_CASE__ = self.size["""shortest_edge"""] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(_lowercase , key=lambda _lowercase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(_lowercase , key=lambda _lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = DetaImageProcessor if is_vision_available() else None def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = DetaImageProcessingTester(self ) @property def __a ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """image_mean""" ) ) self.assertTrue(hasattr(_lowercase , """image_std""" ) ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """do_rescale""" ) ) self.assertTrue(hasattr(_lowercase , """do_pad""" ) ) self.assertTrue(hasattr(_lowercase , """size""" ) ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , _lowercase ) def __a ( self : str ): """simple docstring""" pass def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) SCREAMING_SNAKE_CASE__ = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {"""image_id""": 3_97_69, """annotations""": target} # encode them SCREAMING_SNAKE_CASE__ = DetaImageProcessor() SCREAMING_SNAKE_CASE__ = image_processing(images=_lowercase , annotations=_lowercase , return_tensors="""pt""" ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , _lowercase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowercase , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowercase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowercase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowercase , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowercase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowercase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowercase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowercase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowercase ) ) @slow def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} SCREAMING_SNAKE_CASE__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them SCREAMING_SNAKE_CASE__ = DetaImageProcessor(format="""coco_panoptic""" ) SCREAMING_SNAKE_CASE__ = image_processing(images=_lowercase , annotations=_lowercase , masks_path=_lowercase , return_tensors="""pt""" ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , _lowercase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowercase , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowercase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowercase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowercase , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowercase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowercase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowercase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowercase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowercase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowercase ) )
204
from math import isqrt def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = False return [i for i in range(2 , __UpperCamelCase ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**8 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = calculate_prime_numbers(max_number // 2 ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
204
1
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _A : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : int = 13 , __UpperCAmelCase : int = 64 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = True , __UpperCAmelCase : int = 128 , __UpperCAmelCase : Dict=[16, 32, 64, 128] , __UpperCAmelCase : int = 7 , __UpperCAmelCase : int = 4 , __UpperCAmelCase : int = 37 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 10 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 128 , __UpperCAmelCase : List[int] = [2, 2, 2, 2] , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , ): a : int = parent a : List[str] = batch_size a : List[Any] = image_size a : Union[str, Any] = patch_size a : Any = num_channels a : Union[str, Any] = is_training a : Union[str, Any] = use_labels a : Tuple = hidden_size a : Tuple = num_hidden_layers a : int = num_attention_heads a : Union[str, Any] = intermediate_size a : int = hidden_act a : Tuple = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : List[str] = type_sequence_label_size a : str = initializer_range a : Optional[int] = encoder_stride a : Optional[int] = num_attention_outputs a : Any = embed_dim a : Dict = embed_dim + 1 a : Union[str, Any] = resolution a : Optional[int] = depths a : Union[str, Any] = hidden_sizes a : Dict = dim a : List[str] = mlp_expansion_ratio def __snake_case ( self : Dict): a : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : str = None if self.use_labels: a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[str] = self.get_config() return config, pixel_values, labels def __snake_case ( self : Optional[int]): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def __snake_case ( self : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Dict): a : Optional[Any] = TFEfficientFormerModel(config=__UpperCAmelCase) a : int = model(__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple): a : Optional[int] = self.type_sequence_label_size a : Union[str, Any] = TFEfficientFormerForImageClassification(__UpperCAmelCase) a : Dict = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a : Union[str, Any] = 1 a : Any = TFEfficientFormerForImageClassification(__UpperCAmelCase) a : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : List[str] = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __snake_case ( self : Tuple): a : Union[str, Any] = self.prepare_config_and_inputs() a , a , a : List[str] = config_and_inputs a : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _A ( _a ,_a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Dict = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase : Optional[Any] = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[Any] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Dict = False UpperCAmelCase : Union[str, Any] = False def __snake_case ( self : List[Any]): a : Any = TFEfficientFormerModelTester(self) a : Optional[Any] = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def __snake_case ( self : str): self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds") def __snake_case ( self : int): pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings") def __snake_case ( self : Optional[Any]): pass def __snake_case ( self : Optional[Any]): a , a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Dict = model_class(__UpperCAmelCase) a : Optional[Any] = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : List[str] = [*signature.parameters.keys()] a : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def __snake_case ( self : str): def check_hidden_states_output(__UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any]): a : int = model_class(__UpperCAmelCase) a : Optional[int] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase) , training=__UpperCAmelCase) a : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a : Optional[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) if hasattr(self.model_tester , "encoder_seq_length"): a : Optional[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length") and self.model_tester.chunk_length > 1: a : Any = seq_length * self.model_tester.chunk_length else: a : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: a : Union[str, Any] = outputs.decoder_hidden_states self.asseretIsInstance(__UpperCAmelCase , (list, tuple)) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) a : int = getattr(self.model_tester , "seq_length" , __UpperCAmelCase) a : Any = getattr(self.model_tester , "decoder_seq_length" , __UpperCAmelCase) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : int = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Optional[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any]=False): a : str = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __snake_case ( self : str): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet") def __snake_case ( self : Union[str, Any]): a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase) def __snake_case ( self : str): a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def __snake_case ( self : int): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Optional[int] = TFEfficientFormerModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def __snake_case ( self : Union[str, Any]): a , a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() a : Dict = True a : Dict = getattr(self.model_tester , "seq_length" , __UpperCAmelCase) a : List[str] = getattr(self.model_tester , "encoder_seq_length" , __UpperCAmelCase) a : List[Any] = getattr(self.model_tester , "key_length" , __UpperCAmelCase) a : List[str] = getattr(self.model_tester , "chunk_length" , __UpperCAmelCase) if chunk_length is not None and hasattr(self.model_tester , "num_hashes"): a : Tuple = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: a : Optional[int] = True a : Dict = False a : Union[str, Any] = True a : Any = model_class(__UpperCAmelCase) a : Union[str, Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase) , training=__UpperCAmelCase) a : Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCAmelCase) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] a : str = True a : Dict = model_class(__UpperCAmelCase) a : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase) , training=__UpperCAmelCase) a : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCAmelCase) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def __snake_case ( self : Optional[int]): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction a , a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model a : Any = model_class(__UpperCAmelCase) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes a : str = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__UpperCAmelCase) for key, val in model.input_signature.items() if key in model.dummy_inputs } a : Optional[int] = model(__UpperCAmelCase) self.assertTrue(outputs_dict is not None) def lowercase ( )-> Dict: '''simple docstring''' a : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _A ( unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : Tuple): return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300") if is_vision_available() else None ) @slow def __snake_case ( self : Optional[int]): a : Any = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300") a : Optional[int] = self.default_image_processor a : int = prepare_img() a : Optional[Any] = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a : Tuple = model(**__UpperCAmelCase , training=__UpperCAmelCase) # verify the logits a : str = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a : Any = tf.constant([-0.0_555, 0.4_825, -0.0_852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4)) @slow def __snake_case ( self : Optional[Any]): a : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300") a : int = self.default_image_processor a : int = prepare_img() a : str = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a : Union[str, Any] = model(**__UpperCAmelCase , training=__UpperCAmelCase) # verify the logits a : str = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a : Any = tf.constant([-0.1_312, 0.4_353, -1.0_499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4))
40
import os def _lowercase ( ) -> List[str]: '''simple docstring''' with open(os.path.dirname(UpperCamelCase_ ) + '/p022_names.txt' ) as file: SCREAMING_SNAKE_CASE__ = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE__ = names.replace('"' , '' ).split(',' ) names.sort() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i, name in enumerate(UpperCamelCase_ ): for letter in name: name_score += ord(UpperCamelCase_ ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE__ = 0 return total_score if __name__ == "__main__": print(solution())
176
0
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCamelCase_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def __lowercase ( __lowercase ) -> Tuple: '''simple docstring''' _A = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) lowerCamelCase_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def __lowercase ( __lowercase ) -> Union[str, Any]: '''simple docstring''' _A = list(s_dict.keys() ) for key in keys: _A = key for k, v in WHISPER_MAPPING.items(): if k in key: _A = new_key.replace(__lowercase , __lowercase ) print(F'''{key} -> {new_key}''' ) _A = s_dict.pop(__lowercase ) return s_dict def __lowercase ( __lowercase ) -> Union[str, Any]: '''simple docstring''' _A , _A = emb.weight.shape _A = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _A = emb.weight.data return lin_layer def __lowercase ( __lowercase , __lowercase ) -> bytes: '''simple docstring''' os.makedirs(__lowercase , exist_ok=__lowercase ) _A = os.path.basename(__lowercase ) _A = url.split("/" )[-2] _A = os.path.join(__lowercase , __lowercase ) if os.path.exists(__lowercase ) and not os.path.isfile(__lowercase ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(__lowercase ): _A = open(__lowercase , "rb" ).read() if hashlib.shaaaa(__lowercase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(__lowercase ) as source, open(__lowercase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=__lowercase , unit_divisor=1024 ) as loop: while True: _A = source.read(8192 ) if not buffer: break output.write(__lowercase ) loop.update(len(__lowercase ) ) _A = open(__lowercase , "rb" ).read() if hashlib.shaaaa(__lowercase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def __lowercase ( __lowercase , __lowercase ) -> Optional[Any]: '''simple docstring''' if ".pt" not in checkpoint_path: _A = _download(_MODELS[checkpoint_path] ) else: _A = torch.load(__lowercase , map_location="cpu" ) _A = original_checkpoint["dims"] _A = original_checkpoint["model_state_dict"] _A = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(__lowercase ) rename_keys(__lowercase ) _A = True _A = state_dict["decoder.layers.0.fc1.weight"].shape[0] _A = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=__lowercase , decoder_ffn_dim=__lowercase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) _A = WhisperForConditionalGeneration(__lowercase ) _A , _A = model.model.load_state_dict(__lowercase , strict=__lowercase ) if len(__lowercase ) > 0 and not set(__lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F''' but all the following weights are missing {missing}''' ) if tie_embeds: _A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _A = proj_out_weights model.save_pretrained(__lowercase ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCamelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
174
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowercase ( __lowercase ) -> str: '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowercase ( ) -> Tuple: '''simple docstring''' _A = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=__lowercase ) _A = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__lowercase ) EnvironmentCommand.register_subcommand(__lowercase ) TestCommand.register_subcommand(__lowercase ) RunBeamCommand.register_subcommand(__lowercase ) DummyDataCommand.register_subcommand(__lowercase ) # Parse args _A , _A = parser.parse_known_args() if not hasattr(__lowercase , "func" ): parser.print_help() exit(1 ) _A = parse_unknown_args(__lowercase ) # Run _A = args.func(__lowercase , **__lowercase ) service.run() if __name__ == "__main__": main()
174
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Optional[int] = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def A (__A : str , __A : Optional[int] , __A : Optional[Any] , __A : Union[str, Any] ) -> Optional[int]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: UpperCAmelCase_ = TOKENIZER_CLASSES else: UpperCAmelCase_ = {tokenizer_name: getattr(__A , tokenizer_name + '''Fast''' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: UpperCAmelCase_ = TOKENIZER_CLASSES[tokenizer_name] UpperCAmelCase_ = True if checkpoint_name is None: UpperCAmelCase_ = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCAmelCase_ = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer UpperCAmelCase_ = tokenizer_class.from_pretrained(__A , force_download=__A ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: UpperCAmelCase_ , UpperCAmelCase_ = checkpoint.split('''/''' ) UpperCAmelCase_ = os.path.join(__A , __A ) elif add_prefix: UpperCAmelCase_ = checkpoint UpperCAmelCase_ = dump_path else: UpperCAmelCase_ = None UpperCAmelCase_ = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCAmelCase_ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCAmelCase_ = file_path.split(__A )[-1][0] if next_char == "/": UpperCAmelCase_ = os.path.join(__A , __A ) UpperCAmelCase_ = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) UpperCAmelCase_ = tokenizer.save_pretrained( __A , legacy_format=__A , filename_prefix=__A ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(__A ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) snake_case_ : Union[str, Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
51
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : List[str] = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Dict = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Any = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : int = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Optional[int] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : List[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : List[str] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' __snake_case : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
296
0
import requests from bsa import BeautifulSoup def UpperCamelCase ( _a = "https://www.worldometers.info/coronavirus" ) -> dict: '''simple docstring''' lowercase_ :List[str] = BeautifulSoup(requests.get(lowercase_ ).text , '''html.parser''' ) lowercase_ :Optional[int] = soup.findAll('''h1''' ) lowercase_ :List[str] = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowercase_ , lowercase_ )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f"{key}\n{value}\n")
362
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE : Any = random.Random() def UpperCamelCase ( _a , _a=1.0 , _a=None , _a=None ) -> str: '''simple docstring''' if rng is None: lowercase_ :Optional[Any] = global_rng lowercase_ :List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=400 , UpperCamelCase_=2000 , UpperCamelCase_=1 , UpperCamelCase_=0.0 , UpperCamelCase_=1_6000 , UpperCamelCase_=True , UpperCamelCase_=True , ): lowercase_ :Any = parent lowercase_ :Any = batch_size lowercase_ :int = min_seq_length lowercase_ :Optional[int] = max_seq_length lowercase_ :Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase_ :Any = feature_size lowercase_ :str = padding_value lowercase_ :Optional[int] = sampling_rate lowercase_ :int = return_attention_mask lowercase_ :Optional[Any] = do_normalize def UpperCamelCase ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase ( self , UpperCamelCase_=False , UpperCamelCase_=False ): def _flatten(UpperCamelCase_ ): return list(itertools.chain(*UpperCamelCase_ ) ) if equal_length: lowercase_ :Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase_ :List[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase_ :int = [np.asarray(UpperCamelCase_ ) for x in speech_inputs] return speech_inputs class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : int =WavaVecaFeatureExtractor def UpperCamelCase ( self ): lowercase_ :Tuple = WavaVecaFeatureExtractionTester(self ) def UpperCamelCase ( self , UpperCamelCase_ ): self.assertTrue(np.all(np.mean(UpperCamelCase_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase_ , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus lowercase_ :int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase_ :Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ :Any = [np.asarray(UpperCamelCase_ ) for speech_input in speech_inputs] # Test not batched input lowercase_ :Any = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowercase_ :List[str] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) # Test batched lowercase_ :Optional[Any] = feat_extract(UpperCamelCase_ , return_tensors='''np''' ).input_values lowercase_ :Tuple = feat_extract(UpperCamelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase_ :Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase_ :int = np.asarray(UpperCamelCase_ ) lowercase_ :List[str] = feat_extract(UpperCamelCase_ , return_tensors='''np''' ).input_values lowercase_ :Optional[Any] = feat_extract(UpperCamelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def UpperCamelCase ( self ): lowercase_ :Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ :str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ :Any = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase_ :int = [None, 1600, None] for max_length, padding in zip(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[Any] = feat_extract(UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors='''np''' ) lowercase_ :Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase ( self ): lowercase_ :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ :Union[str, Any] = range(800 , 1400 , 200 ) lowercase_ :Optional[int] = [floats_list((1, x) )[0] for x in lengths] lowercase_ :Any = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase_ :Optional[Any] = [None, 1600, None] for max_length, padding in zip(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Any = feat_extract(UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ ) lowercase_ :Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase ( self ): lowercase_ :Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ :Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ :str = feat_extract( UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) lowercase_ :Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ :List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ :Optional[int] = feat_extract( UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) lowercase_ :Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase_ :Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ :Optional[int] = feat_extract( UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) lowercase_ :int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCamelCase ( self ): import torch lowercase_ :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ :Any = np.random.rand(100 ).astype(np.floataa ) lowercase_ :Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase_ :List[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase_ :Dict = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCamelCase ( self ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowercase_ :List[Any] = WavaVecaConfig.from_pretrained(UpperCamelCase_ ) lowercase_ :Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
252
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCamelCase__ : Union[str, Any] = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def UpperCAmelCase_ ( __UpperCAmelCase : Dict=True ) -> Optional[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCamelCase ) ) class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = None lowercase_ = None def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] ): with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = dataset_module_factory(_lowerCAmelCase , cache_dir=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = builder_cls( cache_dir=_lowerCAmelCase , config_name=_lowerCAmelCase , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_ = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_lowerCAmelCase ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE_ = cached_path(_lowerCAmelCase , cache_dir=_lowerCAmelCase ) self.assertTrue(os.path.exists(_lowerCAmelCase ) ) @pytest.mark.integration def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' SCREAMING_SNAKE_CASE_ = dataset_module_factory('wikipedia' , cache_dir=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE_ = builder_cls( cache_dir=_UpperCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE_ = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE_ = builder_instance.as_dataset() assert ds @pytest.mark.integration def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = dataset_module_factory('wikipedia' , cache_dir=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = builder_cls( cache_dir=_UpperCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_ = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _UpperCAmelCase ) assert next(iter(ds['train'] ) )
225
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
0
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=7 ): __snake_case : str = None if token is not None: __snake_case : str = {"Accept": "application/vnd.github+json", "Authorization": F'Bearer {token}'} # The id of a workflow (not of a workflow run) __snake_case : Optional[Any] = "636036" __snake_case : Dict = F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' __snake_case : str = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() return result["workflow_runs"] def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Optional[int] = get_daily_ci_runs(__lowerCamelCase ) __snake_case : int = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __snake_case : int = workflow_run["id"] break return workflow_run_id def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[int] = get_last_daily_ci_runs(__lowerCamelCase ) if workflow_run_id is not None: __snake_case : Optional[Any] = get_artifacts_links(worflow_run_id=__lowerCamelCase , token=__lowerCamelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __snake_case : str = artifacts_links[artifact_name] download_artifact( artifact_name=__lowerCamelCase , artifact_url=__lowerCamelCase , output_dir=__lowerCamelCase , token=__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): get_last_daily_ci_artifacts(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : int = {} for artifact_name in artifact_names: __snake_case : str = os.path.join(__lowerCamelCase , F'{artifact_name}.zip' ) if os.path.isfile(__lowerCamelCase ): __snake_case : Dict = {} with zipfile.ZipFile(__lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCamelCase ): # read the file with z.open(__lowerCamelCase ) as f: __snake_case : Optional[int] = f.read().decode("UTF-8" ) return results
134
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Any = [] __snake_case : Optional[Any] = [] __snake_case : List[Any] = [] for rt in rc.restypes: __snake_case : Any = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __snake_case : Tuple = {name: i for i, name in enumerate(__lowerCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) __snake_case : int = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) __snake_case : List[str] = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) __snake_case : Optional[Any] = torch.tensor( __lowerCamelCase , dtype=torch.floataa , device=protein["aatype"].device , ) __snake_case : Optional[int] = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __snake_case : Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] __snake_case : Tuple = restype_atomaa_mask[protein_aatype] __snake_case : Optional[Any] = residx_atomaa_mask __snake_case : Union[str, Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __snake_case : Dict = restype_atomaa_to_atomaa[protein_aatype] __snake_case : Dict = residx_atomaa_to_atomaa.long() # create the corresponding mask __snake_case : List[str] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): __snake_case : List[str] = rc.restype_atoa[restype_letter] __snake_case : List[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: __snake_case : Union[str, Any] = rc.atom_order[atom_name] __snake_case : str = 1 __snake_case : List[str] = restype_atomaa_mask[protein_aatype] __snake_case : List[str] = residx_atomaa_mask return protein def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : str = tree_map(lambda __lowerCamelCase : torch.tensor(__lowerCamelCase , device=batch["aatype"].device ) , __lowerCamelCase , np.ndarray ) __snake_case : str = tensor_tree_map(lambda __lowerCamelCase : np.array(__lowerCamelCase ) , make_atomaa_masks(__lowerCamelCase ) ) return out
134
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 while repunit: _lowerCAmelCase : List[Any] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : Optional[Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
44
class _a : def __init__( self: Any ) -> Tuple: """simple docstring""" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = [] def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int ) -> int: """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase__ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowercase__ = self.__min_dist_top_down_dp(UpperCamelCase_ , n - 1 ) lowercase__ = self.__min_dist_top_down_dp(m - 1 , UpperCamelCase_ ) lowercase__ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowercase__ = 1 + min(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return self.dp[m][n] def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: str ) -> int: """simple docstring""" lowercase__ = worda lowercase__ = worda lowercase__ = [[-1 for _ in range(len(UpperCamelCase_ ) )] for _ in range(len(UpperCamelCase_ ) )] return self.__min_dist_top_down_dp(len(UpperCamelCase_ ) - 1 , len(UpperCamelCase_ ) - 1 ) def lowerCamelCase_ ( self: int , UpperCamelCase_: str , UpperCamelCase_: str ) -> int: """simple docstring""" lowercase__ = worda lowercase__ = worda lowercase__ = len(UpperCamelCase_ ) lowercase__ = len(UpperCamelCase_ ) lowercase__ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase__ = j elif j == 0: # second string is empty lowercase__ = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase__ = self.dp[i - 1][j - 1] else: lowercase__ = self.dp[i][j - 1] lowercase__ = self.dp[i - 1][j] lowercase__ = self.dp[i - 1][j - 1] lowercase__ = 1 + min(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return self.dp[m][n] if __name__ == "__main__": lowerCAmelCase = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() lowerCAmelCase = input('Enter the first string: ').strip() lowerCAmelCase = input('Enter the second string: ').strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
110
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def UpperCamelCase__ ( ): __lowerCamelCase : Dict = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } __lowerCamelCase : Any = Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) return dataset class A_ ( __UpperCamelCase ): '''simple docstring''' def _snake_case ( self: List[Any] ): __lowerCamelCase : List[Any] = get_dataset() __lowerCamelCase : int = make_duplicate_clusters(a , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _snake_case ( self: str ): __lowerCamelCase : Tuple = get_dataset() __lowerCamelCase , __lowerCamelCase : Union[str, Any] = deduplicate_dataset(a ) self.assertEqual(len(a ) , 2 ) print(a ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , a )
194
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowercase_ = logging.get_logger(__name__) @dataclass class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self: Any , **a: Optional[Any] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCamelCase : str = deprecated_arg[3:] setattr(self , a , not kwargs.pop(a ) ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) __lowerCamelCase : str = kwargs.pop('torchscript' , self.torchscript ) __lowerCamelCase : int = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) __lowerCamelCase : Dict = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**a ) __snake_case = field(default=__UpperCamelCase , metadata={"""help""": """Trace the models using torchscript"""} ) __snake_case = field(default=__UpperCamelCase , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) __snake_case = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def _snake_case ( self: Dict ): requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: __lowerCamelCase : Dict = torch.device('cpu' ) __lowerCamelCase : str = 0 elif is_torch_tpu_available(): __lowerCamelCase : Optional[int] = xm.xla_device() __lowerCamelCase : Dict = 0 else: __lowerCamelCase : Any = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __lowerCamelCase : Union[str, Any] = torch.cuda.device_count() return device, n_gpu @property def _snake_case ( self: Optional[Any] ): return is_torch_tpu_available() and self.tpu @property def _snake_case ( self: Union[str, Any] ): requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _snake_case ( self: int ): requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def _snake_case ( self: Union[str, Any] ): requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def _snake_case ( self: List[Any] ): return self.n_gpu > 0
194
1
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase__ = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowercase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
290
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ : Any =os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 SCREAMING_SNAKE_CASE__ : int =test_metrics @require_cpu def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __magic_name__ ( self : Any ) -> List[str]: debug_launcher(self.test_metrics.main ) @require_single_gpu def __magic_name__ ( self : int ) -> Any: self.test_metrics.main() @require_multi_gpu def __magic_name__ ( self : int ) -> Optional[Any]: print(F"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE__ : List[Any] =['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
361
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : List[str] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE__ : str =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_euler''' ) SCREAMING_SNAKE_CASE__ : List[Any] ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : List[str] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =output.images SCREAMING_SNAKE_CASE__ : int =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Any =np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[str] =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ : int =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_euler''' ) SCREAMING_SNAKE_CASE__ : Any ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : Dict =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : Dict =output.images SCREAMING_SNAKE_CASE__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : List[str] =np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Any =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ : Tuple =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) SCREAMING_SNAKE_CASE__ : Tuple ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] =sd_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] =output.images SCREAMING_SNAKE_CASE__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
222
0
"""simple docstring""" import requests from bsa import BeautifulSoup def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = BeautifulSoup(requests.get(lowerCamelCase , params=lowerCamelCase ).content , 'html.parser' ) UpperCAmelCase__ = soup.find('div' , attrs={'class': 'gs_ri'} ) UpperCAmelCase__ = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
98
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
0
from __future__ import annotations from math import pow, sqrt def A_ ( A__ , A__ , A__ ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(A__ , 2 ) - pow(A__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(A__ , 2 ) - pow(A__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(A__ , 2 ) + pow(A__ , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
225
import glob import os import random from string import ascii_lowercase, digits import cva lowercase : Optional[Any] = """""" lowercase : int = """""" lowercase : List[Any] = """""" lowercase : Optional[int] = 1 # (0 is vertical, 1 is horizontal) def A_ ( ) -> None: a__ , a__ : str = get_dataset(A__ , A__ ) print('Processing...' ) a__ , a__ , a__ : Tuple = update_image_and_anno(A__ , A__ , A__ ) for index, image in enumerate(A__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a__ : int = random_chars(32 ) a__ : Optional[Any] = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] a__ : Optional[int] = F'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(F'/{file_root}.jpg' , A__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Success {index+1}/{len(A__ )} with {file_name}' ) a__ : List[str] = [] for anno in new_annos[index]: a__ : Union[str, Any] = F'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(A__ ) with open(F'/{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def A_ ( A__ , A__ ) -> tuple[list, list]: a__ : int = [] a__ : int = [] for label_file in glob.glob(os.path.join(A__ , '*.txt' ) ): a__ : Optional[Any] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(A__ ) as in_file: a__ : Tuple = in_file.readlines() a__ : Dict = os.path.join(A__ , F'{label_name}.jpg' ) a__ : int = [] for obj_list in obj_lists: a__ : Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(A__ ) labels.append(A__ ) return img_paths, labels def A_ ( A__ , A__ , A__ = 1 ) -> tuple[list, list, list]: a__ : Optional[int] = [] a__ : Any = [] a__ : Dict = [] for idx in range(len(A__ ) ): a__ : Optional[int] = [] a__ : Optional[Any] = img_list[idx] path_list.append(A__ ) a__ : Union[str, Any] = anno_list[idx] a__ : List[str] = cva.imread(A__ ) if flip_type == 1: a__ : List[str] = cva.flip(A__ , A__ ) for bbox in img_annos: a__ : Optional[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: a__ : Optional[Any] = cva.flip(A__ , A__ ) for bbox in img_annos: a__ : Optional[int] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(A__ ) new_imgs_list.append(A__ ) return new_imgs_list, new_annos_lists, path_list def A_ ( A__ = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" a__ : Optional[int] = ascii_lowercase + digits return "".join(random.choice(A__ ) for _ in range(A__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
225
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __a : def __init__( self , lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = parent lowercase__: List[str] = 13 lowercase__: Any = 7 lowercase__: Union[str, Any] = True lowercase__: Optional[Any] = True lowercase__: Optional[Any] = False lowercase__: Optional[int] = True lowercase__: Optional[Any] = 99 lowercase__: Tuple = 32 lowercase__: Dict = 2 lowercase__: Union[str, Any] = 4 lowercase__: str = 37 lowercase__: Dict = 'gelu' lowercase__: Union[str, Any] = 0.1 lowercase__: List[Any] = 0.1 lowercase__: List[Any] = 512 lowercase__: List[str] = 16 lowercase__: Tuple = 2 lowercase__: Union[str, Any] = 0.0_2 lowercase__: Any = 3 lowercase__: Union[str, Any] = 4 lowercase__: Optional[int] = None def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: int = None if self.use_input_mask: lowercase__: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None lowercase__: Optional[int] = None lowercase__: List[Any] = None if self.use_labels: lowercase__: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Union[str, Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = TFDistilBertModel(config=lowerCAmelCase__ ) lowercase__: Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowercase__: Dict = model(lowerCAmelCase__ ) lowercase__: Dict = [input_ids, input_mask] lowercase__: int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = TFDistilBertForMaskedLM(config=lowerCAmelCase__ ) lowercase__: Any = {'input_ids': input_ids, 'attention_mask': input_mask} lowercase__: Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: Tuple = TFDistilBertForQuestionAnswering(config=lowerCAmelCase__ ) lowercase__: List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, } lowercase__: Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Dict = self.num_labels lowercase__: Optional[Any] = TFDistilBertForSequenceClassification(lowerCAmelCase__ ) lowercase__: Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} lowercase__: int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = self.num_choices lowercase__: int = TFDistilBertForMultipleChoice(lowerCAmelCase__ ) lowercase__: Any = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) lowercase__: List[str] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) lowercase__: Tuple = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } lowercase__: Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' lowercase__: Tuple = self.num_labels lowercase__: Tuple = TFDistilBertForTokenClassification(lowerCAmelCase__ ) lowercase__: int = {'input_ids': input_ids, 'attention_mask': input_mask} lowercase__: List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: List[str] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)): List[Any] = config_and_inputs lowercase__: str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __a ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): __lowercase : int = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __lowercase : Tuple = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __lowercase : int = False __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Any = TFDistilBertModelTester(self ) lowercase__: int = ConfigTester(self , config_class=lowerCAmelCase__ , dim=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase__: str = TFDistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_tf class __a ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__: str = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__: Tuple = model(lowerCAmelCase__ )[0] lowercase__: Optional[Any] = [1, 6, 768] self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__: List[str] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 )
196
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
196
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any) -> Dict: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10) _snake_case : Dict = torch.optim.SGD(model.parameters() , 0.1) _snake_case : str = Accelerator() _snake_case : Any = accelerator.prepare(lowerCamelCase__) try: pickle.loads(pickle.dumps(lowerCamelCase__)) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''') AcceleratorState._reset_state()
317
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''input_features''', '''is_longer'''] def __init__( self , lowerCamelCase__=64 , lowerCamelCase__=48_000 , lowerCamelCase__=480 , lowerCamelCase__=10 , lowerCamelCase__=1_024 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__ = 0 , lowerCamelCase__ = 14_000 , lowerCamelCase__ = None , lowerCamelCase__ = "fusion" , lowerCamelCase__ = "repeatpad" , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' super().__init__( feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = top_db __lowerCamelCase = truncation __lowerCamelCase = padding __lowerCamelCase = fft_window_size __lowerCamelCase = (fft_window_size >> 1) + 1 __lowerCamelCase = hop_length __lowerCamelCase = max_length_s __lowerCamelCase = max_length_s * sampling_rate __lowerCamelCase = sampling_rate __lowerCamelCase = frequency_min __lowerCamelCase = frequency_max __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm=lowerCamelCase__ , mel_scale='htk' , ) __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm='slaney' , mel_scale='slaney' , ) def lowercase_ ( self ) -> Dict[str, Any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = spectrogram( lowerCamelCase__ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase__ , log_mel='dB' , ) return log_mel_spectrogram.T def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] # randomly choose index for each part __lowerCamelCase = np.random.choice(ranges[0] ) __lowerCamelCase = np.random.choice(ranges[1] ) __lowerCamelCase = np.random.choice(ranges[2] ) __lowerCamelCase = mel[idx_front : idx_front + chunk_frames, :] __lowerCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __lowerCamelCase = mel[idx_back : idx_back + chunk_frames, :] __lowerCamelCase = torch.tensor(mel[None, None, :] ) __lowerCamelCase = torch.nn.functional.interpolate( lowerCamelCase__ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=lowerCamelCase__ ) __lowerCamelCase = mel_shrink[0][0].numpy() __lowerCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": __lowerCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __lowerCamelCase = len(lowerCamelCase__ ) - max_length __lowerCamelCase = np.random.randint(0 , overflow + 1 ) __lowerCamelCase = waveform[idx : idx + max_length] __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __lowerCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __lowerCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __lowerCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __lowerCamelCase = False else: __lowerCamelCase = self._random_mel_fusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: __lowerCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __lowerCamelCase = int(max_length / len(lowerCamelCase__ ) ) __lowerCamelCase = np.stack(np.tile(lowerCamelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __lowerCamelCase = int(max_length / len(lowerCamelCase__ ) ) __lowerCamelCase = np.stack(np.tile(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = np.pad(lowerCamelCase__ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __lowerCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchFeature: '''simple docstring''' __lowerCamelCase = truncation if truncation is not None else self.truncation __lowerCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowerCamelCase = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __lowerCamelCase = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): __lowerCamelCase = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. __lowerCamelCase = [ self._get_input_mel(lowerCamelCase__ , max_length if max_length else self.nb_max_samples , lowerCamelCase__ , lowerCamelCase__ ) for waveform in raw_speech ] __lowerCamelCase = [] __lowerCamelCase = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __lowerCamelCase = np.random.randint(0 , len(lowerCamelCase__ ) ) __lowerCamelCase = True if isinstance(input_mel[0] , lowerCamelCase__ ): __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __lowerCamelCase = [[longer] for longer in is_longer] __lowerCamelCase = {'input_features': input_mel, 'is_longer': is_longer} __lowerCamelCase = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: __lowerCamelCase = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
90
0
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def a__ ( SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : str=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : str =field( metadata={"help": "The csv file to plot."} , ) a : bool =field( default=lowercase , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) a : bool =field( default=lowercase , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) a : bool =field( default=lowercase , metadata={"help": "Disable logarithmic scale when plotting"} , ) a : bool =field( default=lowercase , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) a : Optional[str] =field( default=lowercase , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) a : Optional[List[str]] =list_field( default=lowercase , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' try: int(SCREAMING_SNAKE_CASE ) return True except ValueError: return False def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' try: float(SCREAMING_SNAKE_CASE ) return True except ValueError: return False class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = args lowerCAmelCase : List[str] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: lowerCAmelCase : List[Any] = csv.DictReader(snake_case__ ) for row in reader: lowerCAmelCase : Dict = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None lowerCAmelCase : Optional[Any] = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None lowerCAmelCase : Any = float(row["result"] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = plt.subplots() lowerCAmelCase : Any = "Time usage" if self.args.is_time else "Memory usage" lowerCAmelCase : str = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCAmelCase : Tuple = sorted(set(self.result_dict[model_name]["bsz"] ) ) lowerCAmelCase : Dict = sorted(set(self.result_dict[model_name]["seq_len"] ) ) lowerCAmelCase : int = self.result_dict[model_name]["result"] (lowerCAmelCase) : List[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCAmelCase : Dict = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCAmelCase : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=snake_case__ , ) else: lowerCAmelCase : List[str] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) (lowerCAmelCase) : Tuple = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) lowerCAmelCase : int = np.asarray(snake_case__ , snake_case__ )[: len(snake_case__ )] plt.scatter( snake_case__ , snake_case__ , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(snake_case__ , snake_case__ , "--" ) title_str += f""" {label_model_name} vs.""" lowerCAmelCase : Dict = title_str[:-4] lowerCAmelCase : Optional[int] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(snake_case__ ) plt.xlabel(snake_case__ ) plt.ylabel(snake_case__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def a__ ( ): '''simple docstring''' lowerCAmelCase : Any = HfArgumentParser(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase : Dict = Plot(args=SCREAMING_SNAKE_CASE ) plot.plot() if __name__ == "__main__": main()
353
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , **snake_case__ , ): """simple docstring""" super().__init__(features=snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = Sql( cache_dir=snake_case__ , features=snake_case__ , sql=snake_case__ , con=snake_case__ , **snake_case__ , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : str = None lowerCAmelCase : int = None self.builder.download_and_prepare( download_config=snake_case__ , download_mode=snake_case__ , verification_mode=snake_case__ , base_path=snake_case__ , ) # Build dataset for splits lowerCAmelCase : str = self.builder.as_dataset( split="train" , verification_mode=snake_case__ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , **snake_case__ , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) lowerCAmelCase : Tuple = dataset lowerCAmelCase : Tuple = name lowerCAmelCase : List[str] = con lowerCAmelCase : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCAmelCase : Optional[int] = num_proc lowerCAmelCase : Optional[int] = to_sql_kwargs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.to_sql_kwargs.pop("sql" , snake_case__ ) lowerCAmelCase : List[Any] = self.to_sql_kwargs.pop("con" , snake_case__ ) lowerCAmelCase : Dict = self.to_sql_kwargs.pop("index" , snake_case__ ) lowerCAmelCase : Dict = self._write(index=snake_case__ , **self.to_sql_kwargs ) return written def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = args lowerCAmelCase : Optional[int] = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs lowerCAmelCase : List[Any] = query_table( table=self.dataset.data , key=slice(snake_case__ , offset + self.batch_size ) , indices=self.dataset._indices , ) lowerCAmelCase : Tuple = batch.to_pandas() lowerCAmelCase : str = df.to_sql(self.name , self.con , index=snake_case__ , **snake_case__ ) return num_rows or len(snake_case__ ) def lowercase__ ( self , snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: lowerCAmelCase , lowerCAmelCase : Dict = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , snake_case__ , snake_case__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
133
0
'''simple docstring''' import argparse import os import re _UpperCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. _UpperCAmelCase : Any = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _UpperCAmelCase : List[Any] = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _UpperCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _UpperCAmelCase : Tuple = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _UpperCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def __magic_name__( lowerCamelCase): __lowerCAmelCase = _re_indent.search(lowerCamelCase) return "" if search is None else search.groups()[0] def __magic_name__( lowerCamelCase, lowerCamelCase="", lowerCamelCase=None, lowerCamelCase=None): __lowerCAmelCase = 0 __lowerCAmelCase = code.split('''\n''') if start_prompt is not None: while not lines[index].startswith(lowerCamelCase): index += 1 __lowerCAmelCase = ['''\n'''.join(lines[:index])] else: __lowerCAmelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowerCAmelCase = [lines[index]] index += 1 while index < len(lowerCamelCase) and (end_prompt is None or not lines[index].startswith(lowerCamelCase)): if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level: if len(lowerCamelCase) > 0 and get_indent(current_block[-1]).startswith(indent_level + ''' '''): current_block.append(lines[index]) blocks.append('''\n'''.join(lowerCamelCase)) if index < len(lowerCamelCase) - 1: __lowerCAmelCase = [lines[index + 1]] index += 1 else: __lowerCAmelCase = [] else: blocks.append('''\n'''.join(lowerCamelCase)) __lowerCAmelCase = [lines[index]] else: current_block.append(lines[index]) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase) > 0: blocks.append('''\n'''.join(lowerCamelCase)) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase): blocks.append('''\n'''.join(lines[index:])) return blocks def __magic_name__( lowerCamelCase): def _inner(lowerCamelCase): return key(lowerCamelCase).lower().replace('''_''', '''''') return _inner def __magic_name__( lowerCamelCase, lowerCamelCase=None): # If no key is provided, we use a noop. def noop(lowerCamelCase): return x if key is None: __lowerCAmelCase = noop # Constants are all uppercase, they go first. __lowerCAmelCase = [obj for obj in objects if key(lowerCamelCase).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowerCAmelCase = [obj for obj in objects if key(lowerCamelCase)[0].isupper() and not key(lowerCamelCase).isupper()] # Functions begin with a lowercase, they go last. __lowerCAmelCase = [obj for obj in objects if not key(lowerCamelCase)[0].isupper()] __lowerCAmelCase = ignore_underscore(lowerCamelCase) return sorted(lowerCamelCase, key=lowerCamelCase) + sorted(lowerCamelCase, key=lowerCamelCase) + sorted(lowerCamelCase, key=lowerCamelCase) def __magic_name__( lowerCamelCase): # This inner function sort imports between [ ]. def _replace(lowerCamelCase): __lowerCAmelCase = match.groups()[0] if "," not in imports: return F"""[{imports}]""" __lowerCAmelCase = [part.strip().replace('''"''', '''''') for part in imports.split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: __lowerCAmelCase = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase)]) + "]" __lowerCAmelCase = import_statement.split('''\n''') if len(lowerCamelCase) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowerCAmelCase = 2 if lines[1].strip() == '''[''' else 1 __lowerCAmelCase = [(i, _re_strip_line.search(lowerCamelCase).groups()[0]) for i, line in enumerate(lines[idx:-idx])] __lowerCAmelCase = sort_objects(lowerCamelCase, key=lambda lowerCamelCase: x[1]) __lowerCAmelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:]) elif len(lowerCamelCase) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1]) is not None: __lowerCAmelCase = _re_bracket_content.sub(_replace, lines[1]) else: __lowerCAmelCase = [part.strip().replace('''"''', '''''') for part in lines[1].split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: __lowerCAmelCase = keys[:-1] __lowerCAmelCase = get_indent(lines[1]) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase)]) return "\n".join(lowerCamelCase) else: # Finally we have to deal with imports fitting on one line __lowerCAmelCase = _re_bracket_content.sub(_replace, lowerCamelCase) return import_statement def __magic_name__( lowerCamelCase, lowerCamelCase=True): with open(lowerCamelCase, encoding='''utf-8''') as f: __lowerCAmelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowerCAmelCase = split_code_in_indented_blocks( lowerCamelCase, start_prompt='''_import_structure = {''', end_prompt='''if TYPE_CHECKING:''') # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1, len(lowerCamelCase) - 1): # Check if the block contains some `_import_structure`s thingy to sort. __lowerCAmelCase = main_blocks[block_idx] __lowerCAmelCase = block.split('''\n''') # Get to the start of the imports. __lowerCAmelCase = 0 while line_idx < len(lowerCamelCase) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowerCAmelCase = len(lowerCamelCase) else: line_idx += 1 if line_idx >= len(lowerCamelCase): continue # Ignore beginning and last line: they don't contain anything. __lowerCAmelCase = '''\n'''.join(block_lines[line_idx:-1]) __lowerCAmelCase = get_indent(block_lines[1]) # Slit the internal block into blocks of indent level 1. __lowerCAmelCase = split_code_in_indented_blocks(lowerCamelCase, indent_level=lowerCamelCase) # We have two categories of import key: list or _import_structure[key].append/extend __lowerCAmelCase = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowerCAmelCase = [(pattern.search(lowerCamelCase).groups()[0] if pattern.search(lowerCamelCase) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowerCAmelCase = [(i, key) for i, key in enumerate(lowerCamelCase) if key is not None] __lowerCAmelCase = [x[0] for x in sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1])] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowerCAmelCase = 0 __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): if keys[i] is None: reorderded_blocks.append(internal_blocks[i]) else: __lowerCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]]) reorderded_blocks.append(lowerCamelCase) count += 1 # And we put our main block back together with its first and last line. __lowerCAmelCase = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]]) if code != "\n".join(lowerCamelCase): if check_only: return True else: print(F"""Overwriting {file}.""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write('''\n'''.join(lowerCamelCase)) def __magic_name__( lowerCamelCase=True): __lowerCAmelCase = [] for root, _, files in os.walk(lowerCamelCase): if "__init__.py" in files: __lowerCAmelCase = sort_imports(os.path.join(lowerCamelCase, '''__init__.py'''), check_only=lowerCamelCase) if result: __lowerCAmelCase = [os.path.join(lowerCamelCase, '''__init__.py''')] if len(lowerCamelCase) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase)} files, run `make style`.""") if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _UpperCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
174
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline __UpperCamelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} __UpperCamelCase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} __UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case (self ): torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__lowercase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __lowerCAmelCase = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=32 , ) __lowerCAmelCase = CLIPTextModel(__lowercase ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowercase ) __lowerCAmelCase = CLIPTextModelWithProjection(__lowercase ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowercase ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _snake_case (self , __lowercase , __lowercase=0 ): __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowerCAmelCase = image / 2 + 0.5 if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.7_5, } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = sd_pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case (self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _snake_case (self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) # forward without prompt embeds __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 3 * ['''this is a negative prompt'''] __lowerCAmelCase = negative_prompt __lowerCAmelCase = 3 * [inputs['''prompt''']] __lowerCAmelCase = sd_pipe(**__lowercase ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 3 * ['''this is a negative prompt'''] __lowerCAmelCase = 3 * [inputs.pop('''prompt''' )] ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = sd_pipe.encode_prompt(__lowercase , negative_prompt=__lowercase ) __lowerCAmelCase = sd_pipe( **__lowercase , prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , pooled_prompt_embeds=__lowercase , negative_pooled_prompt_embeds=__lowercase , ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=0 ): __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = np.random.RandomState(__lowercase ).standard_normal((1, 4, 64, 64) ) __lowerCAmelCase = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __lowerCAmelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case (self ): __lowerCAmelCase = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
174
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __lowerCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS __lowerCAmelCase = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Tuple = 'retribert' def __init__( self : int ,_UpperCAmelCase : List[str]=30522 ,_UpperCAmelCase : Dict=768 ,_UpperCAmelCase : Tuple=8 ,_UpperCAmelCase : Optional[Any]=12 ,_UpperCAmelCase : Optional[Any]=3072 ,_UpperCAmelCase : List[str]="gelu" ,_UpperCAmelCase : Optional[Any]=0.1 ,_UpperCAmelCase : Any=0.1 ,_UpperCAmelCase : Optional[int]=512 ,_UpperCAmelCase : str=2 ,_UpperCAmelCase : List[str]=0.02 ,_UpperCAmelCase : Optional[Any]=1E-12 ,_UpperCAmelCase : Tuple=True ,_UpperCAmelCase : Tuple=128 ,_UpperCAmelCase : List[Any]=0 ,**_UpperCAmelCase : int ,): super().__init__(pad_token_id=_UpperCAmelCase ,**_UpperCAmelCase ) _a : Dict = vocab_size _a : Optional[Any] = hidden_size _a : Tuple = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = hidden_act _a : Dict = intermediate_size _a : List[str] = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : Union[str, Any] = max_position_embeddings _a : List[Any] = type_vocab_size _a : List[str] = initializer_range _a : List[str] = layer_norm_eps _a : int = share_encoders _a : int = projection_dim
107
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Optional[int] = 'distilbert' lowerCAmelCase : Optional[int] = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : str ,_UpperCAmelCase : Optional[Any]=30522 ,_UpperCAmelCase : int=512 ,_UpperCAmelCase : int=False ,_UpperCAmelCase : str=6 ,_UpperCAmelCase : int=12 ,_UpperCAmelCase : Union[str, Any]=768 ,_UpperCAmelCase : Optional[Any]=4 * 768 ,_UpperCAmelCase : int=0.1 ,_UpperCAmelCase : Union[str, Any]=0.1 ,_UpperCAmelCase : Tuple="gelu" ,_UpperCAmelCase : Any=0.02 ,_UpperCAmelCase : List[Any]=0.1 ,_UpperCAmelCase : Dict=0.2 ,_UpperCAmelCase : Union[str, Any]=0 ,**_UpperCAmelCase : List[Any] ,): _a : Optional[Any] = vocab_size _a : Dict = max_position_embeddings _a : Optional[int] = sinusoidal_pos_embds _a : List[Any] = n_layers _a : Any = n_heads _a : int = dim _a : Optional[Any] = hidden_dim _a : str = dropout _a : Optional[Any] = attention_dropout _a : Any = activation _a : Tuple = initializer_range _a : Union[str, Any] = qa_dropout _a : List[Any] = seq_classif_dropout super().__init__(**_UpperCAmelCase ,pad_token_id=_UpperCAmelCase ) class __magic_name__ ( _UpperCamelCase ): @property def __lowercase ( self : Union[str, Any] ): if self.task == "multiple-choice": _a : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _a : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
107
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ : int = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowercase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
224
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowercase__ : List[str] = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def UpperCamelCase_ ( lowerCAmelCase__ : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : List[Any] = test_results.split(' ' ) lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : Any = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCAmelCase_ : Any = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCAmelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCamelCase_ ( lowerCAmelCase__ : Dict ) -> str: """simple docstring""" lowerCAmelCase_ : Optional[Any] = {} lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : List[str] = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , lowerCAmelCase__ ): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Union[str, Any] = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): lowerCAmelCase_ : Union[str, Any] = line lowerCAmelCase_ : int = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : str = title lowerCAmelCase_ : Optional[int] = doc_test_results['time_spent'].split(',' )[0] lowerCAmelCase_ : int = doc_test_results['success'] lowerCAmelCase_ : Dict = doc_test_results['failures'] lowerCAmelCase_ : Optional[int] = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCAmelCase_ : Any = doc_test_results @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : int = [self._time_spent] lowerCAmelCase_ : Any = 0 for time in time_spent: lowerCAmelCase_ : Optional[Any] = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE_ ) == 1: lowerCAmelCase_ : Any = [0, 0, time_parts[0]] lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return F"{int(SCREAMING_SNAKE_CASE_ )}h{int(SCREAMING_SNAKE_CASE_ )}m{int(SCREAMING_SNAKE_CASE_ )}s" @property def SCREAMING_SNAKE_CASE__ ( self : int ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def SCREAMING_SNAKE_CASE__ ( self : str ): return { "type": "section", "text": { "type": "plain_text", "text": F"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return { "type": "section", "text": { "type": "plain_text", "text": ( F"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" F" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : int = 4_0 lowerCAmelCase_ : List[Any] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} lowerCAmelCase_ : List[str] = '' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE_ ) == 0: continue if report != "": report += "\n\n" report += F"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"The following examples had failures:\n\n\n{report}\n", }, } @property def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : int = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( ): lowerCAmelCase_ : Tuple = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE_ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE_ , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) lowerCAmelCase_ : Any = F"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else 'All tests passed.' lowerCAmelCase_ : str = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE_ , ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : List[Any] = '' for key, value in failures.items(): lowerCAmelCase_ : List[Any] = value[:2_0_0] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE_ ) > 2_5_0 else value failures_text += F"*{key}*\n_{value}_\n\n" lowerCAmelCase_ : int = job_name lowerCAmelCase_ : Dict = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: lowerCAmelCase_ : str = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) lowerCAmelCase_ : Dict = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) lowerCAmelCase_ : Dict = sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): lowerCAmelCase_ : Tuple = F"*Num failures* :{len(job_result['failed'] )} \n" lowerCAmelCase_ : List[str] = job_result['failures'] lowerCAmelCase_ : Union[str, Any] = self.get_reply_blocks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , text=SCREAMING_SNAKE_CASE_ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F"Results for {job}" , blocks=SCREAMING_SNAKE_CASE_ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def UpperCamelCase_ ( ) -> str: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = os.environ['GITHUB_RUN_ID'] lowerCAmelCase_ : int = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" lowerCAmelCase_ : str = requests.get(lowerCAmelCase__ ).json() lowerCAmelCase_ : List[str] = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) lowerCAmelCase_ : Optional[Any] = math.ceil((result['total_count'] - 100) / 100 ) for i in range(lowerCAmelCase__ ): lowerCAmelCase_ : int = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , lowerCAmelCase__ ) return {} def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : int = {} if os.path.exists(lowerCAmelCase__ ): lowerCAmelCase_ : Tuple = os.listdir(lowerCAmelCase__ ) for file in files: try: with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , encoding='utf-8' ) as f: lowerCAmelCase_ : List[str] = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )}." ) from e return _artifact def UpperCamelCase_ ( ) -> Dict: """simple docstring""" class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase_ : List[Any] = name lowerCAmelCase_ : Tuple = [] def __str__( self : Optional[Any] ): return self.name def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ): self.paths.append({'name': self.name, 'path': path} ) lowerCAmelCase_ : Dict[str, Artifact] = {} lowerCAmelCase_ : Any = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCAmelCase_ : int = directory if artifact_name not in _available_artifacts: lowerCAmelCase_ : Optional[Any] = Artifact(lowerCAmelCase__ ) _available_artifacts[artifact_name].add_path(lowerCAmelCase__ ) return _available_artifacts if __name__ == "__main__": lowercase__ : Optional[int] = get_job_links() lowercase__ : Any = retrieve_available_artifacts() lowercase__ : str = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowercase__ : Dict = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job lowercase__ : str = github_actions_job_links.get("""run_doctests""") lowercase__ : int = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] lowercase__ : List[str] = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: lowercase__ , lowercase__ , lowercase__ : str = handle_test_results(artifact["""stats"""]) lowercase__ : Any = failed lowercase__ : str = success lowercase__ : int = time_spent[1:-1] + """, """ lowercase__ : Tuple = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): lowercase__ : List[str] = line.replace("""FAILED """, """""") lowercase__ : Union[str, Any] = line.split()[0].replace("""\n""", """""") if "::" in line: lowercase__ , lowercase__ : Optional[Any] = line.split("""::""") else: lowercase__ , lowercase__ : int = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowercase__ : str = docs[file_regex] doc_test_results[category]["failed"].append(test) lowercase__ : List[Any] = all_failures[test] if test in all_failures else """N/A""" lowercase__ : List[Any] = failure break lowercase__ : Union[str, Any] = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
224
1
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(SCREAMING_SNAKE_CASE ) ): series.append(f'1/{temp + 1}' if series else '''1''' ) return series if __name__ == "__main__": lowerCAmelCase = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
93
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
93
1
def lowercase__ ( __snake_case : float , __snake_case : float , __snake_case : int ): '''simple docstring''' if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate UpperCAmelCase_ : Optional[int] = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCAmelCase_ : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
29
from math import sqrt def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ ( __UpperCAmelCase : int = 1_00_01 ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 while count != nth and number < 3: number += 1 if is_prime(__UpperCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__UpperCAmelCase ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
225
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCamelCase : List[Any] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = ["""CLIPFeatureExtractor"""] __lowerCamelCase : List[Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __lowerCamelCase : Any = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __lowerCamelCase : str = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def A_ ( _lowerCAmelCase ) -> Optional[Any]: UpperCamelCase : Tuple = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_lowerCAmelCase )[0] @deprecated(_lowerCAmelCase , "Please use tf.data to implement this functionality." ) def A_ ( _lowerCAmelCase ) -> int: print("Extracting" , f.name ) with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream: UpperCamelCase : Dict = _readaa(_lowerCAmelCase ) if magic != 2051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) UpperCamelCase : Optional[int] = _readaa(_lowerCAmelCase ) UpperCamelCase : int = _readaa(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = _readaa(_lowerCAmelCase ) UpperCamelCase : List[Any] = bytestream.read(rows * cols * num_images ) UpperCamelCase : List[str] = numpy.frombuffer(_lowerCAmelCase , dtype=numpy.uinta ) UpperCamelCase : Optional[Any] = data.reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) return data @deprecated(_lowerCAmelCase , "Please use tf.one_hot on tensors." ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: UpperCamelCase : List[str] = labels_dense.shape[0] UpperCamelCase : str = numpy.arange(_lowerCAmelCase ) * num_classes UpperCamelCase : Optional[Any] = numpy.zeros((num_labels, num_classes) ) UpperCamelCase : Dict = 1 return labels_one_hot @deprecated(_lowerCAmelCase , "Please use tf.data to implement this functionality." ) def A_ ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=10 ) -> str: print("Extracting" , f.name ) with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream: UpperCamelCase : int = _readaa(_lowerCAmelCase ) if magic != 2049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) UpperCamelCase : List[str] = _readaa(_lowerCAmelCase ) UpperCamelCase : List[Any] = bytestream.read(_lowerCAmelCase ) UpperCamelCase : List[str] = numpy.frombuffer(_lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_lowerCAmelCase , _lowerCAmelCase ) return labels class A__ : @deprecated( A_ , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self , A_ , A_ , A_=False , A_=False , A_=dtypes.floataa , A_=True , A_=None , ): '''simple docstring''' UpperCamelCase , UpperCamelCase : int = random_seed.get_seed(A_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) UpperCamelCase : Optional[Any] = dtypes.as_dtype(A_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: UpperCamelCase : List[str] = 1_0000 UpperCamelCase : int = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"""images.shape: {images.shape} labels.shape: {labels.shape}""" UpperCamelCase : Optional[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCamelCase : int = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCamelCase : str = images.astype(numpy.floataa ) UpperCamelCase : str = numpy.multiply(A_ , 1.0 / 2_55.0 ) UpperCamelCase : Optional[int] = images UpperCamelCase : str = labels UpperCamelCase : Optional[Any] = 0 UpperCamelCase : Optional[int] = 0 @property def __UpperCamelCase( self ): '''simple docstring''' return self._images @property def __UpperCamelCase( self ): '''simple docstring''' return self._labels @property def __UpperCamelCase( self ): '''simple docstring''' return self._num_examples @property def __UpperCamelCase( self ): '''simple docstring''' return self._epochs_completed def __UpperCamelCase( self , A_ , A_=False , A_=True ): '''simple docstring''' if fake_data: UpperCamelCase : Optional[int] = [1] * 784 UpperCamelCase : Optional[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A_ )], [fake_label for _ in range(A_ )], ) UpperCamelCase : Optional[Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCamelCase : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) UpperCamelCase : int = self.images[perma] UpperCamelCase : Any = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCamelCase : List[Any] = self._num_examples - start UpperCamelCase : Union[str, Any] = self._images[start : self._num_examples] UpperCamelCase : str = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCamelCase : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) UpperCamelCase : Union[str, Any] = self.images[perm] UpperCamelCase : Union[str, Any] = self.labels[perm] # Start next epoch UpperCamelCase : Tuple = 0 UpperCamelCase : Tuple = batch_size - rest_num_examples UpperCamelCase : List[str] = self._index_in_epoch UpperCamelCase : Dict = self._images[start:end] UpperCamelCase : int = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size UpperCamelCase : Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_lowerCAmelCase , "Please write your own downloading logic." ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if not gfile.Exists(_lowerCAmelCase ): gfile.MakeDirs(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if not gfile.Exists(_lowerCAmelCase ): urllib.request.urlretrieve(_lowerCAmelCase , _lowerCAmelCase ) # noqa: S310 with gfile.GFile(_lowerCAmelCase ) as f: UpperCamelCase : Optional[int] = f.size() print("Successfully downloaded" , _lowerCAmelCase , _lowerCAmelCase , "bytes." ) return filepath @deprecated( _lowerCAmelCase , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def A_ ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=dtypes.floataa , _lowerCAmelCase=True , _lowerCAmelCase=5000 , _lowerCAmelCase=None , _lowerCAmelCase=DEFAULT_SOURCE_URL , ) -> List[str]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_lowerCAmelCase , one_hot=_lowerCAmelCase , dtype=_lowerCAmelCase , seed=_lowerCAmelCase ) UpperCamelCase : Any = fake() UpperCamelCase : List[str] = fake() UpperCamelCase : Union[str, Any] = fake() return _Datasets(train=_lowerCAmelCase , validation=_lowerCAmelCase , test=_lowerCAmelCase ) if not source_url: # empty string check UpperCamelCase : str = DEFAULT_SOURCE_URL UpperCamelCase : List[str] = "train-images-idx3-ubyte.gz" UpperCamelCase : Optional[int] = "train-labels-idx1-ubyte.gz" UpperCamelCase : List[str] = "t10k-images-idx3-ubyte.gz" UpperCamelCase : Union[str, Any] = "t10k-labels-idx1-ubyte.gz" UpperCamelCase : Optional[int] = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + train_images_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : List[str] = _extract_images(_lowerCAmelCase ) UpperCamelCase : Dict = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : List[Any] = _extract_labels(_lowerCAmelCase , one_hot=_lowerCAmelCase ) UpperCamelCase : Any = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + test_images_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : Any = _extract_images(_lowerCAmelCase ) UpperCamelCase : List[str] = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : str = _extract_labels(_lowerCAmelCase , one_hot=_lowerCAmelCase ) if not 0 <= validation_size <= len(_lowerCAmelCase ): UpperCamelCase : Any = ( "Validation size should be between 0 and " F"""{len(_lowerCAmelCase )}. Received: {validation_size}.""" ) raise ValueError(_lowerCAmelCase ) UpperCamelCase : str = train_images[:validation_size] UpperCamelCase : int = train_labels[:validation_size] UpperCamelCase : List[str] = train_images[validation_size:] UpperCamelCase : Union[str, Any] = train_labels[validation_size:] UpperCamelCase : List[str] = {"dtype": dtype, "reshape": reshape, "seed": seed} UpperCamelCase : List[str] = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) UpperCamelCase : List[str] = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) UpperCamelCase : Any = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) return _Datasets(train=_lowerCAmelCase , validation=_lowerCAmelCase , test=_lowerCAmelCase )
140
0
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __A : '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : Any=3 ,_snake_case : List[Any]=32 ,_snake_case : str=3 ,_snake_case : List[Any]=10 ,_snake_case : Any=[8, 16, 32, 64] ,_snake_case : Optional[int]=[1, 1, 2, 1] ,_snake_case : Dict=True ,_snake_case : Dict=True ,_snake_case : List[Any]="relu" ,_snake_case : int=3 ,_snake_case : Dict=None ,_snake_case : List[Any]=["stage2", "stage3", "stage4"] ,_snake_case : List[Any]=[2, 3, 4] ,_snake_case : int=1 ,) -> Optional[int]: """simple docstring""" lowercase__ : Any = parent lowercase__ : Dict = batch_size lowercase__ : Any = image_size lowercase__ : Dict = num_channels lowercase__ : int = embeddings_size lowercase__ : str = hidden_sizes lowercase__ : Tuple = depths lowercase__ : Tuple = is_training lowercase__ : str = use_labels lowercase__ : int = hidden_act lowercase__ : List[Any] = num_labels lowercase__ : Dict = scope lowercase__ : Dict = len(_snake_case ) lowercase__ : Optional[int] = out_features lowercase__ : List[str] = out_indices lowercase__ : Any = num_groups def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def UpperCAmelCase ( self : Tuple ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : str ) -> int: """simple docstring""" lowercase__ : Tuple = BitModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : str ,_snake_case : List[str] ,_snake_case : int ,_snake_case : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.num_labels lowercase__ : List[str] = BitForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ,_snake_case : Tuple ,_snake_case : str ) -> Dict: """simple docstring""" lowercase__ : int = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ : Tuple = None lowercase__ : Optional[int] = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase : List[str] = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Any = False lowerCAmelCase : str = False lowerCAmelCase : str = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase__ : Optional[Any] = BitModelTester(self ) lowercase__ : Tuple = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : List[str] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(config=_snake_case ) for name, module in model.named_modules(): if isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Optional[Any] ): lowercase__ : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Tuple = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : int = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : Dict = layer_type lowercase__ : Tuple = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = BitModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> List[str]: lowercase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_snake_case ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : str = prepare_img() lowercase__ : str = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[int] = model(**_snake_case ) # verify the logits lowercase__ : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : List[str] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) ) @require_torch class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (BitBackbone,) if is_torch_available() else () lowerCAmelCase : Any = BitConfig lowerCAmelCase : Optional[int] = False def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ : Tuple = BitModelTester(self )
16
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : Union[str, Any] = LEDTokenizer __A : Union[str, Any] = LEDTokenizerFast __A : Optional[Any] = True def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().setUp() lowercase__ : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : Optional[int] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : Tuple = {"unk_token": "<unk>"} lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def __UpperCamelCase ( self : int , **lowercase_ : str ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : List[Any] , **lowercase_ : Any ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Any ) -> Tuple: return "lower newer", "lower newer" @cached_property def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def __UpperCamelCase ( self : Tuple ) -> int: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : str = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Dict = tokenizer(lowercase_ , max_length=len(lowercase_ ) , padding=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowercase_ , lowercase_ ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Tuple: lowercase__ : Dict = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[int] = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt" ) self.assertIn("input_ids" , lowercase_ ) self.assertIn("attention_mask" , lowercase_ ) self.assertNotIn("labels" , lowercase_ ) self.assertNotIn("decoder_attention_mask" , lowercase_ ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Any: lowercase__ : Dict = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Dict = tokenizer(text_target=lowercase_ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : int = tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=lowercase_ , truncation=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Any: lowercase__ : Union[str, Any] = ["A long paragraph for summarization."] lowercase__ : List[Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[Any] = tokenizer(lowercase_ , return_tensors="pt" ) lowercase__ : Dict = tokenizer(text_target=lowercase_ , return_tensors="pt" ) lowercase__ : Optional[int] = inputs["input_ids"] lowercase__ : str = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : int = ["Summary of the text.", "Another summary."] lowercase__ : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase__ : Tuple = tokenizer(lowercase_ , padding=lowercase_ ) lowercase__ : int = [[0] * len(lowercase_ ) for x in encoded_output["input_ids"]] lowercase__ : Any = tokenizer.pad(lowercase_ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowercase_ ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: pass def __UpperCamelCase ( self : int ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[str] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[Any] = "A, <mask> AllenNLP sentence." lowercase__ : Tuple = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowercase__ : List[str] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Any = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
87
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCamelCase_ = "." if __name__ == "__main__": UpperCamelCase_ = os.path.join(REPO_PATH, "utils/documentation_tests.txt") UpperCamelCase_ = [] UpperCamelCase_ = [] with open(doctest_file_path) as fp: for line in fp: UpperCamelCase_ = line.strip() UpperCamelCase_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCamelCase_ = "\n".join(non_existent_paths) raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
344
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
1
'''simple docstring''' _UpperCamelCase = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
208
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =StableDiffusionControlNetImgaImgPipeline a_ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a_ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) a_ =IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Union[str, Any] ) -> List[str]: torch.manual_seed(0 ) __lowerCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) __lowerCamelCase : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __lowerCamelCase : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase : Union[str, Any] = CLIPTextModel(_a ) __lowerCamelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase : int = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self : Union[str, Any] , _a : Any , _a : List[str]=0 ) -> List[str]: if str(_a ).startswith('mps' ): __lowerCamelCase : Any = torch.manual_seed(_a ) else: __lowerCamelCase : Any = torch.Generator(device=_a ).manual_seed(_a ) __lowerCamelCase : Union[str, Any] = 2 __lowerCamelCase : Any = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ) __lowerCamelCase : Optional[Any] = floats_tensor(control_image.shape , rng=random.Random(_a ) ).to(_a ) __lowerCamelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : int = Image.fromarray(np.uinta(_a ) ).convert('RGB' ).resize((64, 64) ) __lowerCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowercase ( self : List[str] ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowercase ( self : str ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowercase ( self : Any ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =StableDiffusionControlNetImgaImgPipeline a_ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a_ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _lowercase ( self : List[Any] ) -> List[str]: torch.manual_seed(0 ) __lowerCamelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_a : str ): if isinstance(_a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __lowerCamelCase : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) __lowerCamelCase : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) __lowerCamelCase : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) __lowerCamelCase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase : Dict = CLIPTextModel(_a ) __lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase : List[str] = MultiControlNetModel([controlneta, controlneta] ) __lowerCamelCase : str = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self : Dict , _a : int , _a : Union[str, Any]=0 ) -> Union[str, Any]: if str(_a ).startswith('mps' ): __lowerCamelCase : Optional[Any] = torch.manual_seed(_a ) else: __lowerCamelCase : Union[str, Any] = torch.Generator(device=_a ).manual_seed(_a ) __lowerCamelCase : Any = 2 __lowerCamelCase : Any = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), ] __lowerCamelCase : List[Any] = floats_tensor(control_image[0].shape , rng=random.Random(_a ) ).to(_a ) __lowerCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : Dict = Image.fromarray(np.uinta(_a ) ).convert('RGB' ).resize((64, 64) ) __lowerCamelCase : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCamelCase : Any = self.get_dummy_components() __lowerCamelCase : Any = self.pipeline_class(**_a ) pipe.to(_a ) __lowerCamelCase : Optional[int] = 10.0 __lowerCamelCase : Tuple = 4 __lowerCamelCase : str = self.get_dummy_inputs(_a ) __lowerCamelCase : int = steps __lowerCamelCase : List[Any] = scale __lowerCamelCase : Optional[Any] = pipe(**_a )[0] __lowerCamelCase : Dict = self.get_dummy_inputs(_a ) __lowerCamelCase : List[str] = steps __lowerCamelCase : List[Any] = scale __lowerCamelCase : Dict = pipe(**_a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __lowerCamelCase : Any = self.get_dummy_inputs(_a ) __lowerCamelCase : Union[str, Any] = steps __lowerCamelCase : Any = scale __lowerCamelCase : Optional[int] = pipe(**_a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __lowerCamelCase : Any = self.get_dummy_inputs(_a ) __lowerCamelCase : Tuple = steps __lowerCamelCase : List[Any] = scale __lowerCamelCase : List[str] = pipe(**_a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _lowercase ( self : Optional[Any] ) -> List[str]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowercase ( self : Dict ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowercase ( self : str ) -> int: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _lowercase ( self : List[Any] ) -> str: __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : List[Any] = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_a ) except NotImplementedError: pass @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[str] ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) __lowerCamelCase : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=_a , controlnet=_a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCamelCase : List[Any] = 'evil space-punk bird' __lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) __lowerCamelCase : Any = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) __lowerCamelCase : Dict = pipe( _a , _a , control_image=_a , generator=_a , output_type='np' , num_inference_steps=50 , strength=0.6 , ) __lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) __lowerCamelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
208
1
import os import sys import unittest lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase_ = os.path.join("tests", "models", "bert", "test_modeling_bert.py") lowercase_ = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Optional[Any] ): __snake_case : List[str] = get_test_to_tester_mapping(_lowerCAmelCase ) __snake_case : Optional[Any] = get_test_to_tester_mapping(_lowerCAmelCase ) __snake_case : Optional[int] = {"""BertModelTest""": """BertModelTester"""} __snake_case : Dict = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = get_model_to_test_mapping(_lowerCAmelCase ) __snake_case : Optional[Any] = get_model_to_test_mapping(_lowerCAmelCase ) __snake_case : List[str] = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } __snake_case : str = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) def snake_case__ ( self : List[str] ): __snake_case : Any = get_model_to_tester_mapping(_lowerCAmelCase ) __snake_case : Any = get_model_to_tester_mapping(_lowerCAmelCase ) __snake_case : Dict = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } __snake_case : str = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase )
20
from __future__ import annotations import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--original_config_file", type=str, required=True, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--image_size", default=5_1_2, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") def A ( snake_case :List[str] ) -> Optional[int]: if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( "--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool ) parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) UpperCamelCase : Dict = parser.parse_args() UpperCamelCase : int = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
316
from __future__ import annotations import collections import pprint from pathlib import Path def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" return "".join(sorted(UpperCAmelCase_ ) ) def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" return word_by_signature[signature(UpperCAmelCase_ )] snake_case : str = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') snake_case : Optional[int] = sorted({word.strip().lower() for word in data.splitlines()}) snake_case : str = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": snake_case : Optional[int] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
94
0
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm __UpperCamelCase = 2048 __UpperCamelCase = 4096 __UpperCamelCase = 42 __UpperCamelCase = os.environ.pop("PROCESS_TRAIN", "false") __UpperCamelCase = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" def choose_first(_lowerCamelCase , _lowerCamelCase=False ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) == 1: __snake_case : Any = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __snake_case : Union[str, Any] = {k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __snake_case : Union[str, Any] = {"""id""": example["""id"""]} __snake_case : Any = example["""annotations"""] __snake_case : List[Any] = annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __snake_case : Tuple = ["""yes"""] if 1 in yes_no_answer else ["""no"""] __snake_case : Optional[Any] = [] __snake_case : Tuple = [] __snake_case : Optional[Any] = ["""<cls>"""] else: __snake_case : Union[str, Any] = ["""short"""] __snake_case : Optional[Any] = choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __snake_case : Dict = ["""long"""] __snake_case : str = choose_first(annotation["""long_answer"""] , is_long_answer=_lowerCamelCase ) __snake_case : Optional[int] = [] answer.update(_lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __snake_case : List[Any] = True else: __snake_case : int = False __snake_case : Any = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , _lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _get_single_answer(_lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __snake_case : Optional[Any] = example["""document"""]["""tokens"""] __snake_case : Union[str, Any] = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(_lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __snake_case : Union[str, Any] = ["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __snake_case : str = example["""document"""]["""tokens"""] __snake_case : Any = answer["""start_token"""] __snake_case : Optional[int] = answer["""end_token"""] __snake_case : int = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __snake_case : Dict = """ """.join(context[start_token:end_token] ) # checking above code if assertion: __snake_case : str = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __snake_case : Union[str, Any] = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __snake_case : Dict = """ """.join([old[i] for i in range(len(_lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , _lowerCamelCase , end="""\n""" ) print("""Old:""" , _lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(_lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=2048 , _lowerCamelCase=4096 , _lowerCamelCase=True ) -> Dict: """simple docstring""" __snake_case : List[Any] = get_context_and_ans(_lowerCamelCase , assertion=_lowerCamelCase ) __snake_case : Dict = out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __snake_case : List[Any] = tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __snake_case : Optional[int] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __snake_case : int = [] __snake_case : List[str] = [] __snake_case : Optional[int] = input_ids[:q_len] __snake_case : Dict = range(_lowerCamelCase , len(_lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __snake_case : Dict = i + max_length - q_len __snake_case : Tuple = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(_lowerCamelCase ), "end_token": [-100] * len(_lowerCamelCase ), "category": category, }, } __snake_case : Optional[int] = out["""context"""].split() __snake_case : Optional[int] = splitted_context[answer["""end_token"""]] __snake_case : Any = len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=_lowerCamelCase , ).input_ids ) __snake_case : Tuple = len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=_lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __snake_case : Tuple = len(tokenizer(_lowerCamelCase , add_special_tokens=_lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __snake_case : Union[str, Any] = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __snake_case : Optional[int] = answer["""start_token"""] __snake_case : List[Any] = answer["""end_token"""] if assertion: __snake_case : Any = tokenizer.decode(_lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , _lowerCamelCase , end="""\n\n""" ) if len(_lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __snake_case : List[Any] = input_ids[:q_len] __snake_case : Tuple = range(_lowerCamelCase , len(_lowerCamelCase ) , max_length - doc_stride ) __snake_case : Optional[Any] = [] __snake_case : List[Any] = [] __snake_case : Optional[int] = [] __snake_case : Tuple = [] # null, yes, no, long, short for i in doc_start_indices: __snake_case : Dict = i + max_length - q_len __snake_case : Union[str, Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __snake_case : str = start_token - i + q_len __snake_case : int = end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __snake_case : Optional[Any] = -100 __snake_case : Optional[Any] = -100 answers_category.append("""null""" ) __snake_case : List[str] = inputs[-1][start_token : end_token + 1] answers_start_token.append(_lowerCamelCase ) answers_end_token.append(_lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(_lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(_lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=2048 , _lowerCamelCase=4096 , _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : Union[str, Any] = get_strided_contexts_and_ans( _lowerCamelCase , _lowerCamelCase , doc_stride=_lowerCamelCase , max_length=_lowerCamelCase , assertion=_lowerCamelCase , ) return example def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" with jsonlines.open(_lowerCamelCase , """a""" ) as writer: for example in tqdm(_lowerCamelCase , total=len(_lowerCamelCase ) , desc="""Saving samples ... """ ): __snake_case : int = example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __UpperCamelCase = load_dataset("natural_questions") __UpperCamelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") __UpperCamelCase = data["train" if PROCESS_TRAIN == "true" else "validation"] __UpperCamelCase = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } __UpperCamelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __UpperCamelCase = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) __UpperCamelCase = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
13
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def A_ ( _lowercase, _lowercase=False ): '''simple docstring''' snake_case_ :List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case_ :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def A_ ( _lowercase, _lowercase, _lowercase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case_ :Any = """""" else: snake_case_ :str = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ :str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) snake_case_ :Any = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ :Dict = in_proj_weight[ : config.hidden_size, : ] snake_case_ :int = in_proj_bias[: config.hidden_size] snake_case_ :str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ :str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ :Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case_ :Union[str, Any] = in_proj_bias[-config.hidden_size :] def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :int = dct.pop(_lowercase ) snake_case_ :Tuple = val def A_ ( ): '''simple docstring''' snake_case_ :Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ :Union[str, Any] = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ) return im @torch.no_grad() def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case_ :Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case_ :int = 1000 snake_case_ :Optional[int] = """huggingface/label-files""" snake_case_ :List[Any] = """imagenet-1k-id2label.json""" snake_case_ :str = json.load(open(hf_hub_download(_lowercase, _lowercase, repo_type="""dataset""" ), """r""" ) ) snake_case_ :Dict = {int(_lowercase ): v for k, v in idalabel.items()} snake_case_ :Optional[Any] = idalabel snake_case_ :Union[str, Any] = {v: k for k, v in idalabel.items()} snake_case_ :Any = int(deit_name[-6:-4] ) snake_case_ :Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case_ :Tuple = 192 snake_case_ :Optional[int] = 768 snake_case_ :Tuple = 12 snake_case_ :Tuple = 3 elif deit_name[9:].startswith("""small""" ): snake_case_ :List[Any] = 384 snake_case_ :Dict = 1536 snake_case_ :Optional[int] = 12 snake_case_ :str = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case_ :int = 1024 snake_case_ :List[Any] = 4096 snake_case_ :Any = 24 snake_case_ :Optional[int] = 16 # load original model from timm snake_case_ :int = timm.create_model(_lowercase, pretrained=_lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ :Any = timm_model.state_dict() snake_case_ :Optional[Any] = create_rename_keys(_lowercase, _lowercase ) for src, dest in rename_keys: rename_key(_lowercase, _lowercase, _lowercase ) read_in_q_k_v(_lowercase, _lowercase, _lowercase ) # load HuggingFace model snake_case_ :Union[str, Any] = DeiTForImageClassificationWithTeacher(_lowercase ).eval() model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case_ :Optional[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case_ :Any = DeiTImageProcessor(size=_lowercase, crop_size=config.image_size ) snake_case_ :List[str] = image_processor(images=prepare_img(), return_tensors="""pt""" ) snake_case_ :Optional[Any] = encoding["""pixel_values"""] snake_case_ :Optional[Any] = model(_lowercase ) snake_case_ :Dict = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase, outputs.logits, atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
66
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' ) A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": lowercase : str = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 20_18, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
3
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case_ = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } snake_case_ = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } snake_case_ = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = RoFormerTokenizer def __init__( self :Union[str, Any] , lowercase_ :Dict=None , lowercase_ :Union[str, Any]=None , lowercase_ :Optional[int]=True , lowercase_ :Dict="[UNK]" , lowercase_ :Optional[Any]="[SEP]" , lowercase_ :Dict="[PAD]" , lowercase_ :List[str]="[CLS]" , lowercase_ :int="[MASK]" , lowercase_ :Dict=True , lowercase_ :List[str]=None , **lowercase_ :Dict , ) -> Union[str, Any]: super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , lowercase_ ) != do_lower_case or pre_tok_state.get('strip_accents' , lowercase_ ) != strip_accents ): UpperCAmelCase = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = pre_tok_class(**lowercase_ ) UpperCAmelCase = do_lower_case def __getstate__( self :List[str] ) -> int: UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = BertPreTokenizer() return state def __setstate__( self :Union[str, Any] , lowercase_ :str ) -> Optional[Any]: UpperCAmelCase = d UpperCAmelCase = self.__dict__['_tokenizer'].get_vocab() UpperCAmelCase = PreTokenizer.custom(JiebaPreTokenizer(lowercase_ ) ) def UpperCAmelCase__ ( self :Any , lowercase_ :int , lowercase_ :Optional[int]=None ) -> Union[str, Any]: UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self :Dict , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :str , lowercase_ :Optional[str] = None ) -> Tuple[str]: UpperCAmelCase = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :List[Any] , lowercase_ :int=None , lowercase_ :Optional[int]=None , lowercase_ :Optional[Any]=False , **lowercase_ :str , ) -> Dict: UpperCAmelCase = BertPreTokenizer() return super().save_pretrained(lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
367
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: snake_case_ = None try: import msvcrt except ImportError: snake_case_ = None try: import fcntl except ImportError: snake_case_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: snake_case_ = OSError # Data # ------------------------------------------------ snake_case_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] snake_case_ = """3.0.12""" snake_case_ = None def _lowerCAmelCase ( ): global _logger UpperCAmelCase = _logger or logging.getLogger(__name__ ) return _logger class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :int , lowercase_ :List[Any] ) -> Optional[int]: UpperCAmelCase = lock_file return None def __str__( self :Dict ) -> Optional[int]: UpperCAmelCase = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class A_ : """simple docstring""" def __init__( self :List[Any] , lowercase_ :Dict ) -> Dict: UpperCAmelCase = lock return None def __enter__( self :Optional[int] ) -> Optional[int]: return self.lock def __exit__( self :Optional[int] , lowercase_ :Tuple , lowercase_ :Any , lowercase_ :Union[str, Any] ) -> List[Any]: self.lock.release() return None class A_ : """simple docstring""" def __init__( self :List[str] , lowercase_ :str , lowercase_ :str=-1 , lowercase_ :List[Any]=None ) -> Dict: UpperCAmelCase = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long UpperCAmelCase = self.hash_filename_if_too_long(lowercase_ , lowercase_ ) # The path to the lock file. UpperCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCAmelCase = None # The default timeout value. UpperCAmelCase = timeout # We use this lock primarily for the lock counter. UpperCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCAmelCase = 0 return None @property def UpperCAmelCase__ ( self :Optional[Any] ) -> int: return self._lock_file @property def UpperCAmelCase__ ( self :Union[str, Any] ) -> Any: return self._timeout @timeout.setter def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Any ) -> Tuple: UpperCAmelCase = float(lowercase_ ) return None def UpperCAmelCase__ ( self :Any ) -> List[str]: raise NotImplementedError() def UpperCAmelCase__ ( self :Union[str, Any] ) -> List[str]: raise NotImplementedError() @property def UpperCAmelCase__ ( self :Optional[Any] ) -> Union[str, Any]: return self._lock_file_fd is not None def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Dict=None , lowercase_ :int=0.05 ) -> Union[str, Any]: # Use the default timeout, if no timeout is provided. if timeout is None: UpperCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCAmelCase = id(self ) UpperCAmelCase = self._lock_file UpperCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(lowercase_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :List[str]=False ) -> int: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCAmelCase = id(self ) UpperCAmelCase = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() UpperCAmelCase = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self :Any ) -> Tuple: self.acquire() return self def __exit__( self :Dict , lowercase_ :Optional[int] , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any] ) -> Any: self.release() return None def __del__( self :Any ) -> int: self.release(force=lowercase_ ) return None def UpperCAmelCase__ ( self :List[str] , lowercase_ :str , lowercase_ :int ) -> str: UpperCAmelCase = os.path.basename(lowercase_ ) if len(lowercase_ ) > max_length and max_length > 0: UpperCAmelCase = os.path.dirname(lowercase_ ) UpperCAmelCase = str(hash(lowercase_ ) ) UpperCAmelCase = filename[: max_length - len(lowercase_ ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(lowercase_ , lowercase_ ) else: return path class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Tuple , lowercase_ :Tuple , lowercase_ :List[Any]=-1 , lowercase_ :Union[str, Any]=None ) -> Optional[Any]: from .file_utils import relative_to_absolute_path super().__init__(lowercase_ , timeout=lowercase_ , max_filename_length=lowercase_ ) UpperCAmelCase = '\\\\?\\' + relative_to_absolute_path(self.lock_file ) def UpperCAmelCase__ ( self :List[str] ) -> str: UpperCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCAmelCase = os.open(self._lock_file , lowercase_ ) except OSError: pass else: try: msvcrt.locking(lowercase_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowercase_ ) else: UpperCAmelCase = fd return None def UpperCAmelCase__ ( self :int ) -> Union[str, Any]: UpperCAmelCase = self._lock_file_fd UpperCAmelCase = None msvcrt.locking(lowercase_ , msvcrt.LK_UNLCK , 1 ) os.close(lowercase_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Optional[Any] , lowercase_ :str , lowercase_ :List[str]=-1 , lowercase_ :str=None ) -> str: UpperCAmelCase = os.statvfs(os.path.dirname(lowercase_ ) ).f_namemax super().__init__(lowercase_ , timeout=lowercase_ , max_filename_length=lowercase_ ) def UpperCAmelCase__ ( self :str ) -> Dict: UpperCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCAmelCase = os.open(self._lock_file , lowercase_ ) try: fcntl.flock(lowercase_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowercase_ ) else: UpperCAmelCase = fd return None def UpperCAmelCase__ ( self :List[Any] ) -> List[Any]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition UpperCAmelCase = self._lock_file_fd UpperCAmelCase = None fcntl.flock(lowercase_ , fcntl.LOCK_UN ) os.close(lowercase_ ) return None class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def UpperCAmelCase__ ( self :List[Any] ) -> List[str]: UpperCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCAmelCase = os.open(self._lock_file , lowercase_ ) except OSError: pass else: UpperCAmelCase = fd return None def UpperCAmelCase__ ( self :Optional[int] ) -> List[Any]: os.close(self._lock_file_fd ) UpperCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None snake_case_ = None if msvcrt: snake_case_ = WindowsFileLock elif fcntl: snake_case_ = UnixFileLock else: snake_case_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
181
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( _lowercase , _lowercase ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : str = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_parquet_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : str = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE : List[Any] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Dict = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_parquet_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE : Optional[int] = ParquetDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_parquet_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def A ( _lowercase , _lowercase , _lowercase ): if issubclass(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE : Tuple = parquet_path elif issubclass(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE : Any = [parquet_path] SCREAMING_SNAKE_CASE : Dict = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_parquet_dataset(snake_case_ , snake_case_ ) def A ( _lowercase , _lowercase , _lowercase=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: SCREAMING_SNAKE_CASE : Any = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Tuple = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : Dict = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_parquet_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Dict = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE : Union[str, Any] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Union[str, Any] = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetReader({'''train''': parquet_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_parquet_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def A ( _lowercase , _lowercase , _lowercase ): if split: SCREAMING_SNAKE_CASE : Optional[int] = {split: parquet_path} else: SCREAMING_SNAKE_CASE : Union[str, Any] = '''train''' SCREAMING_SNAKE_CASE : Dict = {'''train''': parquet_path, '''test''': parquet_path} SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_parquet_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = ParquetDatasetWriter(snake_case_ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Dict = pq.ParquetFile(tmp_path / '''foo.parquet''' ) SCREAMING_SNAKE_CASE : Optional[int] = pf.read() assert dataset.data.table == output_table def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = str(shared_datadir / '''test_image_rgb.jpg''' ) SCREAMING_SNAKE_CASE : Dict = {'''image''': [image_path]} SCREAMING_SNAKE_CASE : Any = Features({'''image''': Image()} ) SCREAMING_SNAKE_CASE : Any = Dataset.from_dict(snake_case_ , features=snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetWriter(snake_case_ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : int = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE : Union[str, Any] = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=snake_case_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def A ( _lowercase , _lowercase ): assert get_writer_batch_size(snake_case_ ) == expected
182
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase_ : Optional[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) lowercase_ : str = [] lowercase_ : int = [] lowercase_ : Dict = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} lowercase_ : int = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] lowercase_ : int = 0 for log in Path().glob('*.log'): lowercase_ : int = 0 with open(log, 'r') as f: for line in f: lowercase_ : List[str] = json.loads(line) if line.get('nodeid', '') != "": lowercase_ : List[str] = line['nodeid'] if line.get('duration', None) is not None: lowercase_ : Tuple = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase_ : List[Any] = [] log.unlink() lowercase_ : int = '' lowercase_ : int = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowercase_ : Optional[Any] = [] lowercase_ : Any = {} for test in failed_tests: lowercase_ : List[str] = test[0].split('::') lowercase_ : int = data[0].split('/')[-1] if data[0] not in filesafailed: lowercase_ : Dict = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase_ : Any = [test[0] for test in failed_table] lowercase_ : Optional[Any] = list(set(files)) # Count number of instances in failed_tests lowercase_ : Optional[Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase_ : Optional[Any] = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: lowercase_ : List[Any] = 'Too many failed tests, please see the full report in the Action results.' lowercase_ : Union[str, Any] = len(err) + 10 lowercase_ : Tuple = message[: 30_00 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: lowercase_ : int = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient lowercase_ : Union[str, Any] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": lowercase_ : List[Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) lowercase_ : List[Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowercase_ : List[str] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowercase_ : Any = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) lowercase_ : Any = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase_ : Optional[int] = '' for i, row in enumerate(test_failures): if row[0] != test_class: lowercase_ : Tuple = row[0] else: lowercase_ : Tuple = '' lowercase_ : int = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
133
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class a_ ( unittest.TestCase ): @property def __a ( self :Optional[int]) -> Optional[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __a ( self :Union[str, Any]) -> str: UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def __a ( self :Tuple) -> Union[str, Any]: UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''') UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''') UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy''') # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = '''A red cat sitting on a park bench''' UpperCAmelCase_ = np.random.RandomState(0) UpperCAmelCase_ = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_lowercase , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
344
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ): """simple docstring""" a :Union[str, Any] = [1] for i in range(2 , UpperCAmelCase_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" a :Optional[Any] = [] a :List[Any] = list(range(UpperCAmelCase_ ) ) # Find permutation while factorials: a :List[Any] = factorials.pop() a , a :List[str] = divmod(UpperCAmelCase_ , UpperCAmelCase_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
94
def __lowerCamelCase ( UpperCAmelCase_ : int = 1000 ): """simple docstring""" a , a :int = 1, 1 a :Any = 2 while True: a :Optional[int] = 0 a :str = fa + fa a , a :List[Any] = fa, f index += 1 for _ in str(UpperCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
94
1
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase_ : '''simple docstring''' pass
363
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''convbert''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=768 , _lowercase=2 , _lowercase=9 , _lowercase=1 , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = embedding_size _lowerCAmelCase = head_ratio _lowerCAmelCase = conv_kernel_size _lowerCAmelCase = num_groups _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
229
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _snake_case : lowerCAmelCase_ : int lowerCAmelCase_ : TreeNode | None = None lowerCAmelCase_ : TreeNode | None = None _SCREAMING_SNAKE_CASE : List[str] = namedtuple("CoinsDistribResult", "moves excess") def UpperCamelCase_( snake_case : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(snake_case ) != count_coins(snake_case ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(snake_case : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case_ , snake_case_ = get_distrib(node.left ) snake_case_ , snake_case_ = get_distrib(node.right ) snake_case_ = 1 - left_distrib_excess snake_case_ = 1 - right_distrib_excess snake_case_ = ( left_distrib_moves + right_distrib_moves + abs(snake_case ) + abs(snake_case ) ) snake_case_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(snake_case , snake_case ) return get_distrib(snake_case )[0] if __name__ == "__main__": import doctest doctest.testmod()
85
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = """Normal""" if result[0][0] == 1: _SCREAMING_SNAKE_CASE = """Abnormality detected"""
343
0
"""simple docstring""" def a__ ( lowerCAmelCase__ ): for i in range(0 , lowerCAmelCase__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def a__ ( lowerCAmelCase__ ): for i in range(lowerCAmelCase__ , 0 , -1 ): for _ in range(lowerCAmelCase__ , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def a__ ( lowerCAmelCase__ ): if n <= 0: print(" ... .... nothing printing :(" ) return floyd(lowerCAmelCase__ ) # upper half reverse_floyd(lowerCAmelCase__ ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCamelCase = 1 while K: lowerCamelCase = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCamelCase = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
371
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowerCamelCase = TypeVar("""_T""") class lowercase__ ( Generic[_T] ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Iterable[_T] | None = None ) -> None: '''simple docstring''' UpperCAmelCase_ = list(iterable or [] ) UpperCAmelCase_ = [] def __len__( self : Optional[int] ) -> int: '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : Optional[Any] ) -> str: '''simple docstring''' return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : _T ) -> None: '''simple docstring''' self._stacka.append(_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> _T: '''simple docstring''' UpperCAmelCase_ = self._stacka.pop UpperCAmelCase_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
241
0
import collections import os import re from pathlib import Path _SCREAMING_SNAKE_CASE : int = '''src/transformers''' # Matches is_xxx_available() _SCREAMING_SNAKE_CASE : List[str] = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _SCREAMING_SNAKE_CASE : Any = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _SCREAMING_SNAKE_CASE : Dict = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _SCREAMING_SNAKE_CASE : Dict = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _SCREAMING_SNAKE_CASE : Tuple = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _SCREAMING_SNAKE_CASE : int = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _SCREAMING_SNAKE_CASE : int = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _SCREAMING_SNAKE_CASE : Tuple = re.compile(r'''^\s*try:''') # Catches a line with else: _SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r'''^\s*else:''') def UpperCAmelCase_ ( _A ): '''simple docstring''' if _re_test_backend.search(_A ) is None: return None SCREAMING_SNAKE_CASE__ = [b[0] for b in _re_backend.findall(_A )] backends.sort() return "_and_".join(_A ) def UpperCAmelCase_ ( _A ): '''simple docstring''' with open(_A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ = f.readlines() SCREAMING_SNAKE_CASE__ = 0 while line_index < len(_A ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_A ): return None # First grab the objects without a specific backend in _import_structure SCREAMING_SNAKE_CASE__ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: SCREAMING_SNAKE_CASE__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_A ): SCREAMING_SNAKE_CASE__ = _re_one_line_import_struct.search(_A ).groups()[0] SCREAMING_SNAKE_CASE__ = re.findall(R'''\[([^\]]+)\]''' , _A ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue SCREAMING_SNAKE_CASE__ = _re_import_struct_key_value.search(_A ) if single_line_import_search is not None: SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_A ) > 0] objects.extend(_A ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 SCREAMING_SNAKE_CASE__ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): SCREAMING_SNAKE_CASE__ = lines[line_index] if _re_import_struct_add_one.search(_A ) is not None: objects.append(_re_import_struct_add_one.search(_A ).groups()[0] ) elif _re_import_struct_add_many.search(_A ) is not None: SCREAMING_SNAKE_CASE__ = _re_import_struct_add_many.search(_A ).groups()[0].split(''', ''' ) SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in imports if len(_A ) > 0] objects.extend(_A ) elif _re_between_brackets.search(_A ) is not None: SCREAMING_SNAKE_CASE__ = _re_between_brackets.search(_A ).groups()[0].split(''', ''' ) SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in imports if len(_A ) > 0] objects.extend(_A ) elif _re_quote_object.search(_A ) is not None: objects.append(_re_quote_object.search(_A ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 SCREAMING_SNAKE_CASE__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend SCREAMING_SNAKE_CASE__ = [] while ( line_index < len(_A ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): SCREAMING_SNAKE_CASE__ = lines[line_index] SCREAMING_SNAKE_CASE__ = _re_import.search(_A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 SCREAMING_SNAKE_CASE__ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_A ): # If the line is an if is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): SCREAMING_SNAKE_CASE__ = lines[line_index] SCREAMING_SNAKE_CASE__ = _re_import.search(_A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 SCREAMING_SNAKE_CASE__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' def find_duplicates(_A ): return [k for k, v in collections.Counter(_A ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] SCREAMING_SNAKE_CASE__ = [] for key in import_dict_objects.keys(): SCREAMING_SNAKE_CASE__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) SCREAMING_SNAKE_CASE__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): SCREAMING_SNAKE_CASE__ = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: SCREAMING_SNAKE_CASE__ = os.path.join(_A , '''__init__.py''' ) SCREAMING_SNAKE_CASE__ = parse_init(_A ) if objects is not None: SCREAMING_SNAKE_CASE__ = analyze_results(*_A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_A ) ) if len(_A ) > 0: raise ValueError('''\n\n'''.join(_A ) ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for path, directories, files in os.walk(_A ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_A ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_A ) / folder).glob('''*.py''' ) ) ) == 0: continue SCREAMING_SNAKE_CASE__ = str((Path(_A ) / folder).relative_to(_A ) ) SCREAMING_SNAKE_CASE__ = short_path.replace(os.path.sep , '''.''' ) submodules.append(_A ) for fname in files: if fname == "__init__.py": continue SCREAMING_SNAKE_CASE__ = str((Path(_A ) / fname).relative_to(_A ) ) SCREAMING_SNAKE_CASE__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_A ) return submodules _SCREAMING_SNAKE_CASE : List[Any] = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def UpperCAmelCase_ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import SCREAMING_SNAKE_CASE__ = direct_transformers_import(_A ) SCREAMING_SNAKE_CASE__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_A , '''__init__.py''' ) , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , _A ) ) ) SCREAMING_SNAKE_CASE__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ (): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[Any] = """mock-s3-bucket""" UpperCAmelCase_: str = F's3://{mock_bucket}' UpperCAmelCase_: Any = extract_path_from_uri(lowerCAmelCase__ ) assert dataset_path.startswith("""s3://""" ) is False UpperCAmelCase_: Tuple = """./local/path""" UpperCAmelCase_: Any = extract_path_from_uri(lowerCAmelCase__ ) assert dataset_path == new_dataset_path def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: int = is_remote_filesystem(lowerCAmelCase__ ) assert is_remote is True UpperCAmelCase_: Optional[Any] = fsspec.filesystem("""file""" ) UpperCAmelCase_: int = is_remote_filesystem(lowerCAmelCase__ ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: List[str] , lowerCAmelCase__: Dict , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Tuple ): """simple docstring""" UpperCAmelCase_: int = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} UpperCAmelCase_: Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase_: str = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) UpperCAmelCase_: Optional[int] = fsspec.filesystem(compression_fs_class.protocol , fo=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = os.path.basename(lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as f, open(lowerCAmelCase__ , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: Tuple , lowerCAmelCase__: Any ): """simple docstring""" UpperCAmelCase_: List[str] = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} UpperCAmelCase_: Tuple = compressed_file_paths[protocol] UpperCAmelCase_: int = """dataset.jsonl""" UpperCAmelCase_: Any = F'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase_ , *UpperCAmelCase_: Dict = fsspec.get_fs_token_paths(lowerCAmelCase__ ) assert fs.isfile(lowerCAmelCase__ ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: Tuple = hf_api.dataset_info(lowerCAmelCase__ , token=lowerCAmelCase__ ) UpperCAmelCase_: List[str] = HfFileSystem(repo_info=lowerCAmelCase__ , token=lowerCAmelCase__ ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(lowerCAmelCase__ ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[str] = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCAmelCase__ , lowerCAmelCase__ , clobber=lowerCAmelCase__ ) with pytest.warns(lowerCAmelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCAmelCase__ ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
82
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ (): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[Any] = """mock-s3-bucket""" UpperCAmelCase_: str = F's3://{mock_bucket}' UpperCAmelCase_: Any = extract_path_from_uri(lowerCAmelCase__ ) assert dataset_path.startswith("""s3://""" ) is False UpperCAmelCase_: Tuple = """./local/path""" UpperCAmelCase_: Any = extract_path_from_uri(lowerCAmelCase__ ) assert dataset_path == new_dataset_path def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: int = is_remote_filesystem(lowerCAmelCase__ ) assert is_remote is True UpperCAmelCase_: Optional[Any] = fsspec.filesystem("""file""" ) UpperCAmelCase_: int = is_remote_filesystem(lowerCAmelCase__ ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: List[str] , lowerCAmelCase__: Dict , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Tuple ): """simple docstring""" UpperCAmelCase_: int = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} UpperCAmelCase_: Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase_: str = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) UpperCAmelCase_: Optional[int] = fsspec.filesystem(compression_fs_class.protocol , fo=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = os.path.basename(lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as f, open(lowerCAmelCase__ , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: Tuple , lowerCAmelCase__: Any ): """simple docstring""" UpperCAmelCase_: List[str] = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} UpperCAmelCase_: Tuple = compressed_file_paths[protocol] UpperCAmelCase_: int = """dataset.jsonl""" UpperCAmelCase_: Any = F'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase_ , *UpperCAmelCase_: Dict = fsspec.get_fs_token_paths(lowerCAmelCase__ ) assert fs.isfile(lowerCAmelCase__ ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: Tuple = hf_api.dataset_info(lowerCAmelCase__ , token=lowerCAmelCase__ ) UpperCAmelCase_: List[str] = HfFileSystem(repo_info=lowerCAmelCase__ , token=lowerCAmelCase__ ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(lowerCAmelCase__ ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[str] = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCAmelCase__ , lowerCAmelCase__ , clobber=lowerCAmelCase__ ) with pytest.warns(lowerCAmelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCAmelCase__ ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
82
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Dict ,*lowerCamelCase__ : Dict ,**lowerCamelCase__ : Tuple ) -> None: '''simple docstring''' warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" ,lowerCamelCase__ ,) super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ )
296
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} ) __snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) __snake_case : Optional[str] = field( default="linear" , metadata={"help": F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
296
1
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") UpperCAmelCase =logging.getLogger(__name__) @dataclass class lowerCamelCase__ : '''simple docstring''' _lowerCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class lowerCamelCase__ : '''simple docstring''' _lowerCamelCase = field( default=_UpperCAmelCase , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _lowerCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _lowerCamelCase = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _A ( ): """simple docstring""" A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""" , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) datasets.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: A = load_dataset( """xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: A = load_dataset( """xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A = train_dataset.features["""label"""].names if training_args.do_eval: A = load_dataset( """xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A = eval_dataset.features["""label"""].names if training_args.do_predict: A = load_dataset( """xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A = predict_dataset.features["""label"""].names # Labels A = len(UpperCAmelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase__ , idalabel={str(UpperCAmelCase__ ): label for i, label in enumerate(UpperCAmelCase__ )} , labelaid={label: i for i, label in enumerate(UpperCAmelCase__ )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: A = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch A = False def preprocess_function(_a : Tuple ): # Tokenize the texts return tokenizer( examples["""premise"""] , examples["""hypothesis"""] , padding=UpperCAmelCase__ , max_length=data_args.max_seq_length , truncation=UpperCAmelCase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: A = min(len(UpperCAmelCase__ ) , data_args.max_train_samples ) A = train_dataset.select(range(UpperCAmelCase__ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): A = train_dataset.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , ) # Log a few random samples from the training set: for index in random.sample(range(len(UpperCAmelCase__ ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: A = min(len(UpperCAmelCase__ ) , data_args.max_eval_samples ) A = eval_dataset.select(range(UpperCAmelCase__ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): A = eval_dataset.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: A = min(len(UpperCAmelCase__ ) , data_args.max_predict_samples ) A = predict_dataset.select(range(UpperCAmelCase__ ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): A = predict_dataset.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , ) # Get the metric function A = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_a : EvalPrediction ): A = p.predictions[0] if isinstance(p.predictions , UpperCAmelCase__ ) else p.predictions A = np.argmax(UpperCAmelCase__ , axis=1 ) return metric.compute(predictions=UpperCAmelCase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: A = default_data_collator elif training_args.fpaa: A = DataCollatorWithPadding(UpperCAmelCase__ , pad_to_multiple_of=8 ) else: A = None # Initialize our Trainer A = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: A = None if training_args.resume_from_checkpoint is not None: A = training_args.resume_from_checkpoint elif last_checkpoint is not None: A = last_checkpoint A = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) A = train_result.metrics A = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase__ ) ) A = min(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , UpperCAmelCase__ ) trainer.save_metrics("""train""" , UpperCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) A = trainer.evaluate(eval_dataset=UpperCAmelCase__ ) A = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase__ ) A = min(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) A = trainer.predict(UpperCAmelCase__ , metric_key_prefix="""predict""" ) A = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(UpperCAmelCase__ ) ) A = min(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) trainer.log_metrics("""predict""" , UpperCAmelCase__ ) trainer.save_metrics("""predict""" , UpperCAmelCase__ ) A = np.argmax(UpperCAmelCase__ , axis=1 ) A = os.path.join(training_args.output_dir , """predictions.txt""" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(UpperCAmelCase__ ): A = label_list[item] writer.write(f'{index}\t{item}\n' ) if __name__ == "__main__": main()
371
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCAmelCase =parser.parse_args() UpperCAmelCase =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase =CLIPImageProcessor() UpperCAmelCase =CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCAmelCase =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
77
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _snake_case( SCREAMING_SNAKE_CASE__ ) -> tuple: return (data["data"], data["target"]) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> XGBClassifier: lowercase : Tuple = XGBClassifier() classifier.fit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return classifier def _snake_case( ) -> None: lowercase : Optional[Any] = load_iris() lowercase , lowercase : Tuple = data_handling(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase , lowercase : Tuple = train_test_split( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , test_size=0.25 ) lowercase : Union[str, Any] = iris["""target_names"""] # Create an XGBoost Classifier from the training data lowercase : Dict = xgboost(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , display_labels=SCREAMING_SNAKE_CASE__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
20
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : int _a : TreeNode | None= None _a : TreeNode | None= None lowercase : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE__ ) != count_coins(SCREAMING_SNAKE_CASE__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : List[Any] = get_distrib(node.right ) lowercase : Optional[Any] = 1 - left_distrib_excess lowercase : Union[str, Any] = 1 - right_distrib_excess lowercase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__ ) + abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return get_distrib(SCREAMING_SNAKE_CASE__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
1
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ = 2 class __snake_case : """simple docstring""" def __init__( self , *, # begin keyword-only arguments __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=None , ): '''simple docstring''' __A : Dict = bos, unk, pad, eos __A : List[Any] = [] __A : str = [] __A : Optional[Any] = {} __A : List[Any] = self.add_symbol(__lowerCamelCase ) __A : Optional[int] = self.add_symbol(__lowerCamelCase ) __A : str = self.add_symbol(__lowerCamelCase ) __A : List[Any] = self.add_symbol(__lowerCamelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__lowerCamelCase ) __A : int = len(self.symbols ) def __eq__( self , __lowerCamelCase ): '''simple docstring''' return self.indices == other.indices def __getitem__( self , __lowerCamelCase ): '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): '''simple docstring''' return len(self.symbols ) def __contains__( self , __lowerCamelCase ): '''simple docstring''' return sym in self.indices @classmethod def UpperCamelCase__( cls , __lowerCamelCase ): '''simple docstring''' __A : str = cls() d.add_from_file(__lowerCamelCase ) return d def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=1 , __lowerCamelCase=False ): '''simple docstring''' if word in self.indices and not overwrite: __A : int = self.indices[word] __A : Optional[int] = self.count[idx] + n return idx else: __A : int = len(self.symbols ) __A : Tuple = idx self.symbols.append(__lowerCamelCase ) self.count.append(__lowerCamelCase ) return idx def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' return 0 def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): try: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(__lowerCamelCase ) ) return __A : List[str] = f.readlines() __A : Optional[Any] = self._load_meta(__lowerCamelCase ) for line in lines[indices_start_line:]: try: __A : str = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": __A : Optional[int] = True __A : str = line.rsplit(''' ''' , 1 ) else: __A : List[Any] = False __A : Union[str, Any] = int(__lowerCamelCase ) __A : List[Any] = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(__lowerCamelCase ) ) self.add_symbol(__lowerCamelCase , n=__lowerCamelCase , overwrite=__lowerCamelCase ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def __lowercase ( snake_case_ : Any ) ->Any: '''simple docstring''' __A : List[Any] = dict((re.sub(r'''@@$''' ,'''''' ,snake_case_ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' ,'''</w>''' ,snake_case_ ), v) for k, v in d.items() ) __A : str = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __A : List[str] = d[k] # restore return da def __lowercase ( snake_case_ : Dict ,snake_case_ : List[str] ) ->Any: '''simple docstring''' if not os.path.exists(snake_case_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(snake_case_ ,exist_ok=snake_case_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __A : Dict = os.path.join(snake_case_ ,'''checkpoint.pt''' ) if not os.path.isfile(snake_case_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __A : List[str] = torch.load(snake_case_ ,map_location='''cpu''' ) __A : Optional[Any] = chkpt['''cfg''']['''model'''] # dicts __A : int = os.path.join(snake_case_ ,'''dict.txt''' ) if not os.path.isfile(snake_case_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __A : Optional[Any] = Dictionary.load(snake_case_ ) __A : Any = rewrite_dict_keys(src_dict.indices ) __A : Union[str, Any] = len(snake_case_ ) __A : str = os.path.join(snake_case_ ,VOCAB_FILES_NAMES['''vocab_file'''] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(snake_case_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_ ,ensure_ascii=snake_case_ ,indent=snake_case_ ) ) # merges_file (bpecodes) __A : Dict = os.path.join(snake_case_ ,'''bpecodes''' ) if not os.path.isfile(snake_case_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __A : Tuple = os.path.join(snake_case_ ,VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(snake_case_ ,snake_case_ ) # model config __A : Dict = os.path.join(snake_case_ ,'''config.json''' ) __A : List[str] = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(snake_case_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_ ,ensure_ascii=snake_case_ ,indent=snake_case_ ) ) # tokenizer config __A : List[Any] = os.path.join(snake_case_ ,snake_case_ ) __A : List[str] = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(snake_case_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_ ,ensure_ascii=snake_case_ ,indent=snake_case_ ) ) # model __A : Dict = chkpt['''model'''] # remove unneeded keys __A : Dict = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(snake_case_ ,snake_case_ ) __A : Union[str, Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): __A : List[Any] = model_state_dict.pop(snake_case_ ) else: __A : Optional[int] = model_state_dict.pop(snake_case_ ) __A : Dict = BioGptConfig.from_pretrained(snake_case_ ) __A : int = BioGptForCausalLM(snake_case_ ) # check that it loads ok model_new.load_state_dict(snake_case_ ) # save __A : Optional[int] = os.path.join(snake_case_ ,snake_case_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(snake_case_ ,snake_case_ ) print('''Conversion is done!''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a_ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
371
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency a_ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } a_ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" a_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowercase ( snake_case_ : str ) ->dict[str, int]: '''simple docstring''' __A : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __lowercase ( snake_case_ : tuple ) ->str: '''simple docstring''' return x[0] def __lowercase ( snake_case_ : str ) ->str: '''simple docstring''' __A : Union[str, Any] = get_letter_count(snake_case_ ) __A : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(snake_case_ ) __A : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find ,reverse=snake_case_ ) __A : Optional[int] = ''''''.join(freq_to_letter[freq] ) __A : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=snake_case_ ,reverse=snake_case_ ) __A : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(snake_case_ ) def __lowercase ( snake_case_ : str ) ->int: '''simple docstring''' __A : Any = get_frequency_order(snake_case_ ) __A : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
291
0
import os import jsonlines import numpy as np from tqdm import tqdm lowerCAmelCase : Optional[int] = 2048 lowerCAmelCase : Dict = 4096 lowerCAmelCase : Any = 42 lowerCAmelCase : str = os.environ.pop("""PROCESS_TRAIN""", """false""") lowerCAmelCase : Optional[Any] = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def A_ ( _UpperCAmelCase ): def choose_first(_UpperCAmelCase , _UpperCAmelCase=False ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) == 1: SCREAMING_SNAKE_CASE_: Dict = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: SCREAMING_SNAKE_CASE_: Optional[Any] = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a SCREAMING_SNAKE_CASE_: Optional[int] = {"id": example["id"]} SCREAMING_SNAKE_CASE_: Dict = example["annotations"] SCREAMING_SNAKE_CASE_: List[Any] = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: SCREAMING_SNAKE_CASE_: List[str] = ["yes"] if 1 in yes_no_answer else ["no"] SCREAMING_SNAKE_CASE_: Tuple = [] SCREAMING_SNAKE_CASE_: Optional[Any] = [] SCREAMING_SNAKE_CASE_: Union[str, Any] = ["<cls>"] else: SCREAMING_SNAKE_CASE_: List[str] = ["short"] SCREAMING_SNAKE_CASE_: Optional[Any] = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available SCREAMING_SNAKE_CASE_: List[str] = ["long"] SCREAMING_SNAKE_CASE_: str = choose_first(annotation["long_answer"] , is_long_answer=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = [] answer.update(_UpperCAmelCase ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: SCREAMING_SNAKE_CASE_: str = True else: SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Tuple = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , _UpperCAmelCase ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: Optional[Any] = _get_single_answer(_UpperCAmelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element SCREAMING_SNAKE_CASE_: Tuple = example["document"]["tokens"] SCREAMING_SNAKE_CASE_: Any = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(_UpperCAmelCase ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples SCREAMING_SNAKE_CASE_: Optional[int] = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 SCREAMING_SNAKE_CASE_: List[str] = example["document"]["tokens"] SCREAMING_SNAKE_CASE_: Optional[int] = answer["start_token"] SCREAMING_SNAKE_CASE_: Union[str, Any] = answer["end_token"] SCREAMING_SNAKE_CASE_: Any = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 SCREAMING_SNAKE_CASE_: Optional[Any] = " ".join(context[start_token:end_token] ) # checking above code if assertion: SCREAMING_SNAKE_CASE_: Optional[Any] = doc["is_html"][answer["start_token"] : answer["end_token"]] SCREAMING_SNAKE_CASE_: Tuple = doc["token"][answer["start_token"] : answer["end_token"]] SCREAMING_SNAKE_CASE_: str = " ".join([old[i] for i in range(len(_UpperCAmelCase ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , _UpperCAmelCase , end="\n" ) print("Old:" , _UpperCAmelCase , end="\n\n" ) return { "context": " ".join(_UpperCAmelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=20_48 , _UpperCAmelCase=40_96 , _UpperCAmelCase=True ): # overlap will be of doc_stride - q_len SCREAMING_SNAKE_CASE_: Dict = get_context_and_ans(_UpperCAmelCase , assertion=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer(example["question"]["text"] , out["context"] ).input_ids SCREAMING_SNAKE_CASE_: List[Any] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element SCREAMING_SNAKE_CASE_: Union[str, Any] = [] SCREAMING_SNAKE_CASE_: Union[str, Any] = [] SCREAMING_SNAKE_CASE_: Tuple = input_ids[:q_len] SCREAMING_SNAKE_CASE_: int = range(_UpperCAmelCase , len(_UpperCAmelCase ) , max_length - doc_stride ) for i in doc_start_indices: SCREAMING_SNAKE_CASE_: Optional[int] = i + max_length - q_len SCREAMING_SNAKE_CASE_: Dict = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(_UpperCAmelCase ), "end_token": [-1_00] * len(_UpperCAmelCase ), "category": category, }, } SCREAMING_SNAKE_CASE_: Dict = out["context"].split() SCREAMING_SNAKE_CASE_: Optional[int] = splitted_context[answer["end_token"]] SCREAMING_SNAKE_CASE_: Union[str, Any] = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=_UpperCAmelCase , ).input_ids ) SCREAMING_SNAKE_CASE_: int = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=_UpperCAmelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token SCREAMING_SNAKE_CASE_: List[str] = len(tokenizer(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 SCREAMING_SNAKE_CASE_: List[str] = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive SCREAMING_SNAKE_CASE_: List[Any] = answer["start_token"] SCREAMING_SNAKE_CASE_: List[Any] = answer["end_token"] if assertion: SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.decode(_UpperCAmelCase ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , _UpperCAmelCase , end="\n\n" ) if len(_UpperCAmelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } SCREAMING_SNAKE_CASE_: Union[str, Any] = input_ids[:q_len] SCREAMING_SNAKE_CASE_: List[str] = range(_UpperCAmelCase , len(_UpperCAmelCase ) , max_length - doc_stride ) SCREAMING_SNAKE_CASE_: Tuple = [] SCREAMING_SNAKE_CASE_: Optional[Any] = [] SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] # null, yes, no, long, short for i in doc_start_indices: SCREAMING_SNAKE_CASE_: List[Any] = i + max_length - q_len SCREAMING_SNAKE_CASE_: Tuple = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: SCREAMING_SNAKE_CASE_: int = start_token - i + q_len SCREAMING_SNAKE_CASE_: Optional[Any] = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: SCREAMING_SNAKE_CASE_: Union[str, Any] = -1_00 SCREAMING_SNAKE_CASE_: Union[str, Any] = -1_00 answers_category.append("null" ) SCREAMING_SNAKE_CASE_: List[Any] = inputs[-1][start_token : end_token + 1] answers_start_token.append(_UpperCAmelCase ) answers_end_token.append(_UpperCAmelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(_UpperCAmelCase ) ) print("Old:" , tokenizer.decode(_UpperCAmelCase ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=20_48 , _UpperCAmelCase=40_96 , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: str = get_strided_contexts_and_ans( _UpperCAmelCase , _UpperCAmelCase , doc_stride=_UpperCAmelCase , max_length=_UpperCAmelCase , assertion=_UpperCAmelCase , ) return example def A_ ( _UpperCAmelCase , _UpperCAmelCase ): with jsonlines.open(_UpperCAmelCase , "a" ) as writer: for example in tqdm(_UpperCAmelCase , total=len(_UpperCAmelCase ) , desc="Saving samples ... " ): SCREAMING_SNAKE_CASE_: Tuple = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer lowerCAmelCase : str = load_dataset("""natural_questions""") lowerCAmelCase : Dict = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") lowerCAmelCase : str = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] lowerCAmelCase : str = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } lowerCAmelCase : Optional[Any] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) lowerCAmelCase : Dict = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) lowerCAmelCase : Optional[int] = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
13
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __UpperCAmelCase = data_utils.TransfoXLTokenizer __UpperCAmelCase = data_utils.TransfoXLCorpus __UpperCAmelCase = data_utils __UpperCAmelCase = data_utils def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : List[Any] ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: UpperCamelCase : int = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase : List[Any] = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) UpperCamelCase : Union[str, Any] = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) UpperCamelCase : List[Any] = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) UpperCamelCase : Optional[Any] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase : Optional[int] = os.path.abspath(snake_case__ ) UpperCamelCase : Dict = os.path.abspath(snake_case__ ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase : Dict = TransfoXLConfig() else: UpperCamelCase : Union[str, Any] = TransfoXLConfig.from_json_file(snake_case__ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase : List[str] = TransfoXLLMHeadModel(snake_case__ ) UpperCamelCase : Optional[int] = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model UpperCamelCase : Optional[Any] = os.path.join(snake_case__ , snake_case__ ) UpperCamelCase : Any = os.path.join(snake_case__ , snake_case__ ) print(F"""Save PyTorch model to {os.path.abspath(snake_case__ )}""" ) torch.save(model.state_dict() , snake_case__ ) print(F"""Save configuration file to {os.path.abspath(snake_case__ )}""" ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) __UpperCAmelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
103
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = JukeboxTokenizer UpperCAmelCase__ : Optional[int] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def snake_case_ ( self ) -> Optional[Any]: import torch UpperCamelCase : Tuple = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) UpperCamelCase : List[str] = tokenizer(**self.metas )['input_ids'] # fmt: off UpperCamelCase : Dict = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2] ) ) @require_torch def snake_case_ ( self ) -> Optional[Any]: import torch UpperCamelCase : str = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) UpperCamelCase : Dict = tokenizer(**self.metas )['input_ids'] # fmt: off UpperCamelCase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2] ) )
103
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : TransformeraDModel , lowercase_ : AutoencoderKL , lowercase_ : KarrasDiffusionSchedulers , lowercase_ : Optional[Dict[int, str]] = None , ) -> int: super().__init__() self.register_modules(transformer=lowercase_ , vae=lowercase_ , scheduler=lowercase_ ) # create a imagenet -> id dictionary for easier use UpperCAmelCase : Any = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): UpperCAmelCase : str = int(lowercase_ ) UpperCAmelCase : List[str] = dict(sorted(self.labels.items() ) ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Union[str, List[str]] ) -> List[int]: if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : List[Any] = list(lowercase_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Dict , lowercase_ : List[int] , lowercase_ : float = 4.0 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : int = 50 , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : Tuple = len(lowercase_ ) UpperCAmelCase : List[str] = self.transformer.config.sample_size UpperCAmelCase : int = self.transformer.config.in_channels UpperCAmelCase : List[str] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase_ , device=self.device , dtype=self.transformer.dtype , ) UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCAmelCase : int = torch.tensor(lowercase_ , device=self.device ).reshape(-1 ) UpperCAmelCase : Any = torch.tensor([1_000] * batch_size , device=self.device ) UpperCAmelCase : Optional[Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCAmelCase : Tuple = latent_model_input[: len(lowercase_ ) // 2] UpperCAmelCase : List[Any] = torch.cat([half, half] , dim=0 ) UpperCAmelCase : List[Any] = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = t if not torch.is_tensor(lowercase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCAmelCase : Optional[Any] = latent_model_input.device.type == 'mps' if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Any = torch.floataa if is_mps else torch.floataa else: UpperCAmelCase : Tuple = torch.intaa if is_mps else torch.intaa UpperCAmelCase : Optional[int] = torch.tensor([timesteps] , dtype=lowercase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCAmelCase : Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCAmelCase : Optional[int] = self.transformer( lowercase_ , timestep=lowercase_ , class_labels=lowercase_ ).sample # perform guidance if guidance_scale > 1: UpperCAmelCase , UpperCAmelCase : Tuple = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCAmelCase , UpperCAmelCase : Any = torch.split(lowercase_ , len(lowercase_ ) // 2 , dim=0 ) UpperCAmelCase : List[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCAmelCase : Any = torch.cat([half_eps, half_eps] , dim=0 ) UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCAmelCase , UpperCAmelCase : Dict = torch.split(lowercase_ , lowercase_ , dim=1 ) else: UpperCAmelCase : Optional[int] = noise_pred # compute previous image: x_t -> x_t-1 UpperCAmelCase : int = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample if guidance_scale > 1: UpperCAmelCase , UpperCAmelCase : Optional[int] = latent_model_input.chunk(2 , dim=0 ) else: UpperCAmelCase : Dict = latent_model_input UpperCAmelCase : Any = 1 / self.vae.config.scaling_factor * latents UpperCAmelCase : Optional[int] = self.vae.decode(lowercase_ ).sample UpperCAmelCase : str = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : Union[str, Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : Tuple = self.numpy_to_pil(lowercase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase_ )
151
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowercase__ = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" lowercase__ = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" lowercase__ = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Tuple=4 , lowercase_ : List[str]=False ) -> Union[str, Any]: UpperCAmelCase : Tuple = compute_bleu( reference_corpus=lowercase_ , translation_corpus=lowercase_ , max_order=lowercase_ , smooth=lowercase_ ) ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
151
1
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCamelCase ( a , a ) -> str: '''simple docstring''' __magic_name__ = BeautifulSoup(requests.get(a , params=a ).content , '''html.parser''' ) __magic_name__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) __magic_name__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCAmelCase = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
98
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCAmelCase = get_tests_dir("fixtures") _lowerCAmelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _lowerCAmelCase = get_tests_dir("fixtures/dummy-config.json") class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : Union[str, Any] ): __magic_name__ = 0 def snake_case__ ( self : Optional[int] ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ).to_dict() config_dict.pop('''feature_extractor_type''' ) __magic_name__ = WavaVecaFeatureExtractor(**a__ ) # save in new folder model_config.save_pretrained(a__ ) config.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) # make sure private variable is not incorrectly saved __magic_name__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : str ): with self.assertRaisesRegex( a__ , '''bert-base is not a local folder and is not a valid model identifier''' ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def snake_case__ ( self : str ): with self.assertRaisesRegex( a__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ , revision='''aaaaaa''' ) def snake_case__ ( self : Union[str, Any] ): with self.assertRaisesRegex( a__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def snake_case__ ( self : Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a__ ): __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(a__ ): __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ , trust_remote_code=a__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def snake_case__ ( self : int ): try: AutoConfig.register('''custom''' , a__ ) AutoFeatureExtractor.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): AutoFeatureExtractor.register(a__ , a__ ) # Now that the config is registered, it can be used as any other config with the auto-API __magic_name__ = CustomFeatureExtractor.from_pretrained(a__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : int ): class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[int] = True try: AutoConfig.register('''custom''' , a__ ) AutoFeatureExtractor.register(a__ , a__ ) # If remote code is not set, the default is to use local __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(a__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
98
1
'''simple docstring''' from __future__ import annotations lowercase__ : Optional[int] = tuple[int, int, int] lowercase__ : Optional[Any] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowercase__ : str = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- lowercase__ : Dict = 'EGZWVONAHDCLFQMSIPJBYUKXTR' lowercase__ : Tuple = 'FOBHMDKEXQNRAULPGSJVTYICZW' lowercase__ : Union[str, Any] = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- lowercase__ : Dict = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- lowercase__ : int = 'RMDJXFUWGISLHVTCQNKYPBEZOA' lowercase__ : Dict = 'SGLCPQWZHKXAREONTFBVIYJUDM' lowercase__ : Optional[int] = 'HVSICLTYKQUBXDWAJZOMFGPREN' lowercase__ : Any = 'RZWQHFMVDBKICJLNTUXAGYPSOE' lowercase__ : Optional[Any] = 'LFKIJODBEGAMQPXVUHYSTCZRWN' lowercase__ : Optional[Any] = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def a__ ( lowercase : RotorPositionT, lowercase : RotorSelectionT, lowercase : str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """simple docstring""" if (unique_rotsel := len(set(lowercase ) )) < 3: _UpperCamelCase = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(lowercase ) # Checks if rotor positions are valid _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = rotpos if not 0 < rotorposa <= len(lowercase ): _UpperCamelCase = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(lowercase ) if not 0 < rotorposa <= len(lowercase ): _UpperCamelCase = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowercase ) if not 0 < rotorposa <= len(lowercase ): _UpperCamelCase = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowercase ) # Validates string and returns dict _UpperCamelCase = _plugboard(lowercase ) return rotpos, rotsel, pbdict def a__ ( lowercase : str ) -> dict[str, str]: """simple docstring""" if not isinstance(lowercase, lowercase ): _UpperCamelCase = F"""Plugboard setting isn't type string ({type(lowercase )})""" raise TypeError(lowercase ) elif len(lowercase ) % 2 != 0: _UpperCamelCase = F"""Odd number of symbols ({len(lowercase )})""" raise Exception(lowercase ) elif pbstring == "": return {} pbstring.replace(''' ''', '''''' ) # Checks if all characters are unique _UpperCamelCase = set() for i in pbstring: if i not in abc: _UpperCamelCase = F"""'{i}' not in list of symbols""" raise Exception(lowercase ) elif i in tmppbl: _UpperCamelCase = F"""Duplicate symbol ({i})""" raise Exception(lowercase ) else: tmppbl.add(lowercase ) del tmppbl # Created the dictionary _UpperCamelCase = {} for j in range(0, len(lowercase ) - 1, 2 ): _UpperCamelCase = pbstring[j + 1] _UpperCamelCase = pbstring[j] return pb def a__ ( lowercase : str, lowercase : RotorPositionT, lowercase : RotorSelectionT = (rotora, rotora, rotora), lowercase : str = "", ) -> str: """simple docstring""" _UpperCamelCase = text.upper() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = _validator( lowercase, lowercase, plugb.upper() ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = rotor_position _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _UpperCamelCase = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _UpperCamelCase = plugboard[symbol] # rotor ra -------------------------- _UpperCamelCase = abc.index(lowercase ) + rotorposa _UpperCamelCase = rotora[index % len(lowercase )] # rotor rb -------------------------- _UpperCamelCase = abc.index(lowercase ) + rotorposa _UpperCamelCase = rotora[index % len(lowercase )] # rotor rc -------------------------- _UpperCamelCase = abc.index(lowercase ) + rotorposa _UpperCamelCase = rotora[index % len(lowercase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _UpperCamelCase = reflector[symbol] # 2nd rotors _UpperCamelCase = abc[rotora.index(lowercase ) - rotorposa] _UpperCamelCase = abc[rotora.index(lowercase ) - rotorposa] _UpperCamelCase = abc[rotora.index(lowercase ) - rotorposa] # 2nd plugboard if symbol in plugboard: _UpperCamelCase = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowercase ): _UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(lowercase ): _UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(lowercase ): _UpperCamelCase = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowercase ) return "".join(lowercase ) if __name__ == "__main__": lowercase__ : str = 'This is my Python script that emulates the Enigma machine from WWII.' lowercase__ : Union[str, Any] = (1, 1, 1) lowercase__ : Any = 'pictures' lowercase__ : str = (rotora, rotora, rotora) lowercase__ : Any = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
324
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : Any = {'vocab_file': 'spiece.model'} lowercase__ : Dict = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } lowercase__ : Optional[Any] = { 'google/bigbird-roberta-base': 40_96, 'google/bigbird-roberta-large': 40_96, 'google/bigbird-base-trivia-itc': 40_96, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : str = ['input_ids', 'attention_mask'] _snake_case : List[int] = [] def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @property def snake_case__ ( self : List[str] ) -> Tuple: '''simple docstring''' return self.sp_model.get_piece_size() def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ ) return token def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = '''''' _UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token _UpperCamelCase = True _UpperCamelCase = [] else: current_sub_tokens.append(lowerCAmelCase__ ) _UpperCamelCase = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str: '''simple docstring''' _UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ ) _UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCamelCase = [] _UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) _UpperCamelCase = [] sub_texts.append(lowerCAmelCase__ ) else: current_sub_text.append(lowerCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) ) else: _UpperCamelCase = ''''''.join(lowerCAmelCase__ ) _UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ ) return clean_text else: return text def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
324
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
65
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Check if the input is valid if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients A_ , A_ , A_ : Any = equationa A_ , A_ , A_ : Union[str, Any] = equationa # Calculate the determinants of the matrices A_ : Optional[Any] = aa * ba - aa * ba A_ : Optional[int] = ca * ba - ca * ba A_ : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: A_ : Optional[int] = determinant_x / determinant A_ : List[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
65
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ): '''simple docstring''' if attention_mask is None: __UpperCamelCase :List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __UpperCamelCase :Tuple = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __UpperCamelCase :Dict = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: __UpperCamelCase :int = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: __UpperCamelCase :Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=False , __lowercase=99 , __lowercase=16 , __lowercase=2 , __lowercase=4 , __lowercase=4 , __lowercase="relu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=20 , __lowercase=2 , __lowercase=1 , __lowercase=0 , ) -> Tuple: __UpperCamelCase :int = parent __UpperCamelCase :Optional[int] = batch_size __UpperCamelCase :int = seq_length __UpperCamelCase :Tuple = is_training __UpperCamelCase :Optional[int] = use_labels __UpperCamelCase :Any = vocab_size __UpperCamelCase :Tuple = hidden_size __UpperCamelCase :int = num_hidden_layers __UpperCamelCase :str = num_attention_heads __UpperCamelCase :Any = intermediate_size __UpperCamelCase :Any = hidden_act __UpperCamelCase :Union[str, Any] = hidden_dropout_prob __UpperCamelCase :Any = attention_probs_dropout_prob __UpperCamelCase :List[str] = encoder_layerdrop __UpperCamelCase :List[Any] = decoder_layerdrop __UpperCamelCase :Tuple = max_position_embeddings __UpperCamelCase :Tuple = eos_token_id __UpperCamelCase :Optional[Any] = pad_token_id __UpperCamelCase :Any = bos_token_id def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :Any = self.eos_token_id # Eos Token __UpperCamelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __UpperCamelCase :Union[str, Any] = input_ids.clamp(self.pad_token_id + 1) __UpperCamelCase :List[str] = decoder_input_ids.clamp(self.pad_token_id + 1) __UpperCamelCase :Any = self.get_config() __UpperCamelCase :List[Any] = prepare_mam_aaa_inputs_dict(__lowercase , __lowercase , __lowercase) return config, inputs_dict def UpperCamelCase__ ( self) -> List[Any]: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase , __UpperCamelCase :List[str] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :Tuple = MaMaaaModel(config=__lowercase).get_decoder().to(__lowercase).eval() __UpperCamelCase :str = inputs_dict['''input_ids'''] __UpperCamelCase :Union[str, Any] = inputs_dict['''attention_mask'''] __UpperCamelCase :List[str] = inputs_dict['''head_mask'''] # first forward pass __UpperCamelCase :Dict = model(__lowercase , attention_mask=__lowercase , head_mask=__lowercase , use_cache=__lowercase) __UpperCamelCase , __UpperCamelCase :Optional[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase :List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCamelCase :Union[str, Any] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCamelCase :List[str] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCamelCase :Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCamelCase :Union[str, Any] = model(__lowercase , attention_mask=__lowercase)['''last_hidden_state'''] __UpperCamelCase :str = model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase)[ '''last_hidden_state''' ] # select random slice __UpperCamelCase :List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCamelCase :Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase :Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-2)) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> int: __UpperCamelCase :Dict = MaMaaaModel(config=__lowercase).to(__lowercase).eval() __UpperCamelCase :Tuple = model(**__lowercase) __UpperCamelCase :List[Any] = outputs.encoder_last_hidden_state __UpperCamelCase :List[str] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :List[str] = model.get_encoder() encoder.save_pretrained(__lowercase) __UpperCamelCase :Union[str, Any] = MaMaaaEncoder.from_pretrained(__lowercase).to(__lowercase) __UpperCamelCase :Tuple = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :Any = model.get_decoder() decoder.save_pretrained(__lowercase) __UpperCamelCase :str = MaMaaaDecoder.from_pretrained(__lowercase).to(__lowercase) __UpperCamelCase :Any = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=__lowercase , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3) @require_torch class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : Optional[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a__ : str = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a__ : str = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a__ : int = True a__ : int = True a__ : Union[str, Any] = False a__ : int = False def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Union[str, Any]: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Optional[int] = MaMaaaModelTester(self) __UpperCamelCase :Optional[int] = ConfigTester(self , config_class=__lowercase) def UpperCamelCase__ ( self) -> str: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> int: __UpperCamelCase , __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __UpperCamelCase :str = model_class(__lowercase) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase) __UpperCamelCase , __UpperCamelCase :Dict = model_class.from_pretrained(__lowercase , output_loading_info=__lowercase) self.assertEqual(info['''missing_keys'''] , []) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__lowercase) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase , __UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __UpperCamelCase :Optional[Any] = model_class(__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Union[str, Any] = copy.deepcopy(self._prepare_for_class(__lowercase , __lowercase)) if not self.is_encoder_decoder: __UpperCamelCase :Dict = inputs['''input_ids'''] del inputs["input_ids"] else: __UpperCamelCase :str = inputs['''input_ids'''] __UpperCamelCase :Dict = inputs.get('''decoder_input_ids''' , __lowercase) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , __lowercase) __UpperCamelCase :Union[str, Any] = model.get_input_embeddings() if not self.is_encoder_decoder: __UpperCamelCase :List[Any] = wte(__lowercase) else: __UpperCamelCase :int = wte(__lowercase) __UpperCamelCase :List[str] = wte(__lowercase) with torch.no_grad(): model(**__lowercase)[0] def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase , __UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() __UpperCamelCase :Dict = input_dict['''input_ids'''] __UpperCamelCase :Any = input_ids.ne(1).to(__lowercase) __UpperCamelCase :Optional[int] = MaMaaaForConditionalGeneration(__lowercase).eval().to(__lowercase) if torch_device == "cuda": model.half() model.generate(__lowercase , attention_mask=__lowercase) model.generate(num_beams=4 , do_sample=__lowercase , early_stopping=__lowercase , num_return_sequences=3) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) __lowercase = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self) -> int: return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''') def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Union[str, Any] = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''').to(__lowercase) __UpperCamelCase :Dict = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]]) __UpperCamelCase :int = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]]) __UpperCamelCase :int = prepare_mam_aaa_inputs_dict(model.config , __lowercase , __lowercase) with torch.no_grad(): __UpperCamelCase :List[Any] = model(**__lowercase)[0] __UpperCamelCase :Optional[Any] = torch.Size((1, 11, 1_024)) self.assertEqual(output.shape , __lowercase) # change to expected output here __UpperCamelCase :Tuple = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=__lowercase) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=__lowercase)) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[int] = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''').to(__lowercase) # change to intended input __UpperCamelCase :List[Any] = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]]) __UpperCamelCase :str = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]]) __UpperCamelCase :List[Any] = prepare_mam_aaa_inputs_dict(model.config , __lowercase , __lowercase) with torch.no_grad(): __UpperCamelCase :Optional[int] = model(**__lowercase)[0] __UpperCamelCase :List[Any] = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape , __lowercase) # change to expected output here __UpperCamelCase :int = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=__lowercase) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=__lowercase)) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Tuple = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''').to(__lowercase) __UpperCamelCase :Optional[int] = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''') __UpperCamelCase :Optional[int] = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __UpperCamelCase :List[str] = tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''') __UpperCamelCase :Dict = model.generate( input_ids=dct['''input_ids'''].to(__lowercase) , attention_mask=dct['''attention_mask'''].to(__lowercase) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''') , ) __UpperCamelCase :Any = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] __UpperCamelCase :str = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__lowercase , skip_special_tokens=__lowercase) assert generated == expected_en
43
'''simple docstring''' import math import unittest def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def snake_case_ ( self ) -> int: '''simple docstring''' with self.assertRaises(UpperCamelCase__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
162
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = """Wav2Vec2FeatureExtractor""" SCREAMING_SNAKE_CASE__ : Optional[int] = """AutoTokenizer""" def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" super().__init__(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = self.feature_extractor UpperCAmelCase_ : Optional[int] = False @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" try: return super().from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , lowerCamelCase_ , ) UpperCAmelCase_ : str = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCAmelCase_ : List[str] = WavaVecaCTCTokenizer.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) return cls(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) def __call__( self , *lowercase_ , **lowercase_ ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_ , **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("raw_speech" ) else: UpperCAmelCase_ : Optional[int] = kwargs.pop("audio" , lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop("sampling_rate" , lowerCamelCase_ ) UpperCAmelCase_ : Dict = kwargs.pop("text" , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: UpperCAmelCase_ : int = args[0] UpperCAmelCase_ : Any = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ : Optional[int] = self.feature_extractor(lowerCamelCase_ , *lowerCamelCase_ , sampling_rate=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None: UpperCAmelCase_ : Optional[int] = self.tokenizer(lowerCamelCase_ , **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ : Any = encodings["input_ids"] return inputs def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase_ , **lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop("input_features" , lowerCamelCase_ ) UpperCAmelCase_ : Tuple = kwargs.pop("labels" , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: UpperCAmelCase_ : List[Any] = args[0] UpperCAmelCase_ : str = args[1:] if input_features is not None: UpperCAmelCase_ : Dict = self.feature_extractor.pad(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) if labels is not None: UpperCAmelCase_ : List[str] = self.tokenizer.pad(lowerCamelCase_ , **lowerCamelCase_ ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ : Optional[Any] = labels["input_ids"] return input_features def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @contextmanager def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Union[str, Any] = self.tokenizer yield UpperCAmelCase_ : int = self.feature_extractor UpperCAmelCase_ : Tuple = False
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCamelCase = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' UpperCamelCase = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' UpperCamelCase = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , ) -> Any: lowercase__ : Optional[int] = len(references[0] ) if any(len(lowercase_ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowercase__ : Union[str, Any] = [[refs[i] for refs in references] for i in range(lowercase_ )] lowercase__ : str = TER( normalized=lowercase_ , no_punct=lowercase_ , asian_support=lowercase_ , case_sensitive=lowercase_ , ) lowercase__ : List[str] = sb_ter.corpus_score(lowercase_ , lowercase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
87
import operator def lowercase_ ( _lowerCamelCase : list , _lowerCamelCase : bool = False , _lowerCamelCase : list | None = None): lowercase__ : int = operator.lt if reverse else operator.gt lowercase__ : str = solution or [] if not arr: return solution lowercase__ : List[str] = [arr.pop(0)] for i, item in enumerate(_lowerCamelCase): if _operator(_lowerCamelCase , sublist[-1]): sublist.append(_lowerCamelCase) arr.pop(_lowerCamelCase) # merging sublist into solution list if not solution: solution.extend(_lowerCamelCase) else: while sublist: lowercase__ : str = sublist.pop(0) for i, xx in enumerate(_lowerCamelCase): if not _operator(_lowerCamelCase , _lowerCamelCase): solution.insert(_lowerCamelCase , _lowerCamelCase) break else: solution.append(_lowerCamelCase) strand_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
87
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowerCamelCase( SCREAMING_SNAKE_CASE__ ): lowercase_ : List[Any] = 'camembert' def __init__( self, lowerCamelCase=3_05_22, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=1, lowerCamelCase=0, lowerCamelCase=2, lowerCamelCase="absolute", lowerCamelCase=True, lowerCamelCase=None, **lowerCamelCase, ) -> Dict: """simple docstring""" super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_) _lowercase : Any = vocab_size _lowercase : Optional[int] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : str = hidden_act _lowercase : Any = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : Optional[Any] = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : List[Any] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : Tuple = position_embedding_type _lowercase : Any = use_cache _lowercase : Optional[int] = classifier_dropout class _lowerCamelCase( SCREAMING_SNAKE_CASE__ ): @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" if self.task == "multiple-choice": _lowercase : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
359
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
84
0
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) @dataclass(frozen=snake_case__ ) class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: str __UpperCamelCase: str __UpperCamelCase: Optional[str] = None __UpperCamelCase: Optional[str] = None __UpperCamelCase: Optional[str] = None @dataclass(frozen=snake_case__ ) class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: List[int] __UpperCamelCase: Optional[List[int]] = None __UpperCamelCase: Optional[List[int]] = None __UpperCamelCase: Optional[Union[int, float]] = None __UpperCamelCase: Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[InputFeatures] def __init__( self : Optional[Any] , A : str , A : PreTrainedTokenizer , A : str , A : Optional[int] = None , A : List[Any]=False , A : bool = False , ): _UpperCAmelCase : Optional[int] = hans_processors[task]() _UpperCAmelCase : int = os.path.join( A , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(A ) , A , ) , ) _UpperCAmelCase : List[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase : Tuple = label_list[2], label_list[1] _UpperCAmelCase : Tuple = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase : List[str] = cached_features_file + ".lock" with FileLock(A ): if os.path.exists(A ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) _UpperCAmelCase : str = torch.load(A ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) _UpperCAmelCase : Optional[int] = ( processor.get_dev_examples(A ) if evaluate else processor.get_train_examples(A ) ) logger.info("Training examples: %s" , len(A ) ) _UpperCAmelCase : Optional[Any] = hans_convert_examples_to_features(A , A , A , A ) logger.info("Saving features into cached file %s" , A ) torch.save(self.features , A ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , A : str ): return self.features[i] def _A ( self : Optional[int] ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: List[InputFeatures] def __init__( self : Any , A : str , A : PreTrainedTokenizer , A : str , A : Optional[int] = 128 , A : str=False , A : bool = False , ): _UpperCAmelCase : List[str] = hans_processors[task]() _UpperCAmelCase : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase : int = label_list[2], label_list[1] _UpperCAmelCase : Optional[Any] = label_list _UpperCAmelCase : Tuple = processor.get_dev_examples(A ) if evaluate else processor.get_train_examples(A ) _UpperCAmelCase : List[str] = hans_convert_examples_to_features(A , A , A , A ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(A )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) _UpperCAmelCase : List[str] = tf.data.Dataset.from_generator( A , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _A ( self : Optional[int] ): return self.dataset def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : int , A : List[Any] ): return self.features[i] def _A ( self : Optional[int] ): return self.label_list class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : Optional[Any] , A : Union[str, Any] ): return self._create_examples(self._read_tsv(os.path.join(A , "heuristics_train_set.txt" ) ) , "train" ) def _A ( self : Optional[int] , A : List[str] ): return self._create_examples(self._read_tsv(os.path.join(A , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _A ( self : Optional[int] ): return ["contradiction", "entailment", "neutral"] def _A ( self : Tuple , A : Optional[int] , A : Tuple ): _UpperCAmelCase : List[Any] = [] for i, line in enumerate(A ): if i == 0: continue _UpperCAmelCase : int = "%s-%s" % (set_type, line[0]) _UpperCAmelCase : int = line[5] _UpperCAmelCase : Tuple = line[6] _UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith("ex" ) else line[7] _UpperCAmelCase : int = line[0] examples.append(InputExample(guid=A , text_a=A , text_b=A , label=A , pairID=A ) ) return examples def UpperCamelCase_ ( _UpperCAmelCase : List[InputExample] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : PreTrainedTokenizer , ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = {label: i for i, label in enumerate(_UpperCAmelCase )} _UpperCAmelCase : str = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc="convert examples to features" ): if ex_index % 10_000 == 0: logger.info("Writing example %d" % (ex_index) ) _UpperCAmelCase : str = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) _UpperCAmelCase : Dict = label_map[example.label] if example.label in label_map else 0 _UpperCAmelCase : Dict = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features __SCREAMING_SNAKE_CASE : Optional[Any] = { """hans""": 3, } __SCREAMING_SNAKE_CASE : Optional[Any] = { """hans""": HansProcessor, }
31
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Dict, *lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Any=None, **lowerCamelCase : str ): '''simple docstring''' super().__init__(*lowerCamelCase, **lowerCamelCase ) lowercase__ = eval_examples lowercase__ = post_process_function def lowercase__ ( self : int, lowerCamelCase : str=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : str = "eval" ): '''simple docstring''' lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(lowerCamelCase ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase__ = time.time() try: lowercase__ = eval_loop( lowerCamelCase, description='''Evaluation''', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions ) lowercase__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowercase__ = metrics.pop(lowerCamelCase ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args, self.state, self.control, lowerCamelCase ) return metrics def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : int=None, lowerCamelCase : str = "test" ): '''simple docstring''' lowercase__ = self.get_test_dataloader(lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase__ = time.time() try: lowercase__ = eval_loop( lowerCamelCase, description='''Prediction''', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions, '''predict''' ) lowercase__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowercase__ = metrics.pop(lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowerCamelCase )
207
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) _lowerCAmelCase = AutoTokenizer.from_pretrained("""google/mt5-small""" ) _lowerCAmelCase = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids _lowerCAmelCase = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ).loss _lowerCAmelCase = -tf.math.reduce_mean(lowerCamelCase ).numpy() _lowerCAmelCase = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
317
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
1
def SCREAMING_SNAKE_CASE_ ( __A : list[list] ) -> list[list]: """simple docstring""" a_ : List[str] = current_set.copy() for row_index, row in enumerate(__A ): a_ : List[str] = row[0] for column_index, column in enumerate(__A ): if magnitude == 0: a_ : Any = column continue a_ : List[str] = column / magnitude # Subtract to cancel term a_ : Any = current_set[0] a_ : Optional[int] = [first_row] a_ : Dict = current_set[1::] for row in current_set: a_ : str = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__A ) continue for column_index in range(len(__A ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__A ) # Create next recursion iteration set if len(final_set[0] ) != 3: a_ : Dict = final_set[0] a_ : Union[str, Any] = [] a_ : Optional[int] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) a_ : List[Any] = simplify(__A ) for i in range(len(__A ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __A ) a_ : Any = resultant return final_set def SCREAMING_SNAKE_CASE_ ( __A : list[list] ) -> list: """simple docstring""" if len(__A ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) a_ : List[Any] = len(__A ) + 1 if any(len(__A ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(__A , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(__A ) == 1: return [equations[0][-1] / equations[0][0]] a_ : Union[str, Any] = equations.copy() if any(0 in row for row in data_set ): a_ : Any = data_set.copy() a_ : Tuple = [] for row_index, row in enumerate(__A ): if 0 not in row: a_ : Any = data_set.pop(__A ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , __A ) a_ : List[Any] = data_set.copy() a_ : Optional[Any] = simplify(__A ) a_ : Union[str, Any] = simplified[::-1] a_ : list = [] for row in simplified: a_ : Tuple = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue a_ : int = row.copy()[: len(__A ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__A ) == 0: solutions.append(0 ) continue a_ : List[Any] = temp_row[1::] a_ : Optional[int] = temp_row[::-1] for column_index, column in enumerate(__A ): current_solution -= column * solutions[column_index] solutions.append(__A ) a_ : Tuple = [] for item in solutions: final.append(float(round(__A , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Any = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCAmelCase_ ( _a): lowerCamelCase__ : Dict = ["image_processor", "tokenizer"] lowerCamelCase__ : Dict = "BlipImageProcessor" lowerCamelCase__ : Union[str, Any] = "AutoTokenizer" def __init__( self , a , a , a ) -> Optional[int]: super().__init__(a , a ) # add QFormer tokenizer lowercase__ : Dict = qformer_tokenizer def __call__( self , a = None , a = None , a = True , a = False , a = None , a = None , a = 0 , a = None , a = None , a = False , a = False , a = False , a = False , a = False , a = True , a = None , **a , ) -> BatchFeature: if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) lowercase__ : List[Any] = BatchFeature() if text is not None: lowercase__ : Optional[int] = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) encoding.update(a ) lowercase__ : Optional[int] = self.qformer_tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) lowercase__ : List[str] = qformer_text_encoding.pop('input_ids' ) lowercase__ : Any = qformer_text_encoding.pop('attention_mask' ) if images is not None: lowercase__ : List[Any] = self.image_processor(a , return_tensors=a ) encoding.update(a ) return encoding def _UpperCAmelCase ( self , *a , **a ) -> List[str]: return self.tokenizer.batch_decode(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> Tuple: return self.tokenizer.decode(*a , **a ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = self.tokenizer.model_input_names lowercase__ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _UpperCAmelCase ( self , a , **a ) -> Optional[int]: if os.path.isfile(a ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(a , exist_ok=a ) lowercase__ : int = os.path.join(a , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(a ) return super().save_pretrained(a , **a ) @classmethod def _UpperCAmelCase ( cls , a , **a ) -> str: lowercase__ : str = AutoTokenizer.from_pretrained(a , subfolder='qformer_tokenizer' ) lowercase__ : int = cls._get_arguments_from_pretrained(a , **a ) args.append(a ) return cls(*a )
77
0
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = tmp_path / "cache" _lowerCamelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Tuple = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_sql_dataset(_lowerCamelCase , _lowerCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Optional[int] = tmp_path / "cache" _lowerCamelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : Tuple = features.copy() if features else default_expected_features _lowerCamelCase : Dict = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Optional[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_sql_dataset(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' with contextlib.closing(sqlitea.connect(_lowerCamelCase ) ) as con: _lowerCamelCase : Any = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = tmp_path / "cache" _lowerCamelCase : Optional[int] = os.path.join(_lowerCamelCase , "tmp.sql" ) _lowerCamelCase : Optional[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read() SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() _lowerCamelCase : List[str] = iter_sql_file(_lowerCamelCase ) _lowerCamelCase : List[Any] = iter_sql_file(_lowerCamelCase ) for rowa, rowa in zip(_lowerCamelCase , _lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Optional[Any] = tmp_path / "cache" _lowerCamelCase : Dict = os.path.join(_lowerCamelCase , "tmp.sql" ) _lowerCamelCase : List[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read() SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() _lowerCamelCase : Any = iter_sql_file(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = iter_sql_file(_lowerCamelCase ) for rowa, rowa in zip(_lowerCamelCase , _lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Dict = tmp_path / "cache" _lowerCamelCase : List[Any] = os.path.join(_lowerCamelCase , "tmp.sql" ) _lowerCamelCase : Dict = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read() with pytest.raises(_lowerCamelCase ): SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
340
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
1
import math import flax.linen as nn import jax.numpy as jnp def _a ( SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = 1 , SCREAMING_SNAKE_CASE_ : float = 1 , SCREAMING_SNAKE_CASE_ : float = 1.0E4 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" __lowerCAmelCase = float(embedding_dim // 2 ) __lowerCAmelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) __lowerCAmelCase = min_timescale * jnp.exp(jnp.arange(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa ) * -log_timescale_increment ) __lowerCAmelCase = jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) * jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 0 ) # scale embeddings __lowerCAmelCase = scale * emb if flip_sin_to_cos: __lowerCAmelCase = jnp.concatenate([jnp.cos(SCREAMING_SNAKE_CASE_ ), jnp.sin(SCREAMING_SNAKE_CASE_ )] , axis=1 ) else: __lowerCAmelCase = jnp.concatenate([jnp.sin(SCREAMING_SNAKE_CASE_ ), jnp.cos(SCREAMING_SNAKE_CASE_ )] , axis=1 ) __lowerCAmelCase = jnp.reshape(SCREAMING_SNAKE_CASE_ , [jnp.shape(SCREAMING_SNAKE_CASE_ )[0], embedding_dim] ) return signal class a__ ( nn.Module ): _a : int = 3_2 _a : jnp.dtype = jnp.floataa @nn.compact def __call__( self , _A ): """simple docstring""" __lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(_A ) __lowerCAmelCase = nn.silu(_A ) __lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(_A ) return temb class a__ ( nn.Module ): _a : int = 3_2 _a : bool = False _a : float = 1 @nn.compact def __call__( self , _A ): """simple docstring""" return get_sinusoidal_embeddings( _A , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
92
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> List[str]: SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: SCREAMING_SNAKE_CASE = 1_28 elif "12-12" in model_name: SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: SCREAMING_SNAKE_CASE = 14 SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 16 else: raise ValueError('Model not supported' ) SCREAMING_SNAKE_CASE = 'huggingface/label-files' if "speech-commands" in model_name: SCREAMING_SNAKE_CASE = 35 SCREAMING_SNAKE_CASE = 'speech-commands-v2-id2label.json' else: SCREAMING_SNAKE_CASE = 5_27 SCREAMING_SNAKE_CASE = 'audioset-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: if "module.v" in name: SCREAMING_SNAKE_CASE = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: SCREAMING_SNAKE_CASE = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: SCREAMING_SNAKE_CASE = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: SCREAMING_SNAKE_CASE = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: SCREAMING_SNAKE_CASE = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: SCREAMING_SNAKE_CASE = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowercase (SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[:dim] SCREAMING_SNAKE_CASE = val[dim : dim * 2] SCREAMING_SNAKE_CASE = val[-dim:] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: SCREAMING_SNAKE_CASE = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> Optional[int]: SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict SCREAMING_SNAKE_CASE = model_name_to_url[model_name] SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE_ ) # rename some keys SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load 🤗 model SCREAMING_SNAKE_CASE = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 SCREAMING_SNAKE_CASE = -4.2_67_73_93 if 'speech-commands' not in model_name else -6.84_59_78 SCREAMING_SNAKE_CASE = 4.5_68_99_74 if 'speech-commands' not in model_name else 5.5_65_45_26 SCREAMING_SNAKE_CASE = 10_24 if 'speech-commands' not in model_name else 1_28 SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) if "speech-commands" in model_name: SCREAMING_SNAKE_CASE = load_dataset('speech_commands' , 'v0.02' , split='validation' ) SCREAMING_SNAKE_CASE = dataset[0]['audio']['array'] else: SCREAMING_SNAKE_CASE = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torchaudio.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() SCREAMING_SNAKE_CASE = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": SCREAMING_SNAKE_CASE = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": SCREAMING_SNAKE_CASE = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": SCREAMING_SNAKE_CASE = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": SCREAMING_SNAKE_CASE = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": SCREAMING_SNAKE_CASE = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": SCREAMING_SNAKE_CASE = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": SCREAMING_SNAKE_CASE = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": SCREAMING_SNAKE_CASE = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
113
0
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def _A ( lowercase ): """simple docstring""" a =Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(UpperCAmelCase__ , max_perimeter + 1 ): a =(base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(UpperCAmelCase__ ): a =int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _A ( lowercase = 10_00 ): """simple docstring""" a =pythagorean_triple(UpperCAmelCase__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F'Perimeter {solution()} has maximum solutions')
363
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , **__A ) -> Dict: super().__init__(**__A ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(__A ) def __call__( self , __A , __A = None , **__A , ) -> List[str]: if "text_queries" in kwargs: a =kwargs.pop('''text_queries''' ) if isinstance(__A , (str, Image.Image) ): a ={'''image''': image, '''candidate_labels''': candidate_labels} else: a =image a =super().__call__(__A , **__A ) return results def SCREAMING_SNAKE_CASE ( self , **__A ) -> Optional[Any]: a ={} if "threshold" in kwargs: a =kwargs['''threshold'''] if "top_k" in kwargs: a =kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self , __A ) -> str: a =load_image(inputs['''image'''] ) a =inputs['''candidate_labels'''] if isinstance(__A , __A ): a =candidate_labels.split(''',''' ) a =torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__A ): a =self.tokenizer(__A , return_tensors=self.framework ) a =self.image_processor(__A , return_tensors=self.framework ) yield { "is_last": i == len(__A ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self , __A ) -> List[Any]: a =model_inputs.pop('''target_size''' ) a =model_inputs.pop('''candidate_label''' ) a =model_inputs.pop('''is_last''' ) a =self.model(**__A ) a ={'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self , __A , __A=0.1 , __A=None ) -> List[str]: a =[] for model_output in model_outputs: a =model_output['''candidate_label'''] a =BaseModelOutput(__A ) a =self.image_processor.post_process_object_detection( outputs=__A , threshold=__A , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): a =outputs['''scores'''][index].item() a =self._get_bounding_box(outputs['''boxes'''][index][0] ) a ={'''score''': score, '''label''': label, '''box''': box} results.append(__A ) a =sorted(__A , key=lambda __A : x["score"] , reverse=__A ) if top_k: a =results[:top_k] return results def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) a , a , a , a =box.int().tolist() a ={ '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
215
0
"""simple docstring""" from scipy.stats import pearsonr import datasets __UpperCamelCase = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __UpperCamelCase = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __UpperCamelCase = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def a_ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }), reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'], ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=False) -> List[Any]: if return_pvalue: snake_case_ = pearsonr(lowerCAmelCase__, lowerCAmelCase__) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__, lowerCAmelCase__)[0])}
69
"""simple docstring""" import argparse __UpperCamelCase = '''docs/source/_static/js/custom.js''' def UpperCAmelCase ( UpperCAmelCase ) -> int: with open(UpperCAmelCase , encoding='utf-8' , newline='\n' ) as f: snake_case_ = f.readlines() snake_case_ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 snake_case_ = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f' "v{version}": "v{version}",\n' with open(UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') __UpperCamelCase = parser.parse_args() update_custom_js(args.version)
69
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class a__ ( unittest.TestCase ): def __init__( self : Union[str, Any] , a : Union[str, Any] , a : int=7 , a : Tuple=3 , a : Union[str, Any]=30 , a : int=4_00 , a : Tuple=True , a : List[Any]=None , a : Any=True , a : str=1 / 2_55 , a : Optional[Any]=True , a : Optional[Any]=[0.5, 0.5, 0.5] , a : List[str]=[0.5, 0.5, 0.5] , a : List[Any]=True , ): """simple docstring""" __lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean __lowerCamelCase = image_std __lowerCamelCase = do_pad def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self : Dict , a : List[str] , a : Optional[int]=False ): """simple docstring""" if not batched: __lowerCamelCase = image_inputs[0] if isinstance(A__ , Image.Image ): __lowerCamelCase , __lowerCamelCase = image.size else: __lowerCamelCase , __lowerCamelCase = image.shape[1], image.shape[2] if w < h: __lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) __lowerCamelCase = self.size['''shortest_edge'''] elif w > h: __lowerCamelCase = self.size['''shortest_edge'''] __lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: __lowerCamelCase = self.size['''shortest_edge'''] __lowerCamelCase = self.size['''shortest_edge'''] else: __lowerCamelCase = [] for image in image_inputs: __lowerCamelCase , __lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase = max(A__ , key=lambda a : item[0] )[0] __lowerCamelCase = max(A__ , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowerCamelCase : Optional[int] =DetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = DetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , '''image_mean''' ) ) self.assertTrue(hasattr(A__ , '''image_std''' ) ) self.assertTrue(hasattr(A__ , '''do_normalize''' ) ) self.assertTrue(hasattr(A__ , '''do_rescale''' ) ) self.assertTrue(hasattr(A__ , '''rescale_factor''' ) ) self.assertTrue(hasattr(A__ , '''do_resize''' ) ) self.assertTrue(hasattr(A__ , '''size''' ) ) self.assertTrue(hasattr(A__ , '''do_pad''' ) ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A__ ) __lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) __lowerCamelCase = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(A__ , return_tensors='''pt''' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(A__ , return_tensors='''pt''' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them __lowerCamelCase = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) __lowerCamelCase = image_processing(images=A__ , annotations=A__ , return_tensors='''pt''' ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A__ ) __lowerCamelCase = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A__ , atol=1e-4 ) ) # verify area __lowerCamelCase = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A__ ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A__ ) __lowerCamelCase = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A__ , atol=1e-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A__ ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A__ ) ) # verify class_labels __lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A__ ) ) # verify orig_size __lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A__ ) ) # verify size __lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A__ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} __lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __lowerCamelCase = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) __lowerCamelCase = image_processing(images=A__ , annotations=A__ , masks_path=A__ , return_tensors='''pt''' ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A__ ) __lowerCamelCase = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A__ , atol=1e-4 ) ) # verify area __lowerCamelCase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A__ ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A__ ) __lowerCamelCase = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A__ , atol=1e-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A__ ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A__ ) ) # verify class_labels __lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A__ ) ) # verify masks __lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A__ ) # verify orig_size __lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A__ ) ) # verify size __lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A__ ) )
359
'''simple docstring''' from bisect import bisect from itertools import accumulate def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: __lowerCamelCase = sorted(zip(UpperCamelCase__ , UpperCamelCase__ ) , key=lambda UpperCamelCase__ : x[0] / x[1] , reverse=UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = [i[0] for i in r], [i[1] for i in r] __lowerCamelCase = list(accumulate(UpperCamelCase__ ) ) __lowerCamelCase = bisect(UpperCamelCase__ , UpperCamelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
237
0
def lowerCAmelCase_ ( __lowerCamelCase ): if edge <= 0 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("Length must be a positive." ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowerCAmelCase_ ( __lowerCamelCase ): if edge <= 0 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("Length must be a positive." ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
123
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _snake_case : Optional[Any] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCamelCase : Dict , **lowerCamelCase : List[Any] ) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
123
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : Dict = 4_00_00_00 ): """simple docstring""" _snake_case : Optional[int] = [] _snake_case , _snake_case : Optional[int] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_lowercase ) _snake_case , _snake_case : Optional[int] = b, a + b return sum(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
359
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A_ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) A_ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ (): """simple docstring""" _snake_case : Tuple = """https://pypi.org/pypi/diffusers/json""" _snake_case : Optional[int] = json.loads(request.urlopen(snake_case__ ).read() )["""releases"""].keys() return sorted(snake_case__ , key=lambda snake_case__ : version.Version(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : str = Path(snake_case__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() _snake_case : List[Any] = Path(snake_case__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : List[Any] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : Union[str, Any] = f.read() # Imports of the form `import .xxx` _snake_case : Tuple = re.findall("""^\s*import\s+\.(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Unique-ify return list(set(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" _snake_case : Tuple = False _snake_case : Any = [module_file] _snake_case : str = [] # Let's recurse through all relative imports while not no_change: _snake_case : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(snake_case__ ) ) _snake_case : Dict = Path(snake_case__ ).parent _snake_case : Dict = [str(module_path / m ) for m in new_imports] _snake_case : Tuple = [f for f in new_import_files if f not in all_relative_imports] _snake_case : str = [F"{f}.py" for f in new_import_files] _snake_case : Dict = len(snake_case__ ) == 0 all_relative_imports.extend(snake_case__ ) return all_relative_imports def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : int = f.read() # Imports of the form `import xxx` _snake_case : Tuple = re.findall("""^\s*import\s+(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Only keep the top-level module _snake_case : Tuple = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all _snake_case : Any = list(set(snake_case__ ) ) _snake_case : int = [] for imp in imports: try: importlib.import_module(snake_case__ ) except ImportError: missing_packages.append(snake_case__ ) if len(snake_case__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(snake_case__ )}. Run `pip install {' '.join(snake_case__ )}`" ) return get_relative_imports(snake_case__ ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = module_path.replace(os.path.sep , """.""" ) _snake_case : int = importlib.import_module(snake_case__ ) if class_name is None: return find_pipeline_class(snake_case__ ) return getattr(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" from ..pipelines import DiffusionPipeline _snake_case : Tuple = dict(inspect.getmembers(snake_case__ , inspect.isclass ) ) _snake_case : Dict = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , snake_case__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) _snake_case : List[str] = cls return pipeline_class def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , ): """simple docstring""" _snake_case : List[str] = str(snake_case__ ) _snake_case : Optional[Any] = os.path.join(snake_case__ , snake_case__ ) if os.path.isfile(snake_case__ ): _snake_case : List[str] = module_file_or_url _snake_case : Optional[Any] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: _snake_case : Tuple = get_diffusers_versions() # cut ".dev0" _snake_case : Union[str, Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: _snake_case : int = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: _snake_case : Optional[Any] = F"v{revision}" elif revision == "main": _snake_case : int = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub _snake_case : List[str] = COMMUNITY_PIPELINES_URL.format(revision=snake_case__ , pipeline=snake_case__ ) try: _snake_case : Dict = cached_download( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) _snake_case : Union[str, Any] = """git""" _snake_case : str = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached _snake_case : str = hf_hub_download( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) _snake_case : Optional[Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment _snake_case : int = check_imports(snake_case__ ) # Now we move the module inside our cached dynamic modules. _snake_case : Optional[int] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(snake_case__ ) _snake_case : Any = Path(snake_case__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(snake_case__ , submodule_path / module_file ) for module_needed in modules_needed: _snake_case : Any = F"{module_needed}.py" shutil.copy(os.path.join(snake_case__ , snake_case__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(snake_case__ , snake_case__ ): _snake_case : Any = use_auth_token elif use_auth_token is True: _snake_case : int = HfFolder.get_token() else: _snake_case : Optional[int] = None _snake_case : int = model_info(snake_case__ , revision=snake_case__ , token=snake_case__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _snake_case : int = submodule_path / commit_hash _snake_case : Optional[int] = full_submodule + os.path.sep + commit_hash create_dynamic_module(snake_case__ ) if not (submodule_path / module_file).exists(): shutil.copy(snake_case__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( snake_case__ , F"{module_needed}.py" , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return os.path.join(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , **snake_case__ : Tuple , ): """simple docstring""" _snake_case : Union[str, Any] = get_cached_module_file( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return get_class_in_module(snake_case__ , final_module.replace(""".py""" , """""" ) )
132
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } UpperCamelCase__ = { 'facebook/bart-base': 1_0_2_4, 'facebook/bart-large': 1_0_2_4, 'facebook/bart-large-mnli': 1_0_2_4, 'facebook/bart-large-cnn': 1_0_2_4, 'facebook/bart-large-xsum': 1_0_2_4, 'yjernite/bart_eli5': 1_0_2_4, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Union[str, Any] = ['input_ids', 'attention_mask'] __UpperCAmelCase : Dict = BartTokenizer def __init__(self : List[Any] , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : int="replace" , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Dict="</s>" , __UpperCAmelCase : Any="<s>" , __UpperCAmelCase : List[Any]="<unk>" , __UpperCAmelCase : str="<pad>" , __UpperCAmelCase : Tuple="<mask>" , __UpperCAmelCase : Any=False , __UpperCAmelCase : Optional[Any]=True , **__UpperCAmelCase : Tuple , ) -> str: """simple docstring""" super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCAmelCase ) != add_prefix_space: UpperCAmelCase__ = getattr(__UpperCAmelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase__ = add_prefix_space UpperCAmelCase__ = pre_tok_class(**__UpperCAmelCase ) UpperCAmelCase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase__ = "post_processor" UpperCAmelCase__ = getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) if tokenizer_component_instance: UpperCAmelCase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase__ = tuple(state["sep"] ) if "cls" in state: UpperCAmelCase__ = tuple(state["cls"] ) UpperCAmelCase__ = False if state.get("add_prefix_space" , __UpperCAmelCase ) != add_prefix_space: UpperCAmelCase__ = add_prefix_space UpperCAmelCase__ = True if state.get("trim_offsets" , __UpperCAmelCase ) != trim_offsets: UpperCAmelCase__ = trim_offsets UpperCAmelCase__ = True if changes_to_apply: UpperCAmelCase__ = getattr(__UpperCAmelCase , state.pop("type" ) ) UpperCAmelCase__ = component_class(**__UpperCAmelCase ) setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) @property def lowercase_ (self : Any ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value UpperCAmelCase__ = value def lowercase_ (self : List[Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : List[str] ) -> BatchEncoding: """simple docstring""" UpperCAmelCase__ = kwargs.get("is_split_into_words" , __UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : Any , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any] ) -> BatchEncoding: """simple docstring""" UpperCAmelCase__ = kwargs.get("is_split_into_words" , __UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def lowercase_ (self : str , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any]=None ) -> int: """simple docstring""" UpperCAmelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ (self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
65
from __future__ import annotations from scipy.special import comb # type: ignore class A : def __init__(self : List[Any] , __UpperCAmelCase : list[tuple[float, float]] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. UpperCAmelCase__ = len(__UpperCAmelCase ) - 1 def lowercase_ (self : int , __UpperCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCAmelCase__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__UpperCAmelCase ) , 5 ) == 1 return output_values def lowercase_ (self : Dict , __UpperCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCAmelCase__ = self.basis_function(__UpperCAmelCase ) UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowercase_ (self : Optional[int] , __UpperCAmelCase : float = 0.01 ) -> Optional[int]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore UpperCAmelCase__ = [] # x coordinates of points to plot UpperCAmelCase__ = [] # y coordinates of points to plot UpperCAmelCase__ = 0.0 while t <= 1: UpperCAmelCase__ = self.bezier_curve_function(__UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size UpperCAmelCase__ = [i[0] for i in self.list_of_points] UpperCAmelCase__ = [i[1] for i in self.list_of_points] plt.plot( __UpperCAmelCase , __UpperCAmelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(__UpperCAmelCase , __UpperCAmelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
65
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int ) -> Tuple: _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = SamImageProcessor() _lowerCAmelCase = SamProcessor(UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Dict , **__snake_case : Any ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor def lowercase__ ( self : Tuple ) -> int: shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> str: _lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: _lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) _lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Dict ) -> Any: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=UpperCAmelCase_ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(UpperCAmelCase_ , return_tensors="""np""" ) _lowerCAmelCase = processor(images=UpperCAmelCase_ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=UpperCAmelCase_ ) _lowerCAmelCase = [torch.ones((1, 3, 5, 5) )] _lowerCAmelCase = [[17_64, 26_46]] _lowerCAmelCase = [[6_83, 10_24]] _lowerCAmelCase = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _lowerCAmelCase = processor.post_process_masks( UpperCAmelCase_ , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np _lowerCAmelCase = [np.ones((1, 3, 5, 5) )] _lowerCAmelCase = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(UpperCAmelCase_ ): _lowerCAmelCase = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) ) @require_vision @require_tf class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Any ) -> Optional[int]: _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = SamImageProcessor() _lowerCAmelCase = SamProcessor(UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple , **__snake_case : Optional[int] ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor def lowercase__ ( self : Dict ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Tuple: _lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Dict ) -> Union[str, Any]: _lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) _lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Any ) -> Optional[Any]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=UpperCAmelCase_ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(UpperCAmelCase_ , return_tensors="""np""" ) _lowerCAmelCase = processor(images=UpperCAmelCase_ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def lowercase__ ( self : Tuple ) -> Optional[int]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=UpperCAmelCase_ ) _lowerCAmelCase = [tf.ones((1, 3, 5, 5) )] _lowerCAmelCase = [[17_64, 26_46]] _lowerCAmelCase = [[6_83, 10_24]] _lowerCAmelCase = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _lowerCAmelCase = processor.post_process_masks( UpperCAmelCase_ , tf.convert_to_tensor(UpperCAmelCase_ ) , tf.convert_to_tensor(UpperCAmelCase_ ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np _lowerCAmelCase = [np.ones((1, 3, 5, 5) )] _lowerCAmelCase = processor.post_process_masks( UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _lowerCAmelCase = processor.post_process_masks( UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) , return_tensors="""tf""" ) @require_vision @require_torchvision class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : str ) -> List[str]: _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = SamImageProcessor() _lowerCAmelCase = SamProcessor(UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[Any] , **__snake_case : Union[str, Any] ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor def lowercase__ ( self : Dict ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : str ) -> Optional[Any]: _lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowercase__ ( self : Union[str, Any] ) -> List[str]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=UpperCAmelCase_ ) _lowerCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _lowerCAmelCase = [tf.convert_to_tensor(UpperCAmelCase_ )] _lowerCAmelCase = [torch.tensor(UpperCAmelCase_ )] _lowerCAmelCase = [[17_64, 26_46]] _lowerCAmelCase = [[6_83, 10_24]] _lowerCAmelCase = processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""tf""" ) _lowerCAmelCase = processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowercase__ ( self : Tuple ) -> List[Any]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=UpperCAmelCase_ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(UpperCAmelCase_ , return_tensors="""pt""" )["pixel_values"].numpy() _lowerCAmelCase = processor(images=UpperCAmelCase_ , return_tensors="""pt""" )["pixel_values"].numpy() _lowerCAmelCase = image_processor(UpperCAmelCase_ , return_tensors="""tf""" )["pixel_values"].numpy() _lowerCAmelCase = processor(images=UpperCAmelCase_ , return_tensors="""tf""" )["pixel_values"].numpy() self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) )
365
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase : @staticmethod def lowercase__ ( *__snake_case : Optional[Any] , **__snake_case : Any ) -> Tuple: pass @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): _lowercase: Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowercase__ ( self : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] ) -> int: _lowerCAmelCase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) _lowerCAmelCase = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def lowercase__ ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] ) -> Union[str, Any]: _lowerCAmelCase = vqa_pipeline(__snake_case , top_k=1 ) self.assertEqual( __snake_case , [ [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}], [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}], ] , ) @require_torch def lowercase__ ( self : str ) -> int: _lowerCAmelCase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) _lowerCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowerCAmelCase = """How many cats are there?""" _lowerCAmelCase = vqa_pipeline(image=__snake_case , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( __snake_case , [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}, {"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}] ) _lowerCAmelCase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( __snake_case , [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}, {"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}] ) @slow @require_torch def lowercase__ ( self : List[Any] ) -> List[str]: _lowerCAmelCase = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) _lowerCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowerCAmelCase = """How many cats are there?""" _lowerCAmelCase = vqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) _lowerCAmelCase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) _lowerCAmelCase = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [[{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: pass
220
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" debug_launcher(test_script.main ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" debug_launcher(test_ops.main )
76
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__snake_case ) , __snake_case ) def A ( self : int ) -> str: UpperCAmelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) ) UpperCAmelCase : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : Any = np.random.randn(3 , 4 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Any = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : str = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) ) @require_torch def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Dict = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_tf def A ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_flax def A ( self : Any ) -> Dict: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : str = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_tf def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_flax def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) ) def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> Tuple: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Any = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_flax def A ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase : str = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
23
0
"""simple docstring""" import random def __lowerCAmelCase ( a__ , a__ , a__ = False ) -> Optional[int]: __a = {i: [] for i in range(_A )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_A ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_A ): for j in range(i + 1 , _A ): if random.random() < probability: graph[i].append(_A ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_A ) return graph def __lowerCAmelCase ( a__ ) -> Optional[Any]: return { i: [j for j in range(_A ) if i != j] for i in range(_A ) } if __name__ == "__main__": import doctest doctest.testmod()
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : str = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['PerceiverFeatureExtractor'] A : int = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if point: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE , (int, float) ): __UpperCamelCase :Optional[int] = ( '''Expected a list of numbers as input, found ''' f"""{type(SCREAMING_SNAKE_CASE ).__name__}""" ) raise TypeError(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :List[str] = f"""Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(SCREAMING_SNAKE_CASE ) else: raise ValueError('''Missing an input''' ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
"""simple docstring""" from PIL import Image def _snake_case ( lowercase__ : Image , lowercase__ : float ) -> Image: '''simple docstring''' def brightness(lowercase__ : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowercase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 __UpperCAmelCase = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
84
0
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(lowercase__ ) * abs(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
356
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _snake_case : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case : Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=8 ): __snake_case : List[Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __snake_case : Optional[int] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : MultilingualCLIP , lowerCamelCase : XLMRobertaTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, DDPMScheduler] , lowerCamelCase : VQModel , ) -> Optional[int]: super().__init__() self.register_modules( text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , movq=lowerCamelCase , ) __snake_case : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self : Any , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : int ) -> Any: if latents is None: __snake_case : str = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __snake_case : Optional[int] = latents.to(lowerCamelCase ) __snake_case : List[Any] = latents * scheduler.init_noise_sigma return latents def __snake_case ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str=None , ) -> List[str]: __snake_case : Tuple = len(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else 1 # get prompt text embeddings __snake_case : Optional[int] = self.tokenizer( lowerCamelCase , padding="max_length" , truncation=lowerCamelCase , max_length=77 , return_attention_mask=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="pt" , ) __snake_case : List[str] = text_inputs.input_ids __snake_case : List[Any] = self.tokenizer(lowerCamelCase , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCamelCase , lowerCamelCase ): __snake_case : Optional[Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __snake_case : Any = text_input_ids.to(lowerCamelCase ) __snake_case : List[str] = text_inputs.attention_mask.to(lowerCamelCase ) __snake_case , __snake_case : List[str] = self.text_encoder( input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) __snake_case : List[Any] = prompt_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : List[str] = text_encoder_hidden_states.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : Optional[int] = text_mask.repeat_interleave(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Any = [""] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=' F' {type(lowerCamelCase )}.' ) elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: __snake_case : int = negative_prompt __snake_case : Dict = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=77 , truncation=lowerCamelCase , return_attention_mask=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="pt" , ) __snake_case : Dict = uncond_input.input_ids.to(lowerCamelCase ) __snake_case : List[Any] = uncond_input.attention_mask.to(lowerCamelCase ) __snake_case , __snake_case : Tuple = self.text_encoder( input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Dict = negative_prompt_embeds.shape[1] __snake_case : int = negative_prompt_embeds.repeat(1 , lowerCamelCase ) __snake_case : List[str] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCamelCase ) __snake_case : Union[str, Any] = uncond_text_encoder_hidden_states.shape[1] __snake_case : Tuple = uncond_text_encoder_hidden_states.repeat(1 , lowerCamelCase , 1 ) __snake_case : str = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowerCamelCase , -1 ) __snake_case : Optional[int] = uncond_text_mask.repeat_interleave(lowerCamelCase , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) __snake_case : List[Any] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __snake_case : Any = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __snake_case ( self : List[str] , lowerCamelCase : Dict=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __snake_case : Optional[int] = torch.device(F'cuda:{gpu_id}' ) __snake_case : Optional[Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase , lowerCamelCase ) def __snake_case ( self : List[Any] , lowerCamelCase : int=0 ) -> Optional[int]: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) __snake_case : Optional[Any] = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __snake_case : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __snake_case , __snake_case : List[Any] = cpu_offload_with_hook(lowerCamelCase , lowerCamelCase , prev_module_hook=lowerCamelCase ) if self.safety_checker is not None: __snake_case , __snake_case : Optional[int] = cpu_offload_with_hook(self.safety_checker , lowerCamelCase , prev_module_hook=lowerCamelCase ) # We'll offload the last model manually. __snake_case : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self : List[Any] ) -> Optional[int]: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase ) def __call__( self : Dict , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 100 , lowerCamelCase : float = 4.0 , lowerCamelCase : int = 1 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ) -> List[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Optional[int] = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = len(lowerCamelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}' ) __snake_case : Any = self._execution_device __snake_case : Any = batch_size * num_images_per_prompt __snake_case : Any = guidance_scale > 1.0 __snake_case , __snake_case , __snake_case : Optional[Any] = self._encode_prompt( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = torch.cat(lowerCamelCase , dim=0 ) if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : str = torch.cat(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: __snake_case : Dict = image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : Optional[Any] = negative_image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowerCamelCase ) self.scheduler.set_timesteps(lowerCamelCase , device=lowerCamelCase ) __snake_case : Tuple = self.scheduler.timesteps __snake_case : Union[str, Any] = self.unet.config.in_channels __snake_case , __snake_case : Tuple = get_new_h_w(lowerCamelCase , lowerCamelCase , self.movq_scale_factor ) # create initial latent __snake_case : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCamelCase , lowerCamelCase , lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __snake_case : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : int = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} __snake_case : Optional[Any] = self.unet( sample=lowerCamelCase , timestep=lowerCamelCase , encoder_hidden_states=lowerCamelCase , added_cond_kwargs=lowerCamelCase , return_dict=lowerCamelCase , )[0] if do_classifier_free_guidance: __snake_case , __snake_case : Any = noise_pred.split(latents.shape[1] , dim=1 ) __snake_case , __snake_case : Union[str, Any] = noise_pred.chunk(2 ) __snake_case , __snake_case : str = variance_pred.chunk(2 ) __snake_case : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __snake_case : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __snake_case , __snake_case : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __snake_case : str = self.scheduler.step( lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase , ).prev_sample # post-processing __snake_case : str = self.movq.decode(lowerCamelCase , force_not_quantize=lowerCamelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __snake_case : Union[str, Any] = image * 0.5 + 0.5 __snake_case : Union[str, Any] = image.clamp(0 , 1 ) __snake_case : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : str = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
134
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class snake_case_ ( __A ): __A : torch.FloatTensor class snake_case_ ( __A ,__A ): @register_to_config def __init__( self : Union[str, Any] , lowercase_ : int = 16 , lowercase_ : int = 88 , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 1 , lowercase_ : float = 0.0 , lowercase_ : int = 32 , lowercase_ : Optional[int] = None , lowercase_ : bool = False , lowercase_ : Optional[int] = None , lowercase_ : str = "geglu" , lowercase_ : bool = True , lowercase_ : bool = True , ) -> Tuple: super().__init__() lowercase__ : Optional[int] = num_attention_heads lowercase__ : Optional[int] = attention_head_dim lowercase__ : Dict = num_attention_heads * attention_head_dim lowercase__ : int = in_channels lowercase__ : Optional[int] = torch.nn.GroupNorm(num_groups=lowercase_ , num_channels=lowercase_ , eps=1E-6 , affine=lowercase_ ) lowercase__ : Tuple = nn.Linear(lowercase_ , lowercase_ ) # 3. Define transformers blocks lowercase__ : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock( lowercase_ , lowercase_ , lowercase_ , dropout=lowercase_ , cross_attention_dim=lowercase_ , activation_fn=lowercase_ , attention_bias=lowercase_ , double_self_attention=lowercase_ , norm_elementwise_affine=lowercase_ , ) for d in range(lowercase_ ) ] ) lowercase__ : List[Any] = nn.Linear(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=None , lowercase_ : int=1 , lowercase_ : str=None , lowercase_ : bool = True , ) -> Dict: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = hidden_states.shape lowercase__ : Optional[int] = batch_frames // num_frames lowercase__ : Union[str, Any] = hidden_states lowercase__ : Optional[int] = hidden_states[None, :].reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Optional[int] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase__ : List[Any] = self.norm(lowercase_ ) lowercase__ : List[str] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowercase_ , lowercase_ ) lowercase__ : List[Any] = self.proj_in(lowercase_ ) # 2. Blocks for block in self.transformer_blocks: lowercase__ : Optional[Any] = block( lowercase_ , encoder_hidden_states=lowercase_ , timestep=lowercase_ , cross_attention_kwargs=lowercase_ , class_labels=lowercase_ , ) # 3. Output lowercase__ : Optional[int] = self.proj_out(lowercase_ ) lowercase__ : List[Any] = ( hidden_states[None, None, :] .reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase__ : Any = hidden_states.reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowercase_ )
87
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ : Dict = MaskFormerConfig(backbone_config=__lowerCamelCase ) UpperCAmelCase_ : int = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ : Dict = 847 UpperCAmelCase_ : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ : Tuple = 150 UpperCAmelCase_ : int = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ : str = 171 UpperCAmelCase_ : Optional[int] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ : int = 133 UpperCAmelCase_ : Tuple = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ : List[Any] = 19 UpperCAmelCase_ : Optional[int] = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ : Any = 65 UpperCAmelCase_ : Union[str, Any] = "mapillary-vistas-id2label.json" UpperCAmelCase_ : Any = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : str = val def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Tuple = in_proj_weight[:dim, :] UpperCAmelCase_ : List[Any] = in_proj_bias[: dim] UpperCAmelCase_ : Any = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ : Optional[int] = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ : Tuple = in_proj_weight[ -dim :, : ] UpperCAmelCase_ : Tuple = in_proj_bias[-dim :] # fmt: on def __a ( __lowerCamelCase, __lowerCamelCase ): # fmt: off UpperCAmelCase_ : Dict = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Any = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : int = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : Any = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : Dict = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : str = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : Tuple = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : int = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[str] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : List[Any] = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def __a ( ): UpperCAmelCase_ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Tuple = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): UpperCAmelCase_ : List[str] = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase, "rb" ) as f: UpperCAmelCase_ : Union[str, Any] = pickle.load(__lowerCamelCase ) UpperCAmelCase_ : str = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ : int = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase, config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase, __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ : Optional[int] = torch.from_numpy(__lowerCamelCase ) # load 🤗 model UpperCAmelCase_ : Dict = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase, param.shape ) UpperCAmelCase_ , UpperCAmelCase_ : str = model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ : Optional[int] = prepare_img() if "vistas" in model_name: UpperCAmelCase_ : List[str] = 65 elif "cityscapes" in model_name: UpperCAmelCase_ : Tuple = 6_5535 else: UpperCAmelCase_ : Dict = 255 UpperCAmelCase_ : Optional[Any] = True if "ade" in model_name else False UpperCAmelCase_ : Dict = MaskFormerImageProcessor(ignore_index=__lowerCamelCase, reduce_labels=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = image_processor(__lowerCamelCase, return_tensors="pt" ) UpperCAmelCase_ : Dict = model(**__lowerCamelCase ) print("Logits:", outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ : Any = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], __lowerCamelCase, atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
61
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase__ = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ).read() _check_sql_dataset(UpperCamelCase_ , UpperCamelCase_ ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str ) -> Any: """simple docstring""" lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase__ = features.copy() if features else default_expected_features lowerCAmelCase__ = ( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase__ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_sql_dataset(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : str ) -> Any: """simple docstring""" with contextlib.closing(sqlitea.connect(UpperCamelCase_ ) ) as con: lowerCAmelCase__ = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "tmp.sql" ) lowerCAmelCase__ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCamelCase_ ).read() SqlDatasetWriter(UpperCamelCase_ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() lowerCAmelCase__ = iter_sql_file(UpperCamelCase_ ) lowerCAmelCase__ = iter_sql_file(UpperCamelCase_ ) for rowa, rowa in zip(UpperCamelCase_ , UpperCamelCase_ ): assert rowa == rowa @require_sqlalchemy def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : str ) -> Any: """simple docstring""" lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "tmp.sql" ) lowerCAmelCase__ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCamelCase_ ).read() SqlDatasetWriter(UpperCamelCase_ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() lowerCAmelCase__ = iter_sql_file(UpperCamelCase_ ) lowerCAmelCase__ = iter_sql_file(UpperCamelCase_ ) for rowa, rowa in zip(UpperCamelCase_ , UpperCamelCase_ ): assert rowa == rowa @require_sqlalchemy def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "tmp.sql" ) lowerCAmelCase__ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCamelCase_ ).read() with pytest.raises(UpperCamelCase_ ): SqlDatasetWriter(UpperCamelCase_ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
340
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def lowercase__ ( __UpperCamelCase = 1000000 , __UpperCamelCase = 10 )-> int: UpperCamelCase = defaultdict(__UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'{solution() = }')
183
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> list: UpperCamelCase = word.split() def justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: UpperCamelCase = max_width - width UpperCamelCase = len(__UpperCamelCase ) if len(__UpperCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCamelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCamelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCamelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__UpperCamelCase ): num_spaces_between_words_list[i] += 1 UpperCamelCase = [] for i in range(__UpperCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__UpperCamelCase ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = 0 for word in words: if width + len(__UpperCamelCase ) + len(__UpperCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__UpperCamelCase ) width += len(__UpperCamelCase ) else: # justify the line and add it to result answer.append(justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) # reset new line and new width UpperCamelCase ,UpperCamelCase = [word], len(__UpperCamelCase ) UpperCamelCase = max_width - width - len(__UpperCamelCase ) answer.append(""" """.join(__UpperCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
183
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __UpperCamelCase = (720, 1280) # Height, Width __UpperCamelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. __UpperCamelCase = 1 / 100 __UpperCamelCase = """""" __UpperCamelCase = """""" __UpperCamelCase = """""" __UpperCamelCase = 250 def UpperCAmelCase ( ) -> None: snake_case_ = get_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) for index in range(lowerCAmelCase_ ): snake_case_ = random.sample(range(len(lowerCAmelCase_ ) ) , 4 ) snake_case_ = update_image_and_anno( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , filter_scale=lowerCAmelCase_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case_ = random_chars(32 ) snake_case_ = path.split(os.sep )[-1].rsplit('.' , 1 )[0] snake_case_ = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , lowerCAmelCase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) snake_case_ = [] for anno in new_annos: snake_case_ = anno[3] - anno[1] snake_case_ = anno[4] - anno[2] snake_case_ = anno[1] + width / 2 snake_case_ = anno[2] + height / 2 snake_case_ = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(lowerCAmelCase_ ) with open(f'{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> tuple[list, list]: snake_case_ = [] snake_case_ = [] for label_file in glob.glob(os.path.join(lowerCAmelCase_ , '*.txt' ) ): snake_case_ = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(lowerCAmelCase_ ) as in_file: snake_case_ = in_file.readlines() snake_case_ = os.path.join(lowerCAmelCase_ , f'{label_name}.jpg' ) snake_case_ = [] for obj_list in obj_lists: snake_case_ = obj_list.rstrip('\n' ).split(' ' ) snake_case_ = float(obj[1] ) - float(obj[3] ) / 2 snake_case_ = float(obj[2] ) - float(obj[4] ) / 2 snake_case_ = float(obj[1] ) + float(obj[3] ) / 2 snake_case_ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowerCAmelCase_ ) labels.append(lowerCAmelCase_ ) return img_paths, labels def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 , ) -> tuple[list, list, str]: snake_case_ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) snake_case_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ = int(scale_x * output_size[1] ) snake_case_ = int(scale_y * output_size[0] ) snake_case_ = [] snake_case_ = [] for i, index in enumerate(lowerCAmelCase_ ): snake_case_ = all_img_list[index] path_list.append(lowerCAmelCase_ ) snake_case_ = all_annos[index] snake_case_ = cva.imread(lowerCAmelCase_ ) if i == 0: # top-left snake_case_ = cva.resize(lowerCAmelCase_ , (divid_point_x, divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = bbox[1] * scale_x snake_case_ = bbox[2] * scale_y snake_case_ = bbox[3] * scale_x snake_case_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right snake_case_ = cva.resize(lowerCAmelCase_ , (output_size[1] - divid_point_x, divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = scale_x + bbox[1] * (1 - scale_x) snake_case_ = bbox[2] * scale_y snake_case_ = scale_x + bbox[3] * (1 - scale_x) snake_case_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left snake_case_ = cva.resize(lowerCAmelCase_ , (divid_point_x, output_size[0] - divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = bbox[1] * scale_x snake_case_ = scale_y + bbox[2] * (1 - scale_y) snake_case_ = bbox[3] * scale_x snake_case_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right snake_case_ = cva.resize( lowerCAmelCase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = scale_x + bbox[1] * (1 - scale_x) snake_case_ = scale_y + bbox[2] * (1 - scale_y) snake_case_ = scale_x + bbox[3] * (1 - scale_x) snake_case_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: snake_case_ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase ( UpperCAmelCase ) -> str: assert number_char > 1, "The number of character should greater than 1" snake_case_ = ascii_lowercase + digits return "".join(random.choice(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
69
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ : List[str] = logging.get_logger(__name__) A_ : Optional[Any] = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } A_ : Dict = { """b0""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_2_4, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_4_0, """dropout_rate""": 0.2, """dw_padding""": [1_6], }, """b2""": { """hidden_dim""": 1_4_0_8, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_6_0, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 1_6], }, """b3""": { """hidden_dim""": 1_5_3_6, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_0_0, """dropout_rate""": 0.3, """dw_padding""": [5, 1_8], }, """b4""": { """hidden_dim""": 1_7_9_2, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_8_0, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_0_4_8, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_5_6, """dropout_rate""": 0.4, """dw_padding""": [1_3, 2_7], }, """b6""": { """hidden_dim""": 2_3_0_4, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_2_8, """dropout_rate""": 0.5, """dw_padding""": [3_1], }, """b7""": { """hidden_dim""": 2_5_6_0, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_0_0, """dropout_rate""": 0.5, """dw_padding""": [1_8], }, } def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = EfficientNetConfig() _UpperCAmelCase : List[Any] = CONFIG_MAP[model_name]["""hidden_dim"""] _UpperCAmelCase : str = CONFIG_MAP[model_name]["""width_coef"""] _UpperCAmelCase : int = CONFIG_MAP[model_name]["""depth_coef"""] _UpperCAmelCase : Optional[Any] = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : List[str] = CONFIG_MAP[model_name]["""dropout_rate"""] _UpperCAmelCase : Optional[int] = CONFIG_MAP[model_name]["""dw_padding"""] _UpperCAmelCase : List[str] = """huggingface/label-files""" _UpperCAmelCase : Optional[Any] = """imagenet-1k-id2label.json""" _UpperCAmelCase : List[str] = 1000 _UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : Dict = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : List[str] = idalabel _UpperCAmelCase : str = {v: k for k, v in idalabel.items()} return config def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : Tuple = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : str = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : Tuple = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=lowerCAmelCase_ , ) return preprocessor def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : int = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] _UpperCAmelCase : Optional[int] = sorted(set(lowerCAmelCase_ ) ) _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = {b: str(lowerCAmelCase_ ) for b, i in zip(lowerCAmelCase_ , range(lowerCAmelCase_ ) )} _UpperCAmelCase : List[str] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: _UpperCAmelCase : Any = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) _UpperCAmelCase : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: _UpperCAmelCase : str = """efficientnet.""" + item[1] _UpperCAmelCase : Optional[Any] = """classifier.weight""" _UpperCAmelCase : Optional[Any] = """classifier.bias""" return key_mapping def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue _UpperCAmelCase : Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _UpperCAmelCase : Any = torch.from_numpy(lowerCAmelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _UpperCAmelCase : int = torch.from_numpy(np.transpose(lowerCAmelCase_ ) ) else: _UpperCAmelCase : List[str] = torch.from_numpy(lowerCAmelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = model_classes[model_name]( include_top=lowerCAmelCase_ , weights="""imagenet""" , input_tensor=lowerCAmelCase_ , input_shape=lowerCAmelCase_ , pooling=lowerCAmelCase_ , classes=1000 , classifier_activation="""softmax""" , ) _UpperCAmelCase : List[str] = original_model.trainable_variables _UpperCAmelCase : Any = original_model.non_trainable_variables _UpperCAmelCase : Optional[int] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCAmelCase : Dict = param.numpy() _UpperCAmelCase : Optional[Any] = list(tf_params.keys() ) # Load HuggingFace model _UpperCAmelCase : List[Any] = get_efficientnet_config(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(lowerCAmelCase_ ).eval() _UpperCAmelCase : int = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) _UpperCAmelCase : Optional[int] = rename_keys(lowerCAmelCase_ ) replace_params(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Initialize preprocessor and preprocess input image _UpperCAmelCase : str = convert_image_processor(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCAmelCase : List[str] = hf_model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference _UpperCAmelCase : int = False _UpperCAmelCase : Optional[int] = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : Dict = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _UpperCAmelCase : Optional[Any] = image.img_to_array(lowerCAmelCase_ ) _UpperCAmelCase : str = np.expand_dims(lowerCAmelCase_ , axis=0 ) _UpperCAmelCase : str = original_model.predict(lowerCAmelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCAmelCase_ ): os.mkdir(lowerCAmelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCAmelCase_ ) preprocessor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _UpperCAmelCase : List[Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCAmelCase_ ) hf_model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") A_ : Optional[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
215
0
import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=0 ) -> int: '''simple docstring''' if name is None: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" SCREAMING_SNAKE_CASE__ = fmt.format(_SCREAMING_SNAKE_CASE ) # Print and recurse (if needed). if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if msg is not None: print(_SCREAMING_SNAKE_CASE ) for k in val.keys(): recursive_print(_SCREAMING_SNAKE_CASE , val[k] , spaces + 2 ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): print(_SCREAMING_SNAKE_CASE , ':' , val.size() ) else: print(_SCREAMING_SNAKE_CASE , ':' , _SCREAMING_SNAKE_CASE ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE__ = (num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE__ = param.view(*_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE__ = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE__ = (num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE__ = param.view(*_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE__ = param.view(*_SCREAMING_SNAKE_CASE ) return param def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} # old versions did not store training args SCREAMING_SNAKE_CASE__ = input_state_dict.get('args' , _SCREAMING_SNAKE_CASE ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE__ = ds_args.padded_vocab_size SCREAMING_SNAKE_CASE__ = ds_args.max_position_embeddings SCREAMING_SNAKE_CASE__ = ds_args.hidden_size SCREAMING_SNAKE_CASE__ = ds_args.num_layers SCREAMING_SNAKE_CASE__ = ds_args.num_attention_heads SCREAMING_SNAKE_CASE__ = ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE__ = config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE__ = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE__ = input_state_dict["checkpoint_version"] else: SCREAMING_SNAKE_CASE__ = 0.0 # The model. SCREAMING_SNAKE_CASE__ = input_state_dict["model"] # The language model. SCREAMING_SNAKE_CASE__ = model["language_model"] # The embeddings. SCREAMING_SNAKE_CASE__ = lm["embedding"] # The word embeddings. SCREAMING_SNAKE_CASE__ = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE__ = word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE__ = word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE__ = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE__ = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. SCREAMING_SNAKE_CASE__ = pos_embeddings # The transformer. SCREAMING_SNAKE_CASE__ = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. SCREAMING_SNAKE_CASE__ = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE__ = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE__ = layer_re.match(_SCREAMING_SNAKE_CASE ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE__ = int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE__ = m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE__ = m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE__ = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): SCREAMING_SNAKE_CASE__ = "ln_1" if op_name.startswith('input' ) else "ln_2" SCREAMING_SNAKE_CASE__ = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE__ = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE__ = torch.tensor(-1e4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = masked_bias SCREAMING_SNAKE_CASE__ = fix_query_key_value_ordering(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 3 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE__ = out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE__ = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ = fix_query_key_value_ordering(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 3 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Store. No change of shape. SCREAMING_SNAKE_CASE__ = out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE__ = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE__ = transformer["final_layernorm.weight"] SCREAMING_SNAKE_CASE__ = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE__ = word_embeddings # It should be done! return output_state_dict def _lowercase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_SCREAMING_SNAKE_CASE , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_SCREAMING_SNAKE_CASE , help='An optional config json file describing the pre-trained model.' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE__ = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: SCREAMING_SNAKE_CASE__ = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) else: SCREAMING_SNAKE_CASE__ = torch.load(args.path_to_checkpoint , map_location='cpu' ) SCREAMING_SNAKE_CASE__ = input_state_dict.get('args' , _SCREAMING_SNAKE_CASE ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE__ = "gelu_fast" elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE__ = "gelu_new" else: SCREAMING_SNAKE_CASE__ = "gelu" else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE__ = "gelu_new" # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE__ = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_SCREAMING_SNAKE_CASE , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_SCREAMING_SNAKE_CASE , summary_activation=_SCREAMING_SNAKE_CASE , summary_proj_to_labels=_SCREAMING_SNAKE_CASE , summary_first_dropout=0.1 , scale_attn_weights=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE , bos_token_id=50256 , eos_token_id=50256 , ) else: SCREAMING_SNAKE_CASE__ = GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE__ = ["GPT2LMHeadModel"] # Convert. print('Converting' ) SCREAMING_SNAKE_CASE__ = convert_megatron_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE__ = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE__ = "gpt2" elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE__ = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: SCREAMING_SNAKE_CASE__ = "gpt2" SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = type(_SCREAMING_SNAKE_CASE ).__name__ SCREAMING_SNAKE_CASE__ = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) # Store the state_dict to file. SCREAMING_SNAKE_CASE__ = os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
351
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE__ = True if checkpoint_name is None: SCREAMING_SNAKE_CASE__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = checkpoint.split('/' ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = dump_path else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) SCREAMING_SNAKE_CASE__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(UpperCamelCase_ ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) __snake_case = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
169
0