code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
64
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE_ ( ) -> Any: """simple docstring""" a_ : Optional[Any] = HfArgumentParser(__A ) a_ : Optional[int] = parser.parse_args_into_dataclasses()[0] a_ : List[Any] = TensorFlowBenchmark(args=__A ) try: a_ : List[str] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a_ : Dict = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' a_ : Dict = ' '.join(str(__A ).split(' ' )[:-1] ) a_ : int = '' a_ : int = eval(str(__A ).split(' ' )[-1] ) a_ : Any = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__A ) if len(__A ) > 0: a_ : str = full_error_msg + begin_error_msg + str(__A ) raise ValueError(__A ) benchmark.run() if __name__ == "__main__": main()
32
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = '''fnet''' def __init__( self : Any , UpperCAmelCase__ : Dict=3_2_0_0_0 , UpperCAmelCase__ : Dict=7_6_8 , UpperCAmelCase__ : List[Any]=1_2 , UpperCAmelCase__ : Tuple=3_0_7_2 , UpperCAmelCase__ : Union[str, Any]="gelu_new" , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=5_1_2 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : Union[str, Any]=1E-12 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[str]=5_1_2 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : Tuple=1 , UpperCAmelCase__ : Dict=2 , **UpperCAmelCase__ : int , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_tpu_fourier_optimizations lowerCAmelCase = tpu_short_seq_length
55
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[str]=9_9 , UpperCAmelCase__ : Tuple=3_2 , UpperCAmelCase__ : str=5 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Any=3_7 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : Dict=1_6 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : List[str]=None , ) -> str: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def __UpperCAmelCase ( self : Any ) -> List[str]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase__ , ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> int: lowerCAmelCase = FalconModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , ) -> Tuple: lowerCAmelCase = True lowerCAmelCase = FalconModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , ) -> List[str]: lowerCAmelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , ) -> List[str]: lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0] lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Tuple = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : Dict = (FalconForCausalLM,) if is_torch_available() else () lowerCamelCase : int = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def __UpperCAmelCase ( self : Any ) -> Optional[Any]: lowerCAmelCase = FalconModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Any ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Tuple: lowerCAmelCase , *lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCAmelCase = alibi self.model_tester.create_and_check_model(UpperCAmelCase__ , *UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Any ) -> Dict: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Tuple ) -> int: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = FalconForCausalLM(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model._convert_to_rw_cache(result.past_key_values ) lowerCAmelCase = model._convert_cache_to_standard_format(UpperCAmelCase__ , UpperCAmelCase__ ) for layer in range(len(UpperCAmelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __UpperCAmelCase ( self : Any ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase__ , 'use_cache' ): return lowerCAmelCase = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) if "use_cache" not in inputs: lowerCAmelCase = True lowerCAmelCase = model(**UpperCAmelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCAmelCase = ( getattr(UpperCAmelCase__ , 'decoder_layers' , UpperCAmelCase__ ) or getattr(UpperCAmelCase__ , 'num_decoder_layers' , UpperCAmelCase__ ) or config.num_hidden_layers ) lowerCAmelCase = getattr(UpperCAmelCase__ , 'num_kv_heads' , config.num_attention_heads ) lowerCAmelCase = getattr(UpperCAmelCase__ , 'd_model' , config.hidden_size ) lowerCAmelCase = embed_dim // num_attention_heads lowerCAmelCase = outputs['past_key_values'] self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) lowerCAmelCase , lowerCAmelCase = inputs['input_ids'].shape for i in range(UpperCAmelCase__ ): if config.new_decoder_architecture: lowerCAmelCase = config.num_attention_heads elif config.multi_query: lowerCAmelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) lowerCAmelCase = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) lowerCAmelCase = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=1_9 ) lowerCAmelCase = tokenizer.batch_decode(UpperCAmelCase__ )[0] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Dict: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Dict: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(device=UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) # Test results are the same with and without cache lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=2_0 , use_cache=UpperCAmelCase__ ) lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=2_0 , use_cache=UpperCAmelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
55
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Tuple = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :Dict = logging.get_logger(__name__) lowercase__ :Optional[int] = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Any ='''altclip_text_model''' def __init__( self ,A__=2_5_0_0_0_2 ,A__=1_0_2_4 ,A__=2_4 ,A__=1_6 ,A__=4_0_9_6 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_4 ,A__=1 ,A__=0.02 ,A__=0.02 ,A__=1E-05 ,A__=1 ,A__=0 ,A__=2 ,A__="absolute" ,A__=True ,A__=7_6_8 ,**A__ ,): super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = initializer_factor lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache lowercase = project_dim class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[int] ='''altclip_vision_model''' def __init__( self ,A__=7_6_8 ,A__=3_0_7_2 ,A__=5_1_2 ,A__=1_2 ,A__=1_2 ,A__=3 ,A__=2_2_4 ,A__=3_2 ,A__="quick_gelu" ,A__=1E-5 ,A__=0.0 ,A__=0.02 ,A__=1.0 ,**A__ ,): super().__init__(**A__) lowercase = hidden_size lowercase = intermediate_size lowercase = projection_dim lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = num_channels lowercase = patch_size lowercase = image_size lowercase = initializer_range lowercase = initializer_factor lowercase = attention_dropout lowercase = layer_norm_eps lowercase = hidden_act @classmethod def A__ ( cls ,A__ ,**A__): cls._set_token_in_kwargs(A__) lowercase , lowercase = cls.get_config_dict(A__ ,**A__) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''') == "altclip": lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(A__ ,**A__) class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Any ='''altclip''' lowercase_ : List[Any] =True def __init__( self ,A__=None ,A__=None ,A__=7_6_8 ,A__=2.6592 ,**A__): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). lowercase = kwargs.pop('''text_config_dict''' ,A__) lowercase = kwargs.pop('''vision_config_dict''' ,A__) super().__init__(**A__) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowercase = {} # This is the complete result when using `text_config_dict`. lowercase = AltCLIPTextConfig(**A__).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowercase = ( f'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' f'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: lowercase = ( f'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' f'value `text_config["{key}"]` will be overriden.' ) logger.warning(A__) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: lowercase = {} # This is the complete result when using `vision_config_dict`. lowercase = AltCLIPVisionConfig(**A__).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowercase = { str(A__): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowercase = ( f'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' f'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: lowercase = ( f'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' f'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(A__) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: lowercase = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''') if vision_config is None: lowercase = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''') lowercase = AltCLIPTextConfig(**A__) lowercase = AltCLIPVisionConfig(**A__) lowercase = projection_dim lowercase = logit_scale_init_value lowercase = 1.0 @classmethod def A__ ( cls ,A__ ,A__ ,**A__): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**A__) def A__ ( self): lowercase = copy.deepcopy(self.__dict__) lowercase = self.text_config.to_dict() lowercase = self.vision_config.to_dict() lowercase = self.__class__.model_type return output
101
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __lowerCAmelCase ( A ): def __init__( self : List[str] , A : List[Any] , A : Any , A : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = process _UpperCAmelCase = params def __len__( self : Tuple) -> List[str]: """simple docstring""" return len(self.dataset) def __getitem__( self : Tuple , A : Optional[int]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.dataset[i] _UpperCAmelCase = self.process(A , **self.params) return processed class __lowerCAmelCase ( A ): def __init__( self : Optional[Any] , A : Union[str, Any] , A : Optional[int] , A : List[Any] , A : Union[str, Any]=None) -> Tuple: """simple docstring""" _UpperCAmelCase = loader _UpperCAmelCase = infer _UpperCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCAmelCase = None _UpperCAmelCase = loader_batch_size # Internal bookkeeping _UpperCAmelCase = None _UpperCAmelCase = None def __len__( self : List[str]) -> Tuple: """simple docstring""" return len(self.loader) def __iter__( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = iter(self.loader) return self def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor): # Batch data is simple tensor, just fetch the slice _UpperCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(A , A): # Convert ModelOutput to tuple first _UpperCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(A , A): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if element is None: # This can happen for optional data that get passed around _UpperCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index] , np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0) else: # This is typically a list, so no need to `unsqueeze`. _UpperCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCAmelCase = self._loader_batch_data.__class__(A) self._loader_batch_index += 1 return result def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCAmelCase = next(self.iterator) _UpperCAmelCase = self.infer(A , **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(A , torch.Tensor): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys())[0] _UpperCAmelCase = processed[key] if isinstance(A , A): _UpperCAmelCase = len(A) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCAmelCase = processed _UpperCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __lowerCAmelCase ( A ): def __init__( self : Tuple , A : List[Any] , A : Any , A : int , A : Dict=None) -> Any: """simple docstring""" super().__init__(A , A , A) def __iter__( self : Dict) -> int: """simple docstring""" _UpperCAmelCase = iter(self.loader) _UpperCAmelCase = None return self def _lowerCamelCase ( self : int) -> Any: """simple docstring""" if self.subiterator is None: _UpperCAmelCase = self.infer(next(self.iterator) , **self.params) try: # Try to return next item _UpperCAmelCase = next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCAmelCase = self.infer(next(self.iterator) , **self.params) _UpperCAmelCase = next(self.subiterator) return processed class __lowerCAmelCase ( A ): def __iter__( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = iter(self.loader) return self def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last') accumulator.append(A) if is_last: return accumulator while not is_last: _UpperCAmelCase = self.infer(next(self.iterator) , **self.params) if self.loader_batch_size is not None: if isinstance(A , torch.Tensor): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys())[0] _UpperCAmelCase = processed[key] if isinstance(A , A): _UpperCAmelCase = len(A) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size _UpperCAmelCase = processed _UpperCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last') accumulator.append(A) if is_last: return accumulator else: _UpperCAmelCase = processed _UpperCAmelCase = item.pop('is_last') accumulator.append(A) return accumulator class __lowerCAmelCase ( A ): def __init__( self : List[str] , A : Dataset , A : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = key def __len__( self : List[str]) -> Any: """simple docstring""" return len(self.dataset) def __getitem__( self : Tuple , A : Tuple) -> int: """simple docstring""" return self.dataset[i][self.key] class __lowerCAmelCase ( A ): def __init__( self : int , A : Dataset , A : str , A : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = keya _UpperCAmelCase = keya def __len__( self : str) -> Dict: """simple docstring""" return len(self.dataset) def __getitem__( self : List[Any] , A : int) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
290
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } UpperCAmelCase__ = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } UpperCAmelCase__ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = RoFormerTokenizer def __init__( self : Dict , A : Any=None , A : Optional[Any]=None , A : Union[str, Any]=True , A : List[str]="[UNK]" , A : List[str]="[SEP]" , A : Union[str, Any]="[PAD]" , A : Any="[CLS]" , A : str="[MASK]" , A : Optional[int]=True , A : str=None , **A : Dict , ) -> Union[str, Any]: """simple docstring""" super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase' , A) != do_lower_case or pre_tok_state.get('strip_accents' , A) != strip_accents ): _UpperCAmelCase = getattr(A , pre_tok_state.pop('type')) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = pre_tok_class(**A) _UpperCAmelCase = do_lower_case def __getstate__( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = BertPreTokenizer() return state def __setstate__( self : List[Any] , A : Optional[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = d _UpperCAmelCase = self.__dict__['_tokenizer'].get_vocab() _UpperCAmelCase = PreTokenizer.custom(JiebaPreTokenizer(A)) def _lowerCamelCase ( self : List[Any] , A : Optional[int] , A : List[Any]=None) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self : List[str] , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self : Union[str, Any] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(A , name=A) return tuple(A) def _lowerCamelCase ( self : List[Any] , A : Tuple , A : str=None , A : Union[str, Any]=None , A : Union[str, Any]=False , **A : Tuple , ) -> str: """simple docstring""" _UpperCAmelCase = BertPreTokenizer() return super().save_pretrained(A , A , A , A , **A)
290
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] ="Salesforce/blip-image-captioning-base" SCREAMING_SNAKE_CASE_ : Union[str, Any] =( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) SCREAMING_SNAKE_CASE_ : Tuple ="image_captioner" SCREAMING_SNAKE_CASE_ : List[str] =AutoModelForVisionaSeq SCREAMING_SNAKE_CASE_ : Union[str, Any] =["image"] SCREAMING_SNAKE_CASE_ : Union[str, Any] =["text"] def __init__( self : Union[str, Any] , *__A : Union[str, Any] , **__A : Union[str, Any] ): requires_backends(self , ['vision'] ) super().__init__(*__A , **__A ) def _lowerCamelCase ( self : List[Any] , __A : "Image" ): return self.pre_processor(images=__A , return_tensors='pt' ) def _lowerCamelCase ( self : Tuple , __A : List[Any] ): return self.model.generate(**__A ) def _lowerCamelCase ( self : Optional[int] , __A : int ): return self.pre_processor.batch_decode(__A , skip_special_tokens=__A )[0].strip()
53
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( __lowercase : Optional[int] , __lowercase : Tuple , __lowercase : Tuple ) -> Tuple: """simple docstring""" return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def lowercase__ ( __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[str] , __lowercase : List[str]="attention" ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) __UpperCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) __UpperCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) __UpperCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) __UpperCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase__ ( __lowercase : Tuple , __lowercase : Dict , __lowercase : int , __lowercase : List[Any]=False ) -> Optional[Any]: """simple docstring""" if split_mlp_wi: __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] __UpperCamelCase = (wi_a, wi_a) else: __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : Optional[int] ) -> str: """simple docstring""" return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def lowercase__ ( __lowercase : dict , *, __lowercase : int , __lowercase : bool , __lowercase : bool = False ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = traverse_util.flatten_dict(variables['target'] ) __UpperCamelCase = {'/'.join(__lowercase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCamelCase = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , __lowercase ) __UpperCamelCase = collections.OrderedDict() # Shared embeddings. __UpperCamelCase = old['token_embedder/embedding'] # Encoder. for i in range(__lowercase ): # Block i, layer 0 (Self Attention). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'encoder' , 'pre_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = tax_attention_lookup(__lowercase , __lowercase , 'encoder' , 'attention' ) __UpperCamelCase = layer_norm __UpperCamelCase = k.T __UpperCamelCase = o.T __UpperCamelCase = q.T __UpperCamelCase = v.T # Block i, layer 1 (MLP). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'encoder' , 'pre_mlp_layer_norm' ) __UpperCamelCase , __UpperCamelCase = tax_mlp_lookup(__lowercase , __lowercase , 'encoder' , __lowercase ) __UpperCamelCase = layer_norm if split_mlp_wi: __UpperCamelCase = wi[0].T __UpperCamelCase = wi[1].T else: __UpperCamelCase = wi.T __UpperCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCamelCase = tax_relpos_bias_lookup( __lowercase , __lowercase , 'encoder' ).T __UpperCamelCase = old['encoder/encoder_norm/scale'] if not scalable_attention: __UpperCamelCase = tax_relpos_bias_lookup( __lowercase , 0 , 'encoder' ).T __UpperCamelCase = tax_relpos_bias_lookup( __lowercase , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(__lowercase ): # Block i, layer 0 (Self Attention). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'decoder' , 'pre_self_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = tax_attention_lookup(__lowercase , __lowercase , 'decoder' , 'self_attention' ) __UpperCamelCase = layer_norm __UpperCamelCase = k.T __UpperCamelCase = o.T __UpperCamelCase = q.T __UpperCamelCase = v.T # Block i, layer 1 (Cross Attention). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'decoder' , 'pre_cross_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = tax_attention_lookup(__lowercase , __lowercase , 'decoder' , 'encoder_decoder_attention' ) __UpperCamelCase = layer_norm __UpperCamelCase = k.T __UpperCamelCase = o.T __UpperCamelCase = q.T __UpperCamelCase = v.T # Block i, layer 2 (MLP). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'decoder' , 'pre_mlp_layer_norm' ) __UpperCamelCase , __UpperCamelCase = tax_mlp_lookup(__lowercase , __lowercase , 'decoder' , __lowercase ) __UpperCamelCase = layer_norm if split_mlp_wi: __UpperCamelCase = wi[0].T __UpperCamelCase = wi[1].T else: __UpperCamelCase = wi.T __UpperCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCamelCase = tax_relpos_bias_lookup(__lowercase , __lowercase , 'decoder' ).T __UpperCamelCase = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCamelCase = old['decoder/logits_dense/kernel'].T return new def lowercase__ ( __lowercase : Optional[Any] , __lowercase : bool ) -> int: """simple docstring""" __UpperCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCamelCase = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCamelCase = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) __UpperCamelCase = state_dict['shared.weight'] return state_dict def lowercase__ ( __lowercase : List[str] , __lowercase : Dict , __lowercase : str , __lowercase : int , __lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = checkpoints.load_tax_checkpoint(__lowercase ) __UpperCamelCase = convert_tax_to_pytorch( __lowercase , num_layers=config.num_layers , is_encoder_only=__lowercase , scalable_attention=__lowercase ) __UpperCamelCase = make_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase , strict=__lowercase ) def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : List[str] , __lowercase : bool = False , __lowercase : bool = False , ) -> Optional[int]: """simple docstring""" __UpperCamelCase = MTaConfig.from_json_file(__lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCamelCase = UMTaEncoderModel(__lowercase ) else: __UpperCamelCase = UMTaForConditionalGeneration(__lowercase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowercase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowercase ) print('Done' ) if __name__ == "__main__": a__ : List[Any] =argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ : List[str] =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
53
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _UpperCAmelCase = False try: _UpperCAmelCase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase = None , lowercase = [] ): """simple docstring""" A_ : Optional[int] = 0 A_ : str = choices A_ : Union[str, Any] = prompt if sys.platform == "win32": A_ : Any = '*' else: A_ : Any = '➔ ' def lowerCAmelCase_ ( self , lowercase , lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , lowercase ) else: forceWrite(self.choices[index] , lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if index == self.position: forceWrite(F''' {self.arrow_char} ''' ) self.write_choice(lowercase ) else: forceWrite(F''' {self.choices[index]}''' ) reset_cursor() def lowerCAmelCase_ ( self , lowercase , lowercase = 1 ): """simple docstring""" A_ : Optional[Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(lowercase ) move_cursor(lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def lowerCAmelCase_ ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def lowerCAmelCase_ ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def lowerCAmelCase_ ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def lowerCAmelCase_ ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(lowercase )] for number in range(1_0 )] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : int = int(chr(self.current_selection ) ) A_ : List[str] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , lowercase ) else: return else: return def lowerCAmelCase_ ( self , lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) A_ : Optional[int] = default_choice for i in range(len(self.choices ) ): self.print_choice(lowercase ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: A_ : int = int(builtins.input() ) except ValueError: A_ : int = default_choice else: A_ : Union[str, Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(lowercase , '\n' ) return choice
192
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
192
1
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = len(lowerCamelCase) for _ in range(lowerCamelCase): for i in range(_ % 2, arr_size - 1, 2): if arr[i + 1] < arr[i]: __lowerCAmelCase , __lowerCAmelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": _UpperCAmelCase : int = list(range(1_0, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
174
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : int = IFInpaintingSuperResolutionPipeline __UpperCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __UpperCamelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {'latents'} def _snake_case (self ): return self._get_superresolution_dummy_components() def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case (self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case (self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _snake_case (self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case (self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case (self ): self._test_save_load_local() def _snake_case (self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
174
1
from __future__ import annotations import os from collections.abc import Mapping lowerCamelCase_ = tuple[int, int] class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = vertices UpperCamelCase__ = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCamelCase__ = weight def UpperCAmelCase_ (self ): UpperCamelCase__ = Graph({min(self.vertices )} , {} ) UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCamelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCamelCase__ = edge UpperCamelCase__ = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def __magic_name__ ( __a : str = "p107_network.txt" ): '''simple docstring''' UpperCamelCase__ = os.path.abspath(os.path.dirname(__a ) ) UpperCamelCase__ = os.path.join(__a , __a ) UpperCamelCase__ = {} UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 with open(__a ) as f: UpperCamelCase__ = f.read().strip().split("""\n""" ) UpperCamelCase__ = [line.split(""",""" ) for line in data] for edgea in range(1 , len(__a ) ): for edgea in range(__a ): if adjaceny_matrix[edgea][edgea] != "-": UpperCamelCase__ = int(adjaceny_matrix[edgea][edgea] ) UpperCamelCase__ = Graph(set(range(len(__a ) ) ) , __a ) UpperCamelCase__ = graph.prims_algorithm() UpperCamelCase__ = sum(graph.edges.values() ) UpperCamelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'{solution() = }')
178
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
178
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : torch.FloatTensor snake_case_ : torch.FloatTensor class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = 1 @register_to_config def __init__( self : Dict , lowerCAmelCase : int = 2000 , lowerCAmelCase : float = 0.15 , lowerCAmelCase : float = 0.01 , lowerCAmelCase : float = 1_348.0 , lowerCAmelCase : float = 1E-5 , lowerCAmelCase : int = 1 , ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = sigma_max # setable values _snake_case : str = None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : Optional[int] = None) -> torch.FloatTensor: """simple docstring""" return sample def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : float = None , lowerCAmelCase : Union[str, torch.device] = None) -> int: """simple docstring""" _snake_case : Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps _snake_case : Optional[Any] = torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : float = None , lowerCAmelCase : float = None , lowerCAmelCase : float = None) -> str: """simple docstring""" _snake_case : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min _snake_case : Union[str, Any] = sigma_max if sigma_max is not None else self.config.sigma_max _snake_case : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase) _snake_case : List[Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _snake_case : Union[str, Any] = torch.exp(torch.linspace(math.log(lowerCAmelCase) , math.log(lowerCAmelCase) , lowerCAmelCase)) _snake_case : Optional[int] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def UpperCamelCase_ ( self : int , lowerCAmelCase : str , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device)) , self.discrete_sigmas[timesteps - 1].to(timesteps.device) , ) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : int , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : bool = True , ) -> Union[SdeVeOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""") _snake_case : Union[str, Any] = timestep * torch.ones( sample.shape[0] , device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _snake_case : Union[str, Any] = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _snake_case : Any = timesteps.to(self.discrete_sigmas.device) _snake_case : Union[str, Any] = self.discrete_sigmas[timesteps].to(sample.device) _snake_case : Union[str, Any] = self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase).to(sample.device) _snake_case : int = torch.zeros_like(lowerCAmelCase) _snake_case : List[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _snake_case : Tuple = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _snake_case : Dict = diffusion.unsqueeze(-1) _snake_case : Any = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _snake_case : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype) _snake_case : Any = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _snake_case : str = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase) def UpperCamelCase_ ( self : Any , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _snake_case : Optional[int] = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase).to(sample.device) # compute step size from the model_output, the noise, and the snr _snake_case : Any = torch.norm(model_output.reshape(model_output.shape[0] , -1) , dim=-1).mean() _snake_case : Dict = torch.norm(noise.reshape(noise.shape[0] , -1) , dim=-1).mean() _snake_case : List[str] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _snake_case : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _snake_case : Dict = step_size.flatten() while len(step_size.shape) < len(sample.shape): _snake_case : str = step_size.unsqueeze(-1) _snake_case : int = sample + step_size * model_output _snake_case : List[Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase) def UpperCamelCase_ ( self : Any , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : torch.FloatTensor , ) -> torch.FloatTensor: """simple docstring""" _snake_case : Dict = timesteps.to(original_samples.device) _snake_case : Any = self.discrete_sigmas.to(original_samples.device)[timesteps] _snake_case : Optional[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase) * sigmas[:, None, None, None] ) _snake_case : Union[str, Any] = noise + original_samples return noisy_samples def __len__( self : str) -> int: """simple docstring""" return self.config.num_train_timesteps
317
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ : List[str] = logging.get_logger(__name__) A_ : Optional[int] = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: for attribute in key.split('.' ): UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: UpperCamelCase_: Tuple = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: UpperCamelCase_: str = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_: List[str] = value elif weight_type == "weight_g": UpperCamelCase_: List[str] = value elif weight_type == "weight_v": UpperCamelCase_: Tuple = value elif weight_type == "bias": UpperCamelCase_: Dict = value else: UpperCamelCase_: Optional[int] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: Optional[Any] = [] UpperCamelCase_: List[str] = fairseq_model.state_dict() UpperCamelCase_: str = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_: List[Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_: str = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase_: List[Any] = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase_: str = True if "*" in mapped_key: UpperCamelCase_: Union[str, Any] = name.split(UpperCAmelCase__ )[0].split('.' )[-2] UpperCamelCase_: str = mapped_key.replace('*' , UpperCAmelCase__ ) if "weight_g" in name: UpperCamelCase_: Optional[int] = 'weight_g' elif "weight_v" in name: UpperCamelCase_: List[Any] = 'weight_v' elif "weight" in name: UpperCamelCase_: Optional[Any] = 'weight' elif "bias" in name: UpperCamelCase_: Union[str, Any] = 'bias' else: UpperCamelCase_: int = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: UpperCamelCase_: Optional[int] = full_name.split('conv_layers.' )[-1] UpperCamelCase_: Any = name.split('.' ) UpperCamelCase_: Dict = int(items[0] ) UpperCamelCase_: Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_: List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_: List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCamelCase_: int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_: Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: UpperCamelCase_: Any = SEWConfig() if is_finetuned: UpperCamelCase_: List[Any] = model.wav_encoder.wav_model.cfg else: UpperCamelCase_: Union[str, Any] = model.cfg UpperCamelCase_: int = fs_config.conv_bias UpperCamelCase_: Union[str, Any] = eval(fs_config.conv_feature_layers ) UpperCamelCase_: Union[str, Any] = [x[0] for x in conv_layers] UpperCamelCase_: Tuple = [x[1] for x in conv_layers] UpperCamelCase_: Tuple = [x[2] for x in conv_layers] UpperCamelCase_: Optional[int] = 'gelu' UpperCamelCase_: Dict = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' UpperCamelCase_: Optional[Any] = 0.0 UpperCamelCase_: Union[str, Any] = fs_config.activation_fn.name UpperCamelCase_: List[Any] = fs_config.encoder_embed_dim UpperCamelCase_: Optional[int] = 0.02 UpperCamelCase_: List[str] = fs_config.encoder_ffn_embed_dim UpperCamelCase_: List[Any] = 1E-5 UpperCamelCase_: Optional[Any] = fs_config.encoder_layerdrop UpperCamelCase_: Tuple = fs_config.encoder_attention_heads UpperCamelCase_: Dict = fs_config.conv_pos_groups UpperCamelCase_: Dict = fs_config.conv_pos UpperCamelCase_: Dict = len(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = fs_config.encoder_layers UpperCamelCase_: Tuple = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: UpperCamelCase_: List[Any] = model.cfg UpperCamelCase_: Any = fs_config.final_dropout UpperCamelCase_: Dict = fs_config.layerdrop UpperCamelCase_: Tuple = fs_config.activation_dropout UpperCamelCase_: Optional[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 UpperCamelCase_: int = fs_config.attention_dropout UpperCamelCase_: Optional[int] = fs_config.dropout_input UpperCamelCase_: Optional[int] = fs_config.dropout UpperCamelCase_: Tuple = fs_config.mask_channel_length UpperCamelCase_: Dict = fs_config.mask_channel_prob UpperCamelCase_: List[str] = fs_config.mask_length UpperCamelCase_: Union[str, Any] = fs_config.mask_prob UpperCamelCase_: Dict = 'Wav2Vec2FeatureExtractor' UpperCamelCase_: int = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True ) -> Tuple: if is_finetuned: UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase_: str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: UpperCamelCase_: int = SEWConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCamelCase_: str = convert_config(model[0] , UpperCAmelCase__ ) UpperCamelCase_: str = model[0].eval() UpperCamelCase_: List[str] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase_: str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) if is_finetuned: if dict_path: UpperCamelCase_: Union[str, Any] = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase_: int = target_dict.pad_index UpperCamelCase_: int = target_dict.bos_index UpperCamelCase_: Dict = target_dict.pad_index UpperCamelCase_: int = target_dict.bos_index UpperCamelCase_: Union[str, Any] = target_dict.eos_index UpperCamelCase_: Optional[int] = len(target_dict.symbols ) UpperCamelCase_: Optional[int] = os.path.join(UpperCAmelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = WavaVecaCTCTokenizer( UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , ) UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: Tuple = SEWForCTC(UpperCAmelCase__ ) else: UpperCamelCase_: Union[str, Any] = SEWModel(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) hf_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A_ : str = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
360
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =RoFormerTokenizer a : int =RoFormerTokenizerFast a : int =True a : Optional[int] =True def _a ( self ): super().setUp() def _a ( self , **_lowerCamelCase ): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_lowerCamelCase ) def _a ( self , **_lowerCamelCase ): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = '永和服装饰品有限公司,今天天气非常好' UpperCamelCase_: Any = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def _a ( self ): UpperCamelCase_: int = self.get_tokenizer() UpperCamelCase_ ,UpperCamelCase_: int = self.get_chinese_input_output_texts() UpperCamelCase_: Tuple = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , output_text.split() ) UpperCamelCase_: Dict = tokens + [tokenizer.unk_token] UpperCamelCase_: Dict = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[Any] = self.get_rust_tokenizer() UpperCamelCase_ ,UpperCamelCase_: Tuple = self.get_chinese_input_output_texts() UpperCamelCase_: Optional[Any] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , output_text.split() ) UpperCamelCase_: str = tokens + [tokenizer.unk_token] UpperCamelCase_: Optional[Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self ): pass def _a ( self ): pass def _a ( self ): pass
292
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=7 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : Optional[Any]=1_8 , lowerCAmelCase__ : Optional[int]=3_0 , lowerCAmelCase__ : List[str]=4_0_0 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Any=None , ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : str = image_size _UpperCAmelCase : str = min_resolution _UpperCAmelCase : List[str] = max_resolution _UpperCAmelCase : str = size _UpperCAmelCase : int = do_normalize _UpperCAmelCase : str = do_convert_rgb _UpperCAmelCase : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : Tuple = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : int = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : Any = 2_0_4_8 _UpperCAmelCase : Optional[Any] = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Tuple = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Optional[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Tuple = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : int = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Dict = "Hello" _UpperCAmelCase : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Optional[int] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Optional[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Optional[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : Optional[int] = 3 @property def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Tuple = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
145
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Dict = '''vit_msn''' def __init__( self : Optional[int] , lowerCAmelCase__ : str=7_6_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : Optional[Any]=3_0_7_2 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : int=1e-06 , lowerCAmelCase__ : Union[str, Any]=2_2_4 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : str=True , **lowerCAmelCase__ : Optional[Any] , ) -> int: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Optional[int] = qkv_bias
145
1
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _UpperCAmelCase (UpperCamelCase_ : Sequence[float] , UpperCamelCase_ : int , UpperCamelCase_ : int ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] _lowerCAmelCase : List[str] = (low + high) // 2 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = max_subarray(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = max_subarray(UpperCamelCase_ , mid + 1 , UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = max_cross_sum(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _UpperCAmelCase (UpperCamelCase_ : Sequence[float] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = float("""-inf""" ), -1 _lowerCAmelCase , _lowerCAmelCase : str = float("""-inf""" ), -1 _lowerCAmelCase : int | float = 0 for i in range(UpperCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _lowerCAmelCase : Any = summ _lowerCAmelCase : Tuple = i _lowerCAmelCase : int = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _lowerCAmelCase : List[Any] = summ _lowerCAmelCase : str = i return max_left, max_right, (left_sum + right_sum) def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : str = [randint(1 , UpperCamelCase_ ) for _ in range(UpperCamelCase_ )] _lowerCAmelCase : str = time.time() max_subarray(UpperCamelCase_ , 0 , input_size - 1 ) _lowerCAmelCase : Any = time.time() return end - start def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Any = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] _lowerCAmelCase : Any = [time_max_subarray(UpperCamelCase_ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(UpperCamelCase_ , UpperCamelCase_ ): print(UpperCamelCase_ , """\t\t""" , UpperCamelCase_ ) plt.plot(UpperCamelCase_ , UpperCamelCase_ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
159
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _UpperCAmelCase (UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict ): '''simple docstring''' _lowerCAmelCase : Optional[int] = k_size // 2 _lowerCAmelCase , _lowerCAmelCase : List[str] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _lowerCAmelCase : Optional[int] = 1 / (2 * pi * sigma) * exp(-(square(UpperCamelCase_ ) + square(UpperCamelCase_ )) / (2 * square(UpperCamelCase_ )) ) return g def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = image.shape[0], image.shape[1] # dst image height and width _lowerCAmelCase : Optional[Any] = height - k_size + 1 _lowerCAmelCase : Tuple = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _lowerCAmelCase : Tuple = zeros((dst_height * dst_width, k_size * k_size) ) _lowerCAmelCase : int = 0 for i, j in product(range(UpperCamelCase_ ) , range(UpperCamelCase_ ) ): _lowerCAmelCase : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) _lowerCAmelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) _lowerCAmelCase : Optional[Any] = gen_gaussian_kernel(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Dict = ravel(UpperCamelCase_ ) # reshape and get the dst image _lowerCAmelCase : List[str] = dot(UpperCamelCase_ , UpperCamelCase_ ).reshape(UpperCamelCase_ , UpperCamelCase_ ).astype(UpperCamelCase_ ) return dst if __name__ == "__main__": # read original image _lowerCamelCase : int = imread(R"../image_data/lena.jpg") # turn image in gray scale value _lowerCamelCase : List[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _lowerCamelCase : int = gaussian_filter(gray, 3, sigma=1) _lowerCamelCase : List[str] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
159
1
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[Any]=None , snake_case_ : Any=None , snake_case_ : Optional[Any]=None , snake_case_ : Dict=None , snake_case_ : List[Any]=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: UpperCAmelCase_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: UpperCAmelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: UpperCAmelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __A : def __init__(self : Optional[int] , __a : List[str] , __a : str=13 , __a : Optional[Any]=7 , __a : Tuple=True , __a : Optional[Any]=False , __a : Any=99 , __a : int=16 , __a : Optional[Any]=2 , __a : List[Any]=4 , __a : Dict=4 , __a : List[Any]="relu" , __a : List[Any]=0.1 , __a : Any=0.1 , __a : int=0.0 , __a : Any=0.0 , __a : Optional[Any]=20 , __a : List[Any]=2 , __a : Tuple=1 , __a : Any=0 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.eos_token_id # Eos Token UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase_ = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(__a , __a , __a ) return config, inputs_dict def _lowercase (self : Optional[Any] ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase (self : str ): UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase (self : int , __a : int , __a : Union[str, Any] ): UpperCAmelCase_ = MaMaaaModel(config=__a ).get_decoder().to(__a ).eval() UpperCAmelCase_ = inputs_dict["input_ids"] UpperCAmelCase_ = inputs_dict["attention_mask"] UpperCAmelCase_ = inputs_dict["head_mask"] # first forward pass UpperCAmelCase_ = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCAmelCase_ = model(__a , attention_mask=__a )["last_hidden_state"] UpperCAmelCase_ = model(__a , attention_mask=__a , past_key_values=__a )[ "last_hidden_state" ] # select random slice UpperCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-2 ) ) def _lowercase (self : Optional[Any] , __a : Any , __a : Optional[int] ): UpperCAmelCase_ = MaMaaaModel(config=__a ).to(__a ).eval() UpperCAmelCase_ = model(**__a ) UpperCAmelCase_ = outputs.encoder_last_hidden_state UpperCAmelCase_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = model.get_encoder() encoder.save_pretrained(__a ) UpperCAmelCase_ = MaMaaaEncoder.from_pretrained(__a ).to(__a ) UpperCAmelCase_ = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = model.get_decoder() decoder.save_pretrained(__a ) UpperCAmelCase_ = MaMaaaDecoder.from_pretrained(__a ).to(__a ) UpperCAmelCase_ = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__a , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a__ : int = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a__ : Optional[int] = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a__ : Union[str, Any] = True a__ : Tuple = True a__ : List[str] = False a__ : Union[str, Any] = False def _lowercase (self : Any , __a : Optional[Any] , __a : Dict , __a : int , __a : str , __a : str ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase (self : Dict ): UpperCAmelCase_ = MaMaaaModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a ) def _lowercase (self : int ): self.config_tester.run_common_tests() def _lowercase (self : List[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) UpperCAmelCase_ , UpperCAmelCase_ = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__a ) def _lowercase (self : Dict ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) def _lowercase (self : List[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCAmelCase_ = model_class(__a ) model.to(__a ) model.eval() UpperCAmelCase_ = copy.deepcopy(self._prepare_for_class(__a , __a ) ) if not self.is_encoder_decoder: UpperCAmelCase_ = inputs["input_ids"] del inputs["input_ids"] else: UpperCAmelCase_ = inputs["input_ids"] UpperCAmelCase_ = inputs.get("decoder_input_ids" , __a ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __a ) UpperCAmelCase_ = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCAmelCase_ = wte(__a ) else: UpperCAmelCase_ = wte(__a ) UpperCAmelCase_ = wte(__a ) with torch.no_grad(): model(**__a )[0] def _lowercase (self : int ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = input_dict["input_ids"] UpperCAmelCase_ = input_ids.ne(1 ).to(__a ) UpperCAmelCase_ = MaMaaaForConditionalGeneration(__a ).eval().to(__a ) if torch_device == "cuda": model.half() model.generate(__a , attention_mask=__a ) model.generate(num_beams=4 , do_sample=__a , early_stopping=__a , num_return_sequences=3 ) def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Union[str, Any]: '''simple docstring''' return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) SCREAMING_SNAKE_CASE_: Any =1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __A ( unittest.TestCase ): @cached_property def _lowercase (self : Optional[int] ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__a ) UpperCAmelCase_ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) UpperCAmelCase_ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(model.config , __a , __a ) with torch.no_grad(): UpperCAmelCase_ = model(**__a )[0] UpperCAmelCase_ = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , __a ) # change to expected output here UpperCAmelCase_ = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=__a ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=__a ) ) def _lowercase (self : str ): UpperCAmelCase_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__a ) # change to intended input UpperCAmelCase_ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) UpperCAmelCase_ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(model.config , __a , __a ) with torch.no_grad(): UpperCAmelCase_ = model(**__a )[0] UpperCAmelCase_ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __a ) # change to expected output here UpperCAmelCase_ = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=__a ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=__a ) ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__a ) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) UpperCAmelCase_ = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCAmelCase_ = tokenizer(__a , padding=__a , return_tensors="pt" ) UpperCAmelCase_ = model.generate( input_ids=dct["input_ids"].to(__a ) , attention_mask=dct["attention_mask"].to(__a ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) UpperCAmelCase_ = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] UpperCAmelCase_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__a , skip_special_tokens=__a ) assert generated == expected_en
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'spiece.model'} UpperCAmelCase_ = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ): """simple docstring""" UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) UpperCAmelCase__ = 3 UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) UpperCAmelCase__ = jieba UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ): """simple docstring""" if self.remove_space: UpperCAmelCase__ = """ """.join(inputs.strip().split() ) else: UpperCAmelCase__ = inputs UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase ) UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: UpperCAmelCase__ = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase ) UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) UpperCAmelCase__ = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase__ = cur_pieces[1:] else: UpperCAmelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" return self.sp_model.PieceToId(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ): """simple docstring""" return self.sp_model.IdToPiece(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] return ([0] * len(_UpperCAmelCase )) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
346
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = tempfile.mkdtemp() A_ : Union[str, Any] = 5 # Realm tok A_ : Any = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] A_ : Dict = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(snake_case , exist_ok=snake_case ) A_ : Optional[Any] = os.path.join(snake_case , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) A_ : Tuple = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(snake_case , exist_ok=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : int = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=snake_case , ) return block_records def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Optional[int] = self.get_config() A_ : Optional[int] = self.get_dummy_retriever() A_ : Any = retriever.tokenizer A_ : Optional[int] = np.array([0, 3] , dtype="long" ) A_ : Optional[int] = tokenizer(["Test question"] ).input_ids A_ : Tuple = tokenizer( ["the fourth"] , add_special_tokens=snake_case , return_token_type_ids=snake_case , return_attention_mask=snake_case , ).input_ids A_ : int = config.reader_seq_len A_ , A_ , A_ , A_ : List[str] = retriever( snake_case , snake_case , answer_ids=snake_case , max_length=snake_case , return_tensors="np" ) self.assertEqual(len(snake_case ) , 2 ) self.assertEqual(len(snake_case ) , 2 ) self.assertEqual(len(snake_case ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Union[str, Any] = self.get_config() A_ : int = self.get_dummy_retriever() A_ : List[Any] = retriever.tokenizer A_ : Optional[int] = np.array([0, 3, 5] , dtype="long" ) A_ : Optional[int] = tokenizer(["Test question"] ).input_ids A_ : Optional[Any] = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=snake_case , return_token_type_ids=snake_case , return_attention_mask=snake_case , ).input_ids A_ : Optional[int] = config.reader_seq_len A_ , A_ , A_ , A_ : int = retriever( snake_case , snake_case , answer_ids=snake_case , max_length=snake_case , return_tensors="np" ) self.assertEqual([False, True, True] , snake_case ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , snake_case ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : str = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path A_ : Dict = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: A_ : Dict = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) A_ : Optional[Any] = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
70
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''git_vision_model''' def __init__( self :Union[str, Any] , snake_case :str=768 , snake_case :str=3_072 , snake_case :Optional[Any]=12 , snake_case :Any=12 , snake_case :Dict=3 , snake_case :Union[str, Any]=224 , snake_case :Optional[int]=16 , snake_case :Union[str, Any]="quick_gelu" , snake_case :Optional[int]=1e-5 , snake_case :List[str]=0.0 , snake_case :Any=0.02 , **snake_case :str , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Optional[int] = hidden_size A_ : Optional[Any] = intermediate_size A_ : Dict = num_hidden_layers A_ : int = num_attention_heads A_ : int = num_channels A_ : Tuple = patch_size A_ : Dict = image_size A_ : Optional[int] = initializer_range A_ : str = attention_dropout A_ : Tuple = layer_norm_eps A_ : List[str] = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , snake_case :Union[str, os.PathLike] , **snake_case :List[str] ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) A_ , A_ : Optional[Any] = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": A_ : int = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case , **snake_case ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''git''' def __init__( self :List[str] , snake_case :Any=None , snake_case :int=30_522 , snake_case :Dict=768 , snake_case :List[Any]=6 , snake_case :Any=12 , snake_case :Any=3_072 , snake_case :List[Any]="gelu" , snake_case :Union[str, Any]=0.1 , snake_case :Any=0.1 , snake_case :Optional[int]=1_024 , snake_case :str=0.02 , snake_case :int=1e-12 , snake_case :Optional[int]=0 , snake_case :int="absolute" , snake_case :Tuple=True , snake_case :List[str]=False , snake_case :List[str]=101 , snake_case :int=102 , snake_case :str=None , **snake_case :List[Any] , ): '''simple docstring''' super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , pad_token_id=snake_case , **snake_case ) if vision_config is None: A_ : Union[str, Any] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) A_ : List[Any] = GitVisionConfig(**snake_case ) A_ : Optional[int] = vocab_size A_ : List[str] = hidden_size A_ : int = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[str] = hidden_act A_ : Dict = intermediate_size A_ : Tuple = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : List[str] = initializer_range A_ : int = layer_norm_eps A_ : Dict = position_embedding_type A_ : str = use_cache A_ : str = tie_word_embeddings A_ : Optional[Any] = num_image_with_embedding A_ : int = bos_token_id A_ : Optional[int] = eos_token_id def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = copy.deepcopy(self.__dict__ ) A_ : Optional[int] = self.vision_config.to_dict() A_ : Optional[Any] = self.__class__.model_type return output
70
1
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") _SCREAMING_SNAKE_CASE : List[str] = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _SCREAMING_SNAKE_CASE : Union[str, Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _SCREAMING_SNAKE_CASE : Any = sorted(arg_to_scheduler.keys()) _SCREAMING_SNAKE_CASE : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class _snake_case ( pl.LightningModule ): def __init__( self , a__ , a__=None , a__="base" , a__=None , a__=None , a__=None , **a__ , ) -> Optional[Any]: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(a__ ) snake_case_ = 0 snake_case_ = Path(self.hparams.output_dir ) snake_case_ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: snake_case_ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=a__ , **a__ , ) else: snake_case_ = config snake_case_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , a__ , a__ ): assert hasattr(self.config , a__ ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , a__ , getattr(self.hparams , a__ ) ) if tokenizer is None: snake_case_ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=a__ , ) else: snake_case_ = tokenizer snake_case_ = MODEL_MODES[mode] if model is None: snake_case_ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=a__ , ) else: snake_case_ = model def lowerCAmelCase__ ( self , *a__ , **a__ ) -> Any: '''simple docstring''' snake_case_ = self.model_type.from_pretrained(*a__ , **a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = arg_to_scheduler[self.hparams.lr_scheduler] snake_case_ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) snake_case_ = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.model snake_case_ = ["bias", "LayerNorm.weight"] snake_case_ = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: snake_case_ = Adafactor( a__ , lr=self.hparams.learning_rate , scale_parameter=a__ , relative_step=a__ ) else: snake_case_ = AdamW( a__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) snake_case_ = optimizer snake_case_ = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCAmelCase__ ( self , a__ , a__ ) -> Dict: '''simple docstring''' return self.validation_step(a__ , a__ ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' return self.validation_end(a__ ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores snake_case_ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCAmelCase__ ( self , a__ ) -> str: '''simple docstring''' if stage == "test": snake_case_ = len(self.test_dataloader().dataset ) else: snake_case_ = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=a__ ) snake_case_ = len(self.train_dataloader().dataset ) def lowerCAmelCase__ ( self , a__ , a__ , a__ = False ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError("You must implement this for your task" ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return self.train_loader def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=a__ ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=a__ ) def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( a__ , list(filter(a__ , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCAmelCase__ ( self , a__ ) -> None: '''simple docstring''' snake_case_ = self.output_dir.joinpath("best_tfmr" ) snake_case_ = self.step_count self.model.save_pretrained(a__ ) self.tokenizer.save_pretrained(a__ ) @staticmethod def lowerCAmelCase__ ( a__ , a__ ) -> List[Any]: '''simple docstring''' parser.add_argument( "--model_name_or_path" , default=a__ , type=a__ , required=a__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=a__ , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=a__ , type=a__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(a__ ).parent / "test_run" / "cache" ) , type=a__ , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=a__ , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=a__ , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=a__ , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=a__ , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=a__ , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=a__ , metavar=a__ , type=a__ , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=a__ , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=a__ , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=a__ , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=a__ , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=a__ ) parser.add_argument("--train_batch_size" , default=32 , type=a__ ) parser.add_argument("--eval_batch_size" , default=32 , type=a__ ) parser.add_argument("--adafactor" , action="store_true" ) class _snake_case ( pl.Callback ): def lowerCAmelCase__ ( self , a__ , a__ ) -> str: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _snake_case ( pl.Callback ): def lowerCAmelCase__ ( self , a__ , a__ ) -> Any: '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(a__ ) class _snake_case ( pl.Callback ): def lowerCAmelCase__ ( self , a__ , a__ ) -> List[str]: '''simple docstring''' snake_case_ = trainer.lr_schedulers[0]["scheduler"] snake_case_ = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(a__ ) def lowerCAmelCase__ ( self , a__ , a__ ) -> List[str]: '''simple docstring''' rank_zero_info("***** Validation results *****" ) snake_case_ = trainer.callback_metrics # Log results for key in sorted(a__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(a__ , str(metrics[key] ) ) ) def lowerCAmelCase__ ( self , a__ , a__ ) -> Optional[int]: '''simple docstring''' rank_zero_info("***** Test results *****" ) snake_case_ = trainer.callback_metrics # Log and save results to file snake_case_ = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(a__ , "w" ) as writer: for key in sorted(a__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(a__ , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(a__ , str(metrics[key] ) ) ) def UpperCamelCase_( snake_case : List[Any] , snake_case : Optional[Any] ): '''simple docstring''' parser.add_argument( "--output_dir" , default=str(Path(snake_case ).parent / "test_run" / "model_checkpoints" ) , type=snake_case , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=snake_case , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=snake_case ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=snake_case , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=snake_case , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=snake_case , default=4_2 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(snake_case ).parent / "test_run" / "dummy-train-data" ) , type=snake_case , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def UpperCamelCase_( snake_case : BaseTransformer , snake_case : argparse.Namespace , snake_case : Optional[int]=None , snake_case : int=True , snake_case : List[str]=[] , snake_case : int=None , snake_case : Any=None , **snake_case : Dict , ): '''simple docstring''' pl.seed_everything(args.seed ) # init model snake_case_ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: snake_case_ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: snake_case_ = LoggingCallback() snake_case_ = {} if args.fpaa: snake_case_ = 1_6 if args.gpus > 1: snake_case_ = "auto" snake_case_ = "ddp" snake_case_ = args.accumulate_grad_batches snake_case_ = None snake_case_ = "auto" snake_case_ = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
85
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase_( snake_case : Callable ): '''simple docstring''' @wraps(snake_case ) def _inner_fn(*snake_case : Optional[int] , **snake_case : List[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
85
1
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _UpperCAmelCase : str = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : List[str] = 256 def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if len(UpperCamelCase__ ) < MIN_NUM_TOKENS: return None snake_case_ = MinHash(num_perm=UpperCamelCase__ ) for token in set(UpperCamelCase__ ): min_hash.update(token.encode() ) return min_hash def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return {t for t in NON_ALPHA.split(UpperCamelCase__ ) if len(t.strip() ) > 0} class lowercase : def __init__( self , *, snake_case = 0.85 , ): snake_case_ = duplication_jaccard_threshold snake_case_ = NUM_PERM snake_case_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ = defaultdict(__UpperCAmelCase ) def a ( self , snake_case , snake_case ): snake_case_ = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def a ( self ): snake_case_ = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict snake_case_ = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def a ( self , snake_case ): snake_case_ = self.get_duplicate_clusters() with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ , snake_case_ = element snake_case_ = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(UpperCamelCase__ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = DuplicationIndex(duplication_jaccard_threshold=UpperCamelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(UpperCamelCase__ ) ) , max_queue_size=100 ) ): di.add(UpperCamelCase__ , UpperCamelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = get_tokens(UpperCamelCase__ ) snake_case_ = get_tokens(UpperCamelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _UpperCAmelCase : Tuple = None def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] for elementa in cluster: snake_case_ = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: snake_case_ = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(UpperCamelCase__ , UpperCamelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ = 1 extremes.append(UpperCamelCase__ ) return extremes def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' global _shared_dataset snake_case_ = dataset snake_case_ = [] snake_case_ = partial(_find_cluster_extremes_shared , jaccard_threshold=UpperCamelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( UpperCamelCase__ , UpperCamelCase__ , ) , total=len(UpperCamelCase__ ) , ): extremes_list.append(UpperCamelCase__ ) return extremes_list def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = 0.85 ): '''simple docstring''' snake_case_ = make_duplicate_clusters(UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = {x['base_index'] for cluster in duplicate_clusters for x in cluster} snake_case_ = {} snake_case_ = find_extremes(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ = element snake_case_ = duplicate_indices - set(extreme_dict.keys() ) snake_case_ = dataset.filter(lambda UpperCamelCase__ , UpperCamelCase__ : idx not in remove_indices , with_indices=UpperCamelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ = element['base_index'] in extreme_dict if element["is_extreme"]: snake_case_ = extreme_dict[element['base_index']]['copies'] print(F'''Original dataset size: {len(UpperCamelCase__ )}''' ) print(F'''Number of duplicate clusters: {len(UpperCamelCase__ )}''' ) print(F'''Files in duplicate cluster: {len(UpperCamelCase__ )}''' ) print(F'''Unique files in duplicate cluster: {len(UpperCamelCase__ )}''' ) print(F'''Filtered dataset size: {len(UpperCamelCase__ )}''' ) return ds_filter, duplicate_clusters
354
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
200
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = "xlm-roberta-xl" def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=2560 , _UpperCAmelCase=36 , _UpperCAmelCase=32 , _UpperCAmelCase=10240 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=514 , _UpperCAmelCase=1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-0_5 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Optional[int] = vocab_size lowercase__: Union[str, Any] = hidden_size lowercase__: List[Any] = num_hidden_layers lowercase__: List[Any] = num_attention_heads lowercase__: Tuple = hidden_act lowercase__: str = intermediate_size lowercase__: Optional[int] = hidden_dropout_prob lowercase__: List[Any] = attention_probs_dropout_prob lowercase__: Dict = max_position_embeddings lowercase__: Dict = type_vocab_size lowercase__: Optional[int] = initializer_range lowercase__: int = layer_norm_eps lowercase__: Optional[Any] = position_embedding_type lowercase__: List[Any] = use_cache lowercase__: Tuple = classifier_dropout class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @property def _snake_case ( self ): if self.task == "multiple-choice": lowercase__: str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__: Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
177
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase__: Tuple = grid[0] for row_n in range(1 , len(__UpperCAmelCase ) ): lowercase__: Tuple = grid[row_n] lowercase__: Dict = fill_row(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Union[str, Any] = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
177
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
1
"""simple docstring""" import warnings from functools import wraps from typing import Callable def _snake_case ( _snake_case : Callable ): @wraps(_snake_case ) def _inner_fn(*_snake_case : Optional[int] , **_snake_case : str ): warnings.warn( (f'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , _snake_case , ) return fn(*_snake_case , **_snake_case ) return _inner_fn
60
"""simple docstring""" def _snake_case ( _snake_case : list ): def merge(_snake_case : list , _snake_case : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_snake_case ) <= 1: return collection lowerCAmelCase : Union[str, Any] = len(_snake_case ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
60
1
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __SCREAMING_SNAKE_CASE : Optional[Any] = _symbol_database.Default() __SCREAMING_SNAKE_CASE : str = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) __SCREAMING_SNAKE_CASE : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : Optional[int] = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __SCREAMING_SNAKE_CASE : Any = 45 __SCREAMING_SNAKE_CASE : str = 1_581 __SCREAMING_SNAKE_CASE : List[Any] = 1_517 __SCREAMING_SNAKE_CASE : List[Any] = 1_570 __SCREAMING_SNAKE_CASE : List[str] = 1_584 __SCREAMING_SNAKE_CASE : Tuple = 1_793 __SCREAMING_SNAKE_CASE : str = 1_795 __SCREAMING_SNAKE_CASE : Tuple = 1_916 __SCREAMING_SNAKE_CASE : str = 1_864 __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_905 __SCREAMING_SNAKE_CASE : Optional[Any] = 1_919 __SCREAMING_SNAKE_CASE : List[str] = 2_429 __SCREAMING_SNAKE_CASE : Tuple = 2_208 __SCREAMING_SNAKE_CASE : Tuple = 2_418 __SCREAMING_SNAKE_CASE : Optional[Any] = 2_323 __SCREAMING_SNAKE_CASE : int = 2_407 # @@protoc_insertion_point(module_scope)
367
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: if attention_mask is None: snake_case_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: snake_case_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: snake_case_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __A : '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : int=99 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[Any]="relu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : List[str]=20 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Optional[Any]=0 , ) ->Dict: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = self.eos_token_id # Eos Token snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case_ = input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = self.get_config() snake_case_ = prepare_mam_aaa_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ , snake_case_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) ->Dict: """simple docstring""" snake_case_ = MaMaaaModel(config=UpperCAmelCase_ ).get_decoder().to(UpperCAmelCase_ ).eval() snake_case_ = inputs_dict["""input_ids"""] snake_case_ = inputs_dict["""attention_mask"""] snake_case_ = inputs_dict["""head_mask"""] # first forward pass snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )["""last_hidden_state"""] snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[ """last_hidden_state""" ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-2 ) ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ) ->int: """simple docstring""" snake_case_ = MaMaaaModel(config=UpperCAmelCase_ ).to(UpperCAmelCase_ ).eval() snake_case_ = model(**UpperCAmelCase_ ) snake_case_ = outputs.encoder_last_hidden_state snake_case_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = model.get_encoder() encoder.save_pretrained(UpperCAmelCase_ ) snake_case_ = MaMaaaEncoder.from_pretrained(UpperCAmelCase_ ).to(UpperCAmelCase_ ) snake_case_ = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = model.get_decoder() decoder.save_pretrained(UpperCAmelCase_ ) snake_case_ = MaMaaaDecoder.from_pretrained(UpperCAmelCase_ ).to(UpperCAmelCase_ ) snake_case_ = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __lowercase: Union[str, Any] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __lowercase: Tuple = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __lowercase: Dict = True __lowercase: List[Any] = True __lowercase: Union[str, Any] = False __lowercase: Optional[int] = False def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ) ->str: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" snake_case_ = MaMaaaModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_ ) snake_case_ , snake_case_ = model_class.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) def lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase_ ) def lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = copy.deepcopy(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) if not self.is_encoder_decoder: snake_case_ = inputs["""input_ids"""] del inputs["input_ids"] else: snake_case_ = inputs["""input_ids"""] snake_case_ = inputs.get("""decoder_input_ids""" , UpperCAmelCase_ ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , UpperCAmelCase_ ) snake_case_ = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case_ = wte(UpperCAmelCase_ ) else: snake_case_ = wte(UpperCAmelCase_ ) snake_case_ = wte(UpperCAmelCase_ ) with torch.no_grad(): model(**UpperCAmelCase_ )[0] def lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = input_dict["""input_ids"""] snake_case_ = input_ids.ne(1 ).to(UpperCAmelCase_ ) snake_case_ = MaMaaaForConditionalGeneration(UpperCAmelCase_ ).eval().to(UpperCAmelCase_ ) if torch_device == "cuda": model.half() model.generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) model.generate(num_beams=4 , do_sample=UpperCAmelCase_ , early_stopping=UpperCAmelCase_ , num_return_sequences=3 ) def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Tuple = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __A (unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def lowerCAmelCase ( self : str ) ->Any: """simple docstring""" snake_case_ = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(UpperCAmelCase_ ) snake_case_ = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) snake_case_ = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) snake_case_ = prepare_mam_aaa_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ )[0] snake_case_ = torch.Size((1, 11, 1_024) ) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here snake_case_ = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=UpperCAmelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" snake_case_ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(UpperCAmelCase_ ) # change to intended input snake_case_ = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) snake_case_ = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) snake_case_ = prepare_mam_aaa_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ )[0] snake_case_ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here snake_case_ = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=UpperCAmelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(UpperCAmelCase_ ) snake_case_ = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) snake_case_ = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case_ = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors="""pt""" ) snake_case_ = model.generate( input_ids=dct["""input_ids"""].to(UpperCAmelCase_ ) , attention_mask=dct["""attention_mask"""].to(UpperCAmelCase_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) snake_case_ = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] snake_case_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) assert generated == expected_en
233
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __magic_name__( lowerCamelCase): monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set()) @pytest.fixture def __magic_name__( lowerCamelCase): class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = metric_id class a__ : """simple docstring""" __UpperCamelCase : Optional[Any] = [MetricMock(__A ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def _snake_case (self ): return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock()) @pytest.mark.parametrize( '''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))]) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): if "tmp_path" in args: __lowerCAmelCase = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args) with pytest.warns(A__, match='''https://huggingface.co/docs/evaluate'''): func(*A__)
174
"""simple docstring""" import os def snake_case ( ): with open(os.path.dirname(A__ ) + "/grid.txt" ) as f: UpperCAmelCase_ : Any = [] # noqa: E741 for _ in range(20 ): l.append([int(A__ ) for x in f.readline().split()] ) UpperCAmelCase_ : Any = 0 # right for i in range(20 ): for j in range(17 ): UpperCAmelCase_ : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: UpperCAmelCase_ : Any = temp # down for i in range(17 ): for j in range(20 ): UpperCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: UpperCAmelCase_ : Tuple = temp # diagonal 1 for i in range(17 ): for j in range(17 ): UpperCAmelCase_ : str = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: UpperCAmelCase_ : List[str] = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): UpperCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: UpperCAmelCase_ : List[str] = temp return maximum if __name__ == "__main__": print(solution())
268
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): return EnvironmentCommand() class UpperCAmelCase__ ( A_ ): """simple docstring""" @staticmethod def _a ( A_ ) -> Dict: __UpperCamelCase =parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =huggingface_hub.__version__ __UpperCamelCase ='not installed' __UpperCamelCase ='NA' if is_torch_available(): import torch __UpperCamelCase =torch.__version__ __UpperCamelCase =torch.cuda.is_available() __UpperCamelCase ='not installed' if is_transformers_available(): import transformers __UpperCamelCase =transformers.__version__ __UpperCamelCase ='not installed' if is_accelerate_available(): import accelerate __UpperCamelCase =accelerate.__version__ __UpperCamelCase ='not installed' if is_xformers_available(): import xformers __UpperCamelCase =xformers.__version__ __UpperCamelCase ={ '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f'{pt_version} ({pt_cuda_available})', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def _a ( A_ ) -> str: return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
358
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): if b == 0: return (1, 0) ((__UpperCamelCase) , (__UpperCamelCase)) =extended_euclid(SCREAMING_SNAKE_CASE__ , a % b ) __UpperCamelCase =a // b return (y, x - k * y) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): ((__UpperCamelCase) , (__UpperCamelCase)) =extended_euclid(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =na * na __UpperCamelCase =ra * x * na + ra * y * na return (n % m + m) % m def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): ((__UpperCamelCase) , (__UpperCamelCase)) =extended_euclid(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if b < 0: __UpperCamelCase =(b % n + n) % n return b def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase , __UpperCamelCase =invert_modulo(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), invert_modulo(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =na * na __UpperCamelCase =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
117
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging A: Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : str = ['input_features', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=16000 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=25 , _SCREAMING_SNAKE_CASE="hamming_window" , _SCREAMING_SNAKE_CASE=3_2768.0 , _SCREAMING_SNAKE_CASE=0.97 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = feature_size UpperCAmelCase : str = sampling_rate UpperCAmelCase : List[str] = padding_value UpperCAmelCase : Dict = hop_length UpperCAmelCase : str = win_length UpperCAmelCase : int = frame_signal_scale UpperCAmelCase : Tuple = preemphasis_coeff UpperCAmelCase : Any = mel_floor UpperCAmelCase : Optional[int] = normalize_means UpperCAmelCase : Union[str, Any] = normalize_vars UpperCAmelCase : Optional[int] = win_function UpperCAmelCase : Optional[int] = return_attention_mask UpperCAmelCase : Optional[Any] = win_length * sampling_rate // 1000 UpperCAmelCase : List[Any] = hop_length * sampling_rate // 1000 UpperCAmelCase : Optional[int] = optimal_fft_length(self.sample_size ) UpperCAmelCase : List[Any] = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": UpperCAmelCase : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Any = window_function(window_length=self.sample_size , name=self.win_function ) UpperCAmelCase : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCAmelCase : Optional[int] = spectrogram( one_waveform * self.frame_signal_scale , window=_SCREAMING_SNAKE_CASE , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_SCREAMING_SNAKE_CASE , preemphasis=self.preemphasis_coeff , mel_filters=_SCREAMING_SNAKE_CASE , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' if self.normalize_means: UpperCAmelCase : str = x[:input_length].mean(axis=0 ) UpperCAmelCase : Optional[int] = np.subtract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.normalize_vars: UpperCAmelCase : Any = x[:input_length].std(axis=0 ) UpperCAmelCase : List[str] = np.divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: UpperCAmelCase : Dict = padding_value # make sure array is in float32 UpperCAmelCase : Dict = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]: '''simple docstring''' UpperCAmelCase : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.padding_value ) for x, n in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCAmelCase : List[str] = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) UpperCAmelCase : Any = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase : str = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCAmelCase : List[Any] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase : Union[str, Any] = [raw_speech] # extract fbank features UpperCAmelCase : Optional[int] = [self._extract_mfsc_features(_SCREAMING_SNAKE_CASE ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase : Optional[Any] = BatchFeature({"""input_features""": features} ) UpperCAmelCase : List[Any] = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # make sure list is in array format UpperCAmelCase : Union[str, Any] = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] UpperCAmelCase : Union[str, Any] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: UpperCAmelCase : Optional[Any] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase : Union[str, Any] = ( np.array(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase : Any = self.normalize( padded_inputs["""input_features"""] , attention_mask=_SCREAMING_SNAKE_CASE ) if return_tensors is not None: UpperCAmelCase : Optional[Any] = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs
109
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : List[str] = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''pix2struct_text_model''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , __SCREAMING_SNAKE_CASE=5_02_44 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=20_48 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=1_28 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1E-6 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : Optional[Any] = d_kv lowercase_ : List[str] = d_ff lowercase_ : List[str] = num_layers lowercase_ : Optional[Any] = num_heads lowercase_ : Union[str, Any] = relative_attention_num_buckets lowercase_ : Optional[int] = relative_attention_max_distance lowercase_ : Union[str, Any] = dropout_rate lowercase_ : Dict = layer_norm_epsilon lowercase_ : Dict = initializer_factor lowercase_ : List[Any] = use_cache lowercase_ : Optional[int] = eos_token_id lowercase_ : Optional[int] = decoder_start_token_id # for backwards compatibility lowercase_ : Any = dense_act_fn super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , tie_word_embeddings=__SCREAMING_SNAKE_CASE , is_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Optional[int] = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase_ : List[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''pix2struct_vision_model''' def __init__( self , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=20_48 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=1E-6 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=1E-1_0 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=40_96 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=1_28 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = hidden_size lowercase_ : Any = patch_embed_hidden_size lowercase_ : List[Any] = d_ff lowercase_ : Dict = dropout_rate lowercase_ : Any = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : int = initializer_range lowercase_ : Dict = initializer_factor lowercase_ : Dict = attention_dropout lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : str = dense_act_fn lowercase_ : Dict = seq_len lowercase_ : List[Any] = relative_attention_num_buckets lowercase_ : int = relative_attention_max_distance lowercase_ : Optional[int] = d_kv @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : str = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase_ : Optional[int] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''pix2struct''' lowerCAmelCase_ = True def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(tie_word_embeddings=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text_config is None: lowercase_ : Optional[Any] = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: lowercase_ : Dict = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) lowercase_ : str = PixaStructTextConfig(**__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = PixaStructVisionConfig(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = self.text_config.decoder_start_token_id lowercase_ : Union[str, Any] = self.text_config.pad_token_id lowercase_ : Union[str, Any] = self.text_config.eos_token_id lowercase_ : int = initializer_factor lowercase_ : Any = initializer_range lowercase_ : str = self.initializer_range lowercase_ : str = self.initializer_range lowercase_ : int = is_vqa @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = copy.deepcopy(self.__dict__ ) lowercase_ : Any = self.text_config.to_dict() lowercase_ : Optional[Any] = self.vision_config.to_dict() lowercase_ : Optional[int] = self.__class__.model_type return output
93
0
'''simple docstring''' import numpy as np def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return 1 / (1 + np.exp(-vector )) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_SCREAMING_SNAKE_CASE , max_perimeter + 1 ): _snake_case = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_SCREAMING_SNAKE_CASE ): _snake_case = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 1000 ): _snake_case = pythagorean_triple(_SCREAMING_SNAKE_CASE ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
270
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase__ ( _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Any = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE : str = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } SCREAMING_SNAKE_CASE : Union[str, Any] = f"{src_lang}-{tgt_lang}" SCREAMING_SNAKE_CASE : Any = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=_a , exist_ok=_a) SCREAMING_SNAKE_CASE : Tuple = os.path.join(_a , "README.md") print(f"Generating {path}") with open(_a , "w" , encoding="utf-8") as f: f.write(_a) # make sure we are under the root of the project a_ = Path(__file__).resolve().parent.parent.parent a_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
76
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Any = tokenizer(example["content"] , truncation=_a)["input_ids"] SCREAMING_SNAKE_CASE : Dict = len(example["content"]) / len(output["input_ids"]) return output a_ = HfArgumentParser(PretokenizationArguments) a_ = parser.parse_args() if args.num_workers is None: a_ = multiprocessing.cpu_count() a_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) a_ = time.time() a_ = load_dataset(args.dataset_name, split='train') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') a_ = time.time() a_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') a_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
76
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 UpperCAmelCase_ : int = update_area_of_max_square(_SCREAMING_SNAKE_CASE , col + 1 ) UpperCAmelCase_ : List[Any] = update_area_of_max_square(row + 1 , col + 1 ) UpperCAmelCase_ : Union[str, Any] = update_area_of_max_square(row + 1 , _SCREAMING_SNAKE_CASE ) if mat[row][col]: UpperCAmelCase_ : List[str] = 1 + min([right, diagonal, down] ) UpperCAmelCase_ : Dict = max(largest_square_area[0] , _SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 UpperCAmelCase_ : List[Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] UpperCAmelCase_ : List[str] = update_area_of_max_square_using_dp_array(_SCREAMING_SNAKE_CASE , col + 1 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if mat[row][col]: UpperCAmelCase_ : Any = 1 + min([right, diagonal, down] ) UpperCAmelCase_ : int = max(largest_square_area[0] , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = sub_problem_sol return sub_problem_sol else: return 0 UpperCAmelCase_ : Any = [0] UpperCAmelCase_ : Optional[Any] = [[-1] * cols for _ in range(_SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , _SCREAMING_SNAKE_CASE ) return largest_square_area[0] def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" UpperCAmelCase_ : int = [[0] * (cols + 1) for _ in range(rows + 1 )] UpperCAmelCase_ : Union[str, Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase_ : Union[str, Any] = dp_array[row][col + 1] UpperCAmelCase_ : str = dp_array[row + 1][col + 1] UpperCAmelCase_ : Dict = dp_array[row + 1][col] if mat[row][col] == 1: UpperCAmelCase_ : Union[str, Any] = 1 + min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = max(dp_array[row][col] , _SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Union[str, Any] = 0 return largest_square_area def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" UpperCAmelCase_ : str = [0] * (cols + 1) UpperCAmelCase_ : List[str] = [0] * (cols + 1) UpperCAmelCase_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase_ : Optional[Any] = current_row[col + 1] UpperCAmelCase_ : Tuple = next_row[col + 1] UpperCAmelCase_ : List[Any] = next_row[col] if mat[row][col] == 1: UpperCAmelCase_ : List[str] = 1 + min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = max(current_row[col] , _SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[int] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
67
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __lowerCAmelCase ( a ): """simple docstring""" def lowerCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" snake_case_ = SMALL_MODEL_IDENTIFIER snake_case_ = "pt" snake_case_ = "tf" def lowerCAmelCase__ ( self : str , _lowerCAmelCase : int ) -> Tuple: """simple docstring""" snake_case_ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self : str , _lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" snake_case_ = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self : Dict ) -> int: """simple docstring""" snake_case_ = "mock_framework" # Framework provided - return whatever the user provides snake_case_ = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) snake_case_ = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) snake_case_ = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) snake_case_ = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) snake_case_ = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): snake_case_ = FeaturesManager.determine_framework(_lowerCAmelCase ) def lowerCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case_ = MagicMock(return_value=_lowerCAmelCase ) with patch("transformers.onnx.features.is_tf_available" , _lowerCAmelCase ): snake_case_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow snake_case_ = MagicMock(return_value=_lowerCAmelCase ) with patch("transformers.onnx.features.is_torch_available" , _lowerCAmelCase ): snake_case_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch snake_case_ = MagicMock(return_value=_lowerCAmelCase ) snake_case_ = MagicMock(return_value=_lowerCAmelCase ) with patch("transformers.onnx.features.is_tf_available" , _lowerCAmelCase ), patch( "transformers.onnx.features.is_torch_available" , _lowerCAmelCase ): snake_case_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error snake_case_ = MagicMock(return_value=_lowerCAmelCase ) snake_case_ = MagicMock(return_value=_lowerCAmelCase ) with patch("transformers.onnx.features.is_tf_available" , _lowerCAmelCase ), patch( "transformers.onnx.features.is_torch_available" , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): snake_case_ = FeaturesManager.determine_framework(self.test_model )
159
def _lowerCAmelCase ( lowerCAmelCase_ :int | float | str )->tuple[int, int]: '''simple docstring''' try: snake_case_ = float(lowerCAmelCase_ ) except ValueError: raise ValueError("Please enter a valid number" ) snake_case_ = decimal - int(lowerCAmelCase_ ) if fractional_part == 0: return int(lowerCAmelCase_ ), 1 else: snake_case_ = len(str(lowerCAmelCase_ ).split("." )[1] ) snake_case_ = int(decimal * (10**number_of_frac_digits) ) snake_case_ = 10**number_of_frac_digits snake_case_ , snake_case_ = denominator, numerator while True: snake_case_ = dividend % divisor if remainder == 0: break snake_case_ , snake_case_ = divisor, remainder snake_case_ , snake_case_ = numerator / divisor, denominator / divisor return int(lowerCAmelCase_ ), int(lowerCAmelCase_ ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction('67') = }''') print(F'''{decimal_to_fraction('45.0') = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction('6.25') = }''') print(F'''{decimal_to_fraction('78td') = }''')
159
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _SCREAMING_SNAKE_CASE = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Any: snake_case = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) snake_case = self.transformer_dir shutil.copy( os.path.join(__snake_case , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def lowerCAmelCase ( self : Optional[Any] )-> str: snake_case = """src/transformers""" shutil.rmtree(self.transformer_dir ) def lowerCAmelCase ( self : Any , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Tuple=None )-> Optional[int]: snake_case = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: snake_case = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result snake_case = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) snake_case = black.format_str(__snake_case , mode=__snake_case ) snake_case = os.path.join(self.transformer_dir , """new_code.py""" ) with open(__snake_case , """w""" , newline="""\n""" ) as f: f.write(__snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__snake_case ) with open(__snake_case , """r""" ) as f: self.assertTrue(f.read() , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: snake_case = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> Optional[int]: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , __snake_case , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , __snake_case ) , ) # Copy consistency with a really long name snake_case = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , __snake_case , __snake_case ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , __snake_case , overwrite_result=re.sub("""Bert""" , """TestModel""" , __snake_case ) , ) def lowerCAmelCase ( self : List[str] )-> Tuple: snake_case = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) snake_case , snake_case = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) self.assertFalse(__snake_case ) self.assertEqual(__snake_case , __snake_case ) snake_case , snake_case = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__snake_case ) snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case , snake_case = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(__snake_case , __snake_case )
350
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = (DDPMParallelScheduler,) def A (self : List[Any] , **_lowerCAmelCase : List[Any] ): A = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**snake_case_ ) return config def A (self : str ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def A (self : List[Any] ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def A (self : int ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case_ ) def A (self : Any ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case_ ) def A (self : Tuple ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case_ ) def A (self : str ): self.check_over_configs(thresholding=snake_case_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , ) def A (self : Dict ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def A (self : List[str] ): for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case_ ) def A (self : List[str] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def A (self : List[Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = len(snake_case_ ) A = self.dummy_model() A = self.dummy_sample_deter A = self.dummy_sample_deter + 0.1 A = self.dummy_sample_deter - 0.1 A = samplea.shape[0] A = torch.stack([samplea, samplea, samplea] , dim=0 ) A = torch.arange(snake_case_ )[0:3, None].repeat(1 , snake_case_ ) A = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) A = scheduler.batch_step_no_noise(snake_case_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) A = torch.sum(torch.abs(snake_case_ ) ) A = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5_005 ) < 1e-3 def A (self : Any ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = len(snake_case_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual A = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(snake_case_ ) ) A = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def A (self : Any ): A = self.scheduler_classes[0] A = self.get_scheduler_config(prediction_type="""v_prediction""" ) A = scheduler_class(**snake_case_ ) A = len(snake_case_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual A = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(snake_case_ ) ) A = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def A (self : Dict ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case_ ) A = scheduler.timesteps for i, timestep in enumerate(snake_case_ ): if i == len(snake_case_ ) - 1: A = -1 else: A = timesteps[i + 1] A = scheduler.previous_timestep(snake_case_ ) A = prev_t.item() self.assertEqual(snake_case_ , snake_case_ ) def A (self : List[Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = [100, 87, 50, 51, 0] with self.assertRaises(snake_case_ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=snake_case_ ) def A (self : List[Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = [100, 87, 50, 1, 0] A = len(snake_case_ ) with self.assertRaises(snake_case_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def A (self : Union[str, Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=snake_case_ )
258
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
0
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A : List[str] = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a , __a=None , __a=1 ): __lowerCAmelCase = tokenizer __lowerCAmelCase = dataset __lowerCAmelCase = len(_lowerCAmelCase ) if n_tasks is None else n_tasks __lowerCAmelCase = n_copies def __iter__( self ): __lowerCAmelCase = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) __lowerCAmelCase = self.tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a , __a ): __lowerCAmelCase = start_length __lowerCAmelCase = eof_strings __lowerCAmelCase = tokenizer def __call__( self , __a , __a , **__a ): __lowerCAmelCase = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __lowerCAmelCase = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_lowerCAmelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = re.split("(%s)" % "|".join(_lowerCAmelCase ) , _lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=20 , **_UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = defaultdict(_lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCAmelCase ) ): with torch.no_grad(): __lowerCAmelCase = batch["ids"].shape[-1] __lowerCAmelCase = accelerator.unwrap_model(_lowerCAmelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCAmelCase , **_lowerCAmelCase ) # each task is generated batch_size times __lowerCAmelCase = batch["task_id"].repeat(_lowerCAmelCase ) __lowerCAmelCase = accelerator.pad_across_processes( _lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather((generated_tokens, generated_tasks) ) __lowerCAmelCase = generated_tokens.cpu().numpy() __lowerCAmelCase = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCAmelCase , _lowerCAmelCase ): gen_token_dict[task].append(_lowerCAmelCase ) __lowerCAmelCase = [[] for _ in range(_lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __lowerCAmelCase = tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) code_gens[task].append(remove_last_block(_lowerCAmelCase ) ) return code_gens def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = HfArgumentParser(_lowerCAmelCase ) __lowerCAmelCase = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __lowerCAmelCase = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __lowerCAmelCase = "false" if args.num_workers is None: __lowerCAmelCase = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __lowerCAmelCase = Accelerator() set_seed(args.seed , device_specific=_lowerCAmelCase ) # Load model and tokenizer __lowerCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) __lowerCAmelCase = tokenizer.eos_token __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __lowerCAmelCase = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCAmelCase , _lowerCAmelCase )] ), } # Load evaluation dataset and metric __lowerCAmelCase = load_dataset("openai_humaneval" ) __lowerCAmelCase = load_metric("code_eval" ) __lowerCAmelCase = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) __lowerCAmelCase = args.n_samples // args.batch_size __lowerCAmelCase = TokenizedDataset(_lowerCAmelCase , human_eval["test"] , n_copies=_lowerCAmelCase , n_tasks=_lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences __lowerCAmelCase = DataLoader(_lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __lowerCAmelCase = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = complete_code( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , n_tasks=_lowerCAmelCase , batch_size=args.batch_size , **_lowerCAmelCase , ) if accelerator.is_main_process: __lowerCAmelCase = [] for task in tqdm(range(_lowerCAmelCase ) ): __lowerCAmelCase = human_eval["test"][task]["test"] __lowerCAmelCase = f"check({human_eval['test'][task]['entry_point']})" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric __lowerCAmelCase , __lowerCAmelCase = code_eval_metric.compute( references=_lowerCAmelCase , predictions=_lowerCAmelCase , num_workers=args.num_workers ) print(f"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
354
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = "cpu" , _UpperCamelCase = None ): '''simple docstring''' __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_UpperCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) __lowerCAmelCase = v.half() if save_path is None: # overwrite src_path __lowerCAmelCase = src_path torch.save(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": fire.Fire(convert)
259
0
import os def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = os.path.dirname(os.path.realpath(A__ ) ) __lowerCamelCase = os.path.join(A__ , """triangle.txt""" ) with open(A__ ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = [] for line in triangle: __lowerCamelCase = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(A__ ) ) a.append(A__ ) for i in range(1 , len(A__ ) ): for j in range(len(a[i] ) ): __lowerCamelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCamelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(A__ , A__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
12
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a_ : Dict = logging.get_logger(__name__) class snake_case ( lowercase ): """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" super().__init__() lowerCamelCase_ = nn.ModuleList(UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(UpperCamelCase , UpperCamelCase , self.nets ) ): lowerCamelCase_ ,lowerCamelCase_ = controlnet( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) # merge samples if i == 0: lowerCamelCase_ ,lowerCamelCase_ = down_samples, mid_sample else: lowerCamelCase_ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCamelCase , UpperCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def snake_case ( self , UpperCamelCase , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = None , ): """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCamelCase , is_main_process=UpperCamelCase , save_function=UpperCamelCase , safe_serialization=UpperCamelCase , variant=UpperCamelCase , ) idx += 1 lowerCamelCase_ = model_path_to_save + f'''_{idx}''' @classmethod def snake_case ( cls , UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCamelCase_ = pretrained_model_path while os.path.isdir(UpperCamelCase ): lowerCamelCase_ = ControlNetModel.from_pretrained(UpperCamelCase , **UpperCamelCase ) controlnets.append(UpperCamelCase ) idx += 1 lowerCamelCase_ = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(UpperCamelCase )} controlnets loaded from {pretrained_model_path}.''' ) if len(UpperCamelCase ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(UpperCamelCase )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(UpperCamelCase )
55
0
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowercase : Tuple = logging.getLogger(__name__) def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : Any =argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=__lowerCamelCase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=__lowerCamelCase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=__lowerCamelCase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=__lowerCamelCase , default=1000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=__lowerCamelCase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=__lowerCamelCase , type=__lowerCamelCase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=__lowerCamelCase , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=__lowerCamelCase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) lowerCamelCase__ : Optional[Any] =parser.parse_args() return args def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" def fn(__lowerCamelCase : Optional[Any] ): return tokenizer(examples['''text'''] ) return fn def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =[] for i in range(len(tokenized_data['''input_ids'''] ) ): lowerCamelCase__ : int ={ '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } lowerCamelCase__ : Dict =tf.train.Features(feature=__lowerCamelCase ) lowerCamelCase__ : Optional[int] =tf.train.Example(features=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =example.SerializeToString() records.append(__lowerCamelCase ) return records def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCamelCase__ : Tuple =min(len(__lowerCamelCase ) , args.limit ) lowerCamelCase__ : List[str] =dataset.select(range(__lowerCamelCase ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) lowerCamelCase__ : Dict =AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCamelCase__ : Dict =os.path.join(args.output_dir , args.split ) if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) else: lowerCamelCase__ : Union[str, Any] =os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCamelCase__ : Optional[int] =tokenize_function(__lowerCamelCase ) lowerCamelCase__ : int =dataset.map(__lowerCamelCase , batched=__lowerCamelCase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__lowerCamelCase : List[str] ): # Concatenate all texts. lowerCamelCase__ : Any ={k: sum(examples[k] , [] ) for k in examples.keys()} lowerCamelCase__ : List[Any] =len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCamelCase__ : Any =(total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCamelCase__ : Dict ={ k: [t[i : i + args.max_length] for i in range(0 , __lowerCamelCase , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCamelCase__ : List[str] =dataset_tokenized.map(__lowerCamelCase , batched=__lowerCamelCase , batch_size=1000 , num_proc=4 ) lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[Any] =0 for shard in range(0 , len(__lowerCamelCase ) , args.shard_size ): lowerCamelCase__ : str =grouped_dataset[shard : shard + args.shard_size] lowerCamelCase__ : Tuple =len(dataset_snapshot['''input_ids'''] ) lowerCamelCase__ : Optional[int] =os.path.join(__lowerCamelCase , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) lowerCamelCase__ : str =get_serialized_examples(__lowerCamelCase ) with tf.io.TFRecordWriter(__lowerCamelCase ) as out_file: for i in range(len(__lowerCamelCase ) ): lowerCamelCase__ : Optional[int] =serialized_examples[i] out_file.write(__lowerCamelCase ) print('''Wrote file {} containing {} records'''.format(__lowerCamelCase , __lowerCamelCase ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , '''w''' ) as f: print(f'''Total {args.split} records: {total_records}''' , file=__lowerCamelCase ) if __name__ == "__main__": _lowercase : Optional[Any] = parse_args() main(args)
272
"""simple docstring""" from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase_ ): '''simple docstring''' _a = ['torch', 'torchsde'] def __init__( self : Union[str, Any], *lowerCamelCase : str, **lowerCamelCase : int )-> Tuple: requires_backends(self, ['''torch''', '''torchsde'''] ) @classmethod def snake_case ( cls : List[str], *lowerCamelCase : Optional[Any], **lowerCamelCase : Dict )-> str: requires_backends(cls, ['''torch''', '''torchsde'''] ) @classmethod def snake_case ( cls : Tuple, *lowerCamelCase : Dict, **lowerCamelCase : Tuple )-> List[str]: requires_backends(cls, ['''torch''', '''torchsde'''] )
272
1
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase_ = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? snake_case_ = tmp_path_factory.getbasetemp() / '''cache''' snake_case_ = test_hf_cache_home / '''datasets''' snake_case_ = test_hf_cache_home / '''metrics''' snake_case_ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(SCREAMING_SNAKE_CASE__ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(SCREAMING_SNAKE_CASE__ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE__ ) ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ , scope='''session''' ) def __SCREAMING_SNAKE_CASE (): datasets.disable_progress_bar() @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , SCREAMING_SNAKE_CASE__ )
8
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = AutoConfig.from_pretrained(a__ ) _UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ ) _UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ ) _UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": _UpperCAmelCase = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": _UpperCAmelCase = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_global_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = tax_mlp_layer_norm _UpperCAmelCase = flax_model_encoder_layer_block # Only for layer 0: _UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_global_rel_embedding # Assigning _UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale'] _UpperCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] _UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_pre_attention_layer_norm _UpperCAmelCase = tax_enc_dec_attention_key _UpperCAmelCase = tax_enc_dec_attention_out _UpperCAmelCase = tax_enc_dec_attention_query _UpperCAmelCase = tax_enc_dec_attention_value _UpperCAmelCase = tax_cross_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = txa_mlp_layer_norm _UpperCAmelCase = flax_model_decoder_layer_block # Decoder Normalization _UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale'] _UpperCAmelCase = txa_decoder_norm # Only for layer 0: _UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_decoder_rel_embedding # Token Embeddings _UpperCAmelCase = tax_model['target']['token_embedder']['embedding'] _UpperCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(a__ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowerCAmelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowerCAmelCase__ :List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
329
0
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase = "▁" , _UpperCAmelCase = True , _UpperCAmelCase = "<unk>" , _UpperCAmelCase = "</s>" , _UpperCAmelCase = "<pad>" , ): '''simple docstring''' __A : str = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __A : Any = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): __A : Union[str, Any] = token_dict['token'] __A : Optional[Any] = Tokenizer(Unigram()) __A : Any = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}') , ' '), normalizers.Lowercase(), ]) __A : Dict = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase), pre_tokenizers.Punctuation(), ]) __A : Optional[Any] = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase) __A : List[str] = TemplateProcessing( single=F'$A {self.special_tokens["eos"]["token"]}' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __A : Dict = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = 8000 , _UpperCAmelCase = True , ): '''simple docstring''' __A : List[Any] = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase) self.add_unk_id() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = 8000 , _UpperCAmelCase = True , ): '''simple docstring''' __A : List[str] = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase) self.add_unk_id() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = json.loads(self._tokenizer.to_str()) __A : List[Any] = self.special_tokens['unk']['id'] __A : Optional[int] = Tokenizer.from_str(json.dumps(_UpperCAmelCase))
190
'''simple docstring''' import itertools import math def _lowerCAmelCase ( __snake_case : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( ) -> List[Any]: __A : Optional[Any] = 2 while True: if is_prime(__snake_case ): yield num num += 1 def _lowerCAmelCase ( __snake_case : int = 1_00_01 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , __snake_case ) ) if __name__ == "__main__": print(f"""{solution() = }""")
190
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = IFImgaImgSuperResolutionPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _a = PipelineTesterMixin.required_optional_params - {"latents"} def a__ ( self ) -> List[Any]: return self._get_superresolution_dummy_components() def a__ ( self , _a , _a=0 ) -> Any: if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : Tuple = torch.Generator(device=_a ).manual_seed(_a ) _A : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) _A : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a__ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def a__ ( self ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def a__ ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def a__ ( self ) -> Union[str, Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def a__ ( self ) -> List[Any]: self._test_save_load_local() def a__ ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
26
import math def snake_case_ ( lowerCAmelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( lowerCAmelCase_ : int = 10001 ): try: __lowercase : Optional[int] = int(lowerCAmelCase_ ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) __lowercase : list[int] = [] __lowercase : str = 2 while len(lowerCAmelCase_ ) < nth: if is_prime(lowerCAmelCase_ ): primes.append(lowerCAmelCase_ ) num += 1 else: num += 1 return primes[len(lowerCAmelCase_ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
233
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase): __UpperCamelCase = StableDiffusionInstructPixaPixPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def a_ ( self : Optional[int] ) -> str: '''simple docstring''' torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _A = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _A = CLIPTextModel(a__ ) _A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _A = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def a_ ( self : Optional[Any] , a__ : Dict , a__ : Tuple=0 ) -> Union[str, Any]: '''simple docstring''' _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _A = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(a__ ) ).convert("RGB" ) if str(a__ ).startswith("mps" ): _A = torch.manual_seed(a__ ) else: _A = torch.Generator(device=a__ ).manual_seed(a__ ) _A = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def a_ ( self : Dict ) -> str: '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = StableDiffusionInstructPixaPixPipeline(**a__ ) _A = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _A = self.get_dummy_inputs(a__ ) _A = sd_pipe(**a__ ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a_ ( self : str ) -> Optional[int]: '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = StableDiffusionInstructPixaPixPipeline(**a__ ) _A = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _A = self.get_dummy_inputs(a__ ) _A = "french fries" _A = sd_pipe(**a__ , negative_prompt=a__ ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a_ ( self : Optional[int] ) -> int: '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = StableDiffusionInstructPixaPixPipeline(**a__ ) _A = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _A = self.get_dummy_inputs(a__ ) _A = [inputs["prompt"]] * 2 _A = np.array(inputs["image"] ).astype(np.floataa ) / 2_55.0 _A = torch.from_numpy(a__ ).unsqueeze(0 ).to(a__ ) _A = image / 2 + 0.5 _A = image.permute(0 , 3 , 1 , 2 ) _A = image.repeat(2 , 1 , 1 , 1 ) _A = sd_pipe(**a__ ).images _A = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _A = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" ) _A = StableDiffusionInstructPixaPixPipeline(**a__ ) _A = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _A = self.get_dummy_inputs(a__ ) _A = sd_pipe(**a__ ).images _A = image[0, -3:, -3:, -1] _A = [round(a__ , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(a__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _A = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a_ ( self : List[str] ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def a_ ( self : str ) -> Any: '''simple docstring''' _A = self.get_dummy_components() _A = StableDiffusionInstructPixaPixPipeline(**a__ ) _A = VaeImageProcessor(do_resize=a__ , do_normalize=a__ ) _A = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _A = pipe(**self.get_dummy_inputs_by_type(a__ , input_image_type="pt" ) )[0] _A = components["vae"] _A = self.get_dummy_inputs_by_type(a__ , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _A = vae.encode(inputs[image_param] ).latent_dist.mode() _A = pipe(**a__ )[0] _A = np.abs(out - out_latents_inputs ).max() self.assertLess(a__ , 1E-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class snake_case ( unittest.TestCase): def a_ ( self : List[str] ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : Optional[Any] , a__ : str=0 ) -> List[Any]: '''simple docstring''' _A = torch.manual_seed(a__ ) _A = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) _A = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def a_ ( self : List[Any] ) -> Any: '''simple docstring''' _A = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() _A = self.get_inputs() _A = pipe(**a__ ).images _A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) _A = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def a_ ( self : List[Any] ) -> Any: '''simple docstring''' _A = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=a__ ) _A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() _A = self.get_inputs() _A = pipe(**a__ ).images _A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) _A = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' _A = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=a__ ) _A = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() _A = self.get_inputs() _A = pipe(**a__ ).images _A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) _A = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def a_ ( self : Optional[int] ) -> Dict: '''simple docstring''' _A = 0 def callback_fn(a__ : int , a__ : int , a__ : torch.FloatTensor ) -> None: _A = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _A = latents[0, -3:, -3:, -1] _A = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _A = latents[0, -3:, -3:, -1] _A = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _A = False _A = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=a__ , torch_dtype=torch.floataa ) _A = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() _A = self.get_inputs() pipe(**a__ , callback=a__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def a_ ( self : List[Any] ) -> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=a__ , torch_dtype=torch.floataa ) _A = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A = self.get_inputs() _A = pipe(**a__ ) _A = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def a_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _A = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _A = inputs["image"].resize((5_04, 5_04) ) _A = "timbrooks/instruct-pix2pix" _A = StableDiffusionInstructPixaPixPipeline.from_pretrained( a__ , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() _A = pipe(**a__ ) _A = output.images[0] _A = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) _A = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
352
"""simple docstring""" def a__ ( __lowercase , __lowercase ) -> float: _validate_point(__lowercase ) _validate_point(__lowercase ) if len(__lowercase ) != len(__lowercase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(__lowercase , __lowercase ) ) ) def a__ ( __lowercase ) -> None: if point: if isinstance(__lowercase , __lowercase ): for item in point: if not isinstance(__lowercase , (int, float) ): _A = ( "Expected a list of numbers as input, found " f"""{type(__lowercase ).__name__}""" ) raise TypeError(__lowercase ) else: _A = f"""Expected a list of numbers as input, found {type(__lowercase ).__name__}""" raise TypeError(__lowercase ) else: raise ValueError("Missing an input" ) def a__ ( __lowercase , __lowercase ) -> float: _validate_point(__lowercase ) _validate_point(__lowercase ) if len(__lowercase ) != len(__lowercase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(__lowercase , __lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
163
0
def lowerCamelCase__ ( a__ : str ) -> str: UpperCamelCase_ = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCamelCase__ ( a__ : str ) -> dict[str, str]: UpperCamelCase_ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key UpperCamelCase_ = remove_duplicates(key.upper() ) UpperCamelCase_ = len(__UpperCAmelCase ) # First fill cipher with key characters UpperCamelCase_ = {alphabet[i]: char for i, char in enumerate(__UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__UpperCAmelCase ) , 26 ): UpperCamelCase_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCamelCase_ = alphabet[i - offset] UpperCamelCase_ = char return cipher_alphabet def lowerCamelCase__ ( a__ : str , a__ : dict[str, str] ) -> str: return "".join(cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def lowerCamelCase__ ( a__ : str , a__ : dict[str, str] ) -> str: UpperCamelCase_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def lowerCamelCase__ ( ) -> None: UpperCamelCase_ = input("""Enter message to encode or decode: """ ).strip() UpperCamelCase_ = input("""Enter keyword: """ ).strip() UpperCamelCase_ = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: UpperCamelCase_ = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) UpperCamelCase_ = create_cipher_map(__UpperCAmelCase ) print(func(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
122
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
201
0
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : float ) ->float: '''simple docstring''' return 0.0 def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _UpperCAmelCase : str = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = 512 _UpperCAmelCase : str = [1] + [0] * (size - 1) _UpperCAmelCase : int = [filter_type.process(__lowerCAmelCase ) for item in inputs] _UpperCAmelCase : int = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase : Any = np.abs(np.fft.fft(__lowerCAmelCase ) ) _UpperCAmelCase : Any = 20 * np.logaa(__lowerCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _UpperCAmelCase : Tuple = get_bounds(__lowerCAmelCase , __lowerCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCAmelCase ) plt.show() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = 512 _UpperCAmelCase : Union[str, Any] = [1] + [0] * (size - 1) _UpperCAmelCase : Union[str, Any] = [filter_type.process(__lowerCAmelCase ) for item in inputs] _UpperCAmelCase : Tuple = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase : List[Any] = np.angle(np.fft.fft(__lowerCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCAmelCase , -2 * pi ) ) plt.show()
367
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ : List[str] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[int] = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'audio-spectrogram-transformer' def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = patch_size _UpperCamelCase = qkv_bias _UpperCamelCase = frequency_stride _UpperCamelCase = time_stride _UpperCamelCase = max_length _UpperCamelCase = num_mel_bins
324
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( __UpperCAmelCase ): lowercase_ = ['image_processor', 'tokenizer'] lowercase_ = 'ChineseCLIPImageProcessor' lowercase_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> List[str]: lowerCamelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase_ , ) lowerCamelCase : int = kwargs.pop('feature_extractor' ) lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : Tuple = self.image_processor def __call__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> str: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase : Any = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if images is not None: lowerCamelCase : Dict = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and images is not None: lowerCamelCase : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]: return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]: return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[Any] = self.tokenizer.model_input_names lowerCamelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCamelCase ( self ) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , ) return self.image_processor_class
367
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : int = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase : Tuple = key.replace('module.encoder', 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase : str = key.replace('module.decoder', 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase : Any = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase : Dict = key.replace(F"""patch_embed{idx}""", F"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: lowerCamelCase : Optional[int] = key.replace('norm', 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase : List[str] = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase : List[str] = key.replace(F"""layer_norm{idx}""", F"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: lowerCamelCase : List[Any] = key.replace('layer_norm1', 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase : str = key.replace('layer_norm2', 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase : Union[str, Any] = key[key.find('block' ) + len('block' )] lowerCamelCase : List[str] = key.replace(F"""block{idx}""", F"""block.{int(a_ )-1}""" ) if "attn.q" in key: lowerCamelCase : Union[str, Any] = key.replace('attn.q', 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase : Dict = key.replace('attn.proj', 'attention.output.dense' ) if "attn" in key: lowerCamelCase : int = key.replace('attn', 'attention.self' ) if "fc1" in key: lowerCamelCase : Any = key.replace('fc1', 'dense1' ) if "fc2" in key: lowerCamelCase : List[Any] = key.replace('fc2', 'dense2' ) if "linear_pred" in key: lowerCamelCase : Optional[Any] = key.replace('linear_pred', 'classifier' ) if "linear_fuse" in key: lowerCamelCase : Union[str, Any] = key.replace('linear_fuse.conv', 'linear_fuse' ) lowerCamelCase : Optional[int] = key.replace('linear_fuse.bn', 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase : str = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase : List[Any] = key.replace(F"""linear_c{idx}""", F"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: lowerCamelCase : int = key.replace('bot_conv', '0.convolution' ) if "skip_conv1" in key: lowerCamelCase : Any = key.replace('skip_conv1', '1.convolution' ) if "skip_conv2" in key: lowerCamelCase : Optional[Any] = key.replace('skip_conv2', '2.convolution' ) if "fusion1" in key: lowerCamelCase : str = key.replace('fusion1', '1.fusion' ) if "fusion2" in key: lowerCamelCase : Optional[Any] = key.replace('fusion2', '2.fusion' ) if "fusion3" in key: lowerCamelCase : List[str] = key.replace('fusion3', '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase : Optional[int] = key.replace('conv', 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase : Tuple = key.replace('module.last_layer_depth', 'head.head' ) lowerCamelCase : List[Any] = value return new_state_dict def UpperCAmelCase ( a_, a_ ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase : Any = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase : List[Any] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase : List[Any] = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def UpperCAmelCase ( a_, a_, a_=False, a_=None ): '''simple docstring''' lowerCamelCase : int = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase : Any = GLPNImageProcessor() # prepare image lowerCamelCase : int = prepare_img() lowerCamelCase : Tuple = image_processor(images=a_, return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase : Optional[Any] = torch.load(a_, map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase : Any = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict lowerCamelCase : Optional[int] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCamelCase : str = model(a_ ) lowerCamelCase : Any = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase : Any = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: lowerCamelCase : str = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase : int = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization='nielsr', commit_message='Add model', use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization='nielsr', commit_message='Add image processor', use_temp_dir=a_, ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) _A = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
205
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowerCAmelCase = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _lowerCAmelCase = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> List[Any]: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="""http://www.cs.umd.edu/~snover/tercom/""" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" ,id="""sequence""" ) ,id="""references""" ), } ) ,codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] ,reference_urls=[ """https://github.com/jhclark/tercom""", ] ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = False ,__UpperCAmelCase = False ,__UpperCAmelCase = False ,__UpperCAmelCase = False ,) -> Tuple: lowerCAmelCase__ : Union[str, Any] = len(references[0] ) if any(len(__UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowerCAmelCase__ : Tuple = [[refs[i] for refs in references] for i in range(__UpperCAmelCase )] lowerCAmelCase__ : Any = TER( normalized=__UpperCAmelCase ,no_punct=__UpperCAmelCase ,asian_support=__UpperCAmelCase ,case_sensitive=__UpperCAmelCase ,) lowerCAmelCase__ : List[Any] = sb_ter.corpus_score(__UpperCAmelCase ,__UpperCAmelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
37
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _snake_case : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _snake_case : int = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _snake_case : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _snake_case : List[str] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) _snake_case : Any = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _snake_case : Optional[Any] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) _snake_case : int = tf.keras.preprocessing.image.img_to_array(test_image) _snake_case : Tuple = np.expand_dims(test_image, axis=0) _snake_case : Any = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _snake_case : Any = "Normal" if result[0][0] == 1: _snake_case : List[str] = "Abnormality detected"
123
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = UnCLIPImageVariationPipeline UpperCAmelCase_ : Optional[int] = IMAGE_VARIATION_PARAMS - {"""height""", """width""", """guidance_scale"""} UpperCAmelCase_ : Dict = IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ : Dict = [ """generator""", """return_dict""", """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] UpperCAmelCase_ : Any = False @property def UpperCAmelCase_ ( self : Tuple ) -> Dict: return 32 @property def UpperCAmelCase_ ( self : str ) -> Any: return 32 @property def UpperCAmelCase_ ( self : str ) -> Dict: return self.time_input_dim @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: return 100 @property def UpperCAmelCase_ ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCAmelCase_ ( self : Dict ) -> Any: torch.manual_seed(0 ) UpperCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowercase_ ) @property def UpperCAmelCase_ ( self : Dict ) -> int: torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowercase_ ) @property def UpperCAmelCase_ ( self : str ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } UpperCAmelCase : str = UnCLIPTextProjModel(**lowercase_ ) return model @property def UpperCAmelCase_ ( self : str ) -> int: torch.manual_seed(0 ) UpperCAmelCase : int = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } UpperCAmelCase : Optional[Any] = UNetaDConditionModel(**lowercase_ ) return model @property def UpperCAmelCase_ ( self : int ) -> Optional[Any]: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) UpperCAmelCase : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.dummy_decoder UpperCAmelCase : Optional[int] = self.dummy_text_proj UpperCAmelCase : Optional[int] = self.dummy_text_encoder UpperCAmelCase : List[Any] = self.dummy_tokenizer UpperCAmelCase : str = self.dummy_super_res_first UpperCAmelCase : Dict = self.dummy_super_res_last UpperCAmelCase : List[str] = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) UpperCAmelCase : int = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) UpperCAmelCase : Optional[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) UpperCAmelCase : Union[str, Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[str]=0 , lowercase_ : Dict=True ) -> Tuple: UpperCAmelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith('mps' ): UpperCAmelCase : int = torch.manual_seed(lowercase_ ) else: UpperCAmelCase : int = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) if pil_image: UpperCAmelCase : List[str] = input_image * 0.5 + 0.5 UpperCAmelCase : Any = input_image.clamp(0 , 1 ) UpperCAmelCase : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase : List[Any] = DiffusionPipeline.numpy_to_pil(lowercase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Dict = 'cpu' UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : List[str] = self.pipeline_class(**lowercase_ ) UpperCAmelCase : List[Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : int = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : List[Any] = pipe(**lowercase_ ) UpperCAmelCase : Union[str, Any] = output.images UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : int = pipe( **lowercase_ , return_dict=lowercase_ , )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[Any] = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: UpperCAmelCase : str = 'cpu' UpperCAmelCase : str = self.get_dummy_components() UpperCAmelCase : Dict = self.pipeline_class(**lowercase_ ) UpperCAmelCase : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : str = pipe(**lowercase_ ) UpperCAmelCase : List[Any] = output.images UpperCAmelCase : Dict = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : int = pipe( **lowercase_ , return_dict=lowercase_ , )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : str = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : int ) -> Any: UpperCAmelCase : List[str] = 'cpu' UpperCAmelCase : Dict = self.get_dummy_components() UpperCAmelCase : int = self.pipeline_class(**lowercase_ ) UpperCAmelCase : str = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : int = [ pipeline_inputs['image'], pipeline_inputs['image'], ] UpperCAmelCase : List[str] = pipe(**lowercase_ ) UpperCAmelCase : Tuple = output.images UpperCAmelCase : Tuple = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : List[str] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] UpperCAmelCase : str = pipe( **lowercase_ , return_dict=lowercase_ , )[0] UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) UpperCAmelCase : Dict = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Tuple ) -> int: UpperCAmelCase : List[Any] = torch.device('cpu' ) class A_ : '''simple docstring''' UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase : Optional[int] = self.get_dummy_components() UpperCAmelCase : Union[str, Any] = self.pipeline_class(**lowercase_ ) UpperCAmelCase : Optional[Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[Any] = torch.Generator(device=lowercase_ ).manual_seed(0 ) UpperCAmelCase : Tuple = pipe.decoder.dtype UpperCAmelCase : str = 1 UpperCAmelCase : List[str] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) UpperCAmelCase : Union[str, Any] = pipe.prepare_latents( lowercase_ , dtype=lowercase_ , device=lowercase_ , generator=lowercase_ , latents=lowercase_ , scheduler=DummyScheduler() ) UpperCAmelCase : List[Any] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) UpperCAmelCase : Optional[int] = pipe.prepare_latents( lowercase_ , dtype=lowercase_ , device=lowercase_ , generator=lowercase_ , latents=lowercase_ , scheduler=DummyScheduler() ) UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : Union[str, Any] = pipe( **lowercase_ , decoder_latents=lowercase_ , super_res_latents=lowercase_ ).images UpperCAmelCase : int = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) # Don't pass image, instead pass embedding UpperCAmelCase : Optional[int] = pipeline_inputs.pop('image' ) UpperCAmelCase : List[str] = pipe.image_encoder(lowercase_ ).image_embeds UpperCAmelCase : List[str] = pipe( **lowercase_ , decoder_latents=lowercase_ , super_res_latents=lowercase_ , image_embeddings=lowercase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase : Any = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor UpperCAmelCase : Optional[Any] = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , expected_max_diff=lowercase_ ) @skip_mps def UpperCAmelCase_ ( self : Any ) -> List[Any]: UpperCAmelCase : Optional[int] = torch_device == 'cpu' UpperCAmelCase : str = True UpperCAmelCase : List[str] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , additional_params_copy_to_batched_inputs=lowercase_ , ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes UpperCAmelCase : int = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowercase_ , additional_params_copy_to_batched_inputs=lowercase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowercase_ ) @skip_mps def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: return super().test_save_load_local() @skip_mps def UpperCAmelCase_ ( self : str ) -> List[Any]: return super().test_save_load_optional_components() @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) UpperCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) UpperCAmelCase : Optional[int] = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) UpperCAmelCase : Any = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Any = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase : str = pipeline( lowercase_ , generator=lowercase_ , output_type='np' , ) UpperCAmelCase : int = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ , 15 )
280
'''simple docstring''' # Lint as: python3 import itertools import os import re lowercase__ = re.compile(r"([A-Z]+)([A-Z][a-z])") lowercase__ = re.compile(r"([a-z\d])([A-Z])") lowercase__ = re.compile(r"(?<!_)_(?!_)") lowercase__ = re.compile(r"(_{2,})") lowercase__ = r"^\w+(\.\w+)*$" lowercase__ = r"<>:/\|?*" def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _uppercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) UpperCAmelCase : str = _lowercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) return name.lower() def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _single_underscore_re.split(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = [_multiple_underscores_re.split(UpperCAmelCase_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCAmelCase_ ) if n != '' ) def UpperCamelCase( UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , UpperCAmelCase_ ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(UpperCAmelCase_ )}-{split}""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): UpperCAmelCase : Dict = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) if filetype_suffix: prefix += F""".{filetype_suffix}""" UpperCAmelCase : Optional[int] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) return F"""{filepath}*""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None ): UpperCAmelCase : Optional[int] = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if shard_lengths: UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) UpperCAmelCase : List[str] = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(UpperCAmelCase_ )] if filetype_suffix: UpperCAmelCase : Dict = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: UpperCAmelCase : Optional[Any] = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
280
1
def A ( _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Any = len(snake_case__ ) for i in range(n - 1 ): for j in range(i + 1 , snake_case__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def A ( _lowercase ): if len(snake_case__ ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE : Any = len(snake_case__ ) // 2 SCREAMING_SNAKE_CASE : List[Any] = arr[0:mid] SCREAMING_SNAKE_CASE : Union[str, Any] = arr[mid:] SCREAMING_SNAKE_CASE : List[str] = count_inversions_recursive(snake_case__ ) SCREAMING_SNAKE_CASE : Dict = count_inversions_recursive(snake_case__ ) SCREAMING_SNAKE_CASE : Dict = _count_cross_inversions(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE : Optional[int] = inversion_p + inversions_q + cross_inversions return c, num_inversions def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Optional[Any] = 0 while i < len(snake_case__ ) and j < len(snake_case__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(snake_case__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(snake_case__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def A ( ): SCREAMING_SNAKE_CASE : Tuple = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE : List[Any] = count_inversions_bf(snake_case__ ) SCREAMING_SNAKE_CASE : int = count_inversions_recursive(snake_case__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , snake_case__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE : Tuple = count_inversions_bf(snake_case__ ) SCREAMING_SNAKE_CASE : Optional[int] = count_inversions_recursive(snake_case__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , snake_case__ ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : List[Any] = count_inversions_bf(snake_case__ ) SCREAMING_SNAKE_CASE : Optional[int] = count_inversions_recursive(snake_case__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , snake_case__ ) if __name__ == "__main__": main()
182
'''simple docstring''' class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Any = None A : Optional[Any] = None A : Tuple = graph self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Dict = len(SCREAMING_SNAKE_CASE ) A : Optional[Any] = None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if sources is int: A : Dict = [sources] if sinks is int: A : str = [sinks] if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0: return A : Optional[int] = sources[0] A : Union[str, Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1: A : Optional[int] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A : Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A : Dict = max_input_flow A : Tuple = 0 A : Tuple = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A : Optional[Any] = max_input_flow A : Optional[Any] = size - 1 def __lowerCAmelCase ( self ) -> Any: """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" A : List[Any] = algorithm(self ) class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" A : Union[str, Any] = flow_network A : Optional[Any] = flow_network.verticesCount A : Tuple = flow_network.sourceIndex A : Dict = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A : str = flow_network.graph A : Optional[Any] = False def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" if not self.executed: self._algorithm() A : Optional[int] = True def __lowerCAmelCase ( self ) -> Any: """simple docstring""" pass class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE ) # use this to save your result A : List[str] = -1 def __lowerCAmelCase ( self ) -> str: """simple docstring""" if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE ) A : Optional[Any] = [[0] * self.verticies_count for i in range(self.verticies_count )] A : Union[str, Any] = [0] * self.verticies_count A : List[Any] = [0] * self.verticies_count def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Tuple = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A : Optional[Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A : Union[str, Any] = 0 while i < len(SCREAMING_SNAKE_CASE ): A : str = vertices_list[i] A : List[str] = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) ) A : int = 0 else: i += 1 A : Optional[Any] = sum(self.preflow[self.source_index] ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.relabel(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" A : Dict = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Dict = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A : Dict = self.heights[to_index] if min_height is not None: A : Dict = min_height + 1 if __name__ == "__main__": lowercase : Optional[int] = [0] lowercase : List[Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowercase : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowercase : List[str] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowercase : List[str] = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
3
0
"""simple docstring""" lowerCamelCase__ = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
357
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase__ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") lowerCamelCase__ = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: lowerCamelCase__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: lowerCamelCase__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
310
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): _snake_case : Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False _snake_case : Optional[Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
64
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int=1_3 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : str=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Any=2_2_4 , _lowerCAmelCase : Any=1_0_0_0 , _lowerCAmelCase : Any=[3, 3, 6, 4] , _lowerCAmelCase : Any=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> List[Any]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = num_labels snake_case_ = image_size snake_case_ = layer_depths snake_case_ = embed_dims def lowerCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1e-5 , ) def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" snake_case_ = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : int ) -> List[Any]: """simple docstring""" snake_case_ = self.num_labels snake_case_ = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case_ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) snake_case_ = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : int ) -> Any: """simple docstring""" ((snake_case_) , (snake_case_) , (snake_case_)) = self.prepare_config_and_inputs() snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowerCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" snake_case_ = SwiftFormerModelTester(self ) snake_case_ = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def lowerCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_lowerCAmelCase ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def lowerCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_lowerCAmelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self : str ) -> Any: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def lowerCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" pass def lowerCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): snake_case_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" def _config_zero_init(_lowerCAmelCase : List[str] ): snake_case_ = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1e-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): snake_case_ = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: snake_case_ = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def _lowerCAmelCase ( )->str: '''simple docstring''' snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" snake_case_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(_lowerCAmelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**_lowerCAmelCase ) # verify the logits snake_case_ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) snake_case_ = torch.tensor([[-2.1703e00, 2.1107e00, -2.0811e00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
159
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) class A_ ( _a ): lowerCAmelCase__ = ['input_values', 'padding_mask'] def __init__( self: Tuple ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: int = 24_000 ,__lowerCAmelCase: float = 0.0 ,__lowerCAmelCase: float = None ,__lowerCAmelCase: float = None ,**__lowerCAmelCase: Union[str, Any] ,): '''simple docstring''' super().__init__(feature_size=__lowerCAmelCase ,sampling_rate=__lowerCAmelCase ,padding_value=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Any = chunk_length_s _lowerCamelCase : int = overlap @property def _lowercase ( self: Dict ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self: Tuple ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self: Tuple ,__lowerCAmelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__lowerCAmelCase: Optional[Union[bool, str, PaddingStrategy]] = None ,__lowerCAmelCase: Optional[bool] = False ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[Union[str, TensorType]] = None ,__lowerCAmelCase: Optional[int] = None ,): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Union[str, Any] = bool( isinstance(__lowerCAmelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : List[str] = [np.asarray(__lowerCAmelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__lowerCAmelCase ,np.ndarray ): _lowerCamelCase : Dict = np.asarray(__lowerCAmelCase ,dtype=np.floataa ) elif isinstance(__lowerCAmelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Optional[int] = [np.asarray(__lowerCAmelCase ).T] # verify inputs are valid for idx, example in enumerate(__lowerCAmelCase ): if example.ndim > 2: raise ValueError(F"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F"""Expected stereo audio but example has {example.shape[-1]} channels""" ) _lowerCamelCase : Tuple = None _lowerCamelCase : int = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCamelCase : Tuple = min(array.shape[0] for array in raw_audio ) _lowerCamelCase : Optional[int] = int(np.floor(max_length / self.chunk_stride ) ) _lowerCamelCase : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCamelCase : Any = max(array.shape[0] for array in raw_audio ) _lowerCamelCase : Dict = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCamelCase : Optional[int] = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCamelCase : int = "max_length" else: _lowerCamelCase : Dict = input_values # normal padding on batch if padded_inputs is None: _lowerCamelCase : Any = self.pad( __lowerCAmelCase ,max_length=__lowerCAmelCase ,truncation=__lowerCAmelCase ,padding=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,) if padding: _lowerCamelCase : Tuple = padded_inputs.pop("attention_mask" ) _lowerCamelCase : str = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: _lowerCamelCase : int = example[..., None] input_values.append(example.T ) _lowerCamelCase : int = input_values if return_tensors is not None: _lowerCamelCase : Optional[Any] = padded_inputs.convert_to_tensors(__lowerCAmelCase ) return padded_inputs
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
0
import math from numpy import inf from scipy.integrate import quad def UpperCAmelCase_ ( __lowerCAmelCase ) -> float: if num <= 0: raise ValueError('''math domain error''' ) return quad(__lowerCAmelCase , 0 , __lowerCAmelCase , args=(__lowerCAmelCase) )[0] def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> float: return math.pow(__lowerCAmelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
156
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : torch.FloatTensor A__ : Optional[torch.FloatTensor] = None def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=0.999 , __lowerCAmelCase="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowercase : Dict = [] for i in range(__lowerCAmelCase ): __lowercase : Optional[Any] = i / num_diffusion_timesteps __lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" A__ : Tuple = 1 @register_to_config def __init__( self : str , _snake_case : int = 1000 , _snake_case : float = 0.00_01 , _snake_case : float = 0.02 , _snake_case : str = "linear" , _snake_case : Optional[Union[np.ndarray, List[float]]] = None , _snake_case : bool = True , _snake_case : bool = True , _snake_case : int = 0 , _snake_case : str = "epsilon" , _snake_case : float = 1.0 , **_snake_case : Tuple , ): if kwargs.get('''set_alpha_to_one''' , _snake_case ) is not None: __lowercase : str = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case ) __lowercase : Dict = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __lowercase : Optional[int] = torch.tensor(_snake_case , dtype=torch.floataa ) elif beta_schedule == "linear": __lowercase : Any = torch.linspace(_snake_case , _snake_case , _snake_case , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _snake_case , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase : Optional[Any] = betas_for_alpha_bar(_snake_case ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowercase : str = 1.0 - self.betas __lowercase : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __lowercase : str = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __lowercase : Any = 1.0 # setable values __lowercase : Tuple = None __lowercase : Tuple = torch.from_numpy(np.arange(0 , _snake_case ).copy().astype(np.intaa ) ) def snake_case_ ( self : List[str] , _snake_case : torch.FloatTensor , _snake_case : Optional[int] = None ): return sample def snake_case_ ( self : int , _snake_case : int , _snake_case : Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) __lowercase : Optional[Any] = num_inference_steps __lowercase : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase : List[Any] = (np.arange(0 , _snake_case ) * step_ratio).round().copy().astype(np.intaa ) __lowercase : str = torch.from_numpy(_snake_case ).to(_snake_case ) self.timesteps += self.config.steps_offset def snake_case_ ( self : int , _snake_case : torch.FloatTensor , _snake_case : int , _snake_case : torch.FloatTensor , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : bool = True , ): # 1. get previous step value (=t+1) __lowercase : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __lowercase : Any = self.alphas_cumprod[timestep] __lowercase : Any = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __lowercase : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __lowercase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __lowercase : str = model_output elif self.config.prediction_type == "sample": __lowercase : Any = model_output __lowercase : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __lowercase : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __lowercase : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __lowercase : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case ) def __len__( self : Any ): return self.config.num_train_timesteps
156
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''megatron-bert''' def __init__( self , lowerCAmelCase_=2_9056 , lowerCAmelCase_=1024 , lowerCAmelCase_=24 , lowerCAmelCase_=16 , lowerCAmelCase_=4096 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=0 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> List[Any]: super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache
295
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase_ : @property def lowerCAmelCase ( self ) -> int: return self.get_dummy_input() @property def lowerCAmelCase ( self ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCAmelCase ( self , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> List[str]: _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase_ ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) return dummy_input def lowerCAmelCase ( self ) -> Tuple: _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) unet_block.to(lowerCAmelCase_ ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowerCAmelCase_ ).to(lowerCAmelCase_ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _snake_case = model(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = randn_tensor(output.shape , device=lowerCAmelCase_ ) _snake_case = torch.nn.functional.mse_loss(lowerCAmelCase_ , lowerCAmelCase_ ) loss.backward()
295
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Optional[Any] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int ="""xlnet""" __UpperCAmelCase : List[str] =["""mems"""] __UpperCAmelCase : Optional[Any] ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __a=3_20_00 , __a=10_24 , __a=24 , __a=16 , __a=40_96 , __a="gelu" , __a=True , __a="bi" , __a=0.0_2 , __a=1e-1_2 , __a=0.1 , __a=5_12 , __a=None , __a=True , __a=False , __a=False , __a=-1 , __a=False , __a="last" , __a=True , __a="tanh" , __a=0.1 , __a=5 , __a=5 , __a=5 , __a=1 , __a=2 , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = n_layer __lowerCAmelCase = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __lowerCAmelCase = d_model // n_head __lowerCAmelCase = ff_activation __lowerCAmelCase = d_inner __lowerCAmelCase = untie_r __lowerCAmelCase = attn_type __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = dropout __lowerCAmelCase = mem_len __lowerCAmelCase = reuse_len __lowerCAmelCase = bi_data __lowerCAmelCase = clamp_len __lowerCAmelCase = same_length __lowerCAmelCase = summary_type __lowerCAmelCase = summary_use_proj __lowerCAmelCase = summary_activation __lowerCAmelCase = summary_last_dropout __lowerCAmelCase = start_n_top __lowerCAmelCase = end_n_top __lowerCAmelCase = bos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __a , ) __lowerCAmelCase = kwargs["use_cache"] __lowerCAmelCase = use_mems_eval __lowerCAmelCase = use_mems_train super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) @property def snake_case ( self ): logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def snake_case ( self , __a ): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
57
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __lowerCAmelCase = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
57
1
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase : Any = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCamelCase : Any = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCamelCase : int = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : str ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def a__ ( self : Any , A_ : List[List[List[str]]] , A_ : List[List[str]] , A_ : int = 1 , A_ : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=A_ , hypotheses=A_ , min_len=A_ , max_len=A_ ) }
358
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCamelCase : Optional[int] = float("nan") class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : int ) -> Dict: """simple docstring""" lowerCamelCase_ = sys.stdout lowerCamelCase_ = open(A_ , 'a' ) def __getattr__( self : List[Any] , A_ : Optional[int] ) -> str: """simple docstring""" return getattr(self.stdout , A_ ) def a__ ( self : int , A_ : int ) -> List[str]: """simple docstring""" self.stdout.write(A_ ) # strip tqdm codes self.file.write(re.sub(r'^.*\r' , '' , A_ , 0 , re.M ) ) def _SCREAMING_SNAKE_CASE ( lowercase : str=80 , lowercase : Tuple=False ): '''simple docstring''' lowerCamelCase_ = [] # deal with critical env vars lowerCamelCase_ = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: lowerCamelCase_ = os.environ.get(lowercase , lowercase ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) lowerCamelCase_ = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(lowercase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCamelCase_ = [] lowerCamelCase_ = '' while len(lowercase ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(lowercase ) == 0 or len(lowercase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowercase ) lowerCamelCase_ = '' return "\\\n".join(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own lowerCamelCase_ = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir lowerCamelCase_ = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : int , lowercase : Dict , lowercase : List[str] , lowercase : List[str] , lowercase : List[str] , lowercase : Dict ): '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) lowerCamelCase_ = subprocess.run(lowercase , capture_output=lowercase , text=lowercase ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams lowerCamelCase_ = variation.replace(' ' , '-' ) with open(Path(lowercase ) / f"""log.{prefix}.stdout.txt""" , 'w' ) as f: f.write(result.stdout ) with open(Path(lowercase ) / f"""log.{prefix}.stderr.txt""" , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ = json.load(lowercase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Dict , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[str] , lowercase : Dict , lowercase : Any , lowercase : int , ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = f"""{id}: {variation:<{longest_variation_len}}""" lowerCamelCase_ = f"""{preamble}: """ lowerCamelCase_ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowercase ) , desc=lowercase , leave=lowercase ): lowerCamelCase_ = process_run_single( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = single_run_metrics[target_metric_key] if not math.isnan(lowercase ): metrics.append(lowercase ) results.append(lowercase ) outcome += "✓" else: outcome += "✘" lowerCamelCase_ = f"""\33[2K\r{outcome}""" if len(lowercase ) > 0: lowerCamelCase_ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowerCamelCase_ = round(mean_metrics[target_metric_key] , 2 ) lowerCamelCase_ = f"""{outcome} {mean_target}""" if len(lowercase ) > 1: results_str += f""" {tuple(round(lowercase , 2 ) for x in results )}""" print(lowercase ) lowerCamelCase_ = variation return mean_metrics else: print(lowercase ) return {variation_key: variation, target_metric_key: nan} def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = torch.cuda.get_device_properties(torch.device('cuda' ) ) return f""" Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = pd.DataFrame(lowercase ) lowerCamelCase_ = 'variation' lowerCamelCase_ = 'diff_%' lowerCamelCase_ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowerCamelCase_ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowercase ): # as a fallback, use the minimal value as the sentinel lowerCamelCase_ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowercase ): lowerCamelCase_ = df.apply( lambda lowercase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns lowerCamelCase_ = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCamelCase_ = df.reindex(lowercase , axis='columns' ) # reorder cols # capitalize lowerCamelCase_ = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible lowerCamelCase_ = df.rename(lambda lowercase : c.replace('_' , '<br>' ) , axis='columns' ) lowerCamelCase_ = df.rename(lambda lowercase : c.replace('_' , '\n' ) , axis='columns' ) lowerCamelCase_ = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowercase , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowercase , floatfmt='.2f' )] print('\n\n'.join(lowercase ) ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=lowercase , type=lowercase , required=lowercase , help='Base cmd' , ) parser.add_argument( '--variations' , default=lowercase , type=lowercase , nargs='+' , required=lowercase , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=lowercase , type=lowercase , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=lowercase , type=lowercase , required=lowercase , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=lowercase , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=lowercase , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=lowercase , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=lowercase , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.output_dir Path(lowercase ).mkdir(exist_ok=lowercase ) lowerCamelCase_ = get_base_command(lowercase , lowercase ) # split each dimension into its --foo variations lowerCamelCase_ = [list(map(str.strip , re.split(r'\|' , lowercase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCamelCase_ = list(map(str.strip , map(' '.join , itertools.product(*lowercase ) ) ) ) lowerCamelCase_ = max(len(lowercase ) for x in variations ) # split wanted keys lowerCamelCase_ = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCamelCase_ = f"""benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) lowerCamelCase_ = Tee(lowercase ) print(f"""\n*** Running {len(lowercase )} benchmarks:""" ) print(f"""Base command: {" ".join(lowercase )}""" ) lowerCamelCase_ = 'variation' lowerCamelCase_ = [] for id, variation in enumerate(tqdm(lowercase , desc='Total completion: ' , leave=lowercase ) ): lowerCamelCase_ = base_cmd + variation.split() results.append( process_run( id + 1 , lowercase , lowercase , lowercase , lowercase , args.target_metric_key , lowercase , args.repeat_times , lowercase , args.verbose , ) ) process_results(lowercase , args.target_metric_key , lowercase , args.base_variation , lowercase ) if __name__ == "__main__": main()
208
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( a__ , unittest.TestCase ): """simple docstring""" a_ = KandinskyVaaImgaImgPipeline a_ = ['''image_embeds''', '''negative_image_embeds''', '''image'''] a_ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] a_ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] a_ = False @property def lowercase ( self : Optional[int] ) -> List[Any]: return 3_2 @property def lowercase ( self : Tuple ) -> int: return 3_2 @property def lowercase ( self : Optional[Any] ) -> List[str]: return self.time_input_dim @property def lowercase ( self : Any ) -> int: return self.time_input_dim * 4 @property def lowercase ( self : str ) -> List[Any]: return 1_0_0 @property def lowercase ( self : Optional[Any] ) -> str: torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**_lowerCamelCase ) return model @property def lowercase ( self : str ) -> str: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __lowerCAmelCase = DDIMScheduler(**_lowerCamelCase ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any]=0 ) -> Tuple: __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) if str(_lowerCamelCase ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(_lowerCamelCase ) else: __lowerCAmelCase = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase ( self : int ) -> Optional[Any]: __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**_lowerCamelCase ) __lowerCAmelCase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : int ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : str ) -> int: __lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) __lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __lowerCAmelCase = """A red cartoon frog, 4k""" __lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) __lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) __lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCAmelCase = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __lowerCAmelCase = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='np' , ) __lowerCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
284
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __A =namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = _TestCommandArgs(dataset=UpperCamelCase__ , all_configs=UpperCamelCase__ , save_infos=UpperCamelCase__ ) UpperCAmelCase__ : Any = TestCommand(*UpperCamelCase__ ) test_command.run() UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , """README.md""" ) assert os.path.exists(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) UpperCAmelCase__ : Any = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_3_5_1_5_6_3, """num_examples""": 1_0_0_0_0, }, { """name""": """validation""", """num_bytes""": 2_3_8_4_1_8, """num_examples""": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = getattr(dataset_infos["""default"""] , UpperCamelCase__ ), getattr(expected_dataset_infos["""default"""] , UpperCamelCase__ ) if key == "num_bytes": assert is_apercent_close(UpperCamelCase__ , UpperCamelCase__ ) elif key == "splits": assert list(UpperCamelCase__ ) == list(UpperCamelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
163
0
from collections import defaultdict from math import gcd def lowerCamelCase ( UpperCAmelCase__ : int = 1500000 ) -> int: lowercase_ : defaultdict = defaultdict(UpperCAmelCase__ ) lowercase_ : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase__ , 2 ): if gcd(UpperCAmelCase__ , UpperCAmelCase__ ) > 1: continue lowercase_ : Tuple = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase__ , limit + 1 , UpperCAmelCase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f"""{solution() = }""")
364
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase_ :Optional[Any] = ksize + 1 lowercase_ :str = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center lowercase_ :Any = x - ksize // 2 lowercase_ :Union[str, Any] = y - ksize // 2 # degree to radiant lowercase_ :Any = theta / 1_80 * np.pi lowercase_ :Union[str, Any] = np.cos(_theta ) lowercase_ :Dict = np.sin(_theta ) # get kernel x lowercase_ :List[str] = cos_theta * px + sin_theta * py # get kernel y lowercase_ :List[str] = -sin_theta * px + cos_theta * py # fill kernel lowercase_ :str = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCAmelCase : Optional[Any] =imread('''../image_data/lena.jpg''') # turn image in gray scale value lowerCAmelCase : int =cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCAmelCase : List[Any] =np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCAmelCase : Union[str, Any] =gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCAmelCase : List[str] =out / out.max() * 255 lowerCAmelCase : List[str] =out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
223
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a_ : def __init__( self : Any , lowercase : Optional[int] , lowercase : List[Any]=13 , lowercase : int=10 , lowercase : str=3 , lowercase : List[Any]=2 , lowercase : Dict=2 , lowercase : List[str]=2 , lowercase : int=True , lowercase : List[Any]=True , lowercase : Union[str, Any]=32 , lowercase : Optional[int]=5 , lowercase : List[Any]=4 , lowercase : List[str]=37 , lowercase : Union[str, Any]="gelu" , lowercase : List[Any]=0.1 , lowercase : Any=0.1 , lowercase : Optional[Any]=10 , lowercase : Union[str, Any]=0.02 , lowercase : Optional[int]=0.9 , lowercase : List[str]=None , ): """simple docstring""" lowercase_ :Optional[int] = parent lowercase_ :str = batch_size lowercase_ :Optional[int] = image_size lowercase_ :Tuple = num_channels lowercase_ :Optional[Any] = patch_size lowercase_ :List[str] = tubelet_size lowercase_ :List[Any] = num_frames lowercase_ :Dict = is_training lowercase_ :Optional[int] = use_labels lowercase_ :Optional[int] = hidden_size lowercase_ :List[str] = num_hidden_layers lowercase_ :List[str] = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :Any = hidden_act lowercase_ :Tuple = hidden_dropout_prob lowercase_ :str = attention_probs_dropout_prob lowercase_ :Any = type_sequence_label_size lowercase_ :int = initializer_range lowercase_ :Dict = mask_ratio lowercase_ :Optional[int] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase_ :str = (image_size // patch_size) ** 2 lowercase_ :Union[str, Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase_ :Optional[Any] = int(mask_ratio * self.seq_length ) def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase_ :Union[str, Any] = None if self.use_labels: lowercase_ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[int] , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] ): """simple docstring""" lowercase_ :int = VideoMAEModel(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Optional[int] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str , lowercase : str , lowercase : List[str] , lowercase : int ): """simple docstring""" lowercase_ :Union[str, Any] = VideoMAEForPreTraining(lowercase ) model.to(lowercase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ :Optional[int] = torch.ones((self.num_masks,) ) lowercase_ :List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase_ :Dict = mask.expand(self.batch_size , -1 ).bool() lowercase_ :str = model(lowercase , lowercase ) # model only returns predictions for masked patches lowercase_ :Any = mask.sum().item() lowercase_ :Tuple = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :int = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ :Dict = config_and_inputs lowercase_ :Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __A = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :List[Any] = VideoMAEModelTester(self ) lowercase_ :Dict = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def lowercase__ ( self : List[Any] , lowercase : List[str] , lowercase : List[str] , lowercase : List[str]=False ): """simple docstring""" lowercase_ :Tuple = copy.deepcopy(lowercase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ :Tuple = torch.ones((self.model_tester.num_masks,) ) lowercase_ :Tuple = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase_ :Optional[int] = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase_ :Dict = bool_masked_pos.to(lowercase ) if return_labels: if model_class in [ *get_values(lowercase ), ]: lowercase_ :Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def lowercase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def lowercase__ ( self : Dict ): """simple docstring""" pass def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Dict = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ :List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ , lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Any = model_class(lowercase ) lowercase_ :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :List[str] = [*signature.parameters.keys()] lowercase_ :str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) @slow def lowercase__ ( self : Dict ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :List[Any] = VideoMAEModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" if not self.has_attentions: pass else: lowercase_ , lowercase_ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ :Union[str, Any] = True for model_class in self.all_model_classes: lowercase_ :Dict = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ :Optional[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase_ :Union[str, Any] = True lowercase_ :List[Any] = False lowercase_ :Optional[int] = True lowercase_ :Union[str, Any] = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :List[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :str = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ :Union[str, Any] = True lowercase_ :Optional[Any] = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :Union[str, Any] = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase_ :List[str] = len(lowercase ) # Check attention is always last and order is fine lowercase_ :Optional[Any] = True lowercase_ :Dict = True lowercase_ :Dict = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :List[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 1 , len(lowercase ) ) lowercase_ :int = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase__ ( self : int ): """simple docstring""" def check_hidden_states_output(lowercase : Union[str, Any] , lowercase : Dict , lowercase : Any ): lowercase_ :Any = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :Optional[int] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :Optional[int] = outputs.hidden_states lowercase_ :Any = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase ) , lowercase ) lowercase_ :List[str] = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ :List[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[int] = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ :List[Any] = True check_hidden_states_output(lowercase , lowercase , lowercase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase_ ( ): lowercase_ :Dict = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" ,filename="eating_spaghetti.npy" ,repo_type="dataset" ) lowercase_ :Optional[Any] = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def lowercase__ ( self : Any ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Union[str, Any] = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( lowercase ) lowercase_ :List[str] = self.default_image_processor lowercase_ :List[str] = prepare_video() lowercase_ :int = image_processor(lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): lowercase_ :Dict = model(**lowercase ) # verify the logits lowercase_ :Dict = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase ) lowercase_ :int = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) ) @slow def lowercase__ ( self : str ): """simple docstring""" lowercase_ :List[Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(lowercase ) lowercase_ :Dict = self.default_image_processor lowercase_ :Union[str, Any] = prepare_video() lowercase_ :List[str] = image_processor(lowercase , return_tensors="pt" ).to(lowercase ) # add boolean mask, indicating which patches to mask lowercase_ :int = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowercase_ :List[str] = torch.load(lowercase ) # forward pass with torch.no_grad(): lowercase_ :List[Any] = model(**lowercase ) # verify the logits lowercase_ :Union[str, Any] = torch.Size([1, 1_408, 1_536] ) lowercase_ :List[Any] = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=lowercase ) self.assertEqual(outputs.logits.shape , lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase_ :Any = torch.tensor([0.51_42] , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase_ :Union[str, Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=lowercase ).to( lowercase ) with torch.no_grad(): lowercase_ :Tuple = model(**lowercase ) lowercase_ :Optional[Any] = torch.tensor(torch.tensor([0.64_69] ) , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4 ) )
223
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _a ( _lowercase): _a : List[str] = (DDIMParallelScheduler,) _a : str = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def UpperCAmelCase__( self : str , **_SCREAMING_SNAKE_CASE : Union[str, Any] )-> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def UpperCAmelCase__( self : Optional[Any] , **_SCREAMING_SNAKE_CASE : Union[str, Any] )-> List[Any]: lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = 10, 0.0 lowerCAmelCase__ : List[Any] = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in scheduler.timesteps: lowerCAmelCase__ : List[Any] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample return sample def UpperCAmelCase__( self : str )-> List[Any]: for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Optional[Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = self.scheduler_classes[0] lowerCAmelCase__ : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase__ : List[str] = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] )-> Dict: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[Any] )-> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Union[str, Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Tuple )-> Any: self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__( self : Dict )-> Optional[int]: for t in [1, 10, 49]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Tuple: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[str] )-> Any: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Union[str, Any]: lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config() lowerCAmelCase__ : str = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def UpperCAmelCase__( self : Dict )-> List[Any]: lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : Dict = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = 10, 0.0 scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter lowerCAmelCase__ : List[str] = self.dummy_sample_deter + 0.1 lowerCAmelCase__ : str = self.dummy_sample_deter - 0.1 lowerCAmelCase__ : Dict = samplea.shape[0] lowerCAmelCase__ : List[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCAmelCase__ : Dict = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCAmelCase__ : List[Any] = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def UpperCAmelCase__( self : List[Any] )-> Tuple: lowerCAmelCase__ : Any = self.full_loop() lowerCAmelCase__ : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_3967 ) < 1E-3 def UpperCAmelCase__( self : Optional[Any] )-> str: lowerCAmelCase__ : List[str] = self.full_loop(prediction_type='''v_prediction''' ) lowerCAmelCase__ : str = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Optional[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def UpperCAmelCase__( self : str )-> Dict: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase__ : List[Any] = self.full_loop(set_alpha_to_one=_SCREAMING_SNAKE_CASE , beta_start=0.01 ) lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def UpperCAmelCase__( self : str )-> int: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase__ : Optional[int] = self.full_loop(set_alpha_to_one=_SCREAMING_SNAKE_CASE , beta_start=0.01 ) lowerCAmelCase__ : List[str] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : int = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
352
import math class _a : def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Any=0 )-> Optional[Any]: # a graph with Node 0,1,...,N-1 lowerCAmelCase__ : Optional[int] = n lowerCAmelCase__ : List[Any] = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight lowerCAmelCase__ : str = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> List[str]: lowerCAmelCase__ : Optional[int] = w def UpperCAmelCase__( self : List[Any] )-> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase__ : Dict = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str )-> str: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
211
0
class __lowerCAmelCase : def __init__( self ) -> Optional[int]: '''simple docstring''' a__ : int =0 a__ : Union[str, Any] =0 a__ : int ={} def _lowercase ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if vertex not in self.adjacency: a__ : Union[str, Any] ={} self.num_vertices += 1 def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' self.add_vertex(_a ) self.add_vertex(_a ) if head == tail: return a__ : str =weight a__ : int =weight def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Union[str, Any] =self.get_edges() for edge in edges: a__ : Any =edge edges.remove((tail, head, weight) ) for i in range(len(_a ) ): a__ : str =list(edges[i] ) edges.sort(key=lambda lowerCAmelCase__ : e[2] ) for i in range(len(_a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: a__ : Tuple =edges[i][2] + 1 for edge in edges: a__ : List[Any] =edge a__ : int =weight a__ : Any =weight def __str__( self ) -> List[Any]: '''simple docstring''' a__ : str ="" for tail in self.adjacency: for head in self.adjacency[tail]: a__ : Optional[Any] =self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : Tuple =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _lowercase ( self ) -> Dict: '''simple docstring''' return self.adjacency.keys() @staticmethod def _lowercase ( lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Optional[int]: '''simple docstring''' a__ : List[Any] =Graph() if vertices is None: a__ : Optional[Any] =[] if edges is None: a__ : List[Any] =[] for vertex in vertices: g.add_vertex(_a ) for edge in edges: g.add_edge(*_a ) return g class __lowerCAmelCase : def __init__( self ) -> List[str]: '''simple docstring''' a__ : Union[str, Any] ={} a__ : Union[str, Any] ={} def __len__( self ) -> Dict: '''simple docstring''' return len(self.parent ) def _lowercase ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' if item in self.parent: return self.find(_a ) a__ : List[str] =item a__ : Optional[int] =0 return item def _lowercase ( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' if item not in self.parent: return self.make_set(_a ) if item != self.parent[item]: a__ : Optional[Any] =self.find(self.parent[item] ) return self.parent[item] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ : Optional[int] =self.find(_a ) a__ : Any =self.find(_a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: a__ : Union[str, Any] =roota return roota if self.rank[roota] < self.rank[roota]: a__ : Optional[Any] =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 a__ : Tuple =roota return roota return None @staticmethod def _lowercase ( lowerCAmelCase__ ) -> List[str]: '''simple docstring''' a__ : Tuple =graph.num_vertices a__ : List[Any] =Graph.UnionFind() a__ : str =[] while num_components > 1: a__ : Union[str, Any] ={} for vertex in graph.get_vertices(): a__ : Optional[Any] =-1 a__ : str =graph.get_edges() for edge in edges: a__ : Optional[Any] =edge edges.remove((tail, head, weight) ) for edge in edges: a__ : Union[str, Any] =edge a__ : Tuple =union_find.find(_a ) a__ : int =union_find.find(_a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__ : Union[str, Any] =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__ : Any =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: a__ : List[Any] =cheap_edge[vertex] if union_find.find(_a ) != union_find.find(_a ): union_find.union(_a , _a ) mst_edges.append(cheap_edge[vertex] ) a__ : List[Any] =num_components - 1 a__ : Dict =Graph.build(edges=_a ) return mst
95
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class a__ ( a_, unittest.TestCase ): __lowerCAmelCase = CpmAntTokenizer __lowerCAmelCase = False def __magic_name__ ( self ): super().setUp() lowercase : List[str] = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def __magic_name__ ( self ): lowercase : Tuple = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) lowercase : str = "今天天气真好!" lowercase : Optional[int] = ["今天", "天气", "真", "好", "!"] lowercase : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : Any = "今天天气真好!" lowercase : int = [tokenizer.bos_token] + tokens lowercase : List[str] = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) lowercase : str = tokenizer.decode(_a ) self.assertEqual(_a , _a )
202
0
from sklearn.metrics import matthews_corrcoef import datasets _A = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" _A = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" _A = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def UpperCAmelCase(self : List[str] ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def UpperCAmelCase(self : Tuple , _A : Union[str, Any] , _A : List[Any] , _A : List[Any]=None ) -> Optional[int]: return { "matthews_correlation": float(matthews_corrcoef(_A , _A , sample_weight=_A ) ), }
369
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
137
0
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline __lowercase = """path-to-your-trained-model""" __lowercase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") __lowercase = """A photo of sks dog in a bucket""" __lowercase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
40
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
0
import sys __UpperCAmelCase : Dict = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : List[Any] = 1 for digit in s: product *= int(UpperCAmelCase_ ) return product def a ( SCREAMING_SNAKE_CASE_ : str = N ): """simple docstring""" UpperCamelCase : List[str] = -sys.maxsize - 1 UpperCamelCase : Optional[int] = n[:1_3] UpperCamelCase : Optional[Any] = 1_3 while cur_index < len(UpperCAmelCase_ ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): UpperCamelCase : List[Any] = substr[1:] + n[cur_index] cur_index += 1 else: UpperCamelCase : Dict = max(UpperCAmelCase_ , str_eval(UpperCAmelCase_ ) ) UpperCamelCase : str = n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
353
import glob import os import random from string import ascii_lowercase, digits import cva __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : Union[str, Any] = "" __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def a ( ): """simple docstring""" UpperCamelCase , UpperCamelCase : List[Any] = get_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print('''Processing...''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = update_image_and_anno(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for index, image in enumerate(SCREAMING_SNAKE_CASE_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase : Optional[int] = random_chars(3_2 ) UpperCamelCase : List[Any] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] UpperCamelCase : int = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , SCREAMING_SNAKE_CASE_ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(F"""Success {index+1}/{len(SCREAMING_SNAKE_CASE_ )} with {file_name}""" ) UpperCamelCase : Any = [] for anno in new_annos[index]: UpperCamelCase : Tuple = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(SCREAMING_SNAKE_CASE_ ) with open(F"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , '''*.txt''' ) ): UpperCamelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(SCREAMING_SNAKE_CASE_ ) as in_file: UpperCamelCase : List[str] = in_file.readlines() UpperCamelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{label_name}.jpg""" ) UpperCamelCase : Union[str, Any] = [] for obj_list in obj_lists: UpperCamelCase : str = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE_ ) labels.append(SCREAMING_SNAKE_CASE_ ) return img_paths, labels def a ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int = 1 ): """simple docstring""" UpperCamelCase : List[Any] = [] UpperCamelCase : str = [] UpperCamelCase : int = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Tuple = [] UpperCamelCase : Optional[int] = img_list[idx] path_list.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = anno_list[idx] UpperCamelCase : Optional[Any] = cva.imread(SCREAMING_SNAKE_CASE_ ) if flip_type == 1: UpperCamelCase : Optional[Any] = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: UpperCamelCase : Optional[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCamelCase : List[str] = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: UpperCamelCase : Union[str, Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(SCREAMING_SNAKE_CASE_ ) new_imgs_list.append(SCREAMING_SNAKE_CASE_ ) return new_imgs_list, new_annos_lists, path_list def a ( SCREAMING_SNAKE_CASE_ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" UpperCamelCase : Any = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main() print("DONE ✅")
315
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase_ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def __lowercase ( self ) -> Union[str, Any]: _a : List[Any] = [] _a : List[str] = [] for i in range(self.num_layers ): _a : List[Any] = self.in_channels if i == 0 else self.out_channels _a : Union[str, Any] = FlaxResnetBlockaD( in_channels=_a , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _a : int = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_a ) _a : Any = resnets _a : Dict = attentions if self.add_downsample: _a : Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _a , _a , _a , _a=True ) -> Dict: _a : Any = () for resnet, attn in zip(self.resnets , self.attentions ): _a : Tuple = resnet(_a , _a , deterministic=_a ) _a : List[str] = attn(_a , _a , deterministic=_a ) output_states += (hidden_states,) if self.add_downsample: _a : List[str] = self.downsamplers_a(_a ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def __lowercase ( self ) -> Optional[int]: _a : List[Any] = [] for i in range(self.num_layers ): _a : List[str] = self.in_channels if i == 0 else self.out_channels _a : List[Any] = FlaxResnetBlockaD( in_channels=_a , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _a : str = resnets if self.add_downsample: _a : Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _a , _a , _a=True ) -> Optional[int]: _a : Dict = () for resnet in self.resnets: _a : Union[str, Any] = resnet(_a , _a , deterministic=_a ) output_states += (hidden_states,) if self.add_downsample: _a : List[str] = self.downsamplers_a(_a ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def __lowercase ( self ) -> List[str]: _a : Any = [] _a : Any = [] for i in range(self.num_layers ): _a : Union[str, Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _a : str = self.prev_output_channel if i == 0 else self.out_channels _a : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _a : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_a ) _a : str = resnets _a : Optional[Any] = attentions if self.add_upsample: _a : Any = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _a , _a , _a , _a , _a=True ) -> Union[str, Any]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _a : Tuple = res_hidden_states_tuple[-1] _a : Tuple = res_hidden_states_tuple[:-1] _a : Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _a : List[Any] = resnet(_a , _a , deterministic=_a ) _a : int = attn(_a , _a , deterministic=_a ) if self.add_upsample: _a : Union[str, Any] = self.upsamplers_a(_a ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def __lowercase ( self ) -> Optional[Any]: _a : Union[str, Any] = [] for i in range(self.num_layers ): _a : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _a : Any = self.prev_output_channel if i == 0 else self.out_channels _a : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _a : Union[str, Any] = resnets if self.add_upsample: _a : List[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _a , _a , _a , _a=True ) -> int: for resnet in self.resnets: # pop res hidden states _a : List[str] = res_hidden_states_tuple[-1] _a : Optional[int] = res_hidden_states_tuple[:-1] _a : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _a : Optional[int] = resnet(_a , _a , deterministic=_a ) if self.add_upsample: _a : Optional[int] = self.upsamplers_a(_a ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def __lowercase ( self ) -> Any: # there is always at least one resnet _a : Any = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _a : int = [] for _ in range(self.num_layers ): _a : int = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_a ) _a : Any = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _a : Optional[int] = resnets _a : str = attentions def __call__( self , _a , _a , _a , _a=True ) -> Dict: _a : List[str] = self.resnets[0](_a , _a ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _a : int = attn(_a , _a , deterministic=_a ) _a : Optional[Any] = resnet(_a , _a , deterministic=_a ) return hidden_states
235
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Dict ) -> Tuple: """simple docstring""" _a : Any = R'''\w+[.]\d+''' _a : Union[str, Any] = re.findall(__a ,__a ) for pat in pats: _a : int = key.replace(__a ,'''_'''.join(pat.split('''.''' ) ) ) return key def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Optional[int] ) -> Tuple: """simple docstring""" _a : Dict = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _a : Dict = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _a : Optional[int] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _a : Union[str, Any] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer _a : Tuple = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _a : List[str] = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _a : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": _a : Union[str, Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _a : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _a : Union[str, Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __a : Dict ,__a : str ,__a : str=42 ) -> Optional[int]: """simple docstring""" _a : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _a : List[Any] = flax_model.init_weights(PRNGKey(__a ) ) _a : Optional[int] = flatten_dict(__a ) _a : Tuple = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _a : List[str] = rename_key(__a ) _a : Optional[Any] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters _a , _a : List[str] = rename_key_and_reshape_tensor(__a ,__a ,__a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown _a : Dict = jnp.asarray(__a ) return unflatten_dict(__a )
235
1
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( a_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(__SCREAMING_SNAKE_CASE ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( a_ ): lowerCamelCase : Any = str(__SCREAMING_SNAKE_CASE ) lowerCamelCase : str = [n] for i in range(1, len(__SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCAmelCase ( a_ ): if len(str(__SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(__SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(__SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def UpperCAmelCase ( a_ = 11 ): lowerCamelCase : list[int] = [] lowerCamelCase : Optional[Any] = 13 while len(__SCREAMING_SNAKE_CASE ) != count: if validate(__SCREAMING_SNAKE_CASE ): lowerCamelCase : int = list_truncated_nums(__SCREAMING_SNAKE_CASE ) if all(is_prime(__SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(__SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def UpperCAmelCase ( ): return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(1_1)) = }""")
370
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class _lowercase : def __init__( self ) -> Tuple: lowerCamelCase : Dict = False def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Any: if not self.initialized: lowerCamelCase : Optional[int] = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , index=UpperCAmelCase_ , init_retrieval=UpperCAmelCase_ , ) lowerCamelCase : Union[str, Any] = True def _UpperCamelCase ( self ) -> Union[str, Any]: self.retriever.index.init_index() def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> str: lowerCamelCase , lowerCamelCase : int = self.retriever._main_retrieve(UpperCAmelCase_ , UpperCAmelCase_ ) return doc_ids, retrieved_doc_embeds class _lowercase ( __UpperCAmelCase ): def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ) -> Dict: if index is not None and index.is_initialized() and len(UpperCAmelCase_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , index=UpperCAmelCase_ , init_retrieval=UpperCAmelCase_ , ) lowerCamelCase : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for worker in self.retrieval_workers ] ) def _UpperCamelCase ( self ) -> Dict: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> List[Any]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowerCamelCase : Tuple = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowerCamelCase , lowerCamelCase : Tuple = ray.get(random_worker.retrieve.remote(UpperCAmelCase_ , UpperCAmelCase_ ) ) else: lowerCamelCase , lowerCamelCase : int = self._main_retrieve(UpperCAmelCase_ , UpperCAmelCase_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase_ ) @classmethod def _UpperCamelCase ( cls , UpperCAmelCase_ , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> Dict: return super(UpperCAmelCase_ , cls ).get_tokenizers(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def _UpperCamelCase ( cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> Dict: lowerCamelCase : str = kwargs.pop('config' , UpperCAmelCase_ ) or RagConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : Any = RagTokenizer.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) lowerCamelCase : Any = rag_tokenizer.question_encoder lowerCamelCase : Union[str, Any] = rag_tokenizer.generator if indexed_dataset is not None: lowerCamelCase : int = 'custom' lowerCamelCase : int = CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase_ ) else: lowerCamelCase : Optional[Any] = cls._build_index(UpperCAmelCase_ ) return cls( UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , retrieval_workers=UpperCAmelCase_ , index=UpperCAmelCase_ , )
205
0
_snake_case = {} def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> int: if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __UpperCAmelCase : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __UpperCAmelCase : Union[str, Any] = _calculate(days - 1, UpperCamelCase_, late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __UpperCAmelCase : List[str] = _calculate(days - 1, absent + 1, 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __UpperCAmelCase : List[str] = _calculate(days - 1, UpperCamelCase_, 0 ) __UpperCAmelCase : Tuple = state_late + state_absent + state_ontime __UpperCAmelCase : Tuple = prizestrings return prizestrings def _UpperCamelCase ( snake_case__ = 30 ) -> int: return _calculate(UpperCamelCase_, absent=0, late=0 ) if __name__ == "__main__": print(solution())
157
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase_ : def __init__( self : Union[str, Any] , A__ : Optional[Any] , A__ : List[Any]=2 , A__ : Dict=3 , A__ : Tuple=4 , A__ : str=2 , A__ : Union[str, Any]=7 , A__ : Dict=True , A__ : Optional[Any]=True , A__ : List[Any]=True , A__ : str=True , A__ : Any=99 , A__ : str=36 , A__ : Optional[Any]=3 , A__ : List[str]=4 , A__ : Union[str, Any]=37 , A__ : Optional[int]="gelu" , A__ : Union[str, Any]=0.1 , A__ : Optional[Any]=0.1 , A__ : int=512 , A__ : Any=16 , A__ : Any=2 , A__ : List[Any]=0.02 , A__ : List[str]=6 , A__ : Dict=6 , A__ : Tuple=3 , A__ : Union[str, Any]=4 , A__ : str=None , A__ : Union[str, Any]=1000 , ) -> Tuple: _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = patch_size _snake_case = text_seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = coordinate_size _snake_case = shape_size _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _snake_case = text_seq_length _snake_case = (image_size // patch_size) ** 2 + 1 _snake_case = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[int]: _snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _snake_case = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _snake_case = bbox[i, j, 3] _snake_case = bbox[i, j, 1] _snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: _snake_case = bbox[i, j, 2] _snake_case = bbox[i, j, 0] _snake_case = t _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.text_seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _snake_case = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : str , A__ : List[str] , A__ : Optional[Any] , A__ : int , A__ : List[Any] , A__ : Optional[int] , A__ : List[str] , A__ : List[str] , A__ : List[str] ) -> int: _snake_case = LayoutLMvaModel(config=A__ ) model.to(A__ ) model.eval() # text + image _snake_case = model(A__ , pixel_values=A__ ) _snake_case = model( A__ , bbox=A__ , pixel_values=A__ , attention_mask=A__ , token_type_ids=A__ ) _snake_case = model(A__ , bbox=A__ , pixel_values=A__ , token_type_ids=A__ ) _snake_case = model(A__ , bbox=A__ , pixel_values=A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _snake_case = model(A__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _snake_case = model(pixel_values=A__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Union[str, Any] , A__ : Dict , A__ : Any , A__ : List[str] , A__ : List[str] , A__ : Dict , A__ : Any , A__ : Any , A__ : List[str] ) -> Optional[Any]: _snake_case = self.num_labels _snake_case = LayoutLMvaForSequenceClassification(A__ ) model.to(A__ ) model.eval() _snake_case = model( A__ , bbox=A__ , pixel_values=A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : List[Any] , A__ : Optional[Any] , A__ : str , A__ : List[str] , A__ : int , A__ : Optional[int] , A__ : str , A__ : Union[str, Any] , A__ : str ) -> int: _snake_case = self.num_labels _snake_case = LayoutLMvaForTokenClassification(config=A__ ) model.to(A__ ) model.eval() _snake_case = model( A__ , bbox=A__ , pixel_values=A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[Any] , A__ : int , A__ : int , A__ : List[str] , A__ : List[Any] , A__ : Optional[int] , A__ : Any , A__ : int , A__ : str ) -> Optional[int]: _snake_case = LayoutLMvaForQuestionAnswering(config=A__ ) model.to(A__ ) model.eval() _snake_case = model( A__ , bbox=A__ , pixel_values=A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ) -> Optional[Any]: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ( _snake_case ), ( _snake_case ), ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase_ ( __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Any = False UpperCamelCase_ : str = False UpperCamelCase_ : Optional[Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase_ : Optional[int] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : Optional[Any] , A__ : Optional[int] , A__ : int , A__ : str , A__ : Union[str, Any] , A__ : Optional[int] ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Optional[int] ) -> Optional[int]: _snake_case = LayoutLMvaModelTester(self ) _snake_case = ConfigTester(self , config_class=A__ , hidden_size=37 ) def UpperCamelCase_ ( self : Union[str, Any] , A__ : Tuple , A__ : List[str] , A__ : List[str]=False ) -> Optional[int]: _snake_case = copy.deepcopy(A__ ) if model_class in get_values(A__ ): _snake_case = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(A__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A__ ): _snake_case = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A__ ) elif model_class in get_values(A__ ): _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__ ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__ ) elif model_class in [ *get_values(A__ ), ]: _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__ ) elif model_class in [ *get_values(A__ ), ]: _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A__ , ) return inputs_dict def UpperCamelCase_ ( self : int ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Dict ) -> Optional[int]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> List[str]: _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase_ ( self : Optional[int] ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def UpperCamelCase_ ( self : int ) -> Optional[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) def UpperCamelCase_ ( self : List[Any] ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) @slow def UpperCamelCase_ ( self : List[str] ) -> Union[str, Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = LayoutLMvaModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def snake_case_() -> Optional[int]: """simple docstring""" _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : List[str] ) -> str: return LayoutLMvaImageProcessor(apply_ocr=A__ ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ) -> Union[str, Any]: _snake_case = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(A__ ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=A__ , return_tensors='''pt''' ).pixel_values.to(A__ ) _snake_case = torch.tensor([[1, 2]] ) _snake_case = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _snake_case = model( input_ids=input_ids.to(A__ ) , bbox=bbox.to(A__ ) , pixel_values=pixel_values.to(A__ ) , ) # verify the logits _snake_case = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , A__ ) _snake_case = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(A__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A__ , atol=1e-4 ) )
365
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A = random.Random() def snake_case_(_UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> Optional[int]: """simple docstring""" if rng is None: _snake_case = global_rng _snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase_ ( unittest.TestCase ): def __init__( self : List[Any] , A__ : List[Any] , A__ : int=7 , A__ : Tuple=400 , A__ : int=2000 , A__ : Any=2048 , A__ : List[Any]=128 , A__ : Optional[int]=1 , A__ : Optional[Any]=512 , A__ : Any=30 , A__ : Any=44100 , ) -> int: _snake_case = parent _snake_case = batch_size _snake_case = min_seq_length _snake_case = max_seq_length _snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case = spectrogram_length _snake_case = feature_size _snake_case = num_audio_channels _snake_case = hop_length _snake_case = chunk_length _snake_case = sampling_rate def UpperCamelCase_ ( self : str ) -> Optional[int]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase_ ( self : Any , A__ : Any=False , A__ : List[str]=False ) -> Tuple: def _flatten(A__ : List[str] ): return list(itertools.chain(*A__ ) ) if equal_length: _snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(A__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = TvltFeatureExtractor def UpperCamelCase_ ( self : Dict ) -> List[str]: _snake_case = TvltFeatureExtractionTester(self ) def UpperCamelCase_ ( self : int ) -> Optional[int]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A__ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(A__ , '''feature_size''' ) ) self.assertTrue(hasattr(A__ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(A__ , '''hop_length''' ) ) self.assertTrue(hasattr(A__ , '''chunk_length''' ) ) self.assertTrue(hasattr(A__ , '''sampling_rate''' ) ) def UpperCamelCase_ ( self : Any ) -> Union[str, Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = feat_extract_first.save_pretrained(A__ )[0] check_json_file_has_correct_format(A__ ) _snake_case = self.feature_extraction_class.from_pretrained(A__ ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertEqual(A__ , A__ ) def UpperCamelCase_ ( self : int ) -> Union[str, Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(A__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(A__ ) _snake_case = self.feature_extraction_class.from_json_file(A__ ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertEqual(A__ , A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> Any: # Initialize feature_extractor _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = [np.asarray(A__ ) for speech_input in speech_inputs] # Test not batched input _snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _snake_case = feature_extractor(A__ , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _snake_case = feature_extractor( A__ , return_tensors='''np''' , sampling_rate=44100 , mask_audio=A__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _snake_case = [floats_list((1, x) )[0] for x in (800, 800, 800)] _snake_case = np.asarray(A__ ) _snake_case = feature_extractor(A__ , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase_ ( self : Optional[Any] , A__ : Any ) -> Optional[int]: _snake_case = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _snake_case = ds.sort('''id''' ).select(range(A__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase_ ( self : List[str] ) -> Optional[Any]: _snake_case = self._load_datasamples(1 ) _snake_case = TvltFeatureExtractor() _snake_case = feature_extractor(A__ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _snake_case = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A__ , atol=1e-4 ) )
278
0
from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCAmelCase_ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
def snake_case_ ( snake_case ) -> int: if n == 1 or not isinstance(snake_case , snake_case ): return 0 elif n == 2: return 1 else: lowercase__: Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case_ ( snake_case ) -> int: lowercase__: int = 0 lowercase__: int = 2 while digits < n: index += 1 lowercase__: Tuple = len(str(fibonacci(snake_case ) ) ) return index def snake_case_ ( snake_case = 10_00 ) -> int: return fibonacci_digits_index(snake_case ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
196
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A_ : Union[str, Any] = logging.get_logger(__name__) def snake_case (UpperCAmelCase__ ) -> List[List[ImageInput]]: if isinstance(UpperCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCAmelCase__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : List[str] =['''pixel_values'''] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = 1 / 2_5_5 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: Any = size if size is not None else {'shortest_edge': 2_5_6} UpperCamelCase_: Optional[Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCamelCase_: Optional[int] = get_size_dict(_lowerCamelCase , param_name='crop_size' ) UpperCamelCase_: List[Any] = do_resize UpperCamelCase_: str = size UpperCamelCase_: Optional[Any] = do_center_crop UpperCamelCase_: Optional[int] = crop_size UpperCamelCase_: Any = resample UpperCamelCase_: Tuple = do_rescale UpperCamelCase_: Optional[Any] = rescale_factor UpperCamelCase_: Union[str, Any] = offset UpperCamelCase_: List[str] = do_normalize UpperCamelCase_: Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_: List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "shortest_edge" in size: UpperCamelCase_: str = get_resize_output_image_size(_lowerCamelCase , size['shortest_edge'] , default_to_square=_lowerCamelCase ) elif "height" in size and "width" in size: UpperCamelCase_: int = (size['height'], size['width']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Optional[int] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['height'], size['width']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: int = image.astype(np.floataa ) if offset: UpperCamelCase_: List[Any] = image - (scale / 2) return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. UpperCamelCase_: Optional[Any] = to_numpy_array(_lowerCamelCase ) if do_resize: UpperCamelCase_: Dict = self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) if do_center_crop: UpperCamelCase_: Any = self.center_crop(_lowerCamelCase , size=_lowerCamelCase ) if do_rescale: UpperCamelCase_: Optional[int] = self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase , offset=_lowerCamelCase ) if do_normalize: UpperCamelCase_: Optional[Any] = self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) UpperCamelCase_: List[str] = to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) return image def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: Any = resample if resample is not None else self.resample UpperCamelCase_: int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_: Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_: Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_: int = offset if offset is not None else self.offset UpperCamelCase_: Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: Any = image_mean if image_mean is not None else self.image_mean UpperCamelCase_: List[str] = image_std if image_std is not None else self.image_std UpperCamelCase_: Optional[int] = size if size is not None else self.size UpperCamelCase_: Tuple = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCamelCase_: str = crop_size if crop_size is not None else self.crop_size UpperCamelCase_: Dict = get_size_dict(_lowerCamelCase , param_name='crop_size' ) if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_: Tuple = make_batched(_lowerCamelCase ) UpperCamelCase_: Dict = [ [ self._preprocess_image( image=_lowerCamelCase , do_resize=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , do_center_crop=_lowerCamelCase , crop_size=_lowerCamelCase , do_rescale=_lowerCamelCase , rescale_factor=_lowerCamelCase , offset=_lowerCamelCase , do_normalize=_lowerCamelCase , image_mean=_lowerCamelCase , image_std=_lowerCamelCase , data_format=_lowerCamelCase , ) for img in video ] for video in videos ] UpperCamelCase_: Optional[Any] = {'pixel_values': videos} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
366
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params A_ : Tuple = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def snake_case (UpperCAmelCase__ ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCamelCase_: List[str] = k.replace(UpperCAmelCase__ , UpperCAmelCase__ ) return k def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> PegasusForConditionalGeneration: UpperCamelCase_: List[str] = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase__ ) UpperCamelCase_: Tuple = PegasusConfig(**UpperCAmelCase__ ) UpperCamelCase_: Tuple = PegasusForConditionalGeneration(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = torch_model.model.state_dict() UpperCamelCase_: str = {} for k, v in tf_weights.items(): UpperCamelCase_: Dict = rename_state_dict_key(UpperCAmelCase__ ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: UpperCamelCase_: int = v.T UpperCamelCase_: Union[str, Any] = torch.tensor(UpperCAmelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected UpperCamelCase_: Tuple = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCamelCase_: int = mapping['shared.weight'] UpperCamelCase_: Union[str, Any] = mapping['shared.weight'] UpperCamelCase_: Dict = {k: torch.zeros_like(UpperCAmelCase__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_: Optional[int] = torch_model.model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) UpperCamelCase_: List[str] = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def snake_case (UpperCAmelCase__="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCamelCase_: Union[str, Any] = tf.train.list_variables(UpperCAmelCase__ ) UpperCamelCase_: Tuple = {} UpperCamelCase_: Dict = ['Adafactor', 'global_step'] for name, shape in tqdm(UpperCAmelCase__ , desc='converting tf checkpoint to dict' ): UpperCamelCase_: Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase_: Dict = tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = array return tf_weights def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> int: # save tokenizer first UpperCamelCase_: Any = Path(UpperCAmelCase__ ).parent.name UpperCamelCase_: Tuple = task_specific_params[F'''summarization_{dataset}''']['max_position_embeddings'] UpperCamelCase_: Optional[Any] = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=UpperCAmelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase__ ) # convert model UpperCamelCase_: Optional[Any] = get_tf_weights_as_numpy(UpperCAmelCase__ ) UpperCamelCase_: Any = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": UpperCamelCase_: Union[str, Any] = task_specific_params UpperCamelCase_: Tuple = convert_pegasus(UpperCAmelCase__ , UpperCAmelCase__ ) torch_model.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(UpperCAmelCase__ , Path(UpperCAmelCase__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') A_ : Optional[Any] = parser.parse_args() if args.save_dir is None: A_ : Union[str, Any] = Path(args.tf_ckpt_path).parent.name A_ : Optional[Any] = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
292
0
"""simple docstring""" from timeit import timeit def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) lowercase__ : Any = 0 while number: number &= number - 1 result += 1 return result def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) lowercase__ : List[str] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a_ ( ): '''simple docstring''' def do_benchmark(_lowerCAmelCase : int ) -> None: lowercase__ : List[str] = 'import __main__ as z' print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(_lowerCAmelCase ) = }""" ) lowercase__ : Tuple = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=_lowerCAmelCase ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(_lowerCAmelCase ) = }""" ) lowercase__ : List[Any] = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=_lowerCAmelCase , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(_lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
77
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : int = FunnelConfig.from_json_file(_lowerCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowercase__ : List[Any] = FunnelBaseModel(_lowerCAmelCase ) if base_model else FunnelModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _UpperCamelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
77
1
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None UpperCamelCase__ = 1 UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = None UpperCamelCase__ = None def lowercase__ ( self : Any )->"DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCamelCase ) for k, v in self.__dict__.items()} )
368
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
0
from sklearn.metrics import fa_score import datasets UpperCAmelCase : Any = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" UpperCAmelCase : List[Any] = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" UpperCAmelCase : List[Any] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def UpperCAmelCase_ ( self , _A , _A , _A=None , _A=1 , _A="binary" , _A=None ): __A : int = fa_score( _A , _A , labels=_A , pos_label=_A , average=_A , sample_weight=_A ) return {"f1": float(_A ) if score.size == 1 else score}
280
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def A ( a_ = True ,*a_ ,**a_ ) -> Dict: if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) __UpperCamelCase : List[str] =False if main_process_only: __UpperCamelCase : int =PartialState().local_process_index == 0 return _tqdm(*a_ ,**a_ ,disable=a_ )
245
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return f'gaussian_noise_s={seed}_shape={"_".join([str(lowerCamelCase__ ) for s in shape] )}.npy' def __lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() def __lowercase ( self , lowerCamelCase__=0 , lowerCamelCase__=(4, 4, 64, 64) , lowerCamelCase__=False ): """simple docstring""" __UpperCamelCase : str =jnp.bfloataa if fpaa else jnp.floataa __UpperCamelCase : Optional[Any] =jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase__ , lowerCamelCase__ ) ) , dtype=lowerCamelCase__ ) return image def __lowercase ( self , lowerCamelCase__=False , lowerCamelCase__="CompVis/stable-diffusion-v1-4" ): """simple docstring""" __UpperCamelCase : List[Any] =jnp.bfloataa if fpaa else jnp.floataa __UpperCamelCase : Optional[int] ='bf16' if fpaa else None __UpperCamelCase , __UpperCamelCase : Any =FlaxUNetaDConditionModel.from_pretrained( lowerCamelCase__ , subfolder='unet' , dtype=lowerCamelCase__ , revision=lowerCamelCase__ ) return model, params def __lowercase ( self , lowerCamelCase__=0 , lowerCamelCase__=(4, 77, 768) , lowerCamelCase__=False ): """simple docstring""" __UpperCamelCase : str =jnp.bfloataa if fpaa else jnp.floataa __UpperCamelCase : Optional[int] =jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase__ , lowerCamelCase__ ) ) , dtype=lowerCamelCase__ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Dict =self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowerCamelCase__ ) __UpperCamelCase : Dict =self.get_latents(lowerCamelCase__ , fpaa=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =self.get_encoder_hidden_states(lowerCamelCase__ , fpaa=lowerCamelCase__ ) __UpperCamelCase : List[str] =model.apply( {'params': params} , lowerCamelCase__ , jnp.array(lowerCamelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase__ , ).sample assert sample.shape == latents.shape __UpperCamelCase : List[str] =jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCamelCase : int =jnp.array(lowerCamelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Dict =self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =self.get_latents(lowerCamelCase__ , shape=(4, 4, 96, 96) , fpaa=lowerCamelCase__ ) __UpperCamelCase : int =self.get_encoder_hidden_states(lowerCamelCase__ , shape=(4, 77, 1024) , fpaa=lowerCamelCase__ ) __UpperCamelCase : str =model.apply( {'params': params} , lowerCamelCase__ , jnp.array(lowerCamelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase__ , ).sample assert sample.shape == latents.shape __UpperCamelCase : int =jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCamelCase : Optional[Any] =jnp.array(lowerCamelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-2 )
245
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __UpperCAmelCase ="\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __UpperCAmelCase ="\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __UpperCAmelCase ="\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : List[List[List[str]]] , a : List[List[str]] , a : int = 1 , a : int = 4 , ): """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a , hypotheses=a , min_len=a , max_len=a ) }
67
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCAmelCase =None __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase ={ "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase ={ "moussaKam/mbarthez": 1_0_2_4, "moussaKam/barthez": 1_0_2_4, "moussaKam/barthez-orangesum-title": 1_0_2_4, } __UpperCAmelCase ="▁" class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[int] =VOCAB_FILES_NAMES lowerCamelCase : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] =["input_ids", "attention_mask"] lowerCamelCase : Union[str, Any] =BarthezTokenizer def __init__( self : Optional[Any] , a : Dict=None , a : str=None , a : List[Any]="<s>" , a : Optional[int]="</s>" , a : List[str]="</s>" , a : Tuple="<s>" , a : str="<unk>" , a : Any="<pad>" , a : Union[str, Any]="<mask>" , **a : Union[str, Any] , ): """simple docstring""" __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , **a , ) __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : str , a : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
67
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=[10, 20, 30, 40] , _UpperCamelCase=[2, 2, 3, 2] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=10 , _UpperCamelCase=0.0_2 , _UpperCamelCase=["stage2", "stage3", "stage4"] , _UpperCamelCase=[2, 3, 4] , _UpperCamelCase=None , ): """simple docstring""" _lowercase : Tuple = parent _lowercase : Optional[int] = batch_size _lowercase : Optional[Any] = image_size _lowercase : List[str] = num_channels _lowercase : List[Any] = num_stages _lowercase : Dict = hidden_sizes _lowercase : Any = depths _lowercase : List[str] = is_training _lowercase : List[str] = use_labels _lowercase : Union[str, Any] = intermediate_size _lowercase : int = hidden_act _lowercase : List[str] = num_labels _lowercase : Any = initializer_range _lowercase : Tuple = out_features _lowercase : Optional[int] = out_indices _lowercase : int = scope def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Any = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.num_labels ) _lowercase : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : int = ConvNextVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : str = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = ConvNextVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Optional[int] = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Dict = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Dict = model(_UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowercase : Dict = None _lowercase : List[Any] = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Dict = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = self.prepare_config_and_inputs() _lowercase : Optional[Any] = config_and_inputs _lowercase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase : Union[str, Any] = config_and_inputs _lowercase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class a__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Optional[Any] = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : str = False def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = ConvNextVaModelTester(self ) _lowercase : Optional[int] = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def _lowerCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self ): """simple docstring""" return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowercase : str = self.model_tester.prepare_config_and_inputs_with_labels() _lowercase : List[Any] = True if model_class.__name__ in [ *get_values(_UpperCamelCase ), *get_values(_UpperCamelCase ), ]: continue _lowercase : List[str] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() _lowercase : List[Any] = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) _lowercase : Tuple = model(**_UpperCamelCase ).loss loss.backward() def _lowerCamelCase ( self ): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_with_labels() _lowercase : str = False _lowercase : Any = True if ( model_class.__name__ in [*get_values(_UpperCamelCase ), *get_values(_UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue _lowercase : Tuple = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _lowercase : Optional[int] = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) _lowercase : Any = model(**_UpperCamelCase ).loss loss.backward() def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : int = model_class(_UpperCamelCase ) _lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Tuple = [*signature.parameters.keys()] _lowercase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _lowercase : Any = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _lowercase : Optional[Any] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _lowercase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Any = ConvNextVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _A ( ) -> int: _lowercase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(_UpperCamelCase ) _lowercase : List[str] = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : Optional[Any] = preprocessor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**_UpperCamelCase ) # verify the logits _lowercase : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _lowercase : List[Any] = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) )
367
'''simple docstring''' from __future__ import annotations def _A ( snake_case , snake_case = None , snake_case = None ) -> None: if start is None: _lowercase : Dict = 0 if end is None: _lowercase : List[Any] = len(snake_case ) - 1 if start >= end: return _lowercase : int = (start + end) // 2 slowsort(snake_case , snake_case , snake_case ) slowsort(snake_case , mid + 1 , snake_case ) if sequence[end] < sequence[mid]: _lowercase , _lowercase : Any = sequence[mid], sequence[end] slowsort(snake_case , snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
199
0
__snake_case : Dict = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def _UpperCAmelCase ( a__): '''simple docstring''' a_ : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __snake_case : Any = [None] * 10_00_00_00 __snake_case : Union[str, Any] = True __snake_case : int = False def _UpperCAmelCase ( a__): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore a_ : int = chain(next_number(snake_case__)) a_ : Optional[int] = number_chain while number < 1_0_0_0_0_0_0_0: a_ : Dict = number_chain number *= 1_0 return number_chain def _UpperCAmelCase ( a__ = 1_0_0_0_0_0_0_0): '''simple docstring''' for i in range(1 , snake_case__): if CHAINS[i] is None: chain(i + 1) return CHAINS[:number].count(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
248
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Any = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Dict = {} __UpperCamelCase : Dict = os.path.join(snake_case__ , "all_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: __UpperCamelCase : Any = json.load(snake_case__ ) else: raise ValueError(F"can't find {path}" ) return results def __lowerCAmelCase ( ): __UpperCamelCase : Any = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @classmethod def a_ (cls ) -> Union[str, Any]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __UpperCamelCase : Optional[Any] = tempfile.mkdtemp() __UpperCamelCase : List[str] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase : Optional[Any] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def a_ (cls ) -> Union[str, Any]: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Optional[int]: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Dict: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Any: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> int: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : int = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Any: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 2_8 ) self.assertGreaterEqual(result["eval_exact"] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Dict: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Union[str, Any]: __UpperCamelCase : str = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Dict = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_rouge1"] , 1_0 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Tuple: __UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_bleu"] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "translation_no_trainer" ) ) ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCAmelCase ) __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __UpperCamelCase : str = get_results(_UpperCAmelCase ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "image_classification_no_trainer" ) ) )
298
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A_ ( metaclass=lowerCAmelCase_ ): _lowerCamelCase : Optional[Any] = ["""speech"""] def __init__( self : List[str] , *snake_case_ : int , **snake_case_ : Dict ): requires_backends(self , ["speech"] ) class A_ ( metaclass=lowerCAmelCase_ ): _lowerCamelCase : str = ["""speech"""] def __init__( self : Any , *snake_case_ : int , **snake_case_ : Any ): requires_backends(self , ["speech"] )
156
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( lowerCAmelCase_ ): def __init__( self : Optional[int] , snake_case_ : Dict , snake_case_ : int=1_3 , snake_case_ : int=7 , snake_case_ : Union[str, Any]=True , snake_case_ : int=True , snake_case_ : Tuple=True , snake_case_ : Optional[Any]=True , snake_case_ : int=9_9 , snake_case_ : Tuple=3_2 , snake_case_ : Dict=5 , snake_case_ : str=4 , snake_case_ : Union[str, Any]=3_7 , snake_case_ : Dict="gelu" , snake_case_ : Any=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=5_1_2 , snake_case_ : List[Any]=1_6 , snake_case_ : List[Any]=2 , snake_case_ : Any=0.0_2 , snake_case_ : List[str]=False , snake_case_ : Dict=True , snake_case_ : Union[str, Any]="None" , snake_case_ : Dict=3 , snake_case_ : Union[str, Any]=4 , snake_case_ : Dict=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = relative_attention _UpperCAmelCase = position_biased_input _UpperCAmelCase = pos_att_type _UpperCAmelCase = scope def lowercase ( self : Optional[Any] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Optional[Any] ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase ( self : Optional[int] , snake_case_ : Dict ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase ( self : str , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : List[str] ): _UpperCAmelCase = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] _UpperCAmelCase = model(snake_case_ , token_type_ids=snake_case_ )[0] _UpperCAmelCase = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase ( self : Optional[int] , snake_case_ : str , snake_case_ : int , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] ): _UpperCAmelCase = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[int] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def lowercase ( self : Any , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : List[Any] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : List[Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Any ): _UpperCAmelCase = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : str ): _UpperCAmelCase = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : str ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : List[str] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Any = True _lowerCamelCase : int = False _lowerCamelCase : int = False _lowerCamelCase : Dict = False _lowerCamelCase : int = False def lowercase ( self : List[str] ): _UpperCAmelCase = DebertaVaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def lowercase ( self : str ): self.config_tester.run_common_tests() def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def lowercase ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def lowercase ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def lowercase ( self : Dict ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def lowercase ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def lowercase ( self : Union[str, Any] ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def lowercase ( self : Union[str, Any] ): pass @slow def lowercase ( self : List[str] ): _UpperCAmelCase = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" ) _UpperCAmelCase = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. _UpperCAmelCase = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) , f'{output[:, 1:4, 1:4]}' )
156
1
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( a_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = LxmertTokenizer __UpperCAmelCase : Union[str, Any] = LxmertTokenizerFast __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : List[Any] = True def __lowercase ( self : Any ): '''simple docstring''' super().setUp() _a : Union[str, Any] = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self : Union[str, Any] ,_a : int ): '''simple docstring''' _a : List[Any] = "UNwant\u00E9d,running" _a : Optional[int] = "unwanted, running" return input_text, output_text def __lowercase ( self : str ): '''simple docstring''' _a : List[str] = self.tokenizer_class(self.vocab_file ) _a : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_a ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,[7, 4, 5, 10, 8, 9] ) def __lowercase ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return _a : Dict = self.get_tokenizer() _a : Optional[int] = self.get_rust_tokenizer() _a : Union[str, Any] = "I was born in 92000, and this is falsé." _a : int = tokenizer.tokenize(_a ) _a : Optional[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = tokenizer.encode(_a ,add_special_tokens=_a ) _a : List[str] = rust_tokenizer.encode(_a ,add_special_tokens=_a ) self.assertListEqual(_a ,_a ) _a : Optional[Any] = self.get_rust_tokenizer() _a : Dict = tokenizer.encode(_a ) _a : int = rust_tokenizer.encode(_a ) self.assertListEqual(_a ,_a )
271
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _A : int = """CompVis/stable-diffusion-v1-1""" _A : Any = """CompVis/stable-diffusion-v1-2""" _A : Optional[int] = """CompVis/stable-diffusion-v1-3""" _A : Union[str, Any] = """CompVis/stable-diffusion-v1-4""" class a__ ( a_ ): def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a = True , ): super()._init_() lowercase : Optional[Any] = StableDiffusionPipeline.from_pretrained(_a ) lowercase : str = StableDiffusionPipeline.from_pretrained(_a ) lowercase : Dict = StableDiffusionPipeline.from_pretrained(_a ) lowercase : Union[str, Any] = StableDiffusionPipeline( vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , requires_safety_checker=_a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __magic_name__ ( self ): return {k: getattr(self , _a ) for k in self.config.keys() if not k.startswith("_" )} def __magic_name__ ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __magic_name__ ( self ): self.enable_attention_slicing(_a ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): lowercase : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" self.to(_a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 lowercase : List[Any] = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.2 lowercase : Any = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.3 lowercase : str = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.4 lowercase : Optional[int] = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
202
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class SCREAMING_SNAKE_CASE__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , __A : Any ): super().__init__() snake_case__ : int = model snake_case__ : int = 2 snake_case__ : Optional[Any] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowercase ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : str = LongformerModel.from_pretrained(a__ ) snake_case__ : Tuple = LightningModel(a__ ) snake_case__ : Tuple = torch.load(a__ , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model snake_case__ : List[str] = LongformerForQuestionAnswering.from_pretrained(a__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a__ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCamelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
369
import sys __lowerCamelCase : List[str] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str = N ): snake_case__ : Any = -sys.maxsize - 1 for i in range(len(snake_case_ ) - 12 ): snake_case__ : Tuple = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case__ : Dict = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
286
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : torch.FloatTensor __lowercase : Optional[torch.FloatTensor] = None def A ( lowercase , lowercase=0.9_9_9 , lowercase="cosine" , ) -> Optional[int]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase ): return math.exp(t * -1_2.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCamelCase = [] for i in range(lowercase ): UpperCamelCase = i / num_diffusion_timesteps UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase ) / alpha_bar_fn(lowercase ) , lowercase ) ) return torch.tensor(lowercase , dtype=torch.floataa ) class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ = 1_000 , A_ = "fixed_small_log" , A_ = True , A_ = 1.0 , A_ = "epsilon" , A_ = "squaredcos_cap_v2" , ) -> Optional[Any]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) UpperCamelCase = betas_for_alpha_bar(A_ ) UpperCamelCase = 1.0 - self.betas UpperCamelCase = torch.cumprod(self.alphas , dim=0 ) UpperCamelCase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCamelCase = 1.0 # setable values UpperCamelCase = None UpperCamelCase = torch.from_numpy(np.arange(0 , A_ )[::-1].copy() ) UpperCamelCase = variance_type def __UpperCamelCase ( self , A_ , A_ = None ) -> torch.FloatTensor: """simple docstring""" return sample def __UpperCamelCase ( self , A_ , A_ = None ) -> List[Any]: """simple docstring""" UpperCamelCase = num_inference_steps UpperCamelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCamelCase = (np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCamelCase = torch.from_numpy(A_ ).to(A_ ) def __UpperCamelCase ( self , A_ , A_=None , A_=None , A_=None ) -> Optional[Any]: """simple docstring""" if prev_timestep is None: UpperCamelCase = t - 1 UpperCamelCase = self.alphas_cumprod[t] UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCamelCase = self.betas[t] else: UpperCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCamelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCamelCase = torch.log(torch.clamp(A_ , min=1e-20 ) ) UpperCamelCase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCamelCase = variance.log() UpperCamelCase = beta.log() UpperCamelCase = (predicted_variance + 1) / 2 UpperCamelCase = frac * max_log + (1 - frac) * min_log return variance def __UpperCamelCase ( self , A_ , A_ , A_ , A_ = None , A_=None , A_ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCamelCase , UpperCamelCase = torch.split(A_ , sample.shape[1] , dim=1 ) else: UpperCamelCase = None # 1. compute alphas, betas if prev_timestep is None: UpperCamelCase = t - 1 UpperCamelCase = self.alphas_cumprod[t] UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCamelCase = self.betas[t] UpperCamelCase = self.alphas[t] else: UpperCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev UpperCamelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCamelCase = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCamelCase = torch.clamp( A_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCamelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCamelCase = 0 if t > 0: UpperCamelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A_ , device=model_output.device ) UpperCamelCase = self._get_variance( A_ , predicted_variance=A_ , prev_timestep=A_ , ) if self.variance_type == "fixed_small_log": UpperCamelCase = variance elif self.variance_type == "learned_range": UpperCamelCase = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ' for the UnCLIPScheduler.' ) UpperCamelCase = variance * variance_noise UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A_ , pred_original_sample=A_ ) def __UpperCamelCase ( self , A_ , A_ , A_ , ) -> torch.FloatTensor: """simple docstring""" # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCamelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCamelCase = timesteps.to(original_samples.device ) UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCamelCase = sqrt_alpha_prod.unsqueeze(-1 ) UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCamelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
222
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'embed_dim' ) ) self.parent.assertTrue(hasattr(A_ , 'num_heads' ) ) class lowercase : def __init__( self , A_ , A_=13 , A_=64 , A_=3 , A_=[16, 48, 96] , A_=[1, 3, 6] , A_=[1, 2, 10] , A_=[7, 3, 3] , A_=[4, 2, 2] , A_=[2, 1, 1] , A_=[2, 2, 2] , A_=[False, False, True] , A_=[0.0, 0.0, 0.0] , A_=0.02 , A_=1e-12 , A_=True , A_=True , A_=2 , ) -> int: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_sizes UpperCamelCase = patch_stride UpperCamelCase = patch_padding UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = num_labels UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = num_heads UpperCamelCase = stride_kv UpperCamelCase = depth UpperCamelCase = cls_token UpperCamelCase = attention_drop_rate UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase = CvtModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase , UpperCamelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCamelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCamelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = CvtForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else () __lowercase : Tuple = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Union[str, Any] = False __lowercase : Optional[Any] = False __lowercase : List[str] = False __lowercase : Dict = False def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = CvtModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self ) -> Any: """simple docstring""" return @unittest.skip(reason='Cvt does not output attentions' ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = len(self.model_tester.depth ) self.assertEqual(len(A_ ) , A_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @slow def __UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = CvtModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> Tuple: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
222
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : Any = logging.getLogger() def A_( A : Any): UpperCamelCase = {} UpperCamelCase = os.path.join(A , 'all_results.json') if os.path.exists(A): with open(A , 'r') as f: UpperCamelCase = json.load(A) else: raise ValueError(f'''can\'t find {path}''') return results lowerCAmelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class SCREAMING_SNAKE_CASE__ ( lowercase_): def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' import xla_spawn UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'''\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '''.split() with patch.object(a__ , 'argv' , a__ ): UpperCamelCase = time() xla_spawn.main() UpperCamelCase = time() UpperCamelCase = get_results(a__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' import xla_spawn UpperCamelCase = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(a__ , 'argv' , a__ ): xla_spawn.main()
354
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ )-> int: '''simple docstring''' super().__init__() UpperCamelCase = torchvision.models.resnetaaa(pretrained=A_ ) UpperCamelCase = list(model.children() )[:-2] UpperCamelCase = nn.Sequential(*A_ ) UpperCamelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = self.pool(self.model(A_ ) ) UpperCamelCase = torch.flatten(A_ , start_dim=2 ) UpperCamelCase = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ , A_ , A_ , A_ )-> Dict: '''simple docstring''' UpperCamelCase = [json.loads(A_ ) for l in open(A_ )] UpperCamelCase = os.path.dirname(A_ ) UpperCamelCase = tokenizer UpperCamelCase = labels UpperCamelCase = len(A_ ) UpperCamelCase = max_seq_length UpperCamelCase = transforms def __len__( self )-> Union[str, Any]: '''simple docstring''' return len(self.data ) def __getitem__( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=A_ ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase = sentence[0], sentence[1:-1], sentence[-1] UpperCamelCase = sentence[: self.max_seq_length] UpperCamelCase = torch.zeros(self.n_classes ) UpperCamelCase = 1 UpperCamelCase = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) UpperCamelCase = self.transforms(A_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def A_( A : Union[str, Any]): UpperCamelCase = [len(row['sentence']) for row in batch] UpperCamelCase , UpperCamelCase = len(A), max(A) UpperCamelCase = torch.zeros(A , A , dtype=torch.long) UpperCamelCase = torch.zeros(A , A , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(A , A)): UpperCamelCase = input_row['sentence'] UpperCamelCase = 1 UpperCamelCase = torch.stack([row['image'] for row in batch]) UpperCamelCase = torch.stack([row['label'] for row in batch]) UpperCamelCase = torch.stack([row['image_start_token'] for row in batch]) UpperCamelCase = torch.stack([row['image_end_token'] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A_( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A_( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ])
251
0
'''simple docstring''' import os import sys import unittest lowercase__ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase__ : str = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowercase__ : Any = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = get_test_to_tester_mapping(_UpperCAmelCase) __A : int = get_test_to_tester_mapping(_UpperCAmelCase) __A : Optional[int] = {'BertModelTest': 'BertModelTester'} __A : Tuple = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(_UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(get_test_info.to_json(_UpperCAmelCase) , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = get_model_to_test_mapping(_UpperCAmelCase) __A : Optional[Any] = get_model_to_test_mapping(_UpperCAmelCase) __A : Tuple = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } __A : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(_UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(get_test_info.to_json(_UpperCAmelCase) , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = get_model_to_tester_mapping(_UpperCAmelCase) __A : Any = get_model_to_tester_mapping(_UpperCAmelCase) __A : Union[str, Any] = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } __A : Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(_UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(get_test_info.to_json(_UpperCAmelCase) , _UpperCAmelCase)
190
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _lowerCAmelCase ( __snake_case : Tuple ) -> Dict: return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _lowerCAmelCase ( ) -> Tuple: __A : int = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=__snake_case ) __A : Optional[Any] = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__snake_case ) EnvironmentCommand.register_subcommand(__snake_case ) TestCommand.register_subcommand(__snake_case ) RunBeamCommand.register_subcommand(__snake_case ) DummyDataCommand.register_subcommand(__snake_case ) # Parse args __A ,__A : Optional[Any] = parser.parse_known_args() if not hasattr(__snake_case , 'func' ): parser.print_help() exit(1 ) __A : Any = parse_unknown_args(__snake_case ) # Run __A : List[Any] = args.func(__snake_case , **__snake_case ) service.run() if __name__ == "__main__": main()
190
1
from collections.abc import Sequence from queue import Queue class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[str]: UpperCAmelCase_ : Optional[int] = start UpperCAmelCase_ : Dict = end UpperCAmelCase_ : Tuple = val UpperCAmelCase_ : Tuple = (start + end) // 2 UpperCAmelCase_ : Any = left UpperCAmelCase_ : Tuple = right def __repr__( self ) -> str: return f"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> List[str]: UpperCAmelCase_ : int = collection UpperCAmelCase_ : Tuple = function if self.collection: UpperCAmelCase_ : Optional[int] = self._build_tree(0 , len(_UpperCamelCase ) - 1 ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: self._update_tree(self.root , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: return self._query_range(self.root , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: if start == end: return SegmentTreeNode(_UpperCamelCase , _UpperCamelCase , self.collection[start] ) UpperCAmelCase_ : int = (start + end) // 2 UpperCAmelCase_ : Optional[int] = self._build_tree(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Any = self._build_tree(mid + 1 , _UpperCamelCase ) return SegmentTreeNode(_UpperCamelCase , _UpperCamelCase , self.fn(left.val , right.val ) , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: if node.start == i and node.end == i: UpperCAmelCase_ : Dict = val return if i <= node.mid: self._update_tree(node.left , _UpperCamelCase , _UpperCamelCase ) else: self._update_tree(node.right , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Tuple = self.fn(node.left.val , node.right.val ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _UpperCamelCase , _UpperCamelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _UpperCamelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , _UpperCamelCase ) , ) else: # range in right child tree return self._query_range(node.right , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[Any]: if self.root is not None: UpperCAmelCase_ : int = Queue() queue.put(self.root ) while not queue.empty(): UpperCAmelCase_ : Optional[int] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('*' * 50) __UpperCAmelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
350
from __future__ import annotations def lowercase__ ( __snake_case : list[int] , __snake_case : int ): '''simple docstring''' if len(__snake_case ) < k or k < 0: raise ValueError('Invalid Input' ) UpperCAmelCase_ : int = sum(array[:k] ) for i in range(len(__snake_case ) - k ): UpperCAmelCase_ : List[Any] = current_sum - array[i] + array[i + k] UpperCAmelCase_ : List[Any] = max(__snake_case , __snake_case ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __UpperCAmelCase = [randint(-1000, 1000) for i in range(100)] __UpperCAmelCase = randint(0, 110) print(F'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
145
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase : Optional[int] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = ['''ChineseCLIPFeatureExtractor'''] _UpperCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys _UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __snake_case : __lowerCamelCase = XGLMConfig __lowerCamelCase = {} __lowerCamelCase = """gelu""" def __init__( self , __UpperCamelCase , __UpperCamelCase=14 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=0.0_2 , ) -> str: '''simple docstring''' snake_case__ : Any = parent snake_case__ : Optional[int] = batch_size snake_case__ : List[str] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : Optional[int] = use_input_mask snake_case__ : Any = use_labels snake_case__ : List[str] = vocab_size snake_case__ : List[Any] = d_model snake_case__ : List[str] = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : str = ffn_dim snake_case__ : Optional[Any] = activation_function snake_case__ : str = activation_dropout snake_case__ : int = attention_dropout snake_case__ : List[str] = max_position_embeddings snake_case__ : Optional[int] = initializer_range snake_case__ : List[str] = None snake_case__ : List[str] = 0 snake_case__ : Optional[int] = 2 snake_case__ : Union[str, Any] = 1 def __a ( self ) -> List[str]: '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) snake_case__ : int = None if self.use_input_mask: snake_case__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[Any] = self.get_config() snake_case__ : Optional[int] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __a ( self ) -> Any: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCamelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCamelCase , ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Any = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Tuple = config_and_inputs snake_case__ : Tuple = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () __lowerCamelCase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> str: '''simple docstring''' snake_case__ : Union[str, Any] = TFXGLMModelTester(self ) snake_case__ : Optional[int] = ConfigTester(self , config_class=__UpperCamelCase , n_embd=37 ) def __a ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @slow def __a ( self ) -> Dict: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Any = TFXGLMModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __a ( self ) -> Any: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __snake_case ( unittest.TestCase ): @slow def __a ( self , __UpperCamelCase=True ) -> int: '''simple docstring''' snake_case__ : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) snake_case__ : Tuple = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case__ : List[str] = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on snake_case__ : int = model.generate(__UpperCamelCase , do_sample=__UpperCamelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCamelCase ) @slow def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) snake_case__ : Dict = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) snake_case__ : Any = tokenizer('Today is a nice day and' , return_tensors='tf' ) snake_case__ : Dict = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): snake_case__ : Optional[int] = model.generate(__UpperCamelCase , do_sample=__UpperCamelCase , seed=[7, 0] ) snake_case__ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCamelCase ) snake_case__ : str = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : str = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) snake_case__ : Optional[int] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) snake_case__ : Any = 'left' # use different length sentences to test batching snake_case__ : int = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] snake_case__ : Any = tokenizer(__UpperCamelCase , return_tensors='tf' , padding=__UpperCamelCase ) snake_case__ : List[Any] = inputs['input_ids'] snake_case__ : List[str] = model.generate(input_ids=__UpperCamelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) snake_case__ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids snake_case__ : str = model.generate(input_ids=__UpperCamelCase , max_new_tokens=12 ) snake_case__ : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids snake_case__ : Dict = model.generate(input_ids=__UpperCamelCase , max_new_tokens=12 ) snake_case__ : List[Any] = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) snake_case__ : Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCamelCase ) snake_case__ : Dict = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCamelCase ) snake_case__ : Union[str, Any] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [non_padded_sentence, padded_sentence] )
143
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : Optional[int] = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys snake_case : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ): a__ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) a__ = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) a__ = in_proj_weight[ : encoder_config.hidden_size, : ] a__ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] a__ = in_proj_weight[ -encoder_config.hidden_size :, : ] def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : Optional[Any] ): if "handwritten" in checkpoint_url: a__ = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: a__ = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('RGB' ) return im @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ): a__ = ViTConfig(image_size=3_8_4 , qkv_bias=__lowerCAmelCase ) a__ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: a__ = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder a__ = 1_0_2_4 a__ = 4_0_9_6 a__ = 2_4 a__ = 1_6 a__ = 1_0_2_4 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: a__ = False a__ = 'relu' a__ = 1_0_2_4 a__ = True a__ = False a__ = False # load HuggingFace model a__ = ViTModel(__lowerCAmelCase , add_pooling_layer=__lowerCAmelCase ) a__ = TrOCRForCausalLM(__lowerCAmelCase ) a__ = VisionEncoderDecoderModel(encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys a__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='cpu' , check_hash=__lowerCAmelCase )['model'] a__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): a__ = state_dict.pop(__lowerCAmelCase ) if key.startswith('decoder' ) and "output_projection" not in key: a__ = val else: a__ = val # load state dict model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image a__ = ViTImageProcessor(size=encoder_config.image_size ) a__ = RobertaTokenizer.from_pretrained('roberta-large' ) a__ = TrOCRProcessor(__lowerCAmelCase , __lowerCAmelCase ) a__ = processor(images=prepare_img(__lowerCAmelCase ) , return_tensors='pt' ).pixel_values # verify logits a__ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) a__ = model(pixel_values=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ) a__ = outputs.logits a__ = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: a__ = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: a__ = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: a__ = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: a__ = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , __lowerCAmelCase , atol=1E-3 ), "First elements of logits not as expected" Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) snake_case : int = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
109
0
'''simple docstring''' from math import ceil def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ) -> Tuple: UpperCAmelCase : List[Any] = list(range(0 , _lowerCAmelCase ) ) UpperCAmelCase : Union[str, Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCAmelCase : Optional[Any] = [] for i in device_map_blocks: if device_map_blocks.count(_lowerCAmelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_lowerCAmelCase ) # Missing blocks UpperCAmelCase : Optional[int] = [i for i in blocks if i not in device_map_blocks] UpperCAmelCase : int = [i for i in device_map_blocks if i not in blocks] if len(_lowerCAmelCase ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(_lowerCAmelCase ) ) def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> int: UpperCAmelCase : Dict = list(range(_lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = int(ceil(n_layers / len(_lowerCAmelCase ) ) ) UpperCAmelCase : List[str] = [layers[i : i + n_blocks] for i in range(0 , _lowerCAmelCase , _lowerCAmelCase )] return dict(zip(_lowerCAmelCase , _lowerCAmelCase ) )
23
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , )-> Union[str, Any]: lowerCamelCase_ =size if size is not None else {"""shortest_edge""": 20} lowerCamelCase_ =crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =min_resolution lowerCamelCase_ =max_resolution lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_flip_channel_order def _snake_case ( self )-> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Tuple = MobileViTImageProcessor if is_vision_available() else None def _snake_case ( self )-> List[str]: lowerCamelCase_ =MobileViTImageProcessingTester(self ) @property def _snake_case ( self )-> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self )-> Any: lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_center_crop""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """center_crop""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_flip_channel_order""" ) ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _snake_case ( self )-> Union[str, Any]: pass def _snake_case ( self )-> Dict: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self )-> str: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self )-> List[Any]: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
154
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list) -> list: '''simple docstring''' __UpperCamelCase : str = len(_SCREAMING_SNAKE_CASE) for _ in range(_SCREAMING_SNAKE_CASE): for i in range(_ % 2 , arr_size - 1 , 2): if arr[i + 1] < arr[i]: __UpperCamelCase : List[str] = arr[i + 1], arr[i] return arr if __name__ == "__main__": lowercase : int = list(range(10, 0, -1)) print(f"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
351
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowercase : List[str] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]) -> Any: '''simple docstring''' __UpperCamelCase : str = set() __UpperCamelCase : Optional[Any] = [] def parse_line(_lowerCamelCase : Tuple): for line in fp: if isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Tuple = line.decode("UTF-8") if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" "): # process a single warning and move it to `selected_warnings`. if len(_lowerCamelCase) > 0: __UpperCamelCase : Optional[Any] = "\n".join(_lowerCamelCase) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets): selected_warnings.add(_lowerCamelCase) buffer.clear() continue else: __UpperCamelCase : Optional[Any] = line.strip() buffer.append(_lowerCamelCase) if from_gh: for filename in os.listdir(_lowerCamelCase): __UpperCamelCase : Any = os.path.join(_lowerCamelCase , _lowerCamelCase) if not os.path.isdir(_lowerCamelCase): # read the file if filename != "warnings.txt": continue with open(_lowerCamelCase) as fp: parse_line(_lowerCamelCase) else: try: with zipfile.ZipFile(_lowerCamelCase) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase): # read the file if filename != "warnings.txt": continue with z.open(_lowerCamelCase) as fp: parse_line(_lowerCamelCase) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.') return selected_warnings def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int]) -> Dict: '''simple docstring''' __UpperCamelCase : Union[str, Any] = set() __UpperCamelCase : str = [os.path.join(_lowerCamelCase , _lowerCamelCase) for p in os.listdir(_lowerCamelCase) if (p.endswith(".zip") or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowerCamelCase , _lowerCamelCase)) return selected_warnings if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple) -> str: '''simple docstring''' return values.split(",") lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) lowercase : Union[str, Any] = parser.parse_args() lowercase : Tuple = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowercase : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowercase : Any = extract_warnings(args.output_dir, args.targets) lowercase : int = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
151
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _A : Union[str, Any] = logging.get_logger(__name__) _A : Optional[Any] = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = """umt5""" _SCREAMING_SNAKE_CASE : Any = ["""past_key_values"""] def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict=25_01_12 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_12 , SCREAMING_SNAKE_CASE__ : List[Any]=64 , SCREAMING_SNAKE_CASE__ : Dict=10_24 , SCREAMING_SNAKE_CASE__ : Tuple=8 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Any=6 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : List[str]=1_28 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=1e-6 , SCREAMING_SNAKE_CASE__ : Any=1.0 , SCREAMING_SNAKE_CASE__ : Optional[int]="gated-gelu" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : int="T5Tokenizer" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=1 , SCREAMING_SNAKE_CASE__ : Any=0 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> str: super().__init__( is_encoder_decoder=SCREAMING_SNAKE_CASE__ , tokenizer_class=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = d_kv __lowerCAmelCase = d_ff __lowerCAmelCase = num_layers __lowerCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowerCAmelCase = num_heads __lowerCAmelCase = relative_attention_num_buckets __lowerCAmelCase = relative_attention_max_distance __lowerCAmelCase = dropout_rate __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_factor __lowerCAmelCase = feed_forward_proj __lowerCAmelCase = use_cache __lowerCAmelCase = self.feed_forward_proj.split("""-""" ) __lowerCAmelCase = act_info[-1] __lowerCAmelCase = act_info[0] == """gated""" if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": __lowerCAmelCase = """gelu_new""" @property def a ( self : str ) -> Tuple: return self.d_model @property def a ( self : List[Any] ) -> Optional[int]: return self.num_heads @property def a ( self : str ) -> Optional[Any]: return self.num_layers class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a ( self : Dict ) -> Mapping[str, Mapping[int, str]]: __lowerCAmelCase = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __lowerCAmelCase = """past_encoder_sequence + sequence""" __lowerCAmelCase = {0: """batch"""} __lowerCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} __lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a ( self : Any ) -> int: return 13 @property def a ( self : Dict ) -> float: return 5e-4
229
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _A : str = logging.get_logger(__name__) _A : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def UpperCamelCase_ ( snake_case_ : Tuple ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __lowerCAmelCase = k.replace(snake_case_ , snake_case_ ) if k.startswith("""encoder""" ): __lowerCAmelCase = k.replace(""".attn""" , """.self_attn""" ) __lowerCAmelCase = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowerCAmelCase = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __lowerCAmelCase = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowerCAmelCase = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __lowerCAmelCase = k.replace("""norm3""" , """final_layer_norm""" ) return k def UpperCamelCase_ ( snake_case_ : List[str] ) -> Dict: '''simple docstring''' __lowerCAmelCase = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __lowerCAmelCase = sd.pop(snake_case_ ) __lowerCAmelCase = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __lowerCAmelCase = v _A : int = ['''START'''] @torch.no_grad() def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) __lowerCAmelCase = model["""model"""] __lowerCAmelCase = BlenderbotConfig.from_json_file(snake_case_ ) __lowerCAmelCase = BlenderbotForConditionalGeneration(snake_case_ ) __lowerCAmelCase = m.model.state_dict().keys() __lowerCAmelCase = [] __lowerCAmelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __lowerCAmelCase = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __lowerCAmelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_ , strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": _A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) _A : Tuple = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
229
1
def __UpperCamelCase ( UpperCAmelCase ): if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) lowercase__ : Tuple = 0 lowercase__ : int = str(UpperCAmelCase ) while len(UpperCAmelCase ) != 1: lowercase__ : List[Any] = [int(UpperCAmelCase ) for i in num_string] lowercase__ : Any = 1 for i in range(0 , len(UpperCAmelCase ) ): total *= numbers[i] lowercase__ : List[Any] = str(UpperCAmelCase ) steps += 1 return steps def __UpperCamelCase ( UpperCAmelCase ): if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) lowercase__ : List[str] = 0 lowercase__ : Tuple = str(UpperCAmelCase ) while len(UpperCAmelCase ) != 1: lowercase__ : Optional[Any] = [int(UpperCAmelCase ) for i in num_string] lowercase__ : Dict = 0 for i in range(0 , len(UpperCAmelCase ) ): total += numbers[i] lowercase__ : Any = str(UpperCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase__ : Optional[int] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] lowercase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Dict: return "lower newer", "lower newer" def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : int = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowercase__ : List[Any] = '''lower''' lowercase__ : Any = ['''low''', '''er</w>'''] lowercase__ : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Tuple = tokens + ['''<unk>'''] lowercase__ : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase=15 ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # Simple input lowercase__ : List[str] = '''This is a simple input''' lowercase__ : Any = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase__ : str = ('''This is a simple input''', '''This is a pair''') lowercase__ : str = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) def _lowerCAmelCase( self ) -> Tuple: pass @require_ftfy @require_spacy @require_tokenizers class UpperCAmelCase ( a__ ): '''simple docstring''' pass
214
0
"""simple docstring""" import cva import numpy as np class __A : """simple docstring""" def __init__( self , __A , __A ) -> int: if k in (0.04, 0.06): a =k a =window_size else: raise ValueError('''invalid k value''' ) def __str__( self ) -> str: return str(self.k ) def SCREAMING_SNAKE_CASE ( self , __A ) -> tuple[cva.Mat, list[list[int]]]: a =cva.imread(__A , 0 ) a , a =img.shape a =[] a =img.copy() a =cva.cvtColor(__A , cva.COLOR_GRAY2RGB ) a , a =np.gradient(__A ) a =dx**2 a =dy**2 a =dx * dy a =0.04 a =self.window_size // 2 for y in range(__A , h - offset ): for x in range(__A , w - offset ): a =ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a =iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a =ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a =(wxx * wyy) - (wxy**2) a =wxx + wyy a =det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : List[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : int = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
81
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _A ( lowercase ): """simple docstring""" a =SwinvaConfig() a =swinva_name.split('''_''' ) a =name_split[1] if "to" in name_split[3]: a =int(name_split[3][-3:] ) else: a =int(name_split[3] ) if "to" in name_split[2]: a =int(name_split[2][-2:] ) else: a =int(name_split[2][6:] ) if model_size == "tiny": a =96 a =(2, 2, 6, 2) a =(3, 6, 12, 24) elif model_size == "small": a =96 a =(2, 2, 18, 2) a =(3, 6, 12, 24) elif model_size == "base": a =1_28 a =(2, 2, 18, 2) a =(4, 8, 16, 32) else: a =1_92 a =(2, 2, 18, 2) a =(6, 12, 24, 48) if "to" in swinva_name: a =(12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): a =2_18_41 a ='''huggingface/label-files''' a ='''imagenet-22k-id2label.json''' a =json.load(open(hf_hub_download(lowercase , lowercase , repo_type='''dataset''' ) , '''r''' ) ) a ={int(lowercase ): v for k, v in idalabel.items()} a =idalabel a ={v: k for k, v in idalabel.items()} else: a =10_00 a ='''huggingface/label-files''' a ='''imagenet-1k-id2label.json''' a =json.load(open(hf_hub_download(lowercase , lowercase , repo_type='''dataset''' ) , '''r''' ) ) a ={int(lowercase ): v for k, v in idalabel.items()} a =idalabel a ={v: k for k, v in idalabel.items()} a =img_size a =num_classes a =embed_dim a =depths a =num_heads a =window_size return config def _A ( lowercase ): """simple docstring""" if "patch_embed.proj" in name: a =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: a =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: a ='''encoder.''' + name if "attn.proj" in name: a =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: a =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: a =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: a =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: a =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: a =name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: a =name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: a =name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: a =name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: a =name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if name == "norm.weight": a ='''layernorm.weight''' if name == "norm.bias": a ='''layernorm.bias''' if "head" in name: a =name.replace('''head''' , '''classifier''' ) else: a ='''swinv2.''' + name return name def _A ( lowercase , lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): a =orig_state_dict.pop(lowercase ) if "mask" in key: continue elif "qkv" in key: a =key.split('''.''' ) a =int(key_split[1] ) a =int(key_split[3] ) a =model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a =val[:dim, :] a =val[dim : dim * 2, :] a =val[-dim:, :] else: a =val[:dim] a =val[ dim : dim * 2 ] a =val[-dim:] else: a =val return orig_state_dict def _A ( lowercase , lowercase ): """simple docstring""" a =timm.create_model(lowercase , pretrained=lowercase ) timm_model.eval() a =get_swinva_config(lowercase ) a =SwinvaForImageClassification(lowercase ) model.eval() a =convert_state_dict(timm_model.state_dict() , lowercase ) model.load_state_dict(lowercase ) a ='''http://images.cocodataset.org/val2017/000000039769.jpg''' a =AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) ) a =Image.open(requests.get(lowercase , stream=lowercase ).raw ) a =image_processor(images=lowercase , return_tensors='''pt''' ) a =timm_model(inputs['''pixel_values'''] ) a =model(**lowercase ).logits assert torch.allclose(lowercase , lowercase , atol=1E-3 ) print(f'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) model.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
81
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: A_ : Optional[int] = None A_ : List[str] = logging.get_logger(__name__) A_ : int = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A_ : Optional[int] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } A_ : int = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } A_ : List[Any] = '▁' class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[str] = VOCAB_FILES_NAMES UpperCAmelCase__: Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: Dict = BigBirdTokenizer UpperCAmelCase__: Tuple = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__: List[int] = [] def __init__( self , A__=None , A__=None , A__="<unk>" , A__="<s>" , A__="</s>" , A__="<pad>" , A__="[SEP]" , A__="[MASK]" , A__="[CLS]" , **A__ , ): A__ : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token A__ : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token A__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token A__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token A__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token A__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) A__ : List[str] = vocab_file A__ : Dict = False if not self.vocab_file else True def __A ( self , A__ , A__ = None ): A__ : Optional[Any] = [self.sep_token_id] A__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , A__ , A__ = None , A__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def __A ( self , A__ , A__ = None ): A__ : Optional[Any] = [self.sep_token_id] A__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A__ , A__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
367
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A_ : Any = threading.Lock() A_ : Optional[logging.Handler] = None A_ : Any = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } A_ : Optional[int] = logging.WARNING A_ : Tuple = True def UpperCamelCase () -> List[Any]: A__ : List[str] = os.getenv("""TRANSFORMERS_VERBOSITY""" , lowercase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCamelCase () -> str: return __name__.split(""".""" )[0] def UpperCamelCase () -> logging.Logger: return logging.getLogger(_get_library_name() ) def UpperCamelCase () -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return A__ : Tuple = logging.StreamHandler() # Set sys.stderr as stream. A__ : Union[str, Any] = sys.stderr.flush # Apply our default configuration to the library root logger. A__ : Optional[int] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) A__ : str = False def UpperCamelCase () -> None: global _default_handler with _lock: if not _default_handler: return A__ : Tuple = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) A__ : Dict = None def UpperCamelCase () -> Dict: return log_levels def UpperCamelCase (lowercase_: Optional[str] = None ) -> logging.Logger: if name is None: A__ : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowercase_ ) def UpperCamelCase () -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCamelCase (lowercase_: int ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(lowercase_ ) def UpperCamelCase () -> Union[str, Any]: return set_verbosity(lowercase_ ) def UpperCamelCase () -> List[str]: return set_verbosity(lowercase_ ) def UpperCamelCase () -> Any: return set_verbosity(lowercase_ ) def UpperCamelCase () -> List[str]: return set_verbosity(lowercase_ ) def UpperCamelCase () -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCamelCase () -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCamelCase (lowercase_: logging.Handler ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowercase_ ) def UpperCamelCase (lowercase_: logging.Handler ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowercase_ ) def UpperCamelCase () -> None: _configure_library_root_logger() A__ : Dict = False def UpperCamelCase () -> None: _configure_library_root_logger() A__ : List[str] = True def UpperCamelCase () -> None: A__ : List[str] = _get_library_root_logger().handlers for handler in handlers: A__ : Union[str, Any] = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(lowercase_ ) def UpperCamelCase () -> None: A__ : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowercase_ ) def UpperCamelCase (self: Tuple , *lowercase_: int , **lowercase_: List[Any] ) -> Optional[Any]: A__ : int = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , lowercase_ ) if no_advisory_warnings: return self.warning(*lowercase_ , **lowercase_ ) A_ : int = warning_advice @functools.lru_cache(lowercase_ ) def UpperCamelCase (self: Any , *lowercase_: List[str] , **lowercase_: Dict ) -> Optional[int]: self.warning(*lowercase_ , **lowercase_ ) A_ : Tuple = warning_once class _a : '''simple docstring''' def __init__( self , *A__ , **A__ ): # pylint: disable=unused-argument A__ : int = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , A__ ): def empty_fn(*A__ , **A__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , A__ , A__ , A__ ): return class _a : '''simple docstring''' def __call__( self , *A__ , **A__ ): if _tqdm_active: return tqdm_lib.tqdm(*A__ , **A__ ) else: return EmptyTqdm(*A__ , **A__ ) def __A ( self , *A__ , **A__ ): A__ : List[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A__ , **A__ ) def __A ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() A_ : List[Any] = _tqdm_cls() def UpperCamelCase () -> bool: global _tqdm_active return bool(_tqdm_active ) def UpperCamelCase () -> List[str]: global _tqdm_active A__ : int = True hf_hub_utils.enable_progress_bars() def UpperCamelCase () -> Optional[Any]: global _tqdm_active A__ : Tuple = False hf_hub_utils.disable_progress_bars()
141
0
def __snake_case ( _lowerCAmelCase : float , _lowerCAmelCase : float ) -> float: if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
300
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ): """simple docstring""" if len(lowerCamelCase_ ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(lowerCamelCase_ ) or left < -len(lowerCamelCase_ ) or right >= len(lowerCamelCase_ ) or right < -len(lowerCamelCase_ ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] __UpperCamelCase =(left + right) >> 1 # the middle __UpperCamelCase =find_max(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # find max in range[left, mid] __UpperCamelCase =find_max(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
368
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] ): """simple docstring""" __UpperCamelCase =[0 for i in range(r + 1 )] # nc0 = 1 __UpperCamelCase =1 for i in range(1 , n + 1 ): # to compute current row from previous row. __UpperCamelCase =min(__UpperCamelCase , __UpperCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
85
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input a_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def a__ ( ): __lowerCamelCase = _ask_options( '''In which compute environment are you running?''' ,['''This machine''', '''AWS (Amazon SageMaker)'''] ,_convert_compute_environment ,) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowerCamelCase = get_sagemaker_input() else: __lowerCamelCase = get_cluster_input() return config def a__ ( _UpperCamelCase : Any=None ): if subparsers is not None: __lowerCamelCase = subparsers.add_parser('''config''' ,description=lowerCAmelCase_ ) else: __lowerCamelCase = argparse.ArgumentParser('''Accelerate config command''' ,description=lowerCAmelCase_ ) parser.add_argument( '''--config_file''' ,default=lowerCAmelCase_ ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a__ ( _UpperCamelCase : List[Any] ): __lowerCamelCase = get_user_input() if args.config_file is not None: __lowerCamelCase = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowerCamelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"""accelerate configuration saved at {config_file}""" ) def a__ ( ): __lowerCamelCase = config_command_parser() __lowerCamelCase = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
330
from math import sqrt def lowerCAmelCase ( lowerCAmelCase_ )-> bool: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase_ : List[Any] = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase_ : Optional[int] = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase_ : Tuple = False break # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'status' must been from type bool" return status def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase_ : Tuple = list(range(2 , n + 1 ) ) lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase_ : str = 0 # filters actual prime numbers. lowerCAmelCase_ : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase_ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase_ : int = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase_ : List[Any] = 2 lowerCAmelCase_ : Optional[int] = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[int]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : Dict = 0 # prime factorization of 'number' lowerCAmelCase_ : Any = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase_ : Dict = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" lowerCAmelCase_ : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase_ : int = get_prime_numbers(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = len(lowerCAmelCase_ ) # run variable for while-loops. lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Tuple = None # exit variable. for break up the loops lowerCAmelCase_ : int = True while i < len_pn and loop: lowerCAmelCase_ : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase_ : Tuple = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : int = 0 while numbera != 0: lowerCAmelCase_ : str = numbera % numbera lowerCAmelCase_ : List[Any] = numbera lowerCAmelCase_ : Any = rest # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : List[Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Union[str, Any] = max(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ , lowerCAmelCase_ ) ): ans *= n else: lowerCAmelCase_ : List[str] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase_ : Union[str, Any] = p_number_a + 1 # jump to the next number lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase_ : List[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase_ : Union[str, Any] = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase_ : Optional[Any] = gcd(abs(lowerCAmelCase_ ) , abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase_ : Any = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase_ : Union[str, Any] = ans ans += fiba lowerCAmelCase_ : Optional[Any] = tmp return ans
262
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( _SCREAMING_SNAKE_CASE ): snake_case__ = ["image_processor", "tokenizer"] snake_case__ = "BlipImageProcessor" snake_case__ = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ): __lowerCamelCase : str = False super().__init__(A_ , A_ ) __lowerCamelCase : Union[str, Any] = self.image_processor def __call__( self : Union[str, Any] , UpperCAmelCase : Dict = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str = True , UpperCAmelCase : Dict = False , UpperCAmelCase : Dict = None , UpperCAmelCase : Optional[Any] = None , UpperCAmelCase : Optional[Any] = 0 , UpperCAmelCase : Tuple = None , UpperCAmelCase : Dict = None , UpperCAmelCase : List[Any] = False , UpperCAmelCase : Any = False , UpperCAmelCase : Union[str, Any] = False , UpperCAmelCase : Optional[Any] = False , UpperCAmelCase : Union[str, Any] = False , UpperCAmelCase : Dict = True , UpperCAmelCase : Union[str, Any] = None , **UpperCAmelCase : Union[str, Any] , ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __lowerCamelCase : List[str] = self.tokenizer __lowerCamelCase : Union[str, Any] = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding # add pixel_values __lowerCamelCase : str = self.image_processor(A_ , return_tensors=A_ ) if text is not None: __lowerCamelCase : Optional[Any] = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) else: __lowerCamelCase : Any = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def lowerCamelCase__ ( self : Optional[int] , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ): return self.tokenizer.batch_decode(*A_ , **A_ ) def lowerCamelCase__ ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : str ): return self.tokenizer.decode(*A_ , **A_ ) @property def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Optional[int] = self.tokenizer.model_input_names __lowerCamelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
371
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) class _snake_case ( a__ ): snake_case__ = ["pixel_values"] def __init__( self : List[str] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : List[str] , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase : int = size if size is not None else {"height": 256, "width": 256} __lowerCamelCase : str = get_size_dict(UpperCAmelCase ) __lowerCamelCase : Optional[int] = crop_size if crop_size is not None else {"height": 224, "width": 224} __lowerCamelCase : Optional[Any] = get_size_dict(UpperCAmelCase , param_name="crop_size" ) __lowerCamelCase : Any = do_resize __lowerCamelCase : str = size __lowerCamelCase : str = resample __lowerCamelCase : str = do_center_crop __lowerCamelCase : List[str] = crop_size __lowerCamelCase : Union[str, Any] = do_rescale __lowerCamelCase : List[Any] = rescale_factor __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ): __lowerCamelCase : int = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["height"], size["width"]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Tuple , ): __lowerCamelCase : Optional[int] = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["height"], size["width"]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[str] , ): return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Any , ): return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : int , ): __lowerCamelCase : int = do_resize if do_resize is not None else self.do_resize __lowerCamelCase : Tuple = resample if resample is not None else self.resample __lowerCamelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __lowerCamelCase : int = image_std if image_std is not None else self.image_std __lowerCamelCase : Optional[int] = size if size is not None else self.size __lowerCamelCase : Optional[Any] = get_size_dict(UpperCAmelCase ) __lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size __lowerCamelCase : Dict = get_size_dict(UpperCAmelCase , param_name="crop_size" ) __lowerCamelCase : Optional[Any] = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __lowerCamelCase : Optional[int] = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase : Optional[int] = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase : int = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase : List[str] = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase : Optional[int] = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] __lowerCamelCase : Dict = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] __lowerCamelCase : List[Any] = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
64
0
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __A : Optional[int] = "true" def lowercase ( __snake_case : Optional[int] , __snake_case : List[str]=8_2 , __snake_case : Union[str, Any]=1_6 ): set_seed(4_2 ) lowercase_ : List[str] = RegressionModel() lowercase_ : List[Any] = deepcopy(_SCREAMING_SNAKE_CASE ) lowercase_ : Dict = RegressionDataset(length=_SCREAMING_SNAKE_CASE ) lowercase_ : Dict = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) model.to(accelerator.device ) lowercase_ , lowercase_ : List[Any] = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return model, ddp_model, dataloader def lowercase ( __snake_case : Accelerator , __snake_case : Tuple=False ): lowercase_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) lowercase_ : str = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__snake_case : Union[str, Any] ): lowercase_ : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs with accelerator.main_process_first(): lowercase_ : Any = dataset.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) lowercase_ : Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Optional[Any] ): if use_longest: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=1_6 ) def lowercase ( __snake_case : List[Any] , __snake_case : Optional[int] ): lowercase_ : List[Any] = Accelerator(dispatch_batches=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) lowercase_ : int = get_dataloader(_SCREAMING_SNAKE_CASE , not dispatch_batches ) lowercase_ : Any = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=_SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Union[str, Any] = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowercase ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int ): lowercase_ : Dict = [] for batch in dataloader: lowercase_ , lowercase_ : Union[str, Any] = batch.values() with torch.no_grad(): lowercase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Tuple = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowercase_ , lowercase_ : List[str] = [], [] for logit, targ in logits_and_targets: logits.append(_SCREAMING_SNAKE_CASE ) targs.append(_SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Optional[int] = torch.cat(_SCREAMING_SNAKE_CASE ), torch.cat(_SCREAMING_SNAKE_CASE ) return logits, targs def lowercase ( __snake_case : Accelerator , __snake_case : Dict=8_2 , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : Union[str, Any]=1_6 ): lowercase_ , lowercase_ , lowercase_ : Tuple = get_basic_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : str = generate_predictions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert ( len(_SCREAMING_SNAKE_CASE ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_SCREAMING_SNAKE_CASE )}''' def lowercase ( __snake_case : bool = False , __snake_case : bool = False ): lowercase_ : List[str] = evaluate.load('''glue''' , '''mrpc''' ) lowercase_ , lowercase_ : List[Any] = get_mrpc_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # First do baseline lowercase_ , lowercase_ , lowercase_ : Tuple = setup['''no'''] model.to(_SCREAMING_SNAKE_CASE ) model.eval() for batch in dataloader: batch.to(_SCREAMING_SNAKE_CASE ) with torch.inference_mode(): lowercase_ : Any = model(**_SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_SCREAMING_SNAKE_CASE , references=batch['''labels'''] ) lowercase_ : int = metric.compute() # Then do distributed lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): lowercase_ : List[Any] = model(**_SCREAMING_SNAKE_CASE ) lowercase_ : Any = outputs.logits.argmax(dim=-1 ) lowercase_ : Union[str, Any] = batch['''labels'''] lowercase_ , lowercase_ : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def lowercase ( ): lowercase_ : Any = Accelerator(split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowercase_ : Dict = Accelerator(split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_SCREAMING_SNAKE_CASE , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) lowercase_ : int = Accelerator() test_torch_metrics(_SCREAMING_SNAKE_CASE , 5_1_2 ) accelerator.state._reset_state() def lowercase ( __snake_case : Any ): main() if __name__ == "__main__": main()
33
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowercase ( _SCREAMING_SNAKE_CASE : Features ): '''simple docstring''' _UpperCAmelCase = np.inf def set_batch_size(_SCREAMING_SNAKE_CASE : FeatureType ) -> None: nonlocal batch_size if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and feature.dtype == "binary": _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return None if batch_size is np.inf else batch_size class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : NestedDataStructureLike[PathLike] , __UpperCamelCase : Optional[NamedSplit] = None , __UpperCamelCase : Optional[Features] = None , __UpperCamelCase : str = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : int , )->Union[str, Any]: super().__init__( __UpperCamelCase , split=__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase , streaming=__UpperCamelCase , num_proc=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = path_or_paths if isinstance(__UpperCamelCase , __UpperCamelCase ) else {self.split: path_or_paths} _UpperCAmelCase = _PACKAGED_DATASETS_MODULES['''parquet'''][1] _UpperCAmelCase = Parquet( cache_dir=__UpperCamelCase , data_files=__UpperCamelCase , features=__UpperCamelCase , hash=__UpperCamelCase , **__UpperCamelCase , ) def lowercase__ ( self : Union[str, Any] )->Dict: # Build iterable dataset if self.streaming: _UpperCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None self.builder.download_and_prepare( download_config=__UpperCamelCase , download_mode=__UpperCamelCase , verification_mode=__UpperCamelCase , base_path=__UpperCamelCase , num_proc=self.num_proc , ) _UpperCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=__UpperCamelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : Dataset , __UpperCamelCase : Union[PathLike, BinaryIO] , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : Tuple , )->Optional[int]: _UpperCAmelCase = dataset _UpperCAmelCase = path_or_buf _UpperCAmelCase = batch_size or get_writer_batch_size(dataset.features ) _UpperCAmelCase = parquet_writer_kwargs def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: _UpperCAmelCase = self._write(file_obj=__UpperCamelCase , batch_size=__UpperCamelCase , **self.parquet_writer_kwargs ) else: _UpperCAmelCase = self._write(file_obj=self.path_or_buf , batch_size=__UpperCamelCase , **self.parquet_writer_kwargs ) return written def lowercase__ ( self : int , __UpperCamelCase : BinaryIO , __UpperCamelCase : int , **__UpperCamelCase : int )->int: _UpperCAmelCase = 0 _UpperCAmelCase = parquet_writer_kwargs.pop('''path_or_buf''' , __UpperCamelCase ) _UpperCAmelCase = self.dataset.features.arrow_schema _UpperCAmelCase = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase , **__UpperCamelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __UpperCamelCase ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): _UpperCAmelCase = query_table( table=self.dataset._data , key=slice(__UpperCamelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__UpperCamelCase ) written += batch.nbytes writer.close() return written
260
0
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowercase ( A_ , A_ , A_=1e-12 )-> Any: '''simple docstring''' a : int = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A_ , axis=1 ) , a_min=A_ ) ).T a : Dict = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A_ , axis=1 ) , a_min=A_ ) ).T return jnp.matmul(A_ , norm_emb_a.T ) class _A ( nn.Module ): """simple docstring""" UpperCAmelCase : CLIPConfig UpperCAmelCase : jnp.dtype = jnp.floataa def __snake_case ( self : int): a : Union[str, Any] = FlaxCLIPVisionModule(self.config.vision_config) a : Union[str, Any] = nn.Dense(self.config.projection_dim , use_bias=__lowercase , dtype=self.dtype) a : Tuple = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim)) a : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim)) a : Union[str, Any] = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,)) a : Dict = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,)) def __call__( self : Dict , __UpperCAmelCase : List[Any]): a : List[str] = self.vision_model(__lowercase)[1] a : int = self.visual_projection(__lowercase) a : Dict = jax_cosine_distance(__lowercase , self.special_care_embeds) a : Optional[int] = jax_cosine_distance(__lowercase , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs a : Tuple = 0.0 a : Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment a : Dict = jnp.round(__lowercase , 3) a : Union[str, Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowercase) # Use a lower threshold if an image has any special care concept a : str = is_special_care * 0.01 a : List[str] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment a : Optional[int] = jnp.round(__lowercase , 3) a : Any = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class _A ( __A ): """simple docstring""" UpperCAmelCase : Dict = CLIPConfig UpperCAmelCase : Dict = 'clip_input' UpperCAmelCase : str = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int = None , __UpperCAmelCase : Optional[Any] = 0 , __UpperCAmelCase : Tuple = jnp.floataa , __UpperCAmelCase : Optional[int] = True , **__UpperCAmelCase : List[Any] , ): if input_shape is None: a : str = (1, 224, 224, 3) a : List[str] = self.module_class(config=__lowercase , dtype=__lowercase , **__lowercase) super().__init__(__lowercase , __lowercase , input_shape=__lowercase , seed=__lowercase , dtype=__lowercase , _do_init=_do_init) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] = None): # init input tensor a : List[str] = jax.random.normal(__lowercase , __lowercase) a , a : Dict = jax.random.split(__lowercase) a : List[Any] = {"params": params_rng, "dropout": dropout_rng} a : Dict = self.module.init(__lowercase , __lowercase)["params"] return random_params def __call__( self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Any = None , ): a : Union[str, Any] = jnp.transpose(__lowercase , (0, 2, 3, 1)) return self.module.apply( {"params": params or self.params} , jnp.array(__lowercase , dtype=jnp.floataa) , rngs={} , )
359
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __lowercase = True except ImportError: __lowercase = False try: from torch.hub import _get_torch_home __lowercase = _get_torch_home() except ImportError: __lowercase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) __lowercase = os.path.join(torch_cache_home, """transformers""") __lowercase = """https://cdn.huggingface.co""" __lowercase = """https://s3.amazonaws.com/models.huggingface.co/bert""" __lowercase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) __lowercase = os.path.join(PATH, """config.yaml""") __lowercase = os.path.join(PATH, """attributes.txt""") __lowercase = os.path.join(PATH, """objects.txt""") __lowercase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) __lowercase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) __lowercase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) __lowercase = """pytorch_model.bin""" __lowercase = """config.yaml""" def lowercase ( A_=OBJECTS , A_=ATTRIBUTES )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) a : Union[str, Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Dict = OrderedDict() with open(A_ , "rb" ) as f: a : Optional[Any] = pkl.load(A_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): a : Dict = ckp.pop(A_ ) if isinstance(A_ , np.ndarray ): a : Optional[Any] = torch.tensor(A_ ) else: assert isinstance(A_ , torch.tensor ), type(A_ ) a : int = v return r class _A : """simple docstring""" UpperCAmelCase : int = {} def __init__( self : Any , __UpperCAmelCase : dict , __UpperCAmelCase : str = "root" , __UpperCAmelCase : Optional[int]=0): a : List[str] = name a : Tuple = level a : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() a : List[Any] = copy.deepcopy(__UpperCAmelCase) a : int = copy.deepcopy(__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Union[str, Any] = Config(__UpperCAmelCase , name=__UpperCAmelCase , level=level + 1) a : Dict = v setattr(self , __UpperCAmelCase , __UpperCAmelCase) a : Tuple = d def __repr__( self : List[str]): return str(list((self._pointer.keys()))) def __setattr__( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Tuple): a : Optional[Any] = val a : Tuple = val a : Dict = key.split(".") a : Union[str, Any] = len(__UpperCAmelCase) - 1 a : Optional[int] = self._pointer if len(__UpperCAmelCase) > 1: for i, l in enumerate(__UpperCAmelCase): if hasattr(self , __UpperCAmelCase) and isinstance(getattr(self , __UpperCAmelCase) , __UpperCAmelCase): setattr(getattr(self , __UpperCAmelCase) , ".".join(levels[i:]) , __UpperCAmelCase) if l == last_level: a : int = val else: a : str = pointer[l] def __snake_case ( self : str): return self._pointer def __snake_case ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any]): with open(f'''{file_name}''' , "w") as stream: dump(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int): with open(f'''{file_name}''' , "w") as stream: json.dump(__UpperCAmelCase , __UpperCAmelCase) @staticmethod def __snake_case ( __UpperCAmelCase : Dict): with open(__UpperCAmelCase) as stream: a : List[str] = load(__UpperCAmelCase , Loader=__UpperCAmelCase) return data def __str__( self : Tuple): a : str = " " if self._name != "root": a : List[str] = f'''{t * (self._level-1)}{self._name}:\n''' else: a : Optional[Any] = "" a : List[Any] = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(__UpperCAmelCase , __UpperCAmelCase): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(__UpperCAmelCase).__name__})\n''' a : Tuple = level return r[:-1] @classmethod def __snake_case ( cls : str , __UpperCAmelCase : str , **__UpperCAmelCase : List[Any]): a , a : Tuple = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) return cls(__UpperCAmelCase) @classmethod def __snake_case ( cls : Union[str, Any] , __UpperCAmelCase : str , **__UpperCAmelCase : List[str]): a : int = kwargs.pop("cache_dir" , __UpperCAmelCase) a : List[Any] = kwargs.pop("force_download" , __UpperCAmelCase) a : Optional[int] = kwargs.pop("resume_download" , __UpperCAmelCase) a : Tuple = kwargs.pop("proxies" , __UpperCAmelCase) a : int = kwargs.pop("local_files_only" , __UpperCAmelCase) if os.path.isdir(__UpperCAmelCase): a : Union[str, Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase) elif os.path.isfile(__UpperCAmelCase) or is_remote_url(__UpperCAmelCase): a : List[Any] = pretrained_model_name_or_path else: a : int = hf_bucket_url(__UpperCAmelCase , filename=__UpperCAmelCase , use_cdn=__UpperCAmelCase) try: # Load from URL or cache if already cached a : Optional[Any] = cached_path( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a : Union[str, Any] = Config.load_yaml(__UpperCAmelCase) except EnvironmentError: a : str = "Can't load config for" raise EnvironmentError(__UpperCAmelCase) if resolved_config_file == config_file: print("loading configuration file from path") else: print("loading configuration file cache") return Config.load_yaml(__UpperCAmelCase), kwargs def lowercase ( A_ )-> str: '''simple docstring''' a : Tuple = torch.load("dump.pt" , map_location=in_tensor.device ) a : Any = in_tensor.numpy() a : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Optional[Any] = urlparse(A_ ) return parsed.scheme in ("http", "https") def lowercase ( A_ , A_ , A_=True )-> str: '''simple docstring''' a : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a : str = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase ( A_ , A_ , A_=None , A_=0 , A_=None , )-> List[str]: '''simple docstring''' a : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(A_ , A_ ): ua += "; " + "; ".join("{}/{}".format(A_ , A_ ) for k, v in user_agent.items() ) elif isinstance(A_ , A_ ): ua += "; " + user_agent a : str = {"user-agent": ua} if resume_size > 0: a : List[Any] = "bytes=%d-" % (resume_size,) a : str = requests.get(A_ , stream=A_ , proxies=A_ , headers=A_ ) if response.status_code == 416: # Range not satisfiable return a : Optional[int] = response.headers.get("Content-Length" ) a : List[Any] = resume_size + int(A_ ) if content_length is not None else None a : List[Any] = tqdm( unit="B" , unit_scale=A_ , total=A_ , initial=A_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(A_ ) ) temp_file.write(A_ ) progress.close() def lowercase ( A_ , A_=None , A_=False , A_=None , A_=10 , A_=False , A_=None , A_=False , )-> str: '''simple docstring''' if cache_dir is None: a : List[Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : Tuple = str(A_ ) os.makedirs(A_ , exist_ok=A_ ) a : Optional[Any] = None if not local_files_only: try: a : Dict = requests.head(A_ , allow_redirects=A_ , proxies=A_ , timeout=A_ ) if response.status_code == 200: a : int = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a : List[str] = url_to_filename(A_ , A_ ) # get cache path to put the file a : List[str] = os.path.join(A_ , A_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(A_ ): return cache_path else: a : Any = [ file for file in fnmatch.filter(os.listdir(A_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(A_ ) > 0: return os.path.join(A_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(A_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a : Dict = cache_path + ".lock" with FileLock(A_ ): # If the download just completed while the lock was activated. if os.path.exists(A_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a : Optional[Any] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(A_ , "a+b" ) as f: yield f a : Tuple = _resumable_file_manager if os.path.exists(A_ ): a : Optional[Any] = os.stat(A_ ).st_size else: a : Optional[int] = 0 else: a : Union[str, Any] = partial(tempfile.NamedTemporaryFile , dir=A_ , delete=A_ ) a : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , A_ , temp_file.name , ) http_get( A_ , A_ , proxies=A_ , resume_size=A_ , user_agent=A_ , ) os.replace(temp_file.name , A_ ) a : List[str] = {"url": url, "etag": etag} a : Tuple = cache_path + ".json" with open(A_ , "w" ) as meta_file: json.dump(A_ , A_ ) return cache_path def lowercase ( A_ , A_=None )-> Any: '''simple docstring''' a : Dict = url.encode("utf-8" ) a : Optional[Any] = shaaaa(A_ ) a : Any = url_hash.hexdigest() if etag: a : Union[str, Any] = etag.encode("utf-8" ) a : Tuple = shaaaa(A_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase ( A_ , A_=None , A_=False , A_=None , A_=False , A_=None , A_=False , A_=False , A_=False , )-> Tuple: '''simple docstring''' if cache_dir is None: a : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : List[Any] = str(A_ ) if isinstance(A_ , A_ ): a : int = str(A_ ) if is_remote_url(A_ ): # URL, so get it from the cache (downloading if necessary) a : Optional[Any] = get_from_cache( A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , user_agent=A_ , local_files_only=A_ , ) elif os.path.exists(A_ ): # File, and it exists. a : Union[str, Any] = url_or_filename elif urlparse(A_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(A_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(A_ ) ) if extract_compressed_file: if not is_zipfile(A_ ) and not tarfile.is_tarfile(A_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a , a : Dict = os.path.split(A_ ) a : List[str] = output_file.replace("." , "-" ) + "-extracted" a : Optional[Any] = os.path.join(A_ , A_ ) if os.path.isdir(A_ ) and os.listdir(A_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions a : Tuple = output_path + ".lock" with FileLock(A_ ): shutil.rmtree(A_ , ignore_errors=A_ ) os.makedirs(A_ ) if is_zipfile(A_ ): with ZipFile(A_ , "r" ) as zip_file: zip_file.extractall(A_ ) zip_file.close() elif tarfile.is_tarfile(A_ ): a : List[str] = tarfile.open(A_ ) tar_file.extractall(A_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(A_ ) ) return output_path_extracted return output_path def lowercase ( A_ , A_="," )-> Union[str, Any]: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): with open(A_ ) as f: a : str = eval(f.read() ) else: a : List[Any] = requests.get(A_ ) try: a : Any = requests.json() except Exception: a : Any = req.content.decode() assert data is not None, "could not connect" try: a : Optional[Any] = eval(A_ ) except Exception: a : Any = data.split("\n" ) req.close() return data def lowercase ( A_ )-> str: '''simple docstring''' a : Optional[int] = requests.get(A_ ) a : List[str] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( A_ )-> Any: '''simple docstring''' a : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(A_ ) with open(A_ , "rb" ) as stream: a : Any = pkl.load(A_ ) a : List[str] = weights.pop("model" ) a : Dict = {} for k, v in model.items(): a : List[str] = torch.from_numpy(A_ ) if "running_var" in k: a : Dict = torch.tensor([0] ) a : Any = k.replace("running_var" , "num_batches_tracked" ) a : List[Any] = zero return new def lowercase ( )-> Optional[int]: '''simple docstring''' print(F'''{os.path.abspath(os.path.join(A_ , os.pardir ) )}/demo.ipynb''' ) def lowercase ( A_ , A_="RGB" )-> Any: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): a : Dict = cva.imread(A_ ) else: a : Union[str, Any] = get_image_from_url(A_ ) assert img is not None, F'''could not connect to: {im}''' a : int = cva.cvtColor(A_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": a : List[str] = img[:, :, ::-1] return img def lowercase ( A_ , A_=1 )-> int: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(A_ ) , A_ ))
226
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :List[Any] = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Union[str, Any] = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
159
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _lowerCAmelCase ( )->Any: '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=lowerCAmelCase_ , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=lowerCAmelCase_ , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=lowerCAmelCase_ , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=lowerCAmelCase_ , default=0 , help="cuda_id." , ) snake_case_ = parser.parse_args() return args def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :Union[str, Any] )->Union[str, Any]: '''simple docstring''' if not len(lowerCAmelCase_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) snake_case_ , snake_case_ = imgs[0].size snake_case_ = Image.new("RGB" , size=(cols * w, rows * h) ) snake_case_ , snake_case_ = grid.size for i, img in enumerate(lowerCAmelCase_ ): grid.paste(lowerCAmelCase_ , box=(i % cols * w, i // cols * h) ) return grid def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Union[str, Any]="robotic cat with wings" , lowerCAmelCase_ :Any=7.5 , lowerCAmelCase_ :Dict=50 , lowerCAmelCase_ :int=1 , lowerCAmelCase_ :Union[str, Any]=42 , )->str: '''simple docstring''' snake_case_ = torch.Generator(pipeline.device ).manual_seed(lowerCAmelCase_ ) snake_case_ = pipeline( lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , ).images snake_case_ = int(math.sqrt(lowerCAmelCase_ ) ) snake_case_ = image_grid(lowerCAmelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images SCREAMING_SNAKE_CASE :Dict = parse_args() # Load models and create wrapper for stable diffusion SCREAMING_SNAKE_CASE :Optional[int] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') SCREAMING_SNAKE_CASE :Tuple = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') SCREAMING_SNAKE_CASE :List[str] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') SCREAMING_SNAKE_CASE :Optional[int] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') SCREAMING_SNAKE_CASE :List[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) SCREAMING_SNAKE_CASE :Dict = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): SCREAMING_SNAKE_CASE :Union[str, Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: SCREAMING_SNAKE_CASE :Union[str, Any] = unet.to(torch.device('''cuda''', args.cuda_id)) SCREAMING_SNAKE_CASE :Optional[int] = pipeline.to(unet.device) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) SCREAMING_SNAKE_CASE :Optional[Any] = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
159
1
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""ylacombe/bark-small""" _lowerCAmelCase =tempfile.mkdtemp() _lowerCAmelCase ="""en_speaker_1""" _lowerCAmelCase ="""This is a test string""" _lowerCAmelCase ="""speaker_embeddings_path.json""" _lowerCAmelCase ="""speaker_embeddings""" def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Tuple: return AutoTokenizer.from_pretrained(self.checkpoint , **__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BarkProcessor(tokenizer=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase =BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase =35 _lowerCAmelCase =2 _lowerCAmelCase =8 _lowerCAmelCase ={ """semantic_prompt""": np.ones(__UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase =processor(text=self.input_string , voice_preset=__UpperCAmelCase ) _lowerCAmelCase =inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase =os.path.join(self.tmpdirname , """file.npz""" ) np.savez(__UpperCAmelCase , **__UpperCAmelCase ) _lowerCAmelCase =processor(text=self.input_string , voice_preset=__UpperCAmelCase ) _lowerCAmelCase =inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase =processor(text=self.input_string , voice_preset=self.voice_preset ) def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BarkProcessor(tokenizer=__UpperCAmelCase ) _lowerCAmelCase =processor(text=self.input_string ) _lowerCAmelCase =tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
341
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' __A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' __A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple: _lowerCAmelCase =compute_bleu( reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
341
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase = logging.getLogger(__name__) lowerCAmelCase = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCamelCase__ )} , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _a : _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''The input training data file (a text file).'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) _lowercase : bool = field(default=UpperCamelCase__ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) _lowercase : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _lowercase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) _lowercase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) _lowercase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ): """simple docstring""" def _dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size , ref_path=SCREAMING_SNAKE_CASE , ) return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size ) else: return TextDataset( tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=SCREAMING_SNAKE_CASE , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _a ( ): """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowercase__ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowercase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: lowercase__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: lowercase__ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) lowercase__ = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: lowercase__ = tokenizer.max_len # Our input block size will be the max possible for the model else: lowercase__ = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowercase__ = ( get_dataset(SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowercase__ = ( get_dataset(SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , evaluate=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowercase__ = DataCollatorForPermutationLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowercase__ = DataCollatorForWholeWordMask( tokenizer=SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability ) else: lowercase__ = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase__ = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , prediction_loss_only=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowercase__ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=SCREAMING_SNAKE_CASE ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate() lowercase__ = math.exp(eval_output['''eval_loss'''] ) lowercase__ = {'''perplexity''': perplexity} lowercase__ = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(SCREAMING_SNAKE_CASE ) return results def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" main() if __name__ == "__main__": main()
110
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
import math import flax.linen as nn import jax.numpy as jnp def __lowercase ( lowerCamelCase : jnp.ndarray , lowerCamelCase : int , lowerCamelCase : float = 1 , lowerCamelCase : float = 1 , lowerCamelCase : float = 1.0e4 , lowerCamelCase : bool = False , lowerCamelCase : float = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"Embedding dimension {embedding_dim} should be even" UpperCamelCase_ : Dict = float(embedding_dim // 2 ) UpperCamelCase_ : Dict = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCamelCase_ : Optional[int] = min_timescale * jnp.exp(jnp.arange(lowerCamelCase , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCamelCase_ : int = jnp.expand_dims(lowerCamelCase , 1 ) * jnp.expand_dims(lowerCamelCase , 0 ) # scale embeddings UpperCamelCase_ : Tuple = scale * emb if flip_sin_to_cos: UpperCamelCase_ : Tuple = jnp.concatenate([jnp.cos(lowerCamelCase ), jnp.sin(lowerCamelCase )] , axis=1 ) else: UpperCamelCase_ : Optional[int] = jnp.concatenate([jnp.sin(lowerCamelCase ), jnp.cos(lowerCamelCase )] , axis=1 ) UpperCamelCase_ : Optional[Any] = jnp.reshape(lowerCamelCase , [jnp.shape(lowerCamelCase )[0], embedding_dim] ) return signal class _lowercase ( nn.Module ): lowercase = 3_2 lowercase = jnp.floataa @nn.compact def __call__( self : str , snake_case : Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(snake_case ) UpperCamelCase_ : int = nn.silu(snake_case ) UpperCamelCase_ : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(snake_case ) return temb class _lowercase ( nn.Module ): lowercase = 3_2 lowercase = False lowercase = 1 @nn.compact def __call__( self : int , snake_case : Any ) -> str: """simple docstring""" return get_sinusoidal_embeddings( snake_case , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
50
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[Any] = "distilbert" lowerCamelCase__ : Any = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , a=3_0_5_2_2 , a=5_1_2 , a=False , a=6 , a=1_2 , a=7_6_8 , a=4 * 7_6_8 , a=0.1 , a=0.1 , a="gelu" , a=0.02 , a=0.1 , a=0.2 , a=0 , **a , ) -> List[str]: lowercase__ : Union[str, Any] = vocab_size lowercase__ : List[Any] = max_position_embeddings lowercase__ : str = sinusoidal_pos_embds lowercase__ : Dict = n_layers lowercase__ : str = n_heads lowercase__ : List[Any] = dim lowercase__ : List[str] = hidden_dim lowercase__ : Any = dropout lowercase__ : Tuple = attention_dropout lowercase__ : List[Any] = activation lowercase__ : List[str] = initializer_range lowercase__ : int = qa_dropout lowercase__ : List[Any] = seq_classif_dropout super().__init__(**a , pad_token_id=a ) class UpperCAmelCase_ ( _a): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
77
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase__ = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class A_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCAmelCase_ : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCAmelCase_ : Optional[int] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase_ ( self : Any ) -> List[Any]: UpperCAmelCase : int = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' ) UpperCAmelCase : List[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.504}] ) UpperCAmelCase : int = text_classifier('This is great !' , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}] ) UpperCAmelCase : str = text_classifier(['This is great !', 'This is bad'] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] , ) UpperCAmelCase : List[str] = text_classifier('This is great !' , top_k=1 ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.504}] ) # Legacy behavior UpperCAmelCase : str = text_classifier('This is great !' , return_all_scores=lowercase_ ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.504}] ) UpperCAmelCase : List[str] = text_classifier('This is great !' , return_all_scores=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}]] ) UpperCAmelCase : Optional[int] = text_classifier(['This is great !', 'Something else'] , return_all_scores=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] , ) UpperCAmelCase : Any = text_classifier(['This is great !', 'Something else'] , return_all_scores=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [ {'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_0', 'score': 0.504}, ] , ) @require_torch def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: import torch UpperCAmelCase : str = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , ) UpperCAmelCase : List[str] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.504}] ) @require_tf def UpperCAmelCase_ ( self : Dict ) -> List[str]: UpperCAmelCase : List[Any] = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' ) UpperCAmelCase : Optional[int] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.504}] ) @slow @require_torch def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : Optional[Any] = pipeline('text-classification' ) UpperCAmelCase : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'POSITIVE', 'score': 1.0}] ) UpperCAmelCase : Any = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) UpperCAmelCase : Union[str, Any] = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'POSITIVE', 'score': 0.988}] ) @slow @require_tf def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : Dict = pipeline('text-classification' , framework='tf' ) UpperCAmelCase : Union[str, Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'POSITIVE', 'score': 1.0}] ) UpperCAmelCase : Union[str, Any] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) UpperCAmelCase : Dict = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'POSITIVE', 'score': 0.988}] ) def UpperCAmelCase_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any ) -> Union[str, Any]: UpperCAmelCase : List[Any] = TextClassificationPipeline(model=lowercase_ , tokenizer=lowercase_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase_ ( self : int , lowercase_ : str , lowercase_ : str ) -> List[str]: UpperCAmelCase : str = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 UpperCAmelCase : Dict = 'HuggingFace is in' UpperCAmelCase : int = text_classifier(lowercase_ ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) UpperCAmelCase : Optional[Any] = ['HuggingFace is in ', 'Paris is in France'] UpperCAmelCase : Optional[Any] = text_classifier(lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [{'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}, {'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format UpperCAmelCase : int = text_classifier(lowercase_ , top_k=lowercase_ ) UpperCAmelCase : Tuple = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowercase_ ) , [[{'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}] * N, [{'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}] * N] , ) UpperCAmelCase : List[Any] = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} UpperCAmelCase : Tuple = text_classifier(lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , {'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. UpperCAmelCase : List[Any] = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(lowercase_ ): text_classifier(lowercase_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility UpperCAmelCase : Dict = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(lowercase_ ) , [{'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
151
0
"""simple docstring""" from __future__ import annotations import time lowerCAmelCase__ = list[tuple[int, int]] lowerCAmelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __snake_case : def __init__( self : str , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Node | None ): """simple docstring""" _lowerCamelCase : Optional[Any] = pos_x _lowerCamelCase : List[Any] = pos_y _lowerCamelCase : Dict = (pos_y, pos_x) _lowerCamelCase : Any = goal_x _lowerCamelCase : List[Any] = goal_y _lowerCamelCase : Optional[int] = parent class __snake_case : def __init__( self : str , __lowerCAmelCase : tuple[int, int] , __lowerCAmelCase : tuple[int, int] ): """simple docstring""" _lowerCamelCase : str = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCamelCase_ ) _lowerCamelCase : Any = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCamelCase_ ) _lowerCamelCase : Union[str, Any] = [self.start] _lowerCamelCase : str = False def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" while self.node_queue: _lowerCamelCase : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _lowerCamelCase : Tuple = True return self.retrace_path(UpperCamelCase_ ) _lowerCamelCase : Dict = self.get_successors(UpperCamelCase_ ) for node in successors: self.node_queue.append(UpperCamelCase_ ) if not self.reached: return [self.start.pos] return None def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Node ): """simple docstring""" _lowerCamelCase : Any = [] for action in delta: _lowerCamelCase : int = parent.pos_x + action[1] _lowerCamelCase : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCamelCase_ , UpperCamelCase_ , self.target.pos_y , self.target.pos_x , UpperCamelCase_ ) ) return successors def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Node | None ): """simple docstring""" _lowerCamelCase : List[Any] = node _lowerCamelCase : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCamelCase : List[str] = current_node.parent path.reverse() return path class __snake_case : def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = BreadthFirstSearch(UpperCamelCase_ , UpperCamelCase_ ) _lowerCamelCase : Dict = BreadthFirstSearch(UpperCamelCase_ , UpperCamelCase_ ) _lowerCamelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _lowerCamelCase : Dict = self.fwd_bfs.node_queue.pop(0 ) _lowerCamelCase : Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _lowerCamelCase : str = True return self.retrace_bidirectional_path( UpperCamelCase_ , UpperCamelCase_ ) _lowerCamelCase : int = current_bwd_node _lowerCamelCase : Union[str, Any] = current_fwd_node _lowerCamelCase : Any = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCamelCase_ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCamelCase_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCamelCase_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Node , __lowerCAmelCase : Node ): """simple docstring""" _lowerCamelCase : int = self.fwd_bfs.retrace_path(UpperCamelCase_ ) _lowerCamelCase : str = self.bwd_bfs.retrace_path(UpperCamelCase_ ) bwd_path.pop() bwd_path.reverse() _lowerCamelCase : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCAmelCase__ = time.time() lowerCAmelCase__ = BreadthFirstSearch(init, goal) lowerCAmelCase__ = bfs.search() lowerCAmelCase__ = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) lowerCAmelCase__ = time.time() lowerCAmelCase__ = BidirectionalBreadthFirstSearch(init, goal) lowerCAmelCase__ = bd_bfs.search() lowerCAmelCase__ = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
355
"""simple docstring""" def snake_case_ ( A_ : int ): '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : Any = number while duplicate > 0: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = divmod(A_, 10 ) fact_sum += factorial(A_ ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') lowerCAmelCase__ = int(input('''Enter number: ''').strip()) print( F"""{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.""" )
175
0
'''simple docstring''' UpperCamelCase__ : Optional[int] = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
344
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> str: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : List[str] = mock.Mock() UpperCAmelCase_ : List[Any] = 500 UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self: str ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : str = mock.Mock() UpperCAmelCase_ : Optional[int] = 500 UpperCAmelCase_ : int = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self: str ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase_ : Any = tempfile.mktemp() with open(lowerCamelCase_ ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ ) finally: os.remove(lowerCamelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def A__ ( self: List[str] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def A__ ( cls: Optional[Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def A__ ( self: Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def A__ ( self: Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def A__ ( self: Optional[int] ) -> Optional[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[str] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : int = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def A__ ( self: List[Any] ) -> Any: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase_ : Tuple = Trie() UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
345
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=5_12, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __lowercase ( __lowerCAmelCase : Tuple ): if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) snake_case : Optional[Any] = parser.parse_args() snake_case : Any = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
370
def __lowercase ( __lowerCAmelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowercase ( __lowerCAmelCase : dict[int, list[int]] ): a__ = 0 a__ = len(__lowerCAmelCase ) # No of vertices in graph a__ = [0] * n a__ = [False] * n def dfs(__lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): a__ = True a__ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) a__ = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge a__ = min(low[at] , low[to] ) a__ = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
109
0